Skip to main content
Log in

Pr3+-doped YF3, LaF3, and GdF3 nanoparticles: comparative crystallographic, Raman, optical, and photoluminescence properties

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Pr3+-ion doped YF3, LaF3, and GdF3 nanoparticles (NPs) were chemically prepared at a lower temperature (80 °C) to investigate the comparative physiochemical characteristics. X-ray diffraction profile of the nanoproducts exhibited the orthorhombic phase in YF3:Pr and GdF3:Pr NPs, whereas hexagonal structure was found in LaF3:Pr NPs with an estimated crystalline size 12, 23, and 15 nm, respectively. The unit cell constants for YF3:Pr (a = 6.340 Å, b = 7.269 Å, c = 4.317 Å, and unit cell volume = 198.97 (Å)3), LaF3:Pr (a = b = 7.171 Å, and c = 7.388 Å, and unit cell volume = 329.092 (Å)3) and GdF3:Pr (a = 6.465 Å, b = 7.008 Å, and c = 4.528 Å, and unit cell volume = 205.225 (Å)3) were considered to examine the influence of the dopant ions and the host ion’s ionic radius on the crystal phase, and crystallinity. An orthorhombic phase GdF3:Pr NP sample revealed better thermal stability in comparison to the hexagonal phase LaF3:Pr NPs as received in the thermogravimetric outcomes. FTIR spectra exhibited the surface-fastened water molecules which promote the development of colloidal solution in aqueous solvents under the environmental conditions as achieved in absorption spectral analysis. Band gap energy was calculated from the UV/visible spectra to examine the optical behavior of the optically active NPs. The excitation and emission spectrums demonstrated the sharp excitation and emission transitions of the doped Pr3+ ion under excitation from the blue region. Comparatively, the emission and excitation transitions of the YF3:Pr NPs were dominant with respect to the orthorhombic GdF3:Pr and hexagonal LaF3:Pr NPs. YF3:Pr NPs are a useful host matrix for the loading of the activator Pr3+-ion for their use in luminescent phosphor material development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Ansari, A.A., Muthumareeswaran, M.R., Lv, R.: Coordination chemistry of the host matrices with dopant luminescent Ln3+ ion and their impact on luminescent properties. Coord Chem Rev 466, 214584 (2022). https://doi.org/10.1016/j.ccr.2022.214584

    Article  CAS  Google Scholar 

  2. Ansari, A.A., Parchur, A.K., Labis, J.P., Shar, M.A., Khan, A.: Highly hydrophilic CaF2:Yb/Er upconversion nanoparticles: structural, morphological, and optical properties. J. Fluor. Chem. 247 (2021).https://doi.org/10.1016/j.jfluchem.2021.109820

  3. Ansari, A.A., Aldalbahi, A.K., Labis, J.P., Manthrammel, M.A.: Impact of surface coating on physical properties of europium-doped gadolinium fluoride microspheres. J. Fluorine Chem. 199, 7–13 (2017). https://doi.org/10.1016/j.jfluchem.2017.03.015

    Article  CAS  Google Scholar 

  4. Zheng, B., Fan, J., Chen, B., Qin, X., Wang, J., Wang, F., Deng, R., Liu, X.: Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 122(6), 5519–5603 (2022). https://doi.org/10.1021/acs.chemrev.1c00644

    Article  CAS  Google Scholar 

  5. Lecointre, A., Bessiere, A., Bos, A.J.J., Dorenbos, P., Viana, B., Jacquart, S.: Designing a red persistent luminescence phosphor: the example of YPO4:Pr3+, Ln(3+) (Ln = Nd, Er, Ho, Dy). J. Phys. Chem. C 115(10), 4217–4227 (2011). https://doi.org/10.1021/jp108038v

    Article  CAS  Google Scholar 

  6. Kahouadji, B., Guerbous, L., Boukerika, A., Dolic, S.D., Jovanovic, D.J., Dramicanin, M.D.: Intra- and inter-configurational luminescence spectroscopy of Pr3+-doped YPO4 nanophosphors. Curr. Appl. Phys. 18(4), 437–446 (2018). https://doi.org/10.1016/j.cap.2018.01.012

    Article  Google Scholar 

  7. Pelle, F., Dhaouadi, M., Michely, L., Aschehoug, P., Toncelli, A., Veronesi, S., Tonelli, M.: Spectroscopic properties and upconversion in Pr3+:YF3 nanoparticles. Phys. Chem. Chem. Phys. 13(39), 17453–17460 (2011). https://doi.org/10.1039/c1cp20725c

    Article  CAS  Google Scholar 

  8. Tao, F., Pan, F., Wang, Z., Cai, W., Yao, L.: Synthesis and photoluminescence properties of hexagonal Lanthanide(iii)-doped NaYF4 microprisms. CrystEngComm 12(12), 4263–4267 (2010). https://doi.org/10.1039/C0CE00033G

    Article  CAS  Google Scholar 

  9. Peng, C., Li, C.X., Li, G.G., Li, S.W., Lin, J.: YF3:Ln(3+) (Ln = Ce, Tb, Pr) submicrospindles: hydrothermal synthesis and luminescence properties. Dalton Trans. 41(28), 8660–8668 (2012). https://doi.org/10.1039/c2dt30325f

    Article  CAS  Google Scholar 

  10. Runowski, M., Woźny, P., Martín, I.R., Lavín, V., Lis, S.: Praseodymium doped YF3:Pr3+ nanoparticles as optical thermometer based on luminescence intensity ratio (LIR) – studies in visible and NIR range. J. Lumin. 214, 116571 (2019). https://doi.org/10.1016/j.jlumin.2019.116571

    Article  CAS  Google Scholar 

  11. Liu, T.C., Cheng, B.M., Hu, S.F., Liu, R.S.: Highly stable red oxynitride beta-SiAlON:Pr3+ phosphor for light-emitting diodes. Chem. Mater. 23(16), 3698–3705 (2011). https://doi.org/10.1021/cm201289s

    Article  CAS  Google Scholar 

  12. Gusowski, M.A., Swart, H.C., Karlsson, L.S., Trzebiatowska-Gusowska, M.: NaYF4:Pr3+ nanocrystals displaying photon cascade emission. Nanoscale 4(2), 541–546 (2012). https://doi.org/10.1039/c1nr11249j

    Article  CAS  Google Scholar 

  13. Zhu, W.J., Chen, D.Q., Lei, L., Xu, J., Wang, Y.S.: An active-core/active-shell structure with enhanced quantum-cutting luminescence in Pr-Yb co-doped monodisperse nanoparticles. Nanoscale 6(18), 10500–10504 (2014). https://doi.org/10.1039/c4nr02785j

    Article  CAS  Google Scholar 

  14. Broxtermann, M., den Engelsen, D., Fern, G.R., Harris, P., Ireland, T.G., Justel, T., Silver, J.: Cathodoluminescence and photoluminescence of YPO4:Pr3+, Y2SiO5:Pr3+, YBO3: Pr3+, and YPO4:Bi3+. Ecs J. Solid State Sci. Technol. 6(4), R47–R52 (2017). https://doi.org/10.1149/2.0051704jss

    Article  CAS  Google Scholar 

  15. Zhang, Z.J., ten Kate, O.M., Delsing, A., van der Kolk, E., Notten, P.H.L., Dorenbos, P., Zhao, J.T., Hintzen, H.T.: Photoluminescence properties and energy level locations of RE3+ (RE = Pr, Sm, Tb, Tb/Ce) in CaAlSiN3 phosphors. J. Mater. Chem. 22(19), 9813–9820 (2012). https://doi.org/10.1039/c2jm30220a

    Article  CAS  Google Scholar 

  16. Li, C.X., Yang, J., Yang, P.P., Lian, H.Z., Lin, J.: Hydrothermal synthesis of lanthanide fluorides LnF(3) (Ln = La to Lu) nano-/microcrystals with multiform structures and morphologies. Chem. Mater. 20(13), 4317–4326 (2008). https://doi.org/10.1021/cm800279h

    Article  CAS  Google Scholar 

  17. Zhao, S., Shao, B., Feng, Y., Yuan, S., Huo, J., Lu, W., Liu, K., You, H.: Facile synthesis of lanthanide (Ce, Eu, Tb, Ce/Tb, Yb/Er, Yb/Ho, and Yb/Tm)-doped LnF3 and LnOF porous sub-microspheres with multicolor emissions. Chem. Asian J. 12(23), 3046–3052 (2017). https://doi.org/10.1002/asia.201701142

    Article  CAS  Google Scholar 

  18. Suo, H., Zhao, X., Zhang, Z., Li, T., Goldys, E.M., Guo, C.: Constructing multiform morphologies of YF: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry. Chem. Eng. J. 313, 65–73 (2017). https://doi.org/10.1016/j.cej.2016.12.064

    Article  CAS  Google Scholar 

  19. Bovero, E., van Veggel, F.C.J.M.: Conformational characterization of Eu3+-doped LaF3 core-shell nanoparticles through luminescence anisotropy studies. J. Phys. Chem. C 111(12), 4529–4534 (2007). https://doi.org/10.1021/jp0677849

    Article  CAS  Google Scholar 

  20. Mangaiyarkarasi, R., Chinnathambi, S., Aruna, P., Ganesan, S.: Synthesis and formulation of methotrexate (MTX) conjugated LaF3:Tb3(+)/chitosan nanoparticles for targeted drug delivery applications. Biomed. Pharmacother. 69, 170–178 (2015). https://doi.org/10.1016/j.biopha.2014.11.023

    Article  CAS  Google Scholar 

  21. Huang, X.Y.: Enhancement of near-infrared to near-infrared upconversion luminescence in sub-10-nm ultra-small LaF3:Yb3+/Tm3+ nanoparticles through lanthanide doping. Opt. Lett. 40(22), 5231–5234 (2015). https://doi.org/10.1364/Ol.40.005231

    Article  CAS  Google Scholar 

  22. Evanics, F., Diamente, P.R., van Veggel, F.C.J.M., Stanisz, G.J., Prosser, R.S.: Water-soluble GdF3 and GdF3/LaF3 nanoparticles-physical characterization and NMR relaxation properties. Chem. Mater. 18(10), 2499–2505 (2006). https://doi.org/10.1021/cm052299w

    Article  CAS  Google Scholar 

  23. Grzyb, T., Lis, S.: Photoluminescent properties of LaF3:Eu3+ and GdF3:Eu3+ nanoparticles prepared by co-precipitation method. J Rare Earth 27(4), 588–592 (2009). https://doi.org/10.1016/S1002-0721(08)60294-X

    Article  Google Scholar 

  24. Yin, W.Y., Zhao, L.N., Zhou, L.J., Gu, Z.J., Liu, X.X., Tian, G., Jin, S., Yan, L., Ren, W.L., Xing, G.M., Zhao, Y.L.: Enhanced red emission from GdF3:Yb3+, Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging. Chem-Eur J 18(30), 9239–9245 (2012). https://doi.org/10.1002/chem.201201053

    Article  CAS  Google Scholar 

  25. Ansari, A.A., Parchur, A.K., Nazeeruddin, M.K., Tavakoli, M.M.: Luminescent lanthanide nanocomposites in thermometry: chemistry of dopant ions and host matrices. Coord. Chem. Rev. 444, 214040 (2021). https://doi.org/10.1016/j.ccr.2021.214040

    Article  CAS  Google Scholar 

  26. Li, C.X., Ma, P.A., Yang, P.P., Xu, Z.H., Li, G.G., Yang, D.M., Peng, C., Lin, J.: Fine structural and morphological control of rare earth fluorides REF3 (RE = La-Lu, Y) nano/microcrystals: microwave-assisted ionic liquid synthesis, magnetic and luminescent properties. CrystEngComm 13(3), 1003–1013 (2011). https://doi.org/10.1039/c0ce00186d

    Article  CAS  Google Scholar 

  27. Grzyb, T., Runowski, M., Szczeszak, A., Lis, S.: Influence of matrix on the luminescent and structural properties of glycerine-capped, Tb3+-doped fluoride nanocrystals. J. Phys. Chem. C 116(32), 17188–17196 (2012). https://doi.org/10.1021/jp3010579

    Article  CAS  Google Scholar 

  28. Li, G.Y., Ni, Y.H., Hong, J.M., Liao, K.M.: Controllable synthesis of polyhedral YF3 microcrystals via a potassium sodium tartrate-assisted hydrothermal route. CrystEngComm 10(11), 1681–1686 (2008). https://doi.org/10.1039/b808933g

    Article  CAS  Google Scholar 

  29. Li, D., Ding, C.R., Song, G., Lu, S.Z., Zhang, Z., Shi, Y.U., Shen, H., Zhang, Y.L., Ouyang, H.Q., Wang, H.: Controlling the morphology of erbium-doped yttrium fluoride using acids as surface modifiers: employing adsorbed chlorine ions to inhibit the quenching of upconversion fluorescence. J. Phys. Chem. C 114(49), 21378–21384 (2010). https://doi.org/10.1021/jp1032564

    Article  CAS  Google Scholar 

  30. Lei, F.Y., Zou, X., Jiang, N., Zheng, Q.J., Lam, K.H., Luo, L.L., Ning, Z.L., Lin, D.M.: Regulated morphology/phase structure and enhanced fluorescence in YF3:Eu3+, Bi3+ via a facile method. CrystEngComm 17(32), 6207–6218 (2015). https://doi.org/10.1039/c5ce01049g

    Article  CAS  Google Scholar 

  31. Wang, S., Deng, R.P., Guo, H.L., Song, S.Y., Cao, F., Li, X.Y., Su, S.Q., Zhang, H.J.: Lanthanide doped Y6O5F8/YF3 microcrystals: phase-tunable synthesis and bright white upconversion photoluminescence properties. Dalton Trans. 39(38), 9153–9158 (2010). https://doi.org/10.1039/c0dt00446d

    Article  CAS  Google Scholar 

  32. Chen, G.Y., Qiu, H.L., Fan, R.W., Hao, S.W., Tan, S., Yang, C.H., Han, G.: Lanthanide-doped ultrasmall yttrium fluoride nanoparticles with enhanced multicolor upconversion photoluminescence. J. Mater. Chem. 22(38), 20190–20196 (2012). https://doi.org/10.1039/c2jm32298f

    Article  CAS  Google Scholar 

  33. Wang, F., Zhang, Y., Fan, X.P., Wang, M.Q.: One-pot synthesis of chitosan/LaF3: Eu3+ nanocrystals for bio-applications. Nanotechnology 17(5), 1527–1532 (2006). https://doi.org/10.1088/0957-4484/17/5/060

    Article  CAS  Google Scholar 

  34. Wang, F., Zhang, Y., Fan, X.P., Wang, M.Q.: Facile synthesis of water-soluble LaF3: Ln(3+) nanocrystals. J. Mater. Chem. 16(11), 1031–1034 (2006). https://doi.org/10.1039/b518262j

    Article  CAS  Google Scholar 

  35. Zhang, Y., Lu, M.H.: Labelling of silica microspheres with fluorescent lanthanide-doped LaF3 nanocrystals. Nanotechnology 18(27) (2007) https://doi.org/10.1088/0957-4484/18/27/275603

  36. Syamchand, S.S., George, S.: The upconversion luminescence and magnetism in Yb3+/Ho3+ co-doped LaF3 nanocrystals for potential bimodal imaging. J. Nanopart. Res. 18(12) (2016) https://doi.org/10.1007/s11051-016-3699-0

  37. Mangaiyarkarasi, R., Chinnathambi, S., Aruna, P., Ganesan, S.: Synthesis of 5-fluorouracil conjugated LaF3:Tb3+/PEG-COOH nanoparticles and its studies on the interaction with bovine serum albumin: spectroscopic approach. J. Nanopart. Res. 17(3) (2015) https://doi.org/10.1007/s11051-015-2948-y

  38. Zhao, Q., Lu, W., Guo, N., Jia, Y.C., Lv, W.Z., Shao, B.Q., Jiao, M.M., You, H.P.: Inorganic-salt-induced morphological transformation and luminescent performance of GdF3 nanostructures. Dalton Trans. 42(19), 6902–6908 (2013). https://doi.org/10.1039/c3dt33106g

    Article  CAS  Google Scholar 

  39. Tian, Y., Yang, H.Y., Li, K., Jin, X.: Monodispersed ultrathin GdF3 nanowires: oriented attachment, luminescence, and relaxivity for MRI contrast agents. J. Mater. Chem. 22(42), 22510–22516 (2012). https://doi.org/10.1039/c2jm34987f

    Article  CAS  Google Scholar 

  40. Liu, Y.F., Chen, W., Wang, S.P., Joly, A.G., Westcott, S., Woo, B.K.: X-ray luminescence of LaF(3): Tb(3+) and LaF(3): Ce(3+), Tb(3+) water-soluble nanoparticles. J. Appl. Phys. 103(6) (2008) https://doi.org/10.1063/1.2890148

  41. Xu, Z.H., Guo, Y., Liu, T., Wang, L.M., Bian, S.S., Lin, J.: General and facile method to fabricate uniform Y2O3:Ln(3+) (Ln(3+) = Eu-3+, Eu- Tb3+) hollow microspheres using polystyrene spheres as templates. J. Mater. Chem. 22(40), 21695–21703 (2012). https://doi.org/10.1039/c2jm34868c

    Article  CAS  Google Scholar 

  42. Ansari, A.A., Parchur, A.K., Alam, M., Azzeer, A.: Effect of surface coating on optical properties of Eu3+-doped CaMoO4 nanoparticles. Spectrochim Acta A 131, 30–36 (2014). https://doi.org/10.1016/j.saa.2014.04.036

    Article  CAS  Google Scholar 

  43. Kang, J.-G., Jung, Y., Min, B.-K., Sohn, Y.: Full characterization of Eu(OH)3 and Eu2O3 nanorods. Appl. Surf. Sci. 314, 158–165 (2014). https://doi.org/10.1016/j.apsusc.2014.06.165

    Article  CAS  Google Scholar 

  44. Kang, J.G., Min, B.K., Sohn, Y.: Physicochemical properties of praseodymium hydroxide and oxide nanorods. J. Alloy. Compd. 619, 165–171 (2015). https://doi.org/10.1016/j.jallcom.2014.09.059

    Article  CAS  Google Scholar 

  45. Zhang, X., Yang, P.A.P., Wang, D., Xu, J., Li, C.X., Gai, S.L., Lin, J.: La(OH)(3):Ln(3+) and La2O3:Ln(3+) (Ln = Yb/Er, Yb/Tm, Yb/Ho) Microrods: synthesis and up-conversion luminescence properties. Cryst. Growth Des. 12(1), 306–312 (2012). https://doi.org/10.1021/cg201091u

    Article  CAS  Google Scholar 

  46. Ansari, A.A., Parchur, A.K., Alam, M., Azzeer, A.: Structural and photoluminescence properties of Tb-doped CaMoO4 nanoparticles with sequential surface coatings. Mater. Chem. Phys. 147(3), 715–721 (2014). https://doi.org/10.1016/j.matchemphys.2014.06.011

    Article  CAS  Google Scholar 

  47. Aldalbahi, A., Rahaman, M., Ansari, A.A.: Mesoporous silica modified luminescent Gd2O3: Eu nanoparticles: physicochemical and luminescence properties. J. Sol-Gel. Sci. Technol. 89(3), 785–795 (2019). https://doi.org/10.1007/s10971-018-4897-2

    Article  CAS  Google Scholar 

  48. Ansari, A.A., Khan, A., Labis, J.P., Alam, M., Aslam Manthrammel, M., Ahamed, M., Akhtar, M.J., Aldalbahi, A., Ghaithan, H.: Mesoporous multi-silica layer-coated Y2O3: Eu core-shell nanoparticles: synthesis, luminescent properties and cytotoxicity evaluation. Mater. Sci. Eng., C 96, 365–373 (2019). https://doi.org/10.1016/j.msec.2018.11.046

    Article  CAS  Google Scholar 

  49. Ansari, A.A., Khan, A., Siddiqui, M.A., Ahmad, N., Al-Khedhairy, A.A.: Toxicity response of highly colloidal, bioactive, monodisperse SiO2@Pr (OH)(3) hollow microspheres. Colloid Surf. B 182 (2019)https://doi.org/10.1016/j.colsurfb.2019.110390

  50. Ansari, A.A., Parchur, A.K., Alam, M., Labis, J., Azzeer, A.: Influence of surface coating on structural and photoluminescent properties of CaMoO4: Pr nanoparticles. J. Fluoresc. 24(4), 1253–1262 (2014). https://doi.org/10.1007/s10895-014-1409-9

    Article  CAS  Google Scholar 

  51. Grzyb, T., Runowski, M., Dabrowska, K., Giersig, M., Lis, S.: Structural, spectroscopic and cytotoxicity studies of TbF3@CeF3 and TbF3@CeF3@SiO2 nanocrystals. J. Nanopart. Res. 15(10) (2013) https://doi.org/10.1007/S11051-013-1958-X

  52. Grzyb, T., Runowski, M., Szczeszak, A., Lis, S.: Structural, morphological and spectroscopic properties of Eu3+-doped rare earth fluorides synthesized by the hydrothermal method. J. Solid State Chem. 200, 76–83 (2013). https://doi.org/10.1016/j.jssc.2013.01.012

    Article  CAS  Google Scholar 

  53. Janssens, S., Williams, G.V.M., Clarke, D.: Systematic study of sensitized LaF3:Eu3+ nanoparticles. J. Appl. Phys. 109(2), 023506 (2011). https://doi.org/10.1063/1.3531994

    Article  CAS  Google Scholar 

  54. Tauc, J., Menth, A.: States in the gap. J. Non-Cryst. Solids 8–10, 569–585 (1972). https://doi.org/10.1016/0022-3093(72)90194-9

    Article  Google Scholar 

  55. Ansari, A.A., Singh, S.P., Malhotra, B.D.: Optical and structural properties of nanostructured CeO2:Tb3+ film. J. Alloy. Compd. 509(2), 262–265 (2011). https://doi.org/10.1016/j.jallcom.2010.07.009

    Article  CAS  Google Scholar 

  56. Ansari, A.A., Yadav, R., Rai, S.B.: Enhanced luminescence efficiency of aqueous dispersible NaYF4:Yb/Er nanoparticles and the effect of surface coating. RSC Adv. 6(26), 22074–22082 (2016). https://doi.org/10.1039/c6ra00265j

    Article  CAS  Google Scholar 

  57. Parchur, A.K., Prasad, A.I., Ansari, A.A., Rai, S.B., Ningthoujam, R.S.: Luminescence properties of Tb3+-doped CaMoO4 nanoparticles: annealing effect, polar medium dispersible, polymer film and core-shell formation. Dalton Trans. 41(36), 11032–11045 (2012). https://doi.org/10.1039/c2dt31257c

    Article  CAS  Google Scholar 

  58. Ansari, A.A., Alam, M., Parchur, A.K.: Nd-doped calcium molybdate core and particles: synthesis, optical and photoluminescence studies. Appl. Phys. a-Materials Sci. Process. 116(4), 1719–1728 (2014). https://doi.org/10.1007/s00339-014-8308-4

    Article  CAS  Google Scholar 

  59. Zhang, Z.J., ten Kate, O.M., Delsing, A., Dorenbos, P., Zhao, J.T., Hintzen, H.T.: Photoluminescence properties of Pr3+, Sm3+ and Tb3+ doped SrAlSi4N7 and energy level locations of rare-earth ions in SrAlSi4N7. J. Mater. Chem. C 2(37), 7952–7959 (2014). https://doi.org/10.1039/c4tc00538d

    Article  CAS  Google Scholar 

  60. Vidyadharan, V., Mani, K.P., Sajna, M.S., Joseph, C., Unnikrishnan, N.V., Biju, P.R.: Synthesis and luminescence characterization of Pr3+ doped Sr1.5Ca0.5SiO4 phosphor. Spectrochimica Acta Part a-Molecular Biomol. Spectrosc. 133, 767–772 (2014). https://doi.org/10.1016/j.saa.2014.06.016

    Article  CAS  Google Scholar 

  61. Sreeja, E., Vidyadharan, V., Jose, S.K., George, A., Joseph, C., Unnikrishnan, N.V., Biju, P.R.: A single-phase white light emitting Pr3+ doped Ba2CaWO6 phosphor: synthesis, photoluminescence and optical properties. Opt. Mater. 78, 52–62 (2018). https://doi.org/10.1016/j.optmat.2018.02.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the Researchers Supporting Project number (RSP2023R365), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Anees A. Ansari: conceptualization, methodology, validation, formal analysis, investigation, data curation, writing — original draft, writing — review and editing, visualization, supervision, funding acquisition, project administration, and resources. M. A. Majeed Khan: methodology, investigation, validation, data curation, and writing — review and editing. Sadia Ameen: validation and data curation.

Corresponding author

Correspondence to Anees A. Ansari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, A.A., Khan, M.A.M. & Ameen, S. Pr3+-doped YF3, LaF3, and GdF3 nanoparticles: comparative crystallographic, Raman, optical, and photoluminescence properties. J Aust Ceram Soc 60, 153–162 (2024). https://doi.org/10.1007/s41779-023-00965-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00965-w

Keywords

Navigation