Skip to main content
Log in

Production of B4C-TiB2 composite powder by self-propagating high-temperature synthesis

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Advanced ceramics find significant application areas due to their superior mechanical, electrical, magnetic chemical and thermal properties. By combining these materials, significant properties can be obtained as a result of production of the composites of hard metal compounds in nanoscale dimensions. Self-propagated high-temperature synthesis (SHS) is one of the prominent methods for the production of such nanoparticles. SHS is a combustion synthesis method. In this study, nanocomposite powders of B4C-TiB2 were synthesized by SHS method. FactSage software was used for thermochemical simulation and computational stoichiometric optimization. In the experimental step, 2 different SHS sets were prepared. In the first stage, B4C and TiB2 powders were synthesized. The B4C-TiB2 composite was produced in the final set of experiments. Then, production parameters of B4C-TiB2 composite powders, from B2O3, TiO2, and carbon black, were investigated. Magnesium powder was used as reductant agent. Afterwards, HCl leaching process was performed, and acid concentration was optimized. The effect of carbonic acid and H2O2 addition on dissolution of undesired phases was also been investigated as a new method. Products were characterized by XRD, SEM and BET analysis. B4C-TiB2 composite powder with quite high surface area, fine particle size and high porosity could be synthesized with reasonable purity. According to the results, the optimum molar ratios were determined as TiO2:B2O3:Mg:C = 1:3:12:1.6. Optimum acid concentration was found to be 10.5 M for leaching process, and carbonic acid addition on leaching step found to be effective on TiO2 removal. The highest purity could be obtained with 50%-50% stoichiometry. It has also been determined that the synthesis of B4C-TiB2 composite powder has a positive effect on both the chemical content and the morphology that will increase the sintering ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11

Similar content being viewed by others

References

  1. Cinar Sahin, F.: Lecture Note: Production of Hard Metal Compounds. Univ, Istanbul Tech (2007)

    Google Scholar 

  2. Dariel, M.P., Frage, N.: Reaction bonded boron carbide: recent developments. Adv. Appl. Ceram. (2012). https://doi.org/10.1179/1743676111Y.0000000078

    Article  Google Scholar 

  3. Xin, L., Minjun, L., Shuaibo, G., Shu, Y., Xiaofeng, W., Pengfei, X.: Effect of initial compositions on boron carbide synthesis and corresponding growth mechanism. Adv. Appl. Ceram. (2019). https://doi.org/10.1080/17436753.2019.1664792

    Article  Google Scholar 

  4. Crouch, I.G., Eu, B.: The Science of Armour Materials - Ballistic testing methodologies, pp. 639–673, Woodhead Publishing in Materials (2017). https://doi.org/10.1016/B978-0-08-100704-4.00011-6

  5. Domnich, V., Reynaud, S., Haber, R., Chhowalla, M.: Boron carbide: structure, properties and stability under stress. J. Am. Ceram. Soc. (2011). https://doi.org/10.1111/j.1551-2916.2011.04865.x

    Article  Google Scholar 

  6. Savio, S. G., Sambasiva Rao, A., Rama Subba Reddy, P., Madhu, V.: Microstructure and ballistic performance of hot pressed & reaction bonded boron carbides against an armour piercing projectile. Advances in Applied Ceramics (2019). https://doi.org/10.1080/17436753.2018.1564416

  7. Chen, S., Wang, D., Huang, J., Ren, Z.F.: Synthesis and characterization of boron carbide nanoparticles. Appl. Phys. A. (2004). https://doi.org/10.1007/s00339-004-2913-6

    Article  Google Scholar 

  8. Wood, C.: Materials for thermoelectric energy conversion. Rep. Prog. Phys. (1988). https://doi.org/10.1088/0034-4885/51/4/001

    Article  Google Scholar 

  9. Suri, A.K., Subramanian, C., Sonber, J.K., Murthy, T.S.RCh.: Synthesis and consolidation of boron carbide: a review. Int. Mater. Rev. (2010). https://doi.org/10.1179/095066009X12506721665211

    Article  Google Scholar 

  10. Sauerschnig, P., Watts, J.L., Vaney, J.B., Talbot, P.C., Alarco, J.A., Mackinnon, I.D.R., Mori, T.: Thermoelectric properties of phase pure boron carbide prepared by a solution-based method. Adv. Appl. Ceram. (2020). https://doi.org/10.1080/17436753.2019.1705017

    Article  Google Scholar 

  11. Madhav Reddy, K., Guo, J., Shinoda, Y., et al.: Enhanced mechanical properties of nanocrystalline boron carbide by nanoporosity and interface phases. Nat. Commun. (2012). https://doi.org/10.1038/ncomms2047

    Article  Google Scholar 

  12. Heydari, M.S., Baharvandi, H.R.: Comparing the effects of different sintering methods for ceramics on the physical and mechanical properties of B4C–TiB2 nanocomposites. Int. Journal of Refractory Metals and Hard Materials (2015). https://doi.org/10.1016/j.ijrmhm.2015.04.003.

  13. Tallon, C., Franks, G.V.: Exploring inexpensive processing routes to prepare dense TiB2 components. Adv. Appl. Ceram. (2016). https://doi.org/10.1080/17436753.2016.1172166

    Article  Google Scholar 

  14. Mukhopadhyay, A., Raju, G.B., Basu, B., Suri, A.K.: Correlation between phase evolution, mechanical properties and instrumented indentation response of TiB2-based ceramics. J. Eur. Ceram. Soc. (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.06.030

    Article  Google Scholar 

  15. Riccer,i R., Matteazzi, P.: A fast and low-cost room temperature process for TiB2 formation by mechanosynthesis. Mater. Sci. Eng. (2004). https://doi.org/10.1016/j.msea.2004.02.064

  16. Górnya, G., Rączkaa, M., Stobierskia, L., Rożniatowskib, K., Rutkowskia, P.: Ceramic composite Ti3SiC2–TiB2-microstructure and mechanical properties. Mater. Charact. (2009). https://doi.org/10.1016/j.matchar.2009.03.011

    Article  Google Scholar 

  17. Bilgi, E., Camurlu, H.E., Akgun, B., Topkaya, Y., Sevinc, N.: Formation of TiB2 by volume combustion and mechanochemical process. Mater. Res. Bull. (2008). https://doi.org/10.1016/j.materresbull.2007.05.001

    Article  Google Scholar 

  18. Subramanian, C., Murthy, T.S.RCh., Suri, A.K.: Synthesis and consolidation of titanium diboride. Int. J. Refract. Met. Hard. Mater. (2007). https://doi.org/10.1016/j.ijrmhm.2006.09.003

    Article  Google Scholar 

  19. Kang, S.H., Kim, D.J.: Synthesis of nano-titanium diboride powders by carbothermal reduction. J. Eur. Ceram. Soc. (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.04.053

    Article  Google Scholar 

  20. Li, X., Wang, S., Nie, D., Liu, K., Yan, S., Xing, P.: Effect and corresponding mechanism of NaCl additive on boron carbide powder synthesis via carbothermal reduction. Diam. Relat. Mater. (2019). https://doi.org/10.1016/j.diamond.2019.107458

    Article  Google Scholar 

  21. Kakiage, M., Kobayashi, T.: Fabrication of boron carbide fibers consisting of connected particles by carbothermal reduction via electrospinning. Mater. Lett. (2019). https://doi.org/10.1016/j.matlet.2019.07.028

    Article  Google Scholar 

  22. Tang, W.-M., Zheng, Z.-X., Wu, Y.-C., Wang, J.-M., Lu, J., Liu, J.-W.: Synthesis of TiB2 nanocrystalline powder by mechanical alloying. Trans. Nonferrous. Met. Soc. China. (2006). https://doi.org/10.1016/S1003-6326(06)60108-8

    Article  Google Scholar 

  23. Hwang, Y., Lee, J.K.: Preparation of TiB2 powders by mechanical alloying. Mater. Lett. (2002). https://doi.org/10.1016/S0167-577X(01)00526-2

    Article  Google Scholar 

  24. Schmidt, J., Boehling, M., Burkhardt, U., Grin, Y.: Preparation of titanium diboride TiB2 by spark plasma sintering at slow heating rate. Sci. Technol. Adv. Mater. (2007). https://doi.org/10.1016/j.stam.2007.06.009

    Article  Google Scholar 

  25. Chakraborti, A., Vast, N., Le Godec, Y.: Synthesis of boron carbide from its elements at high pressures and high temperatures. Solid. State. Sci. (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106265

    Article  Google Scholar 

  26. Baca, L., Stelzer, N.: Adapting of sol–gel process for preparation of TiB2 powder from low cost precursors. J. Eur. Ceram. Soc. (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.09.028

    Article  Google Scholar 

  27. Suna Avcioglu, Figen Kaya, Cengiz Kaya, Non-catalytic synthesis of boron carbide (B4C) nano structures with various morphologies by sol-gel process, Materials Letters, Volume 249, 2019, Pages 201–205, ISSN 0167–577X, https://doi.org/10.1016/j.matlet.2019.04.056.

  28. Abolhassan, N., Golestani-Fard, F., Rezaie, H.R.: Sol-gel synthesis and characterization of B4C nanopowder. Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.08.196

    Article  Google Scholar 

  29. Kim, J.W., Shim, J., Ahn, J., Cho, Y.W., Kim, J., Oh, K.H.: Mechanochemical synthesis and characterization of TiB2 and VB2 nanopowders. Mater. Lett. (2008). https://doi.org/10.1016/j.matlet.2007.12.022

    Article  Google Scholar 

  30. Deng, F., Xie, H.Y., Wang, L.: Synthesis of submicron B4C by mechanochemical method. Mater. Lett. (2006). https://doi.org/10.1016/j.matlet.2005.12.016

    Article  Google Scholar 

  31. Gadakary, S., Khanra, A.K., Veerabau, R.: Production of nanocrystalline TiB2 powder through self-propagating high temperature synthesis (SHS) of TiO2–H3BO3–Mg mixture. Adv. Appl. Ceram. (2014). https://doi.org/10.1179/1743676114Y.0000000188

    Article  Google Scholar 

  32. İpekçi, M., Acar, S., Elmadağlı, M., Hennicked, J., Balcı, Ö., Somer, M.: Production of TiB2 by SHS and HCl leaching at different temperatures: characterization and investigation of sintering behavior by SPS. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2016.10.174

    Article  Google Scholar 

  33. Khanra, A.K., Godkhindi, M.M.: Comparative studies on sintering behavior of selfpropagating high-temperature synthesized ultra-fine titanium diboride powder. J. Am. Ceram. Soc. (2005). https://doi.org/10.1111/j.1551-2916.2005.00236.x

    Article  Google Scholar 

  34. Aghili, S., Panjepour, M., Meratian, M., Hadadzadeh, H.: Effects of boron oxide composition, structure, and morphology on B4C formation via the SHS process in the B2O3 Mg – C ternary system. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2019.11.217

    Article  Google Scholar 

  35. Yaghoubi, M., Torabi, O.: Effect of the magnesium content on the mechanochemical behavior in ternary system Mg–B2O3–C. Int. J. Refract. Metals. Hard. Mater. (2014). https://doi.org/10.1016/j.ijrmhm.2013.11.014

    Article  Google Scholar 

  36. Munir, Z.A., Anselmi-Tamburini, U.: Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion. Mater. Sci. Rep. (1989). https://doi.org/10.1016/0920-2307(89)90001-7

    Article  Google Scholar 

  37. Xue, H., Munir, Z.A.: Extending the compositional limit of combustion synthesized B4C–TiB2 composites by field activation. Metall. Mater. Trans. B. 27, 475–480 (1996)

    Article  Google Scholar 

  38. Fard, H.S.P., Baharvandi, H.R., Abdizadeh, H., Shahbahrami, B.: Chemical synthesis of nano-titanium diboride powders by borothermic reduction. Int. J. Mod. Phys. B. (2008). https://doi.org/10.1142/S0217979208048085

    Article  Google Scholar 

  39. Pei, L.Z., Xiao, H.N.: B4C–TiB2 composite powders prepared by carbothermal reduction method. J. Mater. Process. Technol. (2009). https://doi.org/10.1016/j.jmatprotec.2008.05.003

    Article  Google Scholar 

  40. Çakir, E., Ergun, C., Şahin, F.Ç., Erden, I.: In situ synthesis of B4C/TiB2 composites from low cost sugar based precursor. Defect. Diffus. Forum (2010). https://doi.org/10.4028/www.scientific.net/DDF.297-301.52

    Article  Google Scholar 

  41. Hongqiang, R., Haifei, X., Liang, Y., Peng, L., Xiaodong, L., Guanming, Q.: Microstructure of TiB2/B4C composites with 1% Y2O3 prepared by co-precipitating and in situ synthesis. J. Rare. Earths (2007). https://doi.org/10.1016/S1002-0721(07)60520-1

    Article  Google Scholar 

  42. Biedunkiewicz, A., Figiel, P., Gabriel, U., Sabara, M., Lenart, S.: Synthesis and characteristics of nanocrystalline materials in Ti, B, C and N containing system. Cent. Eur. J. Phys. (2011). https://doi.org/10.2478/s11534-010-0121-x

    Article  Google Scholar 

  43. Mikeladze, A., Tsagareishvili, O., Chkhartishvili, L., Chedia, R., Darchiashvili, M.: Production of titanium-containing metal-ceramic composites based on boron carbide in the nanocrystalline state. Adv. Appl. Ceram. (2019). https://doi.org/10.1080/17436753.2019.1611088

    Article  Google Scholar 

  44. Chkhartishvili, L., Mikeladze, A., Chedia, R., Tsagareishvili, O., Barbakadze, N., Sarajishvili, K., Darchiashvili, M., Ugrekhelidze, V., Korkia, T.: Synthesizing fine-grained powders of complex compositions B4C–TiB2–WC–Co. Solid. State. Sci. (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106439

    Article  Google Scholar 

  45. Tolendiuly, S., Fomenko, S., Abdulkarimova, R., Mansurov, Z., Dannangoda, G., Martirosyan, K.: The effect of MWCNT addition on superconducting properties of MgB2 fabricated by high-pressure combustion synthesis. Int. J. Self. Propag. High. Temp. Synth. (2016). https://doi.org/10.3103/S1061386216020138

    Article  Google Scholar 

  46. Nikzad, L., Licheri, R., Vaezi, M.R., Orrù, R., Cao, G.: Chemically and mechanically activated combustion synthesis of B4C–TiB2 composites. Int. J. Refract. Metal. Hard. Mater. (2012). https://doi.org/10.1016/j.ijrmhm.2012.04.001

    Article  Google Scholar 

  47. Ziemnicka-Sylwester, M.: TiB2-based composites for ultra-high-temperature devices, fabricated by SHS, combining strong and weak exothermic reactions. Materials. (2013). https://doi.org/10.3390/ma6051903

    Article  Google Scholar 

  48. Panek, Z.: The synthesis of SiC-B4C ceramics by combustion during hot-pressing. J. Eur. Ceram. Soc. (1993). https://doi.org/10.1016/0955-2219(93)90092-6

    Article  Google Scholar 

  49. Shojaie Bahaabad, M.: Mechanically activated combustion synthesis of B4C-TiB2 nanocomposite powder. J. Adv. Mater. 5, 13–21 (2017)

    Google Scholar 

  50. Merzhanov, A.G., Borovinskaya, I.P.: Self-spreading high-temperature synthesis of refractory compounds. Dokl. Chem. 204(2), 429–431 (1972)

    Google Scholar 

  51. Su, X.L., Fu, F., Yan, Y.G., Zheng, G., Liang, T., Zhang, Q., Cheng, X., Yang, D.W., Chi, H., Tang, X.F., Zhang, Q.J., Uher, C.: Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. Nat. Commun. (2014). https://doi.org/10.1038/ncomms5908

    Article  Google Scholar 

  52. Tan, X., Xianli, Su., Yan, Y., Uher, C., Zhang, Q., Tang, X.: New criteria for the applicability of combustion synthesis: the investigation of thermodynamic and kinetic processes for binary Chemical Reactions. J. Alloy. Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.158465

    Article  Google Scholar 

  53. Alkan, M., Sonmez, M.S., Derin, B., Yucel, O.: Effect of initial composition on boron carbide production by SHS process followed by acid leaching. Solid. State. Sci. (2012). https://doi.org/10.1016/j.solidstatesciences.2012.07.004

    Article  Google Scholar 

  54. Turan, A., Bugdayci, M., Yucel, O.: Self-propagating high temperature synthesis of TiB2. High. Temp. Mater. Proc. (2015). https://doi.org/10.1515/htmp-2014-0021

    Article  Google Scholar 

  55. Alkan, M., Sonmez, M.S., Derin, B., Yucel, O., Andreev, D., Sanin, V., Yukhvid, V.: Production of Al-Co-Ni ternary alloys by the SHS method for use in nickel based superalloys manufacturing. High. Temp. Mater. Processes. (London) (2015). https://doi.org/10.1515/htmp-2014-0052

    Article  Google Scholar 

  56. Yucel, O., Bugdayci, M., Turan, A.: Recent ferroalloy studies at Istanbul Technical University. KnE Materials Science (2019). https://doi.org/10.18502/kms.v5i1.3956

  57. Moghaddam, S., Derin, B., Yucel, O., Sonmez, M., Sezen, M., Bakan, F., Sanin, V., Andreev, D.: Production of Mo2NiB2 based hard alloys by self-propagating high-temperature synthesis. High. Temp. Mater. Processes. (London) (2019). https://doi.org/10.1515/htmp-2019-0020

    Article  Google Scholar 

  58. Bugdayci, M., Turan, A., Benzesik, K., Yucel, O.: Production of nano B4C–ZrB2 composite powders via self-propagating high-temperature synthesis (Shs) and effects of functional additives on the SHS of monolithic ZrB2. Nano. Studies. 13, 191–204 (2016)

    Google Scholar 

  59. Yasushi, H., Masahiro, A., Hiroaki, H.: Composition for dissolving titanium oxide and dissolution method using it (2007). Patent Number: US 2007/O125986 A1.

  60. Gu, Y., Qian, Y., Chen, L., Zhou, F.: A mild solvothermal route to nanocrystalline titanium diboride. J. Alloy. Compd. (2003). https://doi.org/10.1016/S0925-8388(02)01173-8

    Article  Google Scholar 

  61. Huang, F.L., Bao Cao, C., Xiang, X., Lv, R.T., Zhu, H.S.: Synthesis of hexagonal boron carbonitride phase by solvothermal method. Diam. Relat. Mater. (2004). https://doi.org/10.1016/j.diamond.2004.03.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Amir Motallebzadeh from Koç University Surface Science and Technology Center (KUYTAM) for BET Surface Area Analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Coban.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coban, O., Bugdayci, M. & Acma, M.E. Production of B4C-TiB2 composite powder by self-propagating high-temperature synthesis. J Aust Ceram Soc 58, 777–791 (2022). https://doi.org/10.1007/s41779-022-00714-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00714-5

Keywords

Navigation