Skip to main content

Advertisement

Log in

Improvement in photo voltaic performance of rutile-phased TiO2 nanorod/nanoflower-based dye-sensitized solar cell

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

An improved dye-sensitized solar cell (DSC) of rutile-phased titanium dioxide (TiO2) electrode with increased power conversion efficiency was successfully fabricated. Rutile-phased TiO2 nanorods and nanoflowers were grown directly on fluorine-doped SnO2 (FTO) by simple aqueous chemical growth technique using one-step hydrothermal process. The solution was prepared by mixing hydrochloric acid, deionized water, and titanium butoxide used as precursor. In the preparation of DSC, both TiO2 nanorods and nanoflowers, platinum (Pt), ruthenium dye N719, and DPMII electrolyte were used as photoelectrode, counter electrode, dye solution, and liquid electrolyte, respectively. The prepared rutile-phased TiO2 nanorods and nanoflowers samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The DSCs were fabricated based on the rutile-phased titanium dioxide nanorod and nanoflower photoelectrodes. For their energy conversion efficiency, I-V characteristics and electrochemical impedance spectroscopy were studied. We also investigated the effect of cetyltrimethylammonium bromide (CTAB) reaction times 2, 5, and 10 h in the preparation of rutile-phased TiO2 nanoflowers for DSC. CTAB is one of the capping agents that cover the refine surface of nanoparticles and prevent them from coagulation or aggregation. In our final result, the combination of rutile-phased TiO2 nanorod- and nanoflower-based DSCs showed best efficiency at approximately 3.11% due to its good electron transport of TiO2 nanorods and increased surface area by the TiO2 nanoflowers that had increased dye absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jiu, J., Wang, F., Adachi, M.: Preparation of highly photocatalytic active nano-scale TiO2by mixed template method. Mater. Lett. 58, 3915 (2004)

    Article  CAS  Google Scholar 

  2. Wang, G., Chen, H., Zhang, H., Yuan, C., Lu, Z., Wang, G., Yang, W.: TiO2/polypyrrole diodes prepared by electrochemical deposition of polypyrrole on microporous TiO2 film. Appl. Surf. Sci. 135, 97 (1998)

    Article  CAS  Google Scholar 

  3. Yuan, Z.Y., Su, B.L.: Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf. A. Physicochem. Eng. Asp. 241, 173 (2004)

    Article  CAS  Google Scholar 

  4. Chang, J.H., Ellis, A.V., Hsieh, Y.H., Tung, C.H., Shen, S.Y.: Electrocatalytic characterization and dye degradation of Nano-TiO2 electrode films fabricated by CVD. Sci. Total Environ. 407, 5914 (2009)

    Article  CAS  Google Scholar 

  5. Song, M.Y., Kim, D.K., Jo, S.M., Kim, D.Y.: Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment. Synth. Met. 155, 635 (2005)

    Article  CAS  Google Scholar 

  6. Zhou, Y., Li, X., Li, Q., Deng, C.: Enhancement of the Photoelectric Performance of Dye-sensitized Solar Cells by Sol-gel Modified TiO2 Films. J. Mater. Sci. Technol. 27(8), 764 (2011)

    Article  CAS  Google Scholar 

  7. Charoensirithavorn, P., Ogami, Y., Sagawa, T., Hayase, S., Yoshikawa, S.: A facile route to TiO2 nanotube arrays for dye-sensitized solar cells. J. Crystal. Growth. 311, 757 (2009)

    Article  CAS  Google Scholar 

  8. Zhang, Y., Gao, Y., Xia, X.H., Deng, Q.R., Guo, M.L., Wan, L., Shao, G.: Structural engineering of thin films of vertically aligned TiO2 nanorods. Mater. Lett. 64, 1614 (2010)

    Article  CAS  Google Scholar 

  9. Lee, D.U., Jang, S.R., Vittal, R., Lee, J., Kim, K.J.: CTAB facilitated spherical rutile TiO2 particles and their advantage in a dye-sensitized solar cell. Sol. Energy. 82, 1042 (2008)

    Article  CAS  Google Scholar 

  10. Huang, B., Huang, C., Chen, J., Sun, X.: Size-controlled synthesis and morphology evolution of Nd2O3 nano-powders using ionic liquid surfactant templates. J. Alloy Compd. 712, 164 (2017)

    Article  CAS  Google Scholar 

  11. Begum, S., Ahmaruzzaman, M.: CTAB and SDS assisted facile fabrication of SnO2nanoparticles for effective degradation of carbamazepine from aqueous phase: A systematic and comparative study of their degradation performance. Water Res. 129, 470 (2018)

    Article  CAS  Google Scholar 

  12. Cao, C., Hu, C., Wang, X., Wang, S., Tian, Y., Zhang, H.: UV sensor based on TiO2 nanorod arrays on FTO thin film. Sens. Actuators B. Chem. 156, 114 (2011)

    Article  CAS  Google Scholar 

  13. Ranjusha, R., Lekha, P., Subramaniam, K.R.V., Nair Shantikumar, V., Balakrishnan, A.: Photoanode Activity of ZnO Nanotube Based Dye-Sensitized Solar Cells. J. Mater. Sci. Technol. 27(11), 961 (2011)

    Article  CAS  Google Scholar 

  14. Ahmad, M.K., Mohan, V.M., Murakami, K.: Hydrothermal growth of bilayered rutile-phased TiO2 nanorods/ micro-sizeTiOz flower in highly acidic solution for dye-sensitized solar cell. J. Sol.-Gel. Sci. Technol. 73(3), 655 (2015)

    Article  CAS  Google Scholar 

  15. Ahmad, M.K., Mokhtar, S.M., Soon, C.F., Nafarizal, N., Suriani, A.B., Mohamed, A., Mamat, M.H., Malek, M.F., Shimomura, M., Murakami, K.: Raman investigation of rutile-phased TiO2nanorods/nanoflowers with various reaction times using one step hydrothermal method. J. Mater. Sci. Mater. Electron. 27(8), 7920 (2016)

    Article  CAS  Google Scholar 

  16. Mansourpanah, Y., Madaeni, S.S., Rahimpour, A.: Fabrication and development of interfacial polymerized thin-film composite nanofiltration membrane using different surfactants in organic phase; study of morphology and performance. J. Membr. Sci. 343, 219 (2009)

    Article  CAS  Google Scholar 

  17. Lee, S.M., Cho, S.N., Cheon, J.W.: Anisotropic Shape Control of Colloidal Inorganic Nanocrystals. Adv. Mater. 15, 441 (2003)

    Article  CAS  Google Scholar 

  18. Gmelin, L., Watts, H.: Hand-book of chemistry Cavendish Society London (1980)

Download references

Acknowledgements

The authors would like to thank to the Ministry of Higher Education (MOHE), Malaysia, and Universiti Tun Hussein Onn Malaysia (FRGS vot 1213 and Short Term Grant vot 1275) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, M.K., Soon, C.F., Nafarizal, N. et al. Improvement in photo voltaic performance of rutile-phased TiO2 nanorod/nanoflower-based dye-sensitized solar cell. J Aust Ceram Soc 54, 663–670 (2018). https://doi.org/10.1007/s41779-018-0195-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-018-0195-2

Keywords

Navigation