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Abstract
Accurate forecasting of environmental pollution indicators holds significant importance in diverse fields, including climate 
modeling, environmental monitoring, and public health. In this study, we investigate a wide range of machine learning and 
deep learning models to enhance Aerosol Optical Depth (AOD) predictions for the Arabian Peninsula (AP) region, one of the 
world’s main dust source regions. Additionally, we explore the impact of feature extraction and their different types on the 
forecasting performance of each of the proposed models. Preprocessing of the data involves inputting missing values, data 
deseasonalization, and data normalization. Subsequently, hyperparameter optimization is performed on each model using 
grid search. The empirical results of the basic, hybrid and combined models revealed that the convolutional long short-term 
memory and Bayesian ridge models significantly outperformed the other basic models. Moreover, for the combined models, 
specifically the weighted averaging scheme, exhibit remarkable predictive accuracy, outperforming individual models and 
demonstrating superior performance in longer-term forecasts. Our findings emphasize the efficacy of combining distinct 
models and highlight the potential of the convolutional long short-term memory and Bayesian ridge models for univariate 
time series forecasting, particularly in the context of AOD predictions. These accurate daily forecasts bear practical impli-
cations for policymakers in various areas such as tourism, transportation, and public health, enabling better planning and 
resource allocation.

Keywords Aerosol optical depth · Time series forecasting · Deseasonalization · Machine and deep learning models · 
Feature extraction

1 Introduction

Atmospheric aerosols are a blend of fine solid, liquid, gas-
eous or mixed particles ranging in size (particle sizes of 
10 − 3 to 100 μm) suspended in the air due to natural pro-
cesses and anthropogenic activities such as dust, smoke, and 
pollution (Mushtaq et al. 2022; Almazroui 2019; Huang 
et al. 2020; Putaud et al. 2010; Li, et al. 2022). These par-
ticles come from both natural sources, like volcanic erup-
tions, dust storms, and sea spray, as well as human activities, 
such as industrial processes, combustion of fossil fuels, and 
agriculture (Mushtaq et al. 2022; Arfin et al. 2023). Large 
concentrations of these particles have a significant impact on 
the management of the Earth's atmosphere, ecosystems, cli-
mate system, regional and global climate change, ambient air 
quality, agricultural production, and human health (Arden 
Pope, et al. 2011; Zhang et al. 2016; Song et al. 2018). Aero-
sols play a key role in climate by scattering and absorbing 
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solar radiation, which is the energy balance between the 
Earth and its atmosphere and can lead to changes in the 
hydrological cycle patterns, affect the formation and optical 
properties of clouds, reduce atmospheric visibility, reduce 
the amount of sunlight that reaches the ground, affect the 
radiation equilibrium of Earth, and alter atmospheric chem-
istry (Chen et al. 2013; Abuelgasim and Farahat 2019; Bilal 
et al. 2013; Levy et al. 2007). The interaction between the 
presence of atmospheric aerosols in the atmosphere and the 
incoming solar radiation significantly affect the earth radia-
tion budget (Ali and Assiri 2019; Ali et al. 2017, 2018).

Aerosol Optical Depth (AOD) is a measure of how much 
aerosols in the atmosphere prevent the transmission of light 
by absorption or scattering of light (Zhang et al. 2020; Wei 
et al. 2020). A higher AOD value indicates a higher con-
centration of aerosols, which can lead to more significant 
scattering and absorption of sunlight (Ranjan et al. 2021). 
This measurement is critical in understanding the impact of 
aerosols on Earth's radiation balance and climate. AOD data, 
often estimated from satellite observations and ground-based 
measurements, help in assessing the clarity of the atmos-
phere and the global distribution of aerosols (Almazroui 
2019; Li et al. 2020). This information is vital for climate 
modeling and predicting changes in Earth's energy balance 
due to aerosols.

Studying aerosols and their optical depth is essential for 
several reasons. Firstly, aerosols significantly affect Earth’s 
climate system; they can affect surface temperatures, influ-
ence weather patterns, and alter the energy balance of the 
atmosphere (Li, et al. 2022; Hansen et al. 2011; Zhou et al. 
2021). Secondly, aerosols have direct implications for human 
health (Oh et al. 2020; Sahu et al. 2020; Chowdhury et al. 
2022). Fine particulate matter, a type of aerosol, is linked 
to respiratory and cardiovascular diseases, posing a signifi-
cant public health risk. Understanding the sources, compo-
sition, and distribution of aerosols is crucial for effective 
environmental and public health policies. Moreover, accu-
rate knowledge of aerosol optical properties is essential for 
developing strategies to mitigate climate change and protect 
human health. Therefore, ongoing research and monitor-
ing of aerosol characteristics and dynamics are critical in 
addressing environmental and health challenges at both local 
and global scales.

In the environmental literature, it is well acknowledged 
that a full understanding of the data generating process of the 
environmental degradation proxies is essential to help policy 
makers better anticipating any possible deviation from the 
international standards required to meet the COP21 require-
ments. However, while most of the previous studies have 
focused on the analysis of a single or local environmental 
degradation proxies such as dioxide carbon emissions, CH4 
and SO2 due to their data availability (Abulibdeh 2022), 
little attention have been given to the case of a more global, 

sophisticated and comprehensive measures. This study tried 
to fill this gap in the empirical literature by analyzing daily 
data of the AOD of the Arabian Peninsula (AP) region over 
the period 2003–2019. The choice of the AOD as a meas-
ure of environmental degradation is mainly motivated by 
its important features in terms of providing a more global 
understanding of the level of environmental degradation.

In this study, we analyzed and modeled the aerosol in 
the AP region. The choice of the AP region as the region 
for analysis was mainly motivated by its large contribution 
to the global sand dust aerosols (Abuelgasim and Farahat 
2019; Kumar et al. 2018). The region is known to experi-
ence high levels of aerosol pollution due to a combination 
of natural and human-made sources, such as dust storms, 
industrial activities, and transportation, which can have a 
significant impact on regional and global climate patterns 
(Ali et al. 2017). Dust storms are prevalent throughout the 
AP in which the Arabian Desert is a significant contributor 
to natural dust, with over half of the world’s annual average 
dust emissions originating from this region (Ali and Assiri 
2019; Nichol and Bilal 2016; Butt et al. 2017). These storms 
can be generated locally, transported to large distances, or a 
combination of both (Engelstaedter et al. 2006). Typically, 
instability in the atmosphere on a large scale and strong 
winds at ground level over the AP lead to the onset of dust 
storms in different regions. During the spring and summer 
months, these storms tend to happen more often in the east-
ern and southern areas of the AP (Klingmüller et al. 2016).

Studies have shown that the AP is particularly vulnerable 
to the effects of aerosols, which can have significant impacts 
on regional weather patterns, climate change, and public 
health (Abuelgasim and Farahat 2019; Meo et al. 2013; Fara-
hat et al. 2015). Additionally, due to the importance of the 
AP as a hub of oil production and industrial development, 
aerosol levels above the region may be higher than in other 
parts of the world (Abuelgasim and Farahat 2019; Levy et al. 
2007; Kumar et al. 2018). Studies conducted earlier have 
indicated a strong correlation between the fluctuation of aer-
osol levels in the AP and the frequency and strength of dust 
storms. Specifically, when there is a rise in either the number 
or intensity of dust storms, it is anticipated that there will be 
a corresponding increase in atmospheric aerosol concentra-
tion (Farahat et al. 2015; Esmaeil et al. 2014). Some of these 
studies focused on comparing satellite-based measurements 
with ground-based observations from the Aerosol Robotic 
Network (AERONET) over the AP. For example, Almazroui 
(Almazroui 2019) assessed the accuracy of the Moderate-
resolution imaging spectroradiometer (MODIS) Deep Blue 
(DB) algorithms, specifically the Collection-51 (C-51) and 
Collection-06 (C-06), in measuring AOD at 550 nm over 
the period 2002–2013 and compared these satellite-based 
measurements with ground-based observations from the 
Aerosol Robotic Network (AERONET). The results indicate 
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that while MODIS algorithms generally capture the AOD 
patterns observed by AERONET, there are notable discrep-
ancies. Both algorithms show significant uncertainties and 
errors, highlighting the need for further research to improve 
AOD estimation over Saudi Arabia. Ali and Assiri (2019) 
analyzed the spatiotemporal variations of aerosols over the 
Arabian Peninsula from 2003 to 2017 utilizing collection-06 
MODIS-Merged Dark Target (DT) and Deep Blue (DB) aer-
osol products (550 nm) from the Terra and Aqua satellites. 
The study also employs AERONET-derived AOD data to 
evaluate the accuracy of these satellite-derived AOD meas-
urements. The results show that the Terra satellite recorded 
the highest AOD over the southern Red Sea and the west 
coast of the Arabian Gulf, extending to central Saudi Arabia. 
In contrast, the Aqua satellite displayed the highest AOD 
mostly over the southern Red Sea. The study concludes that 
further qualitative research is needed to enhance the aerosol 
retrieval efficiency of the DB and DT algorithms over bright-
reflecting surfaces. Ali et al. (2017) analyzed the spatiotem-
poral variations of AOD using the MODIS- DB algorithm 
from the Aqua satellite and AERONET to understand the 
seasonal distribution and variability of AOD over the region 
and to assess the accuracy of the MODIS- DB algorithm 
in capturing these patterns. They found significant seasonal 
variations in AOD across different regions of Saudi Arabia. 
The correlations between MODIS DB AOD and AERONET 
AOD varied by season, with higher correlations in spring 
and winter. The study concluded that inaccuracies in aerosol 
model selection and surface reflectance calculation were the 
primary reasons for reduced correlation between satellite 
and ground-based AOD measurements.

Several quantitative modelling approaches have been used 
to model and forecast environmental degradation proxies 
(Abulibdeh 2022; Jerrett, et al. 2005). The simplest and 
most meaningful way to categorize the different approaches 
used in previous studies is to classify them under economet-
ric time series models versus machine and deep learning 
models (Charfeddine et al. 2023). Under the first class of 
models, the econometric time series model, several models 
have been used to model and forecast the AOD time series, 
such as autoregressive integrated moving average (ARIMA), 
seasonal ARIMA (SARIMA), and exponential smoothing 
models (Meo et al. 2013). Most of these studies have dem-
onstrated the usefulness of time series models in analyz-
ing and predicting AOD (Farahat et al. 2015). Taneja et al. 
(2016) used ARIMA to model the monthly average AOD 
levels over New Delhi. They found a seasonality patterns 
in the AOD time series. Li et al. (2020) used ARIMA to 
predict and reproduce AOD variability over China and the 
United States between 2003 and 2015. They found that the 
concentration values of AOD are high in the eastern parts 
and during the summer in these two countries. Abuelgasim 
et al. (Abuelgasim et al. 2021) examined the spatiotemporal 

trends of AOD over the United Arab Emirates using long 
term time series analysis for the period 2003–2018. Data 
were obtained from MODIS and Multi-Angle Implemen-
tation of Atmospheric Correction (MAIAC). The results 
show the presence of significant annual seasonal variation 
in AOD between the summer, spring, and winter seasons. 
The increase in AOD results in increasing the air tempera-
ture and humidity causing scattered events of haboobs and 
intense dust storms. Spatially, the values of the AOD were 
found higher over the desert and coastal areas. In terms of 
the time series modelling, they found that SARIMA forecast 
model provides a reliable and accurate monthly forecast for 
the AOD concentration.

The second class of models that have been widely used 
in recent literature is machine learning and artificial intel-
ligence techniques. These models have been used to explore 
and model the different patterns and dependencies within 
historical data to predict future environmental behavior. 
Examples of such techniques applied to analyze environ-
mental time-series data encompass random forest regres-
sion, support vector regression, and various neural network 
architectures (Zaheer et al. 2023; Nath et al. 2022; Zbizika 
et al. 2022; Jing et al. 2017). For instance, Yang et al. (Zhen 
and Shi 2023) assessed the accuracy of monitoring atmos-
pheric composition and climate aerosol optical depth val-
ues at a wavelength of 550 nm by employing ground-based 
observational data from AERONET stations in China for a 
period spanning from 2003 to 2007. They developed a data 
fusion correction model using a random forest regression 
technique, yielding a significant reduction in mean absolute 
error from 0.225 to 0.047 and a decrease in root mean square 
error from 0.400 to 0.120. However, the utilization of ran-
dom forest regression may be limited in capturing the intri-
cate relationships between independent variables and model 
errors. Similarly, Komal et al. (Zaheer et al.2023) explored 
the feasibility of employing diverse machine learning struc-
tures for aerosol optical depth prediction, including support 
vector regression and multi-linear regression. They proposed 
a hybrid model by integrating support vector regression with 
the gray wolf optimizer meta-heuristic algorithm. Notably, 
the gray wolf optimizer algorithm optimized support vector 
regression hyperparameters, resulting in an overall improve-
ment in the model performance.

In the realm of machine learning methods, neural network 
models have gained prominence due to their flexibility and 
robust capacity to model complex patterns concealed within 
data (Jing et al. 2017). Various neural network architectures 
have been applied to AOD predictions, encompassing tra-
ditional backpropagation neural networks (Jing et al. 2017), 
deep neural networks for aerosol optical depth retrieval (Jing 
et al. 2017), generative adversarial networks to enhance 
AOD estimation (Hoyne et al. 2019), convolutional neural 
networks coupled with the MERRA-2 reanalysis dataset for 
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AOD prediction (Qin et al. 2018), and long short-term mem-
ory networks (Hochreiter and Schmidhuber 1997), which 
constitute a specialized class of recurrent neural networks. 
While recurrent neural networks are adept at predicting time 
series data, they struggle to model long-term dependencies 
in AOD time series due to the vanishing gradient problem. 
To address the high dependency issues between observa-
tions, various hybrid models based on the long short-term 
memory (LSTM) algorithm have been utilized to assess 
predictive capabilities (Daoud et al. 2021; Tian and Chen 
2022; Han et al. 2021). For instance, Daoud et al. (2021) 
found that Conv-LSTM outperforms the basic LSTM and the 
hybrid convolutional neural network (CNN)-LSTM model 
in predicting AOD. Han et al. (2021) also found that the 
CNN- LSTM model provides better forecasting capabil-
ity than ARIMA, LSTM, Conv-LSTM and deep residual 
network-LSTM (ResNet-LSTM) models. In a recent paper, 
Tian and Chen (2022) propose an AT-CONVLSTM, a new 
attention-based spatial–temporal information extraction net-
work, and found that it outperforms the multilayer percep-
tron, LSTM, CNN-LSTN, and Conv-LSTM (see Table 1 for 
more detailed summary of previous studies).

This paper follows this second methodology approach by 
utilizing different machine and deep learning models includ-
ing basic, hybrid and combined models to predict the AOD 
time series. The use of these kinds of models is mainly moti-
vated by the large sample size of our data which makes these 
types of models outperform traditional econometric models. 
Moreover, the different features that characterize the aerosol 
data (seasonality, outliers, nonlinearity) make from these 
types of models the appropriate candidates to model and 
forecast these types of series (see (Charfeddine et al. 2023)).

The primary objectives of this study is the development 
of advanced AOD forecast models using machine learning 
techniques and advanced computational algorithms. This 
is achieved through threefold approaches. First, in contrast 
to some previous studies, this paper used an advanced sta-
tistical technique to de-seasonalize the AOD time series, 
e.g. the daily seasonal adjustment technique (DSA). This 
approach had the advantage of adjusting for several pat-
terns such as intra-weekly, intra-monthly, intra-annual. 
Moreover, the daily seasonal adjustment approach had 
the advantage of adjusting for the calendar effects, cross-
seasonal effects, and outliers. Second, we make use of a 
large set of machine learning and deep learning model 
architectures for AOD forecasting where we performed 
hyper-parameter tuning to find the best model configura-
tions for predicting future AOD values. This is particularly 
important since the proposed specifications allowed us to 
construct models that can effectively capture the patterns 
and characteristics of the AOD data for the most optimal 
time-series forecasting. Third, we combined the two best-
performing models using a rolling prediction scheme for 

more accurate performance. The main contribution of this 
paper is to investigate the role of feature extraction for the 
prediction of AOD values in the AP region using various 
machine-learning models, with the addition of two com-
bined models to enhance prediction results.

The rest of the paper is organized as follows. Section 2 
presents the study area and how the data was extracted. Sec-
tion 3 presents the materials and methods used to deal with 
missing data, deseasonalization, normalization and the dif-
ferent machine and deep learning models used in the empiri-
cal literature to forecast the aerosol time series. Section 4 
presents and discusses the empirical findings. Finally, Sect. 5 
concludes and proposes some policies recommendations.

2  Study Area and Data Extraction

2.1  Study Area

The AP is situated in the southwestern region of Asia, cover-
ing an area of approximately a million square kilometers and 
is home to around 77 million people (DiBattista et al. 2020; 
Patlakas et al. 2019; Abulibdeh and Zaidan 2020). The region 
encompasses Saudi Arabia, Oman, Qatar, the United Arab 
Emirates (UAE), Bahrain, and Yemen, situated between 12 
and 32°N latitudes and 30–60°E longitudes (Abulibdeh et al. 
2019a). The AP is a vast region with diverse geographical fea-
tures and climate zones, including deserts, mountains, coastal 
plains, and wetlands (Abuelgasim et al. 2021; Watson-Parris 
et al. 2019; Abulibdeh et al. 2021). The environmental condi-
tions in this region are challenging and have played a signifi-
cant role in shaping the cultures, lifestyles, and economies of 
the people who live there. It is surrounded by three major water 
bodies, namely the Red Sea to the west, the Arabian Gulf to the 
east, and the Arabian Sea to the south (Fig. 1). One of the most 
striking environmental features of the AP is its vast deserts. 
The region is predominantly desert, with the exception of the 
southwestern region, which is characterized by mountainous 
terrain and receives more rainfall than other parts of the pen-
insula (Abulibdeh et al. 2019b). The AP is mostly arid and is 
characterized by vast deserts, including the Rub’ al Khali or 
the “Empty Quarter,” which is one of the largest sand deserts 
in the world. This desert is characterized by its towering sand 
dunes, high temperatures, and harsh winds, making it one of 
the harshest environments on earth and promoting significant 
sand and dust movements. The mountainous regions of the 
AP are also notable for their unique environmental conditions. 
The region is known for its extreme temperatures, with some 
locations experiencing temperatures as high as 54 ℃ during the 
summer months (Abulibdeh 2021). In contrast, the spring and 
autumn seasons are mild, while winters are relatively cold. The 
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peninsula has receives low amounts of annual rainfall ranging 
from 77 to 102 mm.

The AP is experiencing rapid urbanization and indus-
trialization, leading to an increase in air pollution levels 
(Abulibdeh 2021; Seddon et al. 1794). Understanding the 
sources and characteristics of aerosols in the region can 
help in developing effective strategies to improve air qual-
ity. The AP is located in a region of the world that is highly 
susceptible to climate change. This region is known for its 
arid and semi-arid climate, and any changes in precipitation 
patterns can have significant implications for water resources 
and agriculture (Abulibdeh et al. 2019b). Understanding 
the sources and characteristics of aerosols in the region is 
therefore important for predicting future climate changes 
and developing strategies to mitigate their impacts. Finally, 
the AP is an important global oil-producing region, and the 
oil and gas industry is a significant source of aerosol pollu-
tion. Studying aerosols from this region can therefore help 
to develop more sustainable practices and reduce the envi-
ronmental impact of these industries.

2.2  MODIS and Image Processing

This study utilized the daily MODIS MAIAC AOD prod-
uct acquired from the Level-1 and Atmosphere Archive & 
Distribution System (LAADS) Distributed Active Archive 
Center (DAAC) for the period of 2003–2019 for the AP. 
The MODIS sensor is an effective tool for capturing the 
spatiotemporal variability of aerosols globally (Remer et al. 
2008; Levy et al. 2015). The MODIS instrument, which is 
based on satellite technology, generates global AOD data 
at a 10 km resolution over land using two algorithms—
Dark Target (DT) (Levy et al. 2013) and Deep Blue (DB) 
(Hsu et al. 2013). The DT algorithm has been tested only 
on vegetated and moist-soil surfaces, and has limitations in 
detecting aerosol levels on bright-reflecting surfaces (Levy 
et al. 2013). The accuracy of the DT algorithm is affected by 
errors in selecting aerosol model schemes and surface reflec-
tance calculations (Nichol and Bilal 2016; Bilal, et al. 2019). 
To overcome these limitations, the DB algorithm has been 
developed, which can estimate AOD levels over desert areas 
(Almazroui 2019). The blue channel in the DB algorithm is 
used to calculate aerosol density on bright-reflecting sur-
faces where low reflectance is needed. Passive information 
regarding aerosols that was obtained from MODIS sensors 
has been utilized in various studies on global aerosol distri-
bution (Watson-Parris et al. 2019; Bellouin et al. 2020; Wei 
et al. 2019; Remer, et al. 2020), radiative forcing (Yuan et al. 
2019; Subba et al. 2020) and how aerosols impact regional 
climate (Zhao et al. 2021; Qin, et al. 2021). It has been noted 
that the dark blue AOD products from MODIS Aqua typi-
cally offer greater precision when it comes to the AP (Butt 
et al. 2017).Ta
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Other techniques have been developed for estimating AOD 
from optical remote sensing imagery using radiative trans-
fer theory (Levy et al. 2007). The Dense Dark Vegetation 
(DDV) method is the most popular among them, and it has 
been successfully used to measure AOD in areas with dense 
vegetation canopies (Levy et al. 2007). This method effec-
tively removes surface reflectance by utilizing the correlation 
between shortwave infrared (2100 nm) and the red (660 nm) 
and blue (470 nm) bands, where the effect of aerosols is neg-
ligible (Levy et al. 2013). However, there are still uncertain-
ties associated with sensor calibration drift when deriving 
AOD from space-borne observations. The DDV method has 
some limitations when used in bright surfaces, such as urban 
areas or arid/semi-arid regions. To overcome these limita-
tions, a new method called Multi-angle Implementation of 
Atmospheric Correction (MAIAC) algorithm has been devel-
oped (Mhawish et al. 2018). This algorithm is designed to 
retrieve both the surface reflectance and atmospheric prod-
ucts simultaneously at a spatial resolution of 1 km. It achieves 
this by using time-series observations from MODIS and cli-
matology data from Aerosol Robotic Network (AERONET) 
to estimate aerosol properties over both dark vegetated and 

bright surfaces. The MAIAC algorithm utilizes regression 
coefficients to derive the surface parameterization based on 
the surface bidirectional reflectance distribution function in 
the MODIS bands of Blue (470 nm), green (550 nm), and 
shortwave infrared (2130 nm). It retrieves both aerosol opti-
cal thickness and surface bi-directional reflection factor using 
seven regional aerosol models for different regions across the 
globe. For dust-related aerosols, the algorithm uses either 
the dust or background models, similar to the DT algorithm 
(Levy et al. 2013). The choice to use the MAIAC algorithm 
for this study was driven by the reported studies of its effec-
tiveness in estimating AOD over bright targets (Eibedingil 
et al. 2021; Lyapustin, et al. 2011; Chen et al. 2021).

To process MODIS data, this study combined different 
titles that covered the AP by mosaicking them and then 
removed areas outside the boundaries. This study also used 
statistical parameters like standard deviation, maximum, 
and minimum AOD to calculate the average daily AOD 
concentrations during the study period. A short model code 
was developed to expedite the mosaicking and statistical 
calculations using ArcGIS 10.6.1. The study computed the 
average annual AOD concentrations per season and per year 

Fig. 1  The study area
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by utilizing MODIS image data, which helped analyze the 
spatiotemporal variability of AOD. The statistical informa-
tion obtained for each day was analyzed to identify multi-
temporal trends on a daily, weekly, monthly, and annual 
basis, which were then used as inputs for the time series 
analysis models.

It is worth noting that sandstorms and the existence of 
clouds can affect the quality of the data specifically during 
certain seasons such as in summer. These environmental 
events can introduce noise and errors into the data, which 
can lead to the presence of outliers (Ali et al. 2017).

3  Materials and Methods

This section aims to present the methodology used to model 
and forecast the AOD time series. Specifically, it can be 
summarized in four steps starting with data preparation and 
ending with daily AOD forecasting (as shown in Fig. 2). 
Data preparation included filtering, MOSAIC, fusion, and 
re-projection of the data from the satellite sensors. The sec-
ond step corresponds to the pre-processing of the data by 
imputing any missing values, deseasonalizating, normalizat-
ing, and converting the data into supervised series. Next, the 
aerosol analysis and prediction step consists of training the 
models, cross validation and selection of hyperparameters. 
In what follows, we will present all the three steps of data 

preprocessing, aerosol analysis and prediction, and Daily 
AOD forecasting.

3.1  Data Preprocessing

3.1.1  Data Pre‑processing and Normalization

The AOD data, obtained from MODIS spanning January 
2003 to December 2019, contained occasional missing 
values due to satellite coverage gaps and cloudy condi-
tions. Given the relatively smooth nature of AOD changes 
over time and the absence of abrupt daily fluctuations, we 
employed a simple imputation technique (Nelson et  al. 
1999). Missing values were estimated by taking the average 
of the AOD values from one day before and one day after.

After addressing missing values, we deseasonalized and 
normalized the AOD time series. Deseasonalization, also 
known as seasonal adjustment, is vital for understanding the 
fundamental components of a time series, including trends 
and cyclical patterns. This process enhances prediction accu-
racy compared to using raw data (Golbraikh et al. 2003). 
Consequently, the models were trained and tested on desea-
sonalized AOD data. To further enhance model performance, 
we applied normalization to center the deseasonalized AOD 
time series. Normalization ensures that all features are on a 
similar scale, preventing feature bias due to differing magni-
tudes. In our study, we utilized MaxAbsScaler to normalize 

Fig. 2  The flowchart of the empirical methodology
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the deseasonalized AOD data. Each data point was divided 
by the maximum absolute value, transforming the values 
into the range [− 1, 1], as expressed by Eq. (11),

where xmax represents the maximum value in the time series, 
x is the value to be normalized, and xnorm is the resulting 
normalized value. This normalization approach ensures con-
sistent and comparable scaling of AOD values while pre-
serving their distribution and relationships. It contributes 
to the meaningfulness and accuracy of our experiments and 
data analysis.

Following the preprocessing steps, the raw AOD data 
was transformed into supervised time series, as depicted in 
Fig. 3. For our study, we systematically experimented with 
lags up to 30, 60, or 90 lags. These data lags will be used as 
input features and the window horizons was set to 7. These 
configurations were strategically adopted to strike a balance 
between capturing relevant historical patterns and producing 
accurate future forecasts.

3.2  Daily Seasonality Adjustment of Aerosol Time 
Series

In the econometric literature, it is well documented that 
data preprocessing is a necessary step for a better under-
standing of the mechanism generating the time series 
under study (Ollech 2021; Bandara et al. 2021). Season-
ality can affect the performance of forecasting models by 
introducing predictable patterns and dependencies in the 
data. Therefore, to address this issue deseasonalization 

(1)xnorm =
x

||xmax
||

must be performed on the data to preprocess it before 
feeding it to the models. This process removes the sea-
sonal component from the data, making it easier for the 
models to capture the underlying trend and irregularities. 
The reasoning behind this is that if regular and irregu-
lar fluctuations that are due to seasonality, outliers and/or 
holidays are not removed they can obscure and hide impor-
tant features of the data generating process of the time 
series under examination. Moreover, in some cases the 
type and extend of these regular and irregular fluctuation 
can be themselves of particular interest for policymakers 
and government when proposing policies that will help in 
improving environmental quality.

While there exists several approaches for extracting the 
trend and seasonality from low frequency data (month or 
quarterly), only a few of these approaches were proposed 
to deal with high frequency data (Ollech 2021; Bandara 
et al. 2021). Recently, the daily seasonal adjustment (DSA) 
and the multiple seasonal-trend decomposition using loess 
(MSTL) methods developed by Ollech (2021); Bandara 
et al. 2021) respectively have shown their high performance 
in better deseasonalizing high frequency time series, with 
application ranging from daily/hourly electricity consump-
tion, daily currency in circulation, and daily  NO2 pollution.

In this paper, we used the DSA method as the main 
approach to remove the seasonality from the aerosol time 
series. In what follows, we briefly introduce the DSA method 
and we refer readers to Ollech (2021) for more details. Both 
methods, the DSA and MSTL, have as starting points the 
seasonal-trend decomposition using Loess (STL), where the 
original time series is decomposed into three components 
as follow:

Fig. 3  Convert AOD data into Supervised Time-series
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where Yt represents the original time series (the aerosol time 
series in our case), TCt is the trend-cycle, St is the seasonal 
component and It is the adjusted time series (irregular com-
ponent). While, this STL technique is widely used when 
adjusting for single seasonal patterns, it cannot accommo-
date for multiple seasonal patterns (such as intra- weekly, 
intra-monthly and intra-annual effects). To accommodate 
for multiple seasonality, Ollech (2021) proposed the DSA 
technique which extends the standard STL model given in 
Eq. (1) to include the four new components as follow:

S
(7)
t , S

(31)
t , S

(365)
t  and Ct represent the intra-weekly, intra 

monthly, intra-annual and moving holiday effects, respec-
tively. The DSA procedure is a four-step algorithm approach 
that combines the STL technique of Cleveland et al. (1990) 
with the regression ARIMA model (RegARIMA model).

The four-step algorithm of Ollech (2021) is given by,

• First, use the STL to adjust for intra-weekly periodic pat-
terns.

• Second, adjust for the calendar effects, cross-seasonal 
effects, and outliers using the RegARIMA model.

• Third, use the STL method to adjust intra-monthly peri-
odic effects.

• Finally, use the STL method to adjust for intra-annual 
effects.

For more technical details and empirical applications of 
the DSA procedure, see (Ollech 2021; Webel et al. 2023) and 
the DSA-vignette online R-procedure.

3.3  Basic, Hybrid and Combined Machine and Deep 
Leaning Models

3.3.1  Basic Models

The first group of models, known as the basic models, 
comprised of XGBoost, support vector regression (SVR), 
back propagation neural network (BPNN), long short-term 
memory (LSTM), bidirectional-LSTM, stacked-LSTM, and 
Bayesian ridge regression (BRR). These models directly take 
the raw data and learn how to map it to the corresponding 
output features using the various regression techniques. Such 
models, including subsequent architectures, are designed for 
time series data and have structures that can capture tem-
poral dependencies. For instance, the LSTM model, and its 
variants, have memory cells that can learn and memories 
long-term dependencies in the data. Therefore, the viola-
tion of the assumption of independence among observations 

(2)Yt = TCt + St + It, ∀t = 1,… , T

(3)Yt = TCt + S
(7)
t + S

(31)
t + S

(365)
t + Ct + It ∀ t = 1,… ,T

due to autocorrelation in time-series forecasting can be 
accounted for through the structure of these models. These 
models analyzed and forecasted the future values of AOD 
time series implicitly without an explicit feature extraction 
component. This group hypothesizes that the models do 
not have a separate part responsible for the feature extrac-
tion process, but rather it is performed implicitly within the 
structure of the regression models. These models directly 
take the raw data and learn how to map it to the correspond-
ing output features. General mathematical representation for 
these basic models can be represented as follow:

where, y represents the target daily AOD concentration fea-
ture, X represents the feature matrix (including the inde-
pendent variables), f (X;Θ) represents the forecasting func-
tion of the model driven by the list of parameters, Θ . The 
forecasting function can capture the complex dependencies 
between the independent and dependent features. The form 
of the forecasting function varies based on the type of the 
model. For SVR, the aim of the forecasting function f is to 
define a high dimensional hyperplane or decision bound-
ary with the parameters Θ to minimize the prediction. For 
Bayesian ridge, f represents a linear regression model with 
the assumption of the Gaussian prior distribution on the 
coefficients:

where � denotes the regression coefficients. For BPNN, f 
represents a multi-layer neural network with weights and 
bias represented by Θ . The regression output is obtained 
using the forward propagation method through the network:

where � is the activation function, and W (i)andb(i) are the 
weights and biases of the layer i . In the case of XGBoost, 
f (X;Θ) represents an ensemble of decision trees with spe-
cific tree structures associated with a set of weights Θ . The 
final prediction output is obtained by combining the pre-
dictions of these trees. For LSTM, Bi-LSTM, and stacked-
LSTM, the regression function f (X;Θ) includes adding more 
flexible techniques such as recurrent or convolutional layers 
to the neural networks parameterized by Θ . Finally, ε repre-
sents the error term, caused by the noise or residual in the 
observed dependent variable.

3.3.2  Hybrid Models

The second group, known as the hybrid models, involves 
stacking two models, one for feature extraction and one 
for regression, based on the extracted features. This group 

(4)y = f (X;Θ) + �

(5)f (X;Θ) = X�

(6)
f (X;Θ) = �

(
W (L)�

(
W (L−1)

(
… �

(
W (1)X + b(1)

)
…+ b(L−1)

)
+ b(L)

)
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includes CNN-LSTM, convolutional-LSTM (ConvLSTM), 
Encoder-Decoder LSTM, and ConvLSTM-BayesianRidge. 
The hybrid models incorporate feature extraction and regres-
sion into a single framework, following a two-step approach. 
First, the models learned the most informative features 
from the input time series. Second, the extracted features 
are passed as input into the regression part of the model 
to forecast the targeted output. Table 2 displays a succinct 
overview of the feature extraction and regression compo-
nents, hyperparameters, and other pertinent details for each 
hybrid model. In the case of CNN-LSTM, a convolutional 
layer is employed to extract features from the input time 
series, which are then fed into the LSTM layer for regres-
sion. Another example is the encoder-decoder LSTM, which 
consists of an encoder to extract features and a decoder to 

perform the regression. ConvLSTM combines the function-
ality of convolution and LSTM layers to simultaneously 
extract the features and perform the regression in a single 
layer. Lastly, ConvLSTM-BayesianRidge employs ConvL-
STM layers for feature extraction, and Bayesian ridge for 
regression.

Figure 4 illustrates the core architecture of these hybrid 
models, incorporating both feature extraction and regression 
components, culminating in the final layer that produces the 
numerical AOD forecasts. The first phase, feature extraction, 
includes converting the input data X into a set of meaning-
ful features Z . These extracted features can be thought of 
as learned patterns or representations from the input data, 
holding discriminative information such as statistical and 
temporal features, frequency domain features, nonlinear 

Table 2  A concise summary of the feature extraction and regression components, hyperparameters, and other relevant details for each of the 
hybrid models

Hybrid models Feature extraction method Regression method Key hyperparameters Remarks/comments

CNN-LSTM Convolutional Neural Net-
work (CNN)

LSTM CNN architecture, number 
of LSTM units, number of 
epochs, patch size…

Deploys CNN for feature 
extraction

ConvLSTM Convolutional LSTM Dense layer (fully 
connected layer)

Number of ConvLSTM 
layers, kernel architecture, 
number of epochs, patch 
size, loss function,

Integrates spatial–temporal 
features together

Encoder-decoder LSTM Encoder-decoder LSTM LSTM Number of LSTM units for 
encoding and decoding, 
loss function, Batch size,

Encoder-decoder architecture 
for modeling

ConvLSTM-Bayesian Ridge Convolutional LSTM Bayesian Ridge Kernel size, activation func-
tion, number of filters, 
Ridge alpha

Combines ConvLSTM with 
BayesianRidge

Fig. 4  The architecture of the Hybrid category models
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dynamic patterns, etc. The process of feature extraction 
can be represented as a sequence of consecutive operations, 
involving convolutional layers, pooling layers, and non-
linear transformations, which they are common techniques 
in many deep learning models such as CNN-LSTM, Con-
vLSTM, Encoder-Decoder LSTM, etc. The mathematical 
representation of the feature extraction component can be 
presented in the following equations:

where Zi is the intermediate feature maps at layer i , Ai is 
obtained after applying a non-linear activation function ( �) 
to Zi , Pi is the pooled features map obtained through pooling 
operations,  ConvΘconv i

 is the convolution operation with 
learnable parameters Θconv i

 , PoolΘpooli

 is the pooling opera-
tion with learnable parameters Θpooli

 , and Z is the final flat-
tened feature representation. The second component was, 
regression. In this stage, the relationship between the 
extracted features Z and the final target variable y were mod-
eled using a specific regression structure such as a neural 
network, which can be a combination of recurrent layers 
followed by fully connected layers (i.e., LSTM), or different 
regression structures such as Bayesian ridge structures. The 
architecture of the LSTM regression model can be repre-
sented mathematically as follows:

where hi is the hidden state at LSTM layer i , LSTMΘLSTMi

 
represents the LSTM layer with learnable parameters ΘLSTMi

 , 
ΘLSTMi

 represent the parameters of the LSTM layers, while 
ŷ is the predicted output, which is obtained through a fully 
connected (dense) layer with parameters Θdense.

(7)

Z1 = ConvΘconv 1

(X)

A1 = �
(
Z1
)

P1 = PoolΘpool 1

(
A1

)

Z2 = ConvΘconv 2

(
P1

)

A2 = �
(
Z2
)

P2 = PoolΘpool 2

(
A2

)

⋮

Zn = ConvΘconv n

(
Pn−1

)

An = �
(
Zn
)

Pn = PoolΘpooln
(An)

Z = Flatten
(
Pn

)

(8)

h
1
= LSTMΘ

LSTM1

(Z)

h
2
= LSTMΘ

LSTM2

(
h
1

)

⋮

hm = LSTMΘ
ISTMm

(
hm−1

)

ŷ = DenseΘ
dense

(
hm

)

3.3.3  Combined Model

The utilization of combined forecasting models, which inte-
grate the strengths of the sub models, has garnered substan-
tial attention in recent research (Han et al. 2021; Zhang, 
et al. 2021). In the context of this study, we explore the 
amalgamation of multiple models selected from the basic 
and hybrid categories into a unified framework for AOD 
prediction. This approach capitalizes on the exceptional 
predictive abilities and distinct error distributions exhibited 
by the constituent models. Two distinct types of combined 
models were considered in this study to harness the collec-
tive predictive power of these sub-models:

Stacking generalization-based model: In this approach, 
the forecasting outputs from the constituent models (base 
learners) are used as input features, alongside the target 
AOD as output feature, to train a higher-level meta-learner 
model. Two models were selected as base learners due to 
their optimal performance in the Basic and Hybrid model 
categories: Bayesian ridge and ConvLSTM, The lagged val-
ues of the AOD time series was used as input features for the 
base learners. Experimentation of various lags and window 
sizes was performed (e.g. 30, 60, and 90) to find the optimal 
feature set for each model. Additionally, MaxAbsScaler was 
used to normalize the features before feeding them to the 
models. Various machine learning and deep learning mod-
els were tested as potential meta-learners in this study. The 
final meta-learner model chosen was an artificial neural net-
work that constitutes of three layers: an input, hidden, and 
output layer. The choice of this meta-learner was based on 
its simplicity and robustness. The meta-learner is trained to 
autonomously learn how to effectively combine the predic-
tions from the constituent models (base learners) to generate 
the final predictions. The optimal hyperparameters of the 
meta-learner were selected through a grid search methodol-
ogy. The following is a mathematical representation of the 
stacked generalization model:

The forecasting outputs from the constituent models ( Fi , 
where i = 1, 2,… .,M) , alongside the target AOD(Y  ) as out-
put variable, are used to train a higher-level meta-learner 
model. The meta-learner combines these inputs Fi to pro-
duce the final prediction ( P).

Weighted averaging-based model: in this model, the fore-
casting outputs from the constituent models are assigned 
weights. This process penalizes weaker-performing models 
while rewarding stronger ones. Subsequently, the weighted 
forecasts are averaged to produce the final predictions. The 
optimal weights for the constituent models were determined 
using a grid search methodology. The mathematical repre-
sentation of the weighted averaging model is as follows:

(9)P = Meta Learner
(
F1,F2,… ,FM , Y

)
.
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The forecasting outputs from the constituent models ( Fi , 
where i = 1, 2,… .,M) are assigned weights ( Wi ) based on 
their performance. These weights are then used to find the 
weighted average of the forecasts, which produce the final 
predictions ( P ). The two base learners chosen for this tech-
nique were similar to the ones used in the stacking gener-
alization-based model scheme. Namely, Bayesian ridge and 
ConvLSTM. Collectively, these combined models seek to 
improve the overall predictive accuracy by intelligently inte-
grating the insights from heterogeneous sub-models within 
a unified framework.

3.3.4  Hyperparameter Optimization, Forecasting 
Specification and Evaluation

To ensure optimal performance of the adopted machine 
learning models on the AOD time series data, hyper param-
eter tuning is crucial during the model design and train-
ing phases (Fabianpedregosa et al. 2011). Hyperparameter 
optimization plays a pivotal role in this context, involving 
the fine-tuning of parameters such as the number of layers, 
layer sizes, activation functions, learning rates, regulariza-
tion rates, and more. To systematically optimize these hyper-
parameters for each model, we employed the grid search 
methodology. This method enables the iterative exploration 
of diverse hyperparameter combinations while evaluat-
ing model performance on a dedicated validation set. Grid 
search is a simple and effective method that exhaustively 
searches over a pre-defined set of hyperparameter values to 
select the best combination based on a scoring function. Its 
advantage is its easy interpretability and implementation.

By refining our models based on feedback from the 
validation set, our goal was to ensure that these models 
effectively capture the intricate patterns and characteristics 
present in the AOD data without succumbing to overfit-
ting. Overfitting, a phenomenon where a model becomes 
excessively tailored to the validation data, can lead to poor 
generalization on unseen data. To mitigate this risk, we set 
aside an entirely unseen dataset, referred to as the test data, 
to comprehensively evaluate the overall performance of the 
optimized models.

Our dataset was meticulously divided into three dis-
tinct subsets: the training data, validation data, and testing 
data. The training data encompassed the time series span-
ning from 1/1/2003 to 31/1/2018. During the hyperparam-
eter optimization process, the final 5% of the training data 
points were reserved for validation purposes. Finally, the 
testing data comprised the entire time series for the year 
2019. This rigorous dataset division approach allowed us 

(10)P =

∑M

i=1
Wi ⋅ Fi

∑M

i=1
Wi

to train, validate, and assess the models in an unbiased and 
systematic manner.

To evaluate the model’s performance and avoid overfit-
ting, we employed a form of cross-validation suitable for 
time-series data, known as a rolling prediction scheme. In 
this technique, the model is initially trained on a portion 
of the data in which the performance of the model is then 
evaluated on the subsequent “window” of data. The model 
is then updated to include this window of data in the training 
set, then the performance is evaluated on the next window 
of data. Specifically, the validation data was used as one 
year and then shifted one year forward with the accumulated 
training data of the previous years. This process is repeated 
until all data have been used. This method preserves the 
temporal order of the data and avoids using future data to 
predict the past unlike k-fold cross validation. This provides 
a robust assessment of the model’s predictive performance. 
This technique also addresses the violation of independence 
among observations due to autocorrelation since it considers 
the temporal dependencies in the data by using a moving 
window for training and prediction.

In order to provide a rigorous evaluation of the fore-
casting performance exhibited by the various models, this 
study employs several widely recognized evaluation metrics, 
namely root mean squared error (RMSE), mean absolute 
error (MAE), coefficient of determination (R2), and Pearson 
correlation coefficient (r). The MAE metric quantifies the 
average deviation between the predicted values and the cor-
responding values. On the other hand, RMSE assesses the 
overall magnitude of the prediction errors. The R2 metric 
offers an assessment of the proximity between the predicted 
values and the actual values. The calculation formulas for 
RMSE, MAE, R2, and r are presented as Eqs. (11–14) in the 
following form:

(11)MAE =
1

m
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|
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(
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where m is the number of data points in the test set; yi is the 
actual value, thei is the average value of the true values, the 
is the predicted value, and thei is the average value of the 
predicted values.

The respective indexes are calculated for each day in the 
prediction horizon separately (1–7 days).

4  Results and Discussion

4.1  Aerosol Deseasonalization Results

The evolution of the daily aerosol data for the AP region is 
reported in Fig. 5. Regular patterns are observed in this daily 
time series, which clearly indicate evidence for seasonality. 
The figure shows that the period of October–March has the 
lowest values of AOD and the summer months show high 

values of AOD. There is also strong evidence for the exist-
ence of outliers but no clear evidence for the existence of 
trend.1

An important step before deseasonalizing the aerosol 
time series is to analyze and determine the different types 
of seasonality that characterize the aerosol time series. To 
do this, we used boxplots to analyze day of the week, day 
of the month and day of the annual effects. The boxplots 

Fig. 5  Daily Aerosol data for 
the Arabic Peninsula region—
not adjusted series
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Fig. 6  The BoxPlot of AOD by 
the day of the week

1 A results not reported here and can be obtained upon request from 
the corresponding author confirm the results from previous studies 
that the distribution of the AOD time series is not normal and that 
in general does not show evidence for the existence of a trend. The 
parametric (Jarque-Bera) and non-parametric tests (Kruskal-Wallis 
tests) are used to test the normality Hypothesis of the AOD series and 
the tests of Kruskal-Wallis are used to explore potential existence of 
a trend.
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are reported in Figs. 6, 7 and 8, respectively. The day of the 
week effect shown in Fig. 6 does not show any evidence for 
changing effects over the days of the week as the median, 
first quantile, third quantile, maximum and minimum are 
similar for all 7 days. The consistent statistical metrics 
across all days suggest a lack of a “day-of-the-week” effect. 
This result indicates that aerosol levels do not substantially 
vary from one day to another within a week, which indicate 
absence of short-term and weekly cyclic activities in the 

AOD series. Consequently, in the DSA approach the day-
of-the-week effect will be ignored.

To further deepen the analysis, we plotted the boxplot of 
AOD by the day of the month in Fig. 7. The results show 
slight fluctuation of the aerosol levels during the different 
days of the month. The results showed that the Q1, median 
and Q3 appeared to be different between all days of the 
month. The results also showed evidence of the existence 
of outliers since many observations exceed the Q3 level. 

Fig. 7  The Boxplot of the AOD by the day of the month

Fig. 8  The Boxplot of AOD by the month of the year
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Consequently, in the process of deseasonalization, we 
accounted for day of the month effects while it is not well 
pronounced.

Finally, by analyzing the boxplot for the month of the year 
effect (Fig. 8), the results showed strong and clear evidence 
that there exists some regularity where the 5th, 6th, 7th and 
8th months in the AP region is characterized by high levels 
of AOD. The four months of February, March, April and 
September also show high levels of AOD but not as distinct 
as the four summer months. The higher AOD levels in the 
spring and summer months may be attributed to an increase 
in dust storms, industrial activity, and transportation emis-
sions in the AP region. Furthermore, climatic conditions, 
such as temperature, precipitation, and wind speed also con-
tribute to AOD levels. The rest of the four months showed 
evidence for small variability of AOD where the difference 
between Q1 and Q3 were minimal. Moreover, for all twelve 
months of the year, especially for the months of January, 
February, March, April, June, July and August there were 
substantial outliers in the data. Consequently, due to the 

clear evidence of seasonality in the data as observed in the 
month of the year boxplot, in the deseasonalization process, 
we took into consideration the existence of month of the 
year effects. The final time series deseasonalized is given 
below in Fig. 9.

4.2  Hyperparameters Optimization

Tables 3 and 4 present the optimized hyperparameters cor-
responding to the different models’ structures used in this 
study. The hyperparameter configurations of the deep learn-
ing models were tuned on the dataset based on suggestions 
from previous studies (Arfin et al. 2023). Table 3 displays 
the tuned hyperparameters for the models of neural network-
based structure along with the corresponding error measure. 
For these models, we optimized a range of hyperparameters 
including the number of hidden layers, the number of neu-
rons within these layers, dropout rates, activation functions, 
learning rates, the number of training epochs, batch sizes, 
and further parameters dedicated to convolutional layers 

Fig. 9  Deseasonalized AOD 
data after applying DSA tech-
nique

Table 3  Optimized Hyperparameters of the various Deep learning Models in this study

Note that for the case of CNN-LSTM and ConvLSTM the kernel size are 1 and 24 respectively and the number of filters are (1,2) and 32, respec-
tively

Model # Hidden layers # of Neurons Activa-
tion 
Function

Dropout Rate Learning Rate # of Epochs Batch Size MSE

BPNN 100 100 RELU – invscaling – – 0.00162
LSTM 1 LSTM layer 150 LSTM units RELU 0.5 0.001 100 32 0.00203
BI-LSTM 2 PI-LSTM layer 140 RELU 0.0001 0.001 100 64 0.0018
Stacked-LSTM 2 Stacked -LSTM 

layer
100 RELU 0.0001 0.005 100 32 0.00198

CNN-LSTM 1 Conv1D + 1 LSTM 50 LSTM units RELU 0.5 0.0001 100 32 0.00202
ConvLSTM 1 ConvLSTM – RELU 0.5 0.0001 50 32 0.00167
Encoder-Decoder 

LSTM
2 LSTM (Encoder, 

Decoder) layers
100 RELU 0.0001 0.001 100 32 0.00205



A Comprehensive Machine and Deep Learning Approach for Aerosol Optical Depth Forecasting:…

Published in partnership with CECCR at King Abdulaziz University

where applicable. A sensitivity analysis of hyperparameters 
was performed for each model by varying one hyperparam-
eter at a time while keeping the others fixed at their optimal 
values and measured the change in the performance metrics. 
We found that some hyperparameters, such as the number 
of LSTM units, kernel sixe, and learning rate had a signifi-
cant impact on model performance, while others, such as the 
batch size and dropout rate showed little impact.

The aim of this optimization is to strike a balance between 
the complexity of the models and the accuracy of their per-
formance. For instance, the architecture of the BPNN model 
includes a relatively simple structure compared to other deep 
learning models with 100 hidden layers and 100 neurons per 
layer. The LSTM model, being a recurrent neural network, 
holds a single LSTM layer with over 150 units (neuros), ena-
bling it to capture sequential dependencies efficiently. The 
bi-LSTM model with two bidirectional LSTM layers can 
handle both forward and backward temporal dependencies. 
The low dropout rate of 0.0001 indicates that it is crucial 
to keep information in both direction. The learning rate of 
0.001 suggests a balanced learning approach. The batch size 
of 64 was used for more efficient computation. With this 
configuration, we aim to harness the bidirectional LSTM’s 
capacity while preserving a low overfitting risk. Two stacked 
LSTM layers with 100 units each within the stacked-LSTM 
model can capture more complex patterns. Combining CNN 
and LSTM layers within the CNN-LSTM model with kernel 
size of one and 64 filters aims to capture spatial and tempo-
ral dependencies simultaneously. The selection of convolu-
tional layer parameters (kernel size of (1,2) paired with 32 
filters) demonstrates the importance of handling both spatial 
and short-term temporal patterns. The configuration of the 
encoder-decoder LSTM model was designed to capture com-
plex dependencies for short-term forecasting.

Table 4 demonstrates the hyperparameter combinations 
corresponding to the machine learning models used in this 
study. More specifically, the structure of the Bayesian ridge 
suggests a relatively well-regularized model. The small 
values of alpha 1, alpha 2, lambda 1, and lambda 2, dem-
onstrate the simplicity of the model. A maximum iteration 
of 300 indicates that the model converges efficiently. This 
configuration ascertains the balance between the model’s 
complexity and reliability. The regularization parameter (C) 

of 1.0 in the SVR model indicates a moderate regulariza-
tion, while the selection of radial basis function (rbf) kernel 
with a scaled gamma implies flexibility in handling complex 
dependencies. The defined configuration of the ensemble 
model (XGBoost) ascertains its simplicity. The moderate 
number of trees (n_estimators = 200) and a maximum tree 
depth of 3 helps in preventing overfitting and keeps indi-
vidual trees shallow.

By systematically fine-tuning these hyperparameters, we 
verified that our models were functioning at their optimal 
performance, leading to the best possible predictive accu-
racy for atmospheric AOD predictions in the AP. This com-
prehensive optimization technique reinforces the effective-
ness and reliability of our models in handling the temporal 
patterns of AOD. Hyperparameter optimization used to 
minimize the optimization loss can help prevent overfitting 
and improve the generalizability of the models on unseen 
data. The risk of overfitting the training data was further 
mitigated for all models by using regularization, dropout, 
early stopping, and cross-validation. Regularization tech-
niques, such as drop out and weight decay, can reduce the 
complexity and variance of the models. Additionally, early 
stopping, used to monitor the validation loss, stops model 
training when loss starts to increase which enhances the 
models generalizability.

4.3  Model Evaluation

In the evaluation of the basic, hybrid and combined models, 
we focus our analysis in assessing the predictive accuracy 
of these models by using two predictive errors measures 
namely, RMSE and MAE. These metrics were utilized to 
gauge the models’ performance over seven days prediction 
horizons. The conducted experiments run in windows 11 
operating system, and the hardware device is Intel(R) Core 
I7-1065G7 CPU @ 1.30 GHz(8 CPUs), RAM: 16 GB, and 
the programming language is python 3.10.0. For higher 
performance, deep learning models were implemented on 
Google Colab platform with Keras API which is running on 
TensorFlow 2.12.0 (GPU version) as the backend (DiBattista 
et al. 2020). The rest of the models are implemented using 
Scikit-learn 1.0.2 (Djuric et al. 2016).

Table 4  Optimized Hyperparameters of the various Machine learning Models in this study

Model Hyperparameters Combinations MSE

Bayesian Ridge Max-Iteration = 300, alpha1 (shape parameter) = 1e-09, alpha 2 (inverse scale parameter) = 1e-09, lambda1 (shape 
parameter) = 1e-08, lambda 2 (inverse scale parameter) = 1e-09,

tol (stop parameter) = 2.9 e-05

0.00161

SVR Regularization parameter (C) = 1.0, epsilon = 0.1, kernel type (kernel) = rbf, kernel coefficient (gamma) = scale 0.00273
XGBoost n_estimators (number of trees) = 200, max_depth (maximum depth of trees) = 3

eta (learning rate) = 0.03, subsample (Fraction of samples) = 0.9
0.00018
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4.3.1  Basic ML Models Results

The results of the RMSE and MAE for the six basic models 
are displayed in Fig. 10a. Focusing on the RMSE measure, 
reported in the top right of Fig. 10a, we find that the Bayes-
ian ridge (blue color) exhibited the lowest RMSE values for 
all predicted horizons, with values gradually increasing over 
the seven days horizon. This indicates that Bayesian ridge 
provides the best forecasts of the actual AOD values and 
outperforms all other basic models. The results also showed 
that the BPNN model is the second-best choice after the 
Bayesian ridge as the forecast values are slightly higher than 
those of the Bayesian ridge. For the rest of the models, the 
results showed that their performance is weak when com-
pared to Bayesian ridge with XGBoost having the worst 
forecasting performance. These findings are reinforced by 
the MAE results reported in Fig. 10a. The results showed 
that the Bayesian Ridge has the lowest MAE values, indicat-
ing its superior ability to forecast AOD accurately, followed 
by the BPNN model. Again, the forecasting performance of 
the rest of the models is weak and XGBoost has the lowest 
forecasting performance.

The high performance of the Bayesian ridge and the 
BPNN models compared to the XGBoost, LSTM, bi-
LSTM, and stacked-LSTM models is expected, especially 
for applications requiring precise and reasonable short-
term predictions. On the other hand, the lower variability 
of the XGBoost, LSTM, bi-LSTM, and stacked-LSTM 
models might be attributed to the inherent complexity of 
these models, leading to an increased sensitivity to data 
fluctuations. However, these models can still be valuable 
in scenarios requiring more complex patterns or longer-
term predictions. Our results of the outperformance of the 
Bayesian ridge and the BPNN models are aligned with our 
expectations.

For a better analysis of the forecasting performance of 
the basic models, we report in Fig. 10b the scatter diagram 
of the actual versus predicted values of the AOD for one 
day ahead. The dashed line represents perfect predictions, 
where the actual and predicted values are equals. The closer 
the points are to the dashed line, the more accurate the pre-
dictions are. The points that deviate from the line indicate 
prediction errors. Visually, the two models, Bayesian ridge 
and the BPNN models, show better alignment with dashed 

Fig. 10  a RMSE and MAE forecasting error measures for the best six basic models. b Actual vs predicted scatter plots of the basic models. The 
dashed line illustrates perfect predictions
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line. The worst for the one day ahead are reported for the 
CNN, SVR and XGBOOST.

4.3.2  Hybrid ML Results

The forecasting errors, including RMSE and MAE, of the 
best four hybrid models are presented in Fig. 11a. First, the 
CNN-LSTM model displayed varying RMSE values across 
different predictions horizons (blue color), with values rang-
ing from 0.0045 (day 1) to 0.065 (day 7). In the same vein, 
the MAE results for the CNN-LSTM model vary depending 
on the horizon time. In contrast, the RMSE values provided 

by the ConvLSTM model were lower, especially on days 
1 to 4, where it outperforms the CNN-LSTM model. This 
proves that ConvLSTM, with its ability to capture spatial 
and temporal dependencies, outperforms the other mod-
els in short-term predictions. The encoder-decoder LSTM 
model has the highest RMSE and MAE values showing that 
this model has the lowest performance in terms of predic-
tions. On the other hand, the ConvLSTM-BayesianRidge 
combined model shows intriguing results (black color), 
which consistently outperforms all the other hybrid models 
in terms of both RMSE and MAE error predictions meas-
ures through the different prediction horizons. The superior 

Fig. 11  a RMSE and MAE forecasting error measures for the best four hybrid models. b Actual vs predicted scatter plots of the hybrid models. 
The dashed line illustrates perfect predictions
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predictive performance of the ConvLSTM-BayesianRidge 
model is due to its ability to minimize both the variance and 
bias of the forecasts.

Figure 11b shows the scatter plots of the actual versus 
predicted AOD values for the four hybrid models: ConvL-
STM, Encoder-Decoder LSTM, and ConvLSTM-Bayesi-
anRidge. The figure reveals that the ConvLSTM-Bayesian-
Ridge model has the highest concentration of points near 
the dashed line, indicating its superior performance in fore-
casting AOD. The other models have more scattered points, 
especially for higher AOD values, suggesting lower accuracy 
and higher errors. The figure also shows that the ConvLSTM 
model tends to underestimate the AOD values, while the 
Encoder-Decoder LSTM model tends to overestimate them. 
This implies that these models have some biases in their 
predictions, which can affect their reliability and usefulness.

The outperformance of the ConvLSTM-based models can 
be explained by its strong ability to capture spatio-temporal 
data. The integration of Bayesian ridge, the best-performing 
model among the basic models’ category, for the regres-
sion task, combined with ConvLSTM for feature extraction, 
substantially enhances their forecasting capabilities. Moreo-
ver, by combining the RNN variant models with Bayesian 
methodologies to enhance forecasting has gained recogni-
tion from various studies in machine learning literature. 
Notably, Bayesian LSTM architectures have been deployed 
to improve forecasting accuracy, as introduced by Yarin, 
Ghahramani et al. (Gal and Z.  2016). Their findings suggest 
that grounding dropout in approximate Bayesian inference 
provides insights into its effective use with RNN models. 
These findings are consistent with other research studies that 
have examined the AOD time series or other air pollution 
indicators such as PM 2.5 among others (Daoud et al. 2021; 
Tian and Chen 2022; Han et al. 2021). Our results are also 
in line with prior findings in precipitation nowcasting, where 
ConvLSTM is found to have high performance (Levy et al. 
2015). Furthermore, we found that the introduction of the 
CNN model in the hybrid group improved the fitting degree 
of the prediction models.

4.3.3  Combined ML Results

Figure 12a displays the RMSE and MAE measurements 
of the combined models. It is evident that both the stacked 
combination of ConvLSTM and Bayesian ridge (red color) 
and the weighted average models consistently outperform 
the individual basic and hybrid models, including Bayesian 
ridge and ConvLSTM models, across the majority of pre-
diction horizons. These findings vividly demonstrate their 
outstanding capacity to produce remarkable precise forecasts 
for AOD in the AP. The stacked combining model exhibits 
RMSE values ranging from 0.0402 (Day 1) to 0.0618 (Day 
7). Likewise, the weighted average model produces RMSE 

values in the range of 0.0399 (Day 1) to 0.0617 (Day 7). 
This shows that the performance of the weighted averaging 
strategy is slightly better than stacking strategy for combin-
ing the prediction of ConvLSTM and Bayesian Ridge for the 
short-term AOD prediction task.

Figure 12b shows a scatter plot of the actual vs predicted 
AOD values for the two combined models: stacked combin-
ing and weighted average. The plot indicates that both mod-
els have high accuracy, as most of the points are clustered 
around the line. However, the weighted average model seems 
to have a slight edge over the stacked combining model, as it 
has fewer outliers and a higher correlation coefficient. This 
suggests that the weighted average model is more consistent 
and reliable in forecasting AOD values.

The superiority of the weighted average model in terms of 
forecast could be attributed to its ability to assign different 
weights to the predictions of the ConvLSTM and Bayesian 
ridge based on their individual performance. This flexible 
approach allows the model to capitalize on the strengths of 
both constituent models while mitigating their weaknesses, 
resulting in more accurate AOD forecasts. Furthermore, 
these combined models, especially the weighted average 
model, hold significant promise for practical applications 
in fields like environmental planning and climate research, 
where precise short-term AOD predictions are of great 
value. The superior performance of the combined models 
aligns with previous research indicating that ensemble meth-
ods, which combine the predictions of multiple models, can 
often outperform individual models. This is especially true 
in situations where the individual models have complemen-
tary strengths and weaknesses. The high performance of 
averaging techniques have been highlighted in several stud-
ies including modelling and forecasting several air pollution 
proxies and meteorological variables such as PM10, CO, 
 NO2,  NOx,  SO2, and  O3, and five meteorological variables, 
wind speed, wind direction, rainfall accumulation, tempera-
ture and solar radiation (see (Westerlund et al. 2014)). Our 
results are also aligned with other studies that found evi-
dence of high performance of averaging techniques when 
analyzing the impact of fine particle on cause-specific mor-
tality (see (Fang et al. 2016; Tran et al. 2018; Ramli, et al. 
2023)).

4.3.4  Enhancing AOD Forecasting Precision Through 
Models Combination

Figure 13 provides a general insight into the Kernel Den-
sity Estimation (KDE) of the forecasting errors of the three 
classes of models. Notably, the curves exhibited by the 
combined models show a leptokurtic density with a mean 
almost equivalent to 0. This density pattern indicates that 
these models produce errors that are closely concentrated 
around 0, showing a robust and consistent performance. In 
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contrast, the KDE curves for the majority of the other mod-
els are comparatively scattered, leading to a broader disper-
sion of errors.

The Pearson’s correlation coefficient for all models across 
the seven-day forecasted horizon are shown in Fig. 14. The 
highest correlation was produced by the weighted-averaging 
combined model followed by the stacked combining and 
Bayesian ridge models. The performance of the models 
starts to vary as the prediction horizon gets closer to day 
seven. The most significant difference can be seen on the last 
day where the weighted-averaging model shows the high-
est correlation between actual and predicted AOD values 
compared to the rest of the models. All Pearson’s correlation 
coefficient values of the combined models are statistically 
significant (p < 0.01) as shown in Fig. 15. This shows that 
combining the strength of the ConvLSTM model for captur-
ing spatiotemporal dependencies along with the Bayesian 
ridge models ability to perform well for short-term fore-
casting results in more precise prediction of AOD values, 
especially for further ahead predictions where other models 

tend to skew from the actual AOD values. This validates our 
hypothesis that combing the best-performing models can 
result in more optimal and accurate forecasting predictions.

4.4  Percentage Improvement Results

Table 5 shows the percentage improvement of RMSE for 
the weighted-average combined model relative to all other 
models. From this table, we can see that the RMSE scores 
were improved upon for almost all days in the prediction 
horizon due to the combination of ConvLSTM and Bayesian 
ridge through the use of the averaging strategy. The biggest 
improvement was a significant 51.15% for the seventh day 
prediction of the SVR model. In some cases, day one in the 
prediction horizon showed worse results for the weighted-
average combined model compared to the rest of the models. 
However, a large improvement can be seen from day two 
and ahead. This shows that the combined weighted-aver-
aging model perform better for further ahead predictions 
while other models tend to deteriorate. Furthermore, this 

Fig. 12  a RMSE and MAE forecasting error measures for the two combined models. b: Actual vs predicted scatter plots of the combined mod-
els. The dashed line illustrates perfect predictions
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also signifies that the combined weighted-averaging model 
results in higher correlation between actual and predicted 
AOD values for future predictions, which can also be noted 
by the Pearson’s correlation coefficient represented visually 
in Fig. 14.

Table 6 shows the percentage improvements of MAPE for 
the combine weighted-averaging model relative to all other 
models. Similar to the RMSE percentage improvement, 
MAPE had the highest improvement across all seven-day 
predictions when the models were combined compared to 
the performance of each one separately. The only deviation 
to this trend can be seen by the comparisons to the Bayesian 
ridge model in which improvement in MAPE scores can 
only be seen for day three and day four. However, the com-
bined weighted-averaging model had higher performance 
in almost all other metrics showcasing that it was the top 
performing model overall for AOD predictions.

The goal of the combined models was to reduce predic-
tion error by using the best performing basic models that 
are more suitable for small samples of univariant data with 
the best performing hybrid model that performs well with 
large samples of multivariant data. Thus, both combination 
schemes of the two models have the ability to take the best 

overall prediction, which resulted in a more robust technique 
that has higher performance for both large and small sam-
pled univariant and multivariant data. Overall, we found 
that the weighted-averaging technique to combine the two 
top-performing models significantly outperformed all other 
models on all metrics for predicting future AOD levels in 
the AP. Compared to a single model alone, the combination 
of the best-performing models makes up for certain short-
comings that either model alone would face. Compared to 
previously reported results for the task of AOD forecasting 
(Putaud et al. 2010; Arden Pope et al. 2011; Zhang et al. 
2016; Song et al. 2018; Abuelgasim and Farahat 2019), we 
found that the weighted-averaging technique outperformed 
previous methods achieving higher accuracy rates and lower 
error than many of the existing methods. This shows the 
novelty and value of our proposed approach for AOD fore-
casting. Some possible factors that account for the supe-
rior performance of the models include the use of advanced 
combination techniques, the use of high-quality and high-
resolution data, and the use of rigorous model evaluation and 
validation methods. Furthermore, our proposed models are 
not limited to AOD predictions only. They can be applied to 
other environmental time series forecasting problems. The 

Fig. 13  Gaussian kernel density estimation of the prediction errors using the Basic, Hybrid, Combined models at all prediction horizons 
(1–7 days)
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models are flexible and adaptable and can be easily modi-
fied to suit different data sources, features, and outputs. The 
models are scalable and robust in which they can handle 
different levels of data complexity, variability, and noise. 
Therefore, the models proposed in this paper have a wide 
range of applicability and usefulness for various environ-
mental forecasting tasks and scenarios.

In our study, the decision to incorporate hybrid and com-
bined models, despite their increased computational cost and 
complexity, was driven by the substantial enhancement in 
prediction accuracy they offered over basic models. While 
we acknowledge that the interpretability of combined mod-
els can be challenging due to their complexity, we would 
like to highlight that there are robust techniques available to 
address this concern without compromising performance.

For instance, permutation feature importance is a valua-
ble tool we can employ to discern the impact of individual 
features on model predictions. By systematically permut-
ing feature values and measuring the resulting decrease 
in model performance, we can identify the features that 
significantly influence the output. Additionally, visualiza-
tion techniques such as saliency maps and attention maps 
provide a transparent view of the regions or patterns in 
the input data that the model prioritizes during prediction. 

These methods serve as invaluable aids in unraveling the 
internal workings and logic of the models.

Overall, while the use of multiple models can indeed 
pose challenges to interpretation, our commitment to 
model transparency is evident in our planned utilization of 
these sophisticated interpretability techniques. We believe 
that by employing these methods, we can not only under-
stand the nuanced contributions of individual models but 
also enhance the overall interpretability of our forecasting 
approach.

For long-term predictions, Fig. 16 displays the Aerosol 
Optical Depth (AOD) forecasting for six years ahead (blue 
line) from 2020 to 2026 with. The figure also shows the 
95% confidence interval (shaded area) of the predictions, 
which indicates the uncertainty of the forecasts. The fig-
ure demonstrates that the proposed approach can capture 
the general trend and seasonal patterns of the AOD time 
series. The figure also reveals that the prediction errors 
tend to increase as the forecast horizon gets longer, which 
is expected for any time series forecasting problem. The 
figure illustrates the potential of the designed system for 
providing reliable and accurate AOD forecasts for the Ara-
bian Peninsula.

Fig. 14  Pearson’s r of the predictions using the Basic, Hybrid, Combined models for different prediction horizons (1–7 days)
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Fig. 15  P values for the Pearson’s r of the predictions using the Basic, Hybrid, Combined models for different prediction horizons (1–7 days)

Table 5  RMSE percentage 
improvements of the weighted-
averaging model relative to all 
the other models

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Basic models
 Bayesian Ridge 0.436 0.455 0.416 0.464 0.211 0.139 0.200
 SVR 23.600 34.245 40.729 44.579 47.875 48.795 49.224
 BPNN 0.922 1.409 1.862 1.423 1.051 0.814 0.916
 XGBoost 6.965 4.835 6.130 6.816 7.682 7.358 6.475
 LSTM 11.414 1.150 5.354 3.763 4.530 5.241 4.374
 BI-LSTM 5.866 3.512 6.651 5.601 5.310 5.949 5.790
 Stacked-LSTM 10.263 4.772 4.971 5.471 6.135 6.528 6.217

Hybrid models
 CNN-LSTM 11.229 3.860 3.205 1.676 5.345 5.440 5.241
 ConvLSTM 2.435 1.584 2.092 2.979 2.867 3.074 4.453
 Encoder-Decoder_LSTM 11.738 3.158 7.671 6.058 6.520 7.176 7.418
 ConvLSTM-Bayesian Ridge 1.891 1.721 1.017 1.148 0.782 0.646 0.271

Combined models
 Stacked-combining 0.784  − 0.223  − 0.207 0.169  − 0.171 0.157 0.301
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5  Conclusion and Policy Implications

AOD, encompassing both absorption and scattering coef-
ficients, plays a pivotal role in atmospheric interactions and 
impacts climate changes and human well-being. To enhance 
short- and mid-term daily AOD forecasting precision, we 

introduced three model categories: basic, hybrid, and com-
bined models. These categories delve into the influence of 
feature extraction methods on predictive performance. Within 
the combined category, we explored stacked combining and 
weighted average architectures to amalgamate superior mod-
els from the basic and hybrid groups, namely Bayesian ridge 

Table 6  MAPE percentage 
improvements of the weighted-
averaging model relative to all 
the other tested models

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Basic models
 Bayesian Ridge  − 1.237  − 1.494  − 2.095  − 1.346  − 1.280  − 1.897  − 2.305
 SVR 38.300 52.964 58.421 60.850 63.012 63.696 64.19202
 BPNN  − 2.709 1.619 1.798 2.901 3.798 3.6308 3.483058
 XGBoost 5.884 4.420 7.815 8.364 9.155 6.8168 7.891307
 LSTM 10.713  − 0.167 1.363  − 2.511  − 0.93  − 2.069  − 3.56841
 BI-LSTM 1.470 0.353 2.205  − 0.057  − 0.455  − 2.040  − 1.908
 Stacked-LSTM 8.057  − 0.090  − 2.307 1.266 1.887 1.269 1.890

Hybrid models
 CNN-LSTM 8.107 4.528 2.521 0.285 2.108  − 2.103 1.854
 ConvLSTM 1.909 1.058  − 1.156  − 2.187  − 0.596 0.033  − 1.268
 Encoder-decoder_LSTM 12.478 0.139 2.199 -0.437 -0.52 1.140  − 0.657
 ConvLSTM-Bayesian Ridge  − 0.330  − 0.890  − 1.471  − 1.475  − 1.880  − 1.607  − 2.620

Combined models
 Stacked-combining  − 0.372  − 0.272  − 0.705 0.017  − 0.309 0.318  − 0.011

Fig. 16  AOD forecasting for 6 years ahead



 A. Q. Alban et al.

Published in partnership with CECCR at King Abdulaziz University

and ConvLSTM. This ensemble leverages their advanced 
time series prediction capabilities while addressing individual 
limitations. Our diverse array of machine and deep learning 
models underwent rigorous training, validation, and testing 
using a 17-year daily average AOD time series dataset, sourced 
from MODIS and MAIAC instruments, spanning the AP. 
This arid region, marked by expansive deserts and substantial 
atmospheric dust sources, presented an intricate forecasting 
challenge. Employing a range of regression error metrics, 
including RMSE, MAPE, MAE, Pearson’s r, and KDE, we 
comprehensively evaluated the proposed approaches. Signifi-
cantly, statistical analysis revealed that the weighted average 
model consistently outperformed other models across predic-
tion horizons from 1 to 7 days.

This achievement holds promising implications, offering 
actionable insights for governmental bodies and authorities 
in diverse sectors such as transportation, tourism, and pub-
lic health. By furnishing accurate daily AOD predictions, 
this research empowers stakeholders with advance notice 
of poor air quality events, consequently, they would be able 
to implement temporary restrictions on outdoor activities, 
industrial operations, and vehicular traffic to protect public 
health. The end-user can use the predictions of AOD to make 
informed decisions and actions, such as issuing alerts and 
advisories, adjusting emission standards and regulations, 
allocation resources and funds, and designing research pro-
jects and experiments. Furthermore, climate scientists will 
be able to track and monitor changes in aerosol distribution 
and concentrations and assess their impact on regional and 
global climate patterns, leading to developing more efficient 
climate change mitigation strategies. Lastly, accurate aero-
sol forecasting can inform policymakers and urban planners 
about potential air quality challenges associated with urban 
growth and development. This anticipated insight can lead 
to sustainable urban planning and designing of more green 
spaces to mitigate any potential air pollution. For future 
studies, the long term and spatiotemporal AOD predictions 
over a wide group of locations and stations can be inves-
tigated using high-performance computing techniques. In 
addition, a larger number of environmental features, such as 
temperature, humidity, precipitation and air pollutants can 
be included along the AOD to conduct a more comprehen-
sive analysis.

In comparison with previous studies in the same region 
and similar climates, we observed seasonal patterns are 
consistent with those reported in these studies, which lends 
further credibility to our results (Abuelgasim and Farahat 
2019; Bilal et al. 2013). For example, a study conducted over 
the United Arab Emirate, analyzed the seasonal variation of 
AOD over 16 years and found that the highest levels of par-
ticulate matter (PM) (which are shown to be correlated with 
AOD) were detected during the summer season, followed by 
spring, autumn, and finally winter (Abuelgasim and Farahat 

2019). Another study conducted over the Arabian Peninsula 
from 2003 to 2017, analyzed the spatiotemporal variations 
of aerosols using MODIS-based Merged Dark Target (DT) 
and Deep Blue (DB) collection of six aerosol products. Fur-
thermore, the study found that AOD was increasing annually 
at some stations like Kuwait University, Dhabi, and Hamim 
(Ali and Assiri 2019).

In contrast, there are some limitations in our work. First, 
our sample data did not include certain features to train the 
models that could potentially enhance performance results. 
Thus, future work can investigate the addition of other fea-
tures such as temperature and humidity to the introduced 
weighted-average combined model from our work. This 
addition has the potential to enhance the accuracy of predic-
tion for the ConvLSTM model in the combined technique as 
it has been found to work well with high density data. There-
fore, more weight would be added to this model resulting 
in an improvement in AOD prediction. Second, we focused 
on daily AOD prediction, which is more challenging and 
relevant for practical applications. Exploration of other time 
scales (e.g., monthly, yearly) can be a possible direction for 
future work to assess how model performance varies across 
these scales. Lastly, further validation of model performance 
may be performed on an independent dataset to assess the 
practical applicability of the models in real-world scenarios. 
We plan to conduct such validation in our future work.
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