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Abstract
This study harnessed the formidable predictive capabilities of three state-of-the-art machine learning models—extreme 
gradient boosting (XGB), random forest (RF), and CatBoost (CB)—applying them to meticulously curated datasets of topo-
graphical, geological, and environmental parameters; the goal was to investigate the intricacies of flood susceptibility within 
the arid riverbeds of Wilayat As-Suwayq, which is situated in the Sultanate of Oman. The results underscored the exceptional 
discrimination prowess of XGB and CB, boasting impressive area under curve (AUC) scores of 0.98 and 0.91, respectively, 
during the testing phase. RF, a stalwart contender, performed commendably with an AUC of 0.90. Notably, the investigation 
revealed that certain key variables, including curvature, elevation, slope, stream power index (SPI), topographic wetness index 
(TWI), topographic roughness index (TRI), and normalised difference vegetation index (NDVI), were critical in achieving 
an accurate delineation of flood-prone locales. In contrast, ancillary factors, such as annual precipitation, drainage density, 
proximity to transportation networks, soil composition, and geological attributes, though non-negligible, exerted a relatively 
lesser influence on flood susceptibility. This empirical validation was further corroborated by the robust consensus of the 
XGB, RF and CB models. By amalgamating advanced deep learning techniques with the precision of geographical informa-
tion systems (GIS) and rich troves of remote-sensing data, the study can be seen as a pioneering endeavour in the realm of 
flood analysis and cartographic representation within semiarid fluvial landscapes. The findings advance our comprehension 
of flood vulnerability dynamics and provide indispensable insights for the development of proactive mitigation strategies in 
regions that are susceptible to hydrological perils.
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1  Introduction

Floods are natural hazards that can occur anywhere in 
the world (Akash et al. 2023; Balica et al. 2023; Eilander 
et al. 2023Morote et al. 2023). However, certain regions 
are more vulnerable to flooding than others (Balica et al. 
2009; Sheehan 2022). Areas situated in low-lying regions 
and near rivers and coastlines are especially vulnerable to 
flooding (Nicholls et al. 2007; Grases et al. 2020; Hsiao 
et al. 2021). According to research conducted by the United 
Nations University, 80% of flood-related losses worldwide 
are reported in nations where substantial populations reside 
in low-lying areas or are adjacent to coastlines (Dilley 2005). 

The risk of flooding in these regions can be aggravated by 
climate change, with rising sea levels and more frequent 
extreme weather events increasing the probability of flood-
ing (Sharma and Ravindranath 2019). Floods can cause 
significant damage to infrastructure, homes and crops, as 
well as loss of life (Mishra and Shah 2018). Additionally, 
floods can cause long-term economic consequences, such as 
trade and transportation disruptions, and their environmental 
implications include soil erosion and water pollution. There-
fore, it is imperative that governments and communities in 
vulnerable regions take proactive steps to minimise the risk 
of flooding, including improving drainage systems, building 
flood barriers, and relocating communities from flood-prone 
areas (Ward et al. 2020).

The Sultanate of Oman (Oman) experiences occasional 
flooding because of its geography and climate. Because of 
its mountainous terrain and location on the Arabian Pen-
insula, the country is vulnerable to heavy rain and flash 
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flooding. In recent years, Oman has experienced several 
significant floods that have damaged infrastructure, homes, 
and businesses. In 2007, Cyclone Gonu caused widespread 
flooding and landslides, leading to the evacuation of thou-
sands of people and significant damage to roads, bridges, 
and buildings (Fritz et al. 2010). In 2018, Cyclone Mekunu 
caused severe flooding in southern Oman, resulting in sev-
eral fatalities and extensive damage to homes, infrastructure, 
and agricultural land (Müller et al. 2020). In addition to 
cyclones, Oman also experiences seasonal monsoon rains 
that can cause flooding in low-lying areas. In 2021, heavy 
rains led to flooding in several parts of the country, result-
ing in road closures, disrupted transportation, and damaged 
infrastructure (Sun et al. 2022).

The impact of the Cyclone Shaheen on the Arabian Pen-
insula was immense, causing widespread destruction and 
chaos in its wake. This event was a sobering reminder of the 
critical need for robust preparedness measures and effec-
tive disaster management systems to mitigate the devastat-
ing consequences of extreme weather events (Terry et al. 
2022). Specifically, the cyclone’s path across the northern 
part of Oman, including Al-Batinah in the south, led to 
heavy rainfall and flooding (Al Maghawry 2022; Almufarji 
and Husin 2022; Al Nadhairi et al. 2023). The occurrence 
of tropical cyclones poses a sporadic yet significant threat 
to Oman, because such events have the potential to result in 
extensive damage and flooding throughout the country. In 
response, Oman has implemented a comprehensive national 
disaster management system that encompasses early warning 
systems, evacuation plans, and emergency response teams. 
Nonetheless, the vulnerability of the country to flooding and 
its associated impacts remains a persistent concern, high-
lighting the continual need for monitoring and prepared-
ness measures to mitigate the deleterious effects of natural 
disasters.

Despite this urgent requirement, in the literature, there 
is a dearth of studies that have focused on the variables and 
factors that contribute to flooding and its associated risks in 
Oman (Al-Naamani 2016). This knowledge gap underscores 
the urgent need for intense scientific enquiry to further our 
understanding of the fundamental mechanisms underlying 
flooding events in the country. Understanding the variables 
that exacerbate flooding in arid and semiarid countries is 
a pressing concern for several reasons. First, the countries 
in these regions often lack the infrastructure and resources 
necessary to cope with the disastrous effects of floods. As 
a result, flooding causes substantial loss of life, damages 
infrastructure and property, and displaces individuals. Fur-
thermore, climate change continues to cause an increased 
frequency and intensity of extreme weather events, including 
floods, in arid and semiarid regions. Furthermore, an in-
depth understanding of the variables that exacerbate flood-
ing can inform policy decisions and guide governments 

in prioritising investments in disaster preparedness and 
response. The development of effective early warning sys-
tems, evacuation plans, and emergency response teams can 
significantly reduce the damage caused by floods. However, 
such measures must be specific to the conditions in each 
region to account for the factors that cause flooding. There-
fore, it is essential to conduct studies that focus on the vari-
ables and factors that lead to flooding in an effort to better 
comprehend the mechanisms underlying these events in arid 
and semiarid countries.

Thus, Geographic Information Systems (GIS) have 
found extensive applications in various domains of hydrol-
ogy. In the realm of hydrology, GIS has been utilised in 
a wide range of areas, including water quality assessment 
(Habeeb and Weli 2021), urban heat island analysis (Liu 
et al. 2017), climate change impact studies (Henry 2023), 
drought monitoring (Adedeji et al. 2020), hydrological mod-
elling (Thakur et al. 2017), and flood analysis (Kourgialas 
and Karatzas 2011), among others. This technology offers a 
powerful toolkit for the spatial analysis and visualisation of 
hydrological data, enabling researchers to gain insights into 
complex hydrological processes (Wang et al. 2015a). GIS, 
remote sensing, and machine learning methods are essential 
tools for modelling floods because of their ability to ana-
lyse and process large amounts of spatial data (Das 2018; 
Shahabi et al. 2020; Guptha et al. 2021, 2022; Swain et al. 
2022; Talukdar et al. 2022a; Patel et al. 2022). Coulibaly 
et al. (2000) employed a hierarchical modelling approach 
by utilising neural networks and GIS to analyse the spa-
tial variability and hydrological responses in a watershed, 
demonstrating its effectiveness in predicting streamflow and 
flood events. Domeneghetti et al. (2018) combined hydraulic 
and machine learning models to map the extent of flooding 
in the Secchia River basin, demonstrating the potential of 
machine learning algorithms to improve the accuracy and 
efficiency of flood-extent mapping. Chen et al. (2020a, b) 
utilised machine learning algorithms to map floods based 
on synthetic aperture radar (SAR) data in areas where tra-
ditional methods are not feasible. The study showed that 
machine learning techniques were effective in mapping 
floods in complex environments.

The utilisation of GIS and remote-sensing methodologies 
to model flooding in Oman remains limited (Hoque et al. 
2017). However, the emergence of machine learning tech-
niques can play a pivotal role in the management of future 
cyclone-related flood risks in the region. A comprehensive 
and accurate understanding of flood risks and their potential 
effects can be realised through the integration of GIS, remote 
sensing, and machine learning. GIS can store, manipulate, 
and analyse geospatial data, remote sensing can provide up-
to-date and high-resolution data, and machine learning can 
be used to analyse substantial amounts of data to identify 
patterns and develop accurate flood models. By synergising 
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these modalities, valuable information can be gleaned for 
use in effective disaster management in regions frequently 
afflicted by floods, such as Oman.

The present study assesses flood susceptibility in Wilayat 
As-Suwayq, Al-Batinah North Governorate, Oman, by 
bringing together a comprehensive consideration of vari-
ous environmental factors. Although extensive regional and 
global research has been conducted to evaluate cyclone risks 
along the Oman Sea coasts (Al-Hinai and Abdalla 2021; 
Mansour et al. 2021), a significant knowledge gap exists. 
To the best of our knowledge, there is a limited body of 
research that has leveraged machine learning techniques to 
identify variables for mapping flood-prone areas, both in the 
broader Al-Batinah North Governorate (Moradi et al. 2021) 
and the specific As-Suwayq region (Elmahdy et al. 2020). 
In the current study, we employ advanced machine learning 
methods, including extreme gradient boosting (XGB), ran-
dom forest (RF), and CatBoost (CB), to model and predict 
flood condition factors and assess their efficacy in mapping 
regions prone to flooding. The research harnesses two dis-
tinct datasets to investigate these flood-conditioning factors 
comprehensively. The first dataset encompasses variables, 
such as altitude, slope, aspect, curvature, stream power index 
(SPI), topographic wetness index (TWI), and topographic 
roughness index (TRI). The second dataset integrates 
LiDAR-derived factors with geological, soil, land use/land 
cover (LULC), distance from roads and distance from rivers. 
This multidimensional approach aims to provide a holistic 
understanding of flood susceptibility within the study area.

2 � Materials and Methods

2.1 � Study Area

Wilayat As-Suwayq is positioned in the Al-Batinah North 
Governorate (23.8262° N, 57.4288° E), situated in the 
northern part of Oman as illustrated in Fig. 1. Accord-
ing to the Directorate General of Meteorology in Oman 
(2022), As-Suwayq receives an average annual rainfall 
of 109 mm. The wettest months occur from December to 
March, while the driest period extends from May to Sep-
tember (https://​met.​gov.​om/). The average annual maxi-
mum temperature in As-Suwayq is 34 °C, reaching a daily 
maximum exceeding 49 °C during the summer months, 
while the mean minimum annual temperature stands at 
22 °C. As-Suwayq spans an area of approximately 1000 
km2, with a total cultivated land of 80 km2. A study con-
ducted by Choudri et al. (2013) revealed that As-Suwayq 
exhibits the highest population density and intensive agri-
culture in Al-Batinah North, utilising the largest amount 
of groundwater, primarily for irrigation purposes. The 
predominant crops in As-Suwayq include squash, Rhodes 
grass, banana, date palm, alfalfa, and tomato (Al-Aufi et al. 
2020). The agricultural season in this region spans from 
October to April, aligning with temperature and rainfall 
patterns (Alshemmari et al. 2023). The primary rainfall 
season in northern Oman occurs between December and 
April. Table 1 illustrates the primary data used to study the 
role of the key conditioning factors in flood susceptibility 

Fig. 1   a Flood area location 
(As-Suwayq) and b elevation 
insights

https://met.gov.om/
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mapping through machine learning approaches in the 
study area.

2.2 � Dataset Preparation for Spatial Modelling

2.2.1 � Elevation

Elevation is used to model flood risk, because it affects 
the flow of water during flood events. When water flows 
downhill, it follows the path of least resistance, which is 
usually the path of steepest descent (Scotti et al. 2020). 
Hence, areas with higher elevations are less prone to flood-
ing than areas with lower elevations. However, even areas 
at high elevations can be at risk of flooding if they are 
located in basins or low-lying areas. In addition, areas 
at lower elevations are more likely to experience severe 
flooding, particularly in areas where water cannot easily 
drain away. Therefore, accurate elevation data are crucial 
for modelling flood risk. Digital elevation models (DEM) 
are commonly used to represent the elevation of the earth’s 
surface, and they can be combined with other spatial 
information, such as hydrological and land-cover data, to 
model the flow of water during flood events (Muthusamy 
et al. 2021). Based on elevation data, GIS and modelling 
tools can identify areas that are likely to be affected by 
flooding, estimate the extent and severity of flooding, and 
assess potential effects on infrastructure, communities, and 
the environment. Moreover, accurate elevation data are 
essential for developing effective flood risk management 
strategies. Therefore, elevation is crucial to consider when 
modelling flood risk. In a study conducted in As-Suwayq, 
LiDAR data were used to produce a DEM with a 5 m, two-
dimensional resolution acquired from the National Sur-
vey Authority in Oman (http://​nasom.​org.​om, accessed 22 
October 2022). The resulting DEMs were used to derive 
thematic maps of flood condition variables, thus demon-
strating the usefulness of high-resolution elevation data in 
flood risk modelling (Fig. 2a).

2.2.2 � Normalised Difference Vegetation Index (NDVI) Using 
Sentinel‑2 Data

The normalised difference vegetation index (NDVI) is valu-
able data for assessing flood risk, because it provides cru-
cial information about the quality and amount of vegetation 
cover in a particular area. The NDVI is a remote-sensing 
index that measures the difference between the reflectance 
of near-infrared and red light in vegetation. The index ranges 
from − 1 to 1, and higher values indicate healthier and more 
abundant vegetation cover compared with lower values. In 
flood risk management, vegetation is an important factor 
because of its ability to absorb and slow water movement, 
prevent soil erosion, and maintain the stability of riverbanks 
and floodplains (Wang et al. 2015b; Soltani et al. 2021). 
Areas with higher vegetation cover are less prone to flood-
ing, while areas with lower vegetation cover are likely to 
experience flooding and soil erosion. Therefore, the NDVI 
can be used to identify areas that are at a high risk of flood-
ing and to assess the potential effects of floods on vegetation 
cover (Farhadi and Najafzadeh 2021).

In flood modelling, combining data derived from the 
NDVI with other spatial data, such as elevation and hydro-
logical measurements, can assist in modelling the flow of 
water during flood events and in identifying flood-prone 
areas. Moreover, remote sensing and GIS tools can utilise 
NDVI data to identify regions with high vegetation cover, 
which are vital in planning flood mitigation and adaptation 
measures, such as green infrastructure and wetland restora-
tion. In the present study, Sentinel-2 satellite data were used 
to calculate the NDVI in the study area (Fig. 2b). Senti-
nel is an earth satellite programme designed, managed and 
launched by the European Space Agency. Sentinel-2A and B 
are multispectral, high-resolution land observation satellites 
that capture images in 13 bands and at multiple geometrical 
resolutions. The present study used a free-cloud image and 
classified it into four major land-use classes: vegetation, bare 
land, developed land, and water bodies (https://​www.​senti​
nel-​hub.​com/, accessed on 10 October 2022). The accuracy 

Table 1   Primary research data

Data Type Characteristics Sources

Rainfall Excel sheet GPS coordinates Directorate General of Meteorology, Oman (https://​met.​gov.​om/)
DEM Raster grid Raster spatial resolution 5 m × 5 m National Survey Authority, Oman (http://​nasom.​org.​om)
Floods data Vactor shapefile Points Ministry of Agriculture, Fisheries and Water Resources (https://​

www.​maf.​gov.​om/)
Geological map Vactor shapefile Polygon Geological Survey of Oman (http//www.​pdo.​co.​om/)
Soil type Vactor shapefile Polygon Ministry of Agriculture, Fisheries and Water Resources (https://​

www.​maf.​gov.​om/)
NDVI Sentinel-2 Raster spatial resolution 10 m × 10 m ESA-Copernicus database. (http://​scihub.​coper​nics.​eu)
Road’s data Vactor shapefile Lines National Survey Authority, Oman

http://nasom.org.om
https://www.sentinel-hub.com/
https://www.sentinel-hub.com/
https://met.gov.om/
http://nasom.org.om
https://www.maf.gov.om/
https://www.maf.gov.om/
http://www.pdo.co.om/
https://www.maf.gov.om/
https://www.maf.gov.om/
http://scihub.copernics.eu
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Fig. 2   Conditioning variables: 
a elevation, b NDVI, c distance 
from drainage, d drainage 
density, e distance from roads, 
f geological map, g soil map, 
h rainfall map, i TRI, j TWI, k 
curvature, l slope, and m SPI
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of the land-use classification was calculated as 96% using 
the Kappa index.

2.2.3 � Distance from Drainage

The distance from drainage systems, such as rivers, streams, 
and canals, is crucial in flood risk modelling. GIS and tools 
can use data on drainage networks and elevations to iden-
tify high-risk areas, because they are more likely to expe-
rience flooding if the drainage system is overwhelmed by 
water (Kazakis et al. 2015). Using GIS and modelling tools, 
integrating drainage distance data can identify flood-prone 
areas, estimate flooding severity, and evaluate potential 
impacts on infrastructure, communities, and the environ-
ment. This information aids in flood risk maps, land-use 
planning, and infrastructure design while helping in develop-
ing effective flood risk management strategies. To model the 
distance from drainage systems in the study area, the Euclid-
ean distance method in ArcGIS Pro was utilised (Fig. 2C).

2.2.4 � Drainage Density

A drainage density map indicates the number of stream 
channels per unit area in a watershed affecting water move-
ment during flood events (Ogden et  al. 2011). GIS and 
modelling tools use drainage network data to simulate flood 
flow, identify high-risk areas, estimate flood severity, and 
assess potential impacts on infrastructure, communities, 
and the environment (Levavasseur et al. 2015). The rela-
tionship between drainage density and flooding is crucial 
for flood risk maps, land-use planning, and infrastructure 
design. It helps identify high-risk areas and estimate flood 
effects, providing valuable insights into effective flood risk 
management strategies. Incorporating drainage density data 
into flood models is essential (Ogden et al. 2011; Mahmoud 
and Gan 2018). In the present study, drainage density was 
calculated using a DEM as the input data in ArcGIS Pro 3.0 
(Fig. 2d).

2.2.5 � Distance from Roads

The distance of an area from roads is a commonly used fac-
tor in flood modelling (Tehrany et al. 2019; Khosravi et al. 
2020; Al-Hinai and Abdalla 2021), because it can influence 
the distribution of runoff and flooding. Roads can signifi-
cantly affect water flow during floods, because they can act 
as barriers or can direct water into concentrated channels, 
thus increasing the risk of flooding in specific areas. In flood 
modelling, in addition to data on slope, elevation, and land 
cover, the distance of an area from roads is a conditioning 
variable utilised to generate accurate flood susceptibility 
maps (Gudiyangada Nachappa et al. 2020). These maps are 
useful in identifying areas that are the most vulnerable to 

flooding, thus facilitating the development of flood mitiga-
tion strategies and emergency preparedness plans. The dis-
tance of an area from roads can also provide insights into the 
effects of urbanisation and changes in land use on flood risk, 
because the proximity of roads to water sources can increase 
with development and infrastructure expansion, potentially 
exacerbating flood risk in surrounding areas. Therefore, 
the distance from roads is a critical factor to consider when 
evaluating flood risk and designing flood management strate-
gies. To model the distance from roads in the study area, the 
Euclidean distance method was employed in ArcGIS Pro 
3.0 (Fig. 2e).

2.2.6 � Geological Map

Geological maps offer crucial insights for flood modelling 
and risk assessment, revealing the distribution and character-
istics of rocks and soils, which can significantly impact water 
flow during floods, hence aiding in identifying flood-prone 
areas and developing effective risk management strategies 
(Kourgialas and Karatzas 2011). For example, understanding 
soil properties can help determine the mitigation measures 
that are the most suitable in a particular area (Aslan et al. 
2005; Donnelly et al. 2006). Geological maps can help miti-
gate flood damage by understanding the effects of geological 
formations on water flow; they show the distribution and 
properties of rocks and soils and provide information on 
water movement. These maps can identify soil types, rocks, 
and sediment buildup, hence influencing water storage and 
infiltration; they can also be combined with flood modelling 
to develop effective flood management strategies.

In the present study, a geological map was used to apply 
the flood model. The study area encompassed four distinct 
geological types: quaternary surficial deposits, Sumeini and 
Hawasina, Samail ophiolite, and tertiary sedimentary cover 
(Fig. 2f). Each type represented a unique geological forma-
tion found in the study area, providing valuable information 
for understanding the area’s geology and potential natural 
resources. The geological map was obtained from the Geo-
logical Survey of Oman (www.​pdo.​co.​om/).

2.2.7 � Soil Map

Soil type significantly impacts flood modelling by affecting 
groundwater absorption and runoff potential. Soil maps help 
identify areas that have high runoff potential or low infil-
tration rates, aiding flood risk assessments and floodplain 
management strategies (Haghizadeh et al. 2017). Combin-
ing soil maps with other factors, such as slope, land use and 
topography, helps develop accurate flood susceptibility maps 
(Al-Juaidi et al. 2018). Soil maps can also be used to identify 
areas where infiltration-enhancing techniques, such as rain-
water harvesting, green infrastructure, and soil conservation 

http://www.pdo.co.om/
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practices, may be effective in reducing flood risk. Gravel, 
loam, rock, and sand are among the soil types examined in 
the present study (Fig. 2g). The soil type map was obtained 
from the MAFWR (https://​www.​maf.​gov.​om/, accessed 10 
September 2021).

2.2.8 � Rainfall

Precipitation is a key factor in flood risk modelling, because 
it causes rivers and water bodies to overflow, affecting the 
severity and extent of flooding (Jenkins et al. 2018; Pham 
et al. 2022). Data such as historical records, real-time moni-
toring, and climate projections can be used to incorporate 
rainfall data into flood risk models. Tools, such as rain 
gauges, radar, and satellites, collect rainfall data, which are 
then analysed using GIS to identify flood-prone areas (Anu-
sha and Bharathi 2020). This information can be combined 
with other data, such as topography, land cover, and soil 
type, to help model potential flood events and develop early 
warning systems and emergency response planning (Liu 
et al. 2022). This helps mitigate flooding effects and save 
lives. In the present study, rainfall data from 1975 to 2021 
were collected from two stations in the city on the website 
of the Civil Aviation Authority of Oman (http://​met.​gov.​om, 
accessed May 10, 2022). Using ArcGIS Pro 3.0, geostatisti-
cal inverse distance weighted interpolation was employed 
to generate a thematic map of the data, as shown in Fig. 2h.

2.2.9 � Topographic Roughness Index (TRI)

The TRI measures variations in elevation within a given 
area, which are calculated using the following equation:

where Σ|hi—havg| is the sum of the absolute differences 
between the elevation of each point in the area and the aver-
age elevation of the entire area, havg is the average elevation 
of the entire area, and n is the total number of points in the 
area (Hojati and Mokarram 2016; Mojaddadi et al. 2017). 
ArcGIS Pro 3.0 was used to calculate the TRI from DEMs 
using terrain analysis tools. Areas with higher TRI values 
had a more complex topography that trapped and slowed 
water flow, increasing the risk of flooding (Fig. 2i). There-
fore, the TRI is an important measure in modelling flood risk 
areas. It can be used in conjunction with other data, such as 
land use, drainage, and rainfall data, to develop comprehen-
sive flood risk models (Pourali et al. 2016).

2.2.10 � Topographic Wetness Index (TWI)

TWI is commonly used in flood modelling. It is a topo-
graphical index that characterises the relative wetness of a 

(1)TRI = (Σ|hi − havg|)∕n,

landscape based on its topography. The TWI is calculated 
by dividing the upslope contributing area by the contour 
length of a hillslope, which represents the log-transformed 
ratio of the upslope contributing area to the contour length. 
This index is expressed as a positive value, and higher values 
indicate wetter areas (Aksoy et al. 2016).

The TWI parameter, which is closely related to soil 
moisture content, is crucial for mapping flood-prone areas. 
Combining it with other factors, such as slope, curvature, 
aspect and elevation, creates flood susceptibility maps, all of 
which aid in mitigation strategies. The following two equa-
tions are used to calculate the TWI: TWI = ln(a/tan β) and 
TWI = ln(a/(tan β + 0.05)). The specific catchment area (a) 
represents the area contributing to a particular point on the 
landscape per unit of contour length, and tan β represents 
the slope angle at that point. The first equation is used to 
produce a normalised value of TWI that is proportional 
to the potential for soil moisture retention and hydrologic 
processes. The second equation resembles the first but has 
an additional value (0.05) to prevent zero division errors in 
regions with flat slopes. This equation was applied to com-
pute the TWI in the study region, as shown in Fig. 2j, which 
depicts the TWI distribution.

2.2.11 � Curvature

Curvature plays a vital role in modelling flood risk because 
it affects the flow of water across the landscape. This refers 
to the degree of convexity or concavity of the land surface, 
which can be determined through an analysis of DEM data 
(Chapi et al. 2017). Curvature affects the flow of water and 
amount of erosion during flood events. In areas with a high 
positive curvature, the land surface is convex, which slopes 
upward in all directions. This leads to faster water flow and 
an increased risk of erosion. Conversely, areas with high 
negative curvatures are concave, so the land surface slopes 
downward, leading to slower water flow and increased risk 
of ponding.

By integrating curvature data into flood risk models, areas 
that are prone to flooding based on the shape of the ter-
rain can be identified. This information can guide land-use 
planning, infrastructure design, and emergency response 
planning. Moreover, curvature data can be utilised to simu-
late water flow during flood events in hydraulic models that 
simulate various scenarios, such as different levels of rainfall 
or varying degrees of urbanisation. The curvature data in 
the present study area were derived from a DEM with a 5 m 
resolution, as shown in Fig. 2k.

2.2.12 � Slope

Slope is an important factor in modelling floods, because it 
affects the speed and direction of water flow. Slope refers to 

https://www.maf.gov.om/
http://met.gov.om
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the degree of steepness of the land surface. It is calculated 
using DEM data (Ajmal et al. 2020). In general, areas with 
higher slopes tend to be associated with faster water flow and 
an increased risk of erosion, while flatter areas may be more 
prone to ponding and slower water flow. However, the effects 
of slope on flooding can vary depending on other factors, 
such as land use and soil type (Brandt 2016).

Various techniques can be used in GIS to incorporate 
slope data into flood risk models. A common method is to 
calculate slopes using the DEM and then to combine this 
information with other relevant data, such as land use and 
soil type. This can help identify areas that are at higher risk 
of flooding because of the slope of the land, as well as other 
factors that may affect water flow. In addition, slope data 
can be used to model the flow of water during flood events. 
For example, hydraulic models can be developed to simulate 
water flow in different scenarios, such as varying levels of 
rainfall and diverse amounts of urbanisation. This informa-
tion can help identify areas that are at risk of flooding and 
inform emergency response planning. In the present study, 
a DEM with a 5 m resolution was used to calculate the slope 
in the study area (Fig. 2l).

2.2.13 � Stream Power Index (SPI)

The SPI is commonly used in flood modelling, particularly 
to predict flash floods in mountainous areas (Turoğlu and 
Dölek 2011; Ngo et al. 2018). The SPI is a measure of the 
potential amount of energy available to move water and 
sediment through a channel, which is calculated based on 
the slope, drainage area, and hydraulic radius of a river or 
stream. In flood modelling, the SPI can be combined with 
other conditioning factors, such as slope, elevation, and land 
cover, to develop accurate flood susceptibility maps. SPI 
is particularly useful in mountainous regions, where rapid 
runoff and steep slopes can lead to flash flooding. By incor-
porating SPI into flood models, researchers can better under-
stand the effects of water flow and sediment transport on the 
potential for flooding in a particular area.

In flood modelling, the SPI has been demonstrated to be 
effective, because it is a useful metric for characterising the 
hydraulic and sediment transport properties of a river or 
stream. By integrating the SPI into flood models, researchers 
and planners can gain a better understanding of the poten-
tial for flooding in a given area and, hence, develop effec-
tive strategies to mitigate flood risk. In the present study, a 
DEM was utilised to calculate the SPI in ArcGIS Pro 3.3 
(Fig. 2m).

2.2.14 � Flood Data

To represent the key factors that contribute to flooding in 
the area under investigation, we utilised the random point 

extension feature in ArcGIS Pro 3.0 to generate both flood 
and nonflood points. Flood points are regions that are prone 
to flooding, whereas nonflood points are normally consid-
ered flood-free. However, these designations can vary over 
time due to variables, such as urbanization, climate change, 
and infrequent catastrophic events, making flood risk a 
dynamic term. The total number of points generated was 
446, of which 311 points represented floods and 135 repre-
sented nonfloods. We randomly divided the datasets into two 
subsets: 70% for training and 30% for validation. Figure 3 
summarises the methodology and data employed to evaluate 
the vulnerability of the study area to floods.

2.3 � Multicollinearity Analysis

To detect multicollinearity, we first examined the correlation 
matrix of the predictor variables to identify high correlation 
coefficients. This initial step allowed us to identify pairs of 
variables that were highly correlated and could potentially 
lead to multicollinearity issues. We further quantified the 
degree of multicollinearity using variance inflation factors 
(VIF) for each predictor variable (Daoud 2017). The VIF 
values provided insights into the extent to which the esti-
mated coefficients were affected by multicollinearity. Vari-
ables with high VIF values were considered to be candidates 
for removal or consolidation to improve the stability of our 
regression model.

2.4 � Machine Learning Methods

Extreme gradient boosting (XGB), Random forest (RF), 
and CatBoost (CB) were selected model and predict 
flood condition factors and assess their efficacy in map-
ping regions prone to flooding. XGBoost was chosen for 
its proven robustness and efficiency in handling structured 
data, which is highly relevant to our hydrological dataset’s 
structured nature (Ma et al. 2021; Jarajapu et al. 2022). RF, 
as an ensemble method, was selected for its versatility in 
handling both classification and regression tasks effectively. 
Importantly, RF is known for its ability to mitigate overfit-
ting, which is a critical concern in hydrological and flood 
modelling (Chen et al. 2020b). CatBoost, a newer addition to 
the gradient boosting family, was incorporated for its advan-
tages in managing categorical features and delivering robust 
performance without requiring extensive hyperparameter 
tuning. To address potential issues related to model gener-
alisation and overfitting, we implemented a set of strategic 
measures. First, we adopted k-fold cross-validation as part 
of our methodology, allowing us to assess the models’ gen-
eralisation performance and estimate how well they would 
perform on unseen data. Furthermore, we conducted thor-
ough hyperparameter tuning, which is a crucial step in strik-
ing the right balance between under- and overfitting. This 
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process involved optimising parameters, such as learning 
rates, tree depths, and regularisation terms. We also empha-
sised feature engineering to ensure that our models were not 
overly complex and did not suffer from high dimensionality. 
Moreover, to comprehensively evaluate model performance 
and make informed choices, we conducted a rigorous model 
comparison in our methodology. This comparison involved 
assessing the performance of XGB, RF, and CB on various 
metrics, including accuracy, precision, recall, and F1-score. 
By undertaking this meticulous analysis, we were able to 
identify the most suitable model for our specific hydrologi-
cal prediction task.

2.4.1 � Extreme Gradient Boosting (XGB)

XGBoost is a machine learning technique widely used to 
address problems in regression, classification, and ranking. 
It is based on the power of ensemble learning, which com-
bines the predictions of multiple weak models to form a 
more accurate and robust model (Mirzaei et al. 2021; Mia 
et al. 2022). A key advantage of XGBoost is its ability to 
prevent overfitting and improve generalisation by enabling 
a regularised model representation. The XGBoost algorithm 
was applied to construct a sequence of decision trees, each of 
which was designed to correct the mistakes of the previous 
tree. In each iteration, the algorithm computes the gradient 
and hessian of the loss function with respect to the current 

model’s predictions. These values are then used to build 
a new tree that predicts the residuals of the prior model’s 
forecast. The new tree is added to the ensemble, and the 
process is repeated until a specified number of trees has been 
reached.

XGBoost is also flexible in handling missing values in 
datasets, because it allocates them to the leaf node in each 
tree that has the largest gain. Additionally, the algorithm 
has several hyperparameters, such as the number of trees, 
learning rate, maximum depth of each tree, and regularisa-
tion parameters, which can be fine-tuned to optimise perfor-
mance. Cross-validation techniques were used to identify the 
best set of hyperparameters for the algorithm (Saravanan 
and Abijith 2022). XGBoost can be used in a wide range 
of applications, including customer churn prediction, fraud 
detection, and stock price forecasting. Because of its high 
accuracy, speed, and scalability, this algorithm is preferred 
by many machine learning practitioners (Alqahtani et al. 
2019).

2.4.2 � Random Forest (RF)

RF is a machine learning algorithm that can be used to 
predict floods. RF is an ensemble learning method that 
combines the predictions of many decision trees to create 
a strong predictive model (Sharma et al. 2019). The algo-
rithm was used to construct multiple decision trees, each of 

Fig. 3   Flowchart illustrating the sequential steps involved in the data analysis process within the study area
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which was built using a random subset of the training data 
and random subset of the predictor variables. Each tree in 
the forest is trained to predict the outcome variable (e.g., 
flood occurrence) based on the predictor variables.

To make a prediction using the RF algorithm, the pre-
dictor variables are fed into each tree in the forest, and the 
outcome variable of each tree is predicted (Saravanan and 
Abijith 2022). The final prediction is then made by aggre-
gating the predictions from all the trees in the forest using a 
simple average for regression problems or a majority vote for 
classification problems. An advantage of the RF algorithm is 
that it can manage high-dimensional datasets with many pre-
dictor variables. It is also less prone to overfitting than some 
other machine learning algorithms, because each tree is con-
structed using a random subset of the data and variables. 
Additionally, RF can help identify the variables that are the 
most important in predicting the outcome variable, which 
can be useful for understanding the factors that contribute 
to flood occurrence (Eini et al. 2020; Mahato et al. 2021). 
In applying RF to predict flooding, historical data on floods 
and related variables (e.g., rainfall, river levels, topography, 
and land use) can be used to train the algorithm. The trained 
RF model can then be used to predict the likelihood of floods 
in new locations based on the predictor variables available. 
The accuracy of the RF model can be evaluated using perfor-
mance metrics, such as the area under the receiver-operating 
characteristic (ROC) curve or mean squared error (MSE).

2.4.3 � CatBoost (CB)

CB is a machine learning algorithm that can be used to 
predict floods. CB is a type of gradient boosting algorithm 
designed to automatically manage categorical variables and 
missing data. Similar to other gradient boosting algorithms, 
CB builds an ensemble of decision trees in which each tree 
is built to correct mistakes in the previous tree.

A key advantage of CB is that it can manage categorical 
variables without the need for one-hot encoding or other 
preprocessing steps. CB is useful for predicting floods in 
which categorical variables, such as land use, soil type, and 
land cover, are important predictors. Additionally, CB uses 
the novel method of ordered boosting, which enables the 
algorithm to use the natural order of categorical variables 
in the training process, thus improving the accuracy of the 
model and reducing the need for feature engineering.

Historical data on floods and related variables can be 
used to train the CB algorithm to predict flooding in an area. 
The algorithm can handle missing data, which can be use-
ful in dealing with incomplete or partially missing datasets 
(Eini et al. 2020). The trained CB model can then be used to 
predict the likelihood of floods occurring in new locations 
based on the available predictor variables. The accuracy of 
the model can be evaluated using performance metrics such 

as the area under the ROC and MSE. The ability of the CB 
algorithm to handle these types of data can simplify preproc-
essing and improve the accuracy of the model (Saravanan 
et al. 2023).

2.5 � Model Performance Assessment

In evaluating flood hazard models during the testing stage, 
it is important to use multiple metrics to ensure that they are 
accurate and reliable. In addition to the area under the curve 
(AUC), two metrics commonly used to model flood hazards 
are positive predictive value (PPV) and negative predictive 
value (NPV) (Milanesi et al. 2015; Wing et al. 2020; Ha 
et al. 2023). The AUC is a measure of how well a model can 
distinguish between positive and negative cases. It provides 
a single overall measure of model performance. The higher 
the AUC, the better the model performs.

PPV was used to measure the proportion of true-positive 
cases among all positive cases predicted by the model. In the 
context of flood hazard modelling, true-positive cases repre-
sent areas that are at risk of flooding and are correctly identi-
fied by the model. The higher the PPV, the more effective 
the model is in identifying areas that are at risk of flooding. 
In contrast, NPV measures the proportion of true-negative 
cases among all negative cases predicted by the model. In 
the context of flood hazard modelling, true-negative cases 
represent those areas that are not at risk of flooding and are 
correctly identified by the model. The higher the NPV, the 
more effective the model is in identifying areas that are not 
at risk of flooding. Using multiple metrics, such as AUC, 
PPV, and NPV, during the testing stage of flood hazard mod-
elling, the model’s overall performance can be comprehen-
sively evaluated. A model with a high AUC, high PPV and 
high NPV is considered the most accurate and reliable for 
use in developing the final flood hazard map. In the present 
study, a two-stage training and testing approach was used to 
evaluate three flood hazard models. Four evaluation crite-
ria were used: sensitivity, specificity, PPV, NPV, and AUC. 
Using multiple metrics, the performance of the models was 
thoroughly assessed, and the most accurate and reliable 
model was selected to create the final flood hazard map.

3 � Results

3.1 � Model Input Variable

To identify independent variables that are appropriate for 
mapping flood-prone areas in As-Suwayq, a multicollinear-
ity study was conducted using two criteria: VIF and tol-
erance (Talukdar et al. 2022b). As shown in Table 2, the 
results revealed that, of the 13 independent variables ana-
lysed, elevation had the highest collinearity, with a VIF of 
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4.32 and a tolerance of 0.23. However, all variables had VIF 
values < 5, indicating the absence of high collinearity. Thus, 
these 13 independent variables were deemed appropriate for 
modelling and mapping flood-prone areas in As-Suwayq.

3.2 � Flood Hazard Mapping

Flood hazard maps were predicted based on three machine 
learning algorithms: XGB, RF, and CB (Fig. 4). The flood 
risk assessment conducted in As-Suwayq yielded several 
key findings regarding the vulnerability of different areas to 
flooding. One of the most significant findings was that many 
areas in the south, central, eastern, and western parts of the 
city were located in high- and very high-risk zones (Fig. 4). 
These areas are susceptible to flooding because of the pres-
ence of water bodies, such as rivers and canals, that overflow 
their banks during heavy rainfall events. The development of 
the eastern and western parts of As-Suwayq further exacer-
bates the risk of flooding. The construction of impermeable 

surfaces, such as roads and buildings, has prevented water 
from being absorbed into the ground, leading to faster and 
more concentrated water flows during heavy rainfall events. 
Poorly designed drainage systems and the absence of flood 
protection infrastructure have also contributed to the vulner-
ability of these areas to flooding.

In addition to the eastern and western parts of As-
Suwayq, the city centre is also at a high risk of flooding. 
Because it is located between the mountains and sea, it is 
particularly vulnerable to flooding during heavy rainfall 
events. The rapid development of the city centre has exac-
erbated the risk of flooding, because impermeable surfaces 
prevent water from being absorbed into the ground. A sig-
nificant portion of the areas south of As-Suwayq are also at 
an extremely high risk of flooding (Fig. 4). This is primarily 
because of their proximity to the mountains, which contrib-
ute to flooding through several mechanisms. Intense rainfall 
events generate large volumes of runoff, and landslides can 
block streams or create new ones. Steep mountain slopes 
can increase the speed and force of water as it flows down-
hill, potentially causing significant damage to property and 
infrastructure. Effective strategies for managing flood risk 
in each area of As-Suwayq could include the construction of 
protective infrastructure, such as floodwalls, levees, and bar-
riers, as well as improved drainage systems that can better 
channel heavy runoff. In addition, land-use management and 
green infrastructure solutions, such as permeable pavements 
and green roofs, can help reduce the number of impermeable 
surfaces and promote natural water retention. Early warning 
systems and public education campaigns can also aid the 
residents of As-Suwayq in preparing for potential flooding 
and in taking appropriate actions to protect themselves and 
their property.

3.3 � Significance of Values

Based on the information provided, the predictive abilities 
of three different machine learning models—XGB, RF, and 

Table 2   The results of multicollinearity analysis for the independent 
variables

Variables VIF Tolerance

Curvature 1.45 0.69
Elevation 4.32 0.23
Drainage density 1.70 0.59
Geology 2.28 0.44
NDVI 1.10 0.91
Annual rainfall 1.64 0.61
Distance from river 1.17 0.85
Distance from road 1.69 0.59
Slope 2.76 0.36
Soil 1.63 0.61
SPI 1.01 0.99
TRI 1.22 0.82
TWI 1.18 0.85

Fig. 4   Flood hazard maps predicted by three machine learning algorithms: a XGB, b RF, and c CB
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CB—were assessed for a target variable using various input 
variables and features. The CB model achieved higher evalu-
ation metrics than the XGB and RF models in most of the 
input variables (Table 3). The scores for the importance of 
features in each input variable were also evaluated in each 
model to determine their relative contributions to predicting 
the target variable. The results showed that terrain features, 
particularly curvature, were consistently the most significant 
predictors of the target variable. Curvature had the highest 
score (i.e., 100) for importance across all three models, sug-
gesting that it played a crucial role in determining the value 
of the target variable (Table 3). Elevation, which is another 
terrain feature, was also shown to be a critical predictor, 
with the second-highest score for the importance of all three 
models. SPI, TWI, and NDVI were identified as additional 
significant features, because they moderated the importance 
scores across all three models (Table 3). These results sug-
gest that the roles of terrain features and vegetation indices 
in predicting the target variable are significant.

Furthermore, the relative importance of each feature 
varied among the three models. Therefore, it was crucial 
that the input features and models be selected to achieve the 
best predictive performance in addressing a given problem. 

Therefore, these results provide insights into the importance 
of terrain features, particularly curvature and elevation, in 
predicting the target variable, regardless of the specific 
machine learning model used.

3.4 � Model Validation

We evaluated three models using two stages: training and 
testing. Five criteria were used in the evaluation: sensitivity, 
specificity, PPV, NPV, and AUC. During the training stage 
of the XGB, the results were as follows: sensitivity = 0.96, 
specificity = 0.97, PPV = 0.96, NPV = 0.97, and AUC = 0.98. 
The results of the XGB model testing stage were as fol-
lows: sensitivity = 0.81, specificity = 0.85, PPV = 0.84, 
NPV = 0.82, and AUC = 0.89. In the RF model, the results of 
the training stage were as follows: sensitivity = 0.96, speci-
ficity = 0.98, PPV = 0.97, NPV = 0.98, and AUC = 0.99. The 
results of the RF model testing stage were as follows: sen-
sitivity = 0.82, specificity = 0.87, PPV = 0.86, NPV = 0.83, 
and AUC = 0.90. In the CB model, the results of the training 
stage were as follows: sensitivity = 0.97, specificity = 0.99, 
PPV = 0.99, NPV = 0.98, and AUC = 0.99. The results of 
the CB testing stage were as follows: sensitivity = 0.83, 
specificity = 0.85, PPV = 0.86, NPV = 0.83, and AUC = 0.91 
(Table 4).

Overall, the XGB and RF models performed better dur-
ing the training stage, while the CB model performed better 
during the testing stage. However, all three models had simi-
lar AUC scores in the testing dataset, which was the most 
important metric for evaluating their performance (Fig. 5). 
Based on these results, we recommend using either CB or 
XGB to predict floods. Both models had high AUC scores 
in the training and testing datasets. RF is a viable option, but 
its performance in the testing dataset was slightly lower than 
in the other two models.

4 � Discussion

Flooding in dry riverbeds and wadis can cause catastrophic 
natural disasters and pose significant challenges to pre-
vention and control measures (El-Haddad et al. 2021; Ali 

Table 3   Importance scores of variables for flood prediction based on 
XGB, RF, and CB algorithms

Variables XGB RF CatBoost

Curvature 100 100 100
Elevation 20.572 36.11 54.59
Slope 13.677 17.30 38.30
SPI 13.417 17.81 39.39
TWI 13.194 17.40 41.67
TRI 10.005 15.19 35.76
NDVI 9.191 11.35 30.34
Annual Rainfall 8.201 9.77 18.91
Drainage density 6.857 8.47 15.66
Distance from road 4.655 5.01 12.86
Distance from river 1.301 0.00 15.59
Soil 1.226 0.88 17.84
Geology 0 2.56 5.34

Table 4   Evaluation results 
of models in the training and 
testing stages

Models Stage Criteria

Sensitivity Specificity PPV NPV AUC​

XGB Train 0.96 0.97 0.96 0.97 0.98
Test 0.81 0.85 0.84 0.82 0.89

RF Train 0.96 0.98 0.97 0.98 0.99
Test 0.82 0.87 0.86 0.83 0.90

CB Train 0.97 0.99 0.99 0.98 0.99
Test 0.83 0.85 0.86 0.83 0.91
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et al. 2022). This study aimed to investigate the effects 
of individual conditioning variables on flood suscep-
tibility mapping and their relevance in accurately map-
ping potential flood-prone areas in Wilayat As-Suwayq, 
Al-Batinah North Governorate. Three machine learning 
models (XGB, RF, and CB) were trained and evaluated to 
study the prediction of floods based on various input vari-
ables. The input variables encompassed a comprehensive 
set of topographical features, including curvature, eleva-
tion, slope, SPI, TWI, TRI, and NDVI, alongside essen-
tial environmental factors such as annual rainfall, drainage 
density, proximity to roads and wadies (dry rivers), soil 
composition, and geological characteristics (Fig. 3). These 
variables hold widespread utility in comprehending and 
modelling flood-prone areas (Kirkby et al. 2002; Komolafe 
et al. 2020; Roy et al. 2020).

Although we are confident in the suitability of the chosen 
models for our research, we acknowledge that alternative 
modelling options exist. Some of these, such as convolu-
tional neural networks (CNNs) or recurrent neural networks 
(RNNs), are particularly well suited for handling time series 
data (Gebrehiwot et al. 2019). However, these deep learning 
models often require more extensive datasets and substantial 
computational resources, which may not have been feasible 
within the scope and constraints of our study.

The results showed that the CB model outperformed the 
other two models (XGB and RF) in predicting floods based 
on the given input variables (see Fig. 4). Identifying the vari-
ables that were the most significant in causing floods in the 
study area was crucial for accurately mapping and predicting 
flood-prone areas. The three most significant variables were 
curvature, elevation, and slope, all of which were related to 
the topography of the area, indicating that terrain plays a 
critical role in flood susceptibility (see Table 2). This find-
ing is consistent with previous research in which topography 
was shown to be among the most important factors in flood 

occurrence (Thomas Steven Savage et al. 2016; Choubin 
et al. 2019).

The finding that curvature was the most critical variable 
across all three models, with an importance value of 100%, 
demonstrates its significance in accurately mapping flood-
prone areas (see Table 2). Curvature represents the degree 
of bending or curvature in the landscape. In river channels, 
curvature can indicate the potential for flow convergence 
or divergence, as well as the degree of channel confine-
ment (Zinger et al. 2013). Thus, curvature can influence the 
likelihood of flooding. Areas with high curvature may be 
more prone to channel blockages or water overflows dur-
ing high-water events. Moreover, curvature can affect the 
speed and direction of water flow, which can contribute 
to the formation of eddies, turbulence and other hydraulic 
phenomena that can exacerbate flood hazards (Parvin et al. 
2022). Therefore, it is important to consider curvature in 
flood risk assessments and management plans, especially 
in areas with high levels of curvature, such as As-Suwayq 
City. Several previous studies have found that curvature was 
the most important feature in flood susceptibility mapping, 
which is consistent with our findings (Yariyan et al. 2020; 
Arabameri et al. 2022).

Although curvature was identified as the most impor-
tant variable in flood susceptibility mapping in the study 
area, elevation was identified as a highly significant fac-
tor. However, the ranking of these variables may have been 
influenced by various factors, including the specific terrain 
and characteristics of the study area and machine learning 
algorithms used in the analysis. Elevation is a key variable 
in flood susceptibility mapping, because it influences the 
direction and speed of water flow (Tehrany et al. 2014; Nta-
jal et al. 2017; Arabameri et al. 2022).

In the study area, which is characterised by dry riverbeds 
and wadis, elevation plays a critical role in the occurrence 
and extent of flooding. Specifically, higher elevations tend 

Fig. 5   Testing stage of flood hazard models based on AUC: a XGB, b RF, and c CB
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to have steeper slopes, which can result in faster water flow 
during floods. This increases the risk of flash floods, which 
cause significant damage to infrastructure and property. 
Additionally, higher elevations may be more prone to rain-
fall-induced landslides, which can exacerbate flooding and 
lead to additional hazards. In contrast, lower elevations may 
be more susceptible to water accumulation, which can also 
increase the risk of flooding (Collins and Znidarcic 2004). 
Low-lying areas can serve as natural basins that collect and 
hold water during floods, resulting in prolonged flooding and 
greater potential damage. Low-lying areas can serve as natu-
ral basins that collect and hold water during floods, resulting 
in prolonged flooding and greater potential damage. In the 
case of As-Suwayq City, the significance of slope in flood 
susceptibility mapping may have been related to the specific 
geomorphological and climatic conditions of the area (Terry 
et al. 2022). The region is characterised by rugged terrain 
with steep slopes and a complex network of wadis, or dry 
riverbeds, which are rapidly filled with water during heavy 
rainfall events. The steep slopes in As-Suwayq increase the 
speed and erosive power of water, leading to channel insta-
bility, sediment transport and potential flooding downstream. 
The wadis in the area can also create narrow and confined 
channels that exacerbate the effects of high-water events, and 
the presence of boulders and debris further obstructs flow 
and increases flood risk. Moreover, As-Suwayq is located 
in a semiarid region that is susceptible to flash flooding, in 
which intense but short-lived rainfall events cause rapid run-
off and the inundation of downstream areas (Choudri et al. 
2013). Because of its steep slopes and semiarid climate, 
As-Suwayq is particularly vulnerable to flooding, which 
underscores the importance of accurate flood susceptibility 
mapping and mitigation measures in this area.

In the RF model evaluated in the present study, annual 
rainfall was identified as the third most important feature 
in predicting the target variable, with an importance score 
of 8.201, which was the third highest following curvature 
and elevation (see Table 2). This finding has indicated that 
rainfall patterns are essential in predicting the target variable 
in As-Suwayq. Because the city is located in a region with 
an arid climate, annual rainfall is a critical determinant of 
various geospatial phenomena, such as vegetation growth, 
soil moisture, and groundwater recharge. Similarly, the find-
ings showed that, in the CatBoost model, distance from the 
river received an importance score of 15.59, marking it as 
the most important feature in predicting the target variable 
over terrain features, such as slope, TWI, and SPI. This find-
ing indicates that proximity to wadis plays a significant role 
in predicting the target variable in As-Suwayq. Wadis, par-
ticularly Wadi Al-Jahawar, was found to significantly influ-
ence the city’s geospatial characteristics, impacting water 
availability (Yateem 2009), erosion patterns, and sedimenta-
tion processes. However, the city’s reliance on these wadis 

is vulnerable, as the Shaheen cyclone caused the collapse 
of 15 falajs, which are crucial for irrigation (Ibrahim et al. 
2022). The interconnectedness of these elements highlights 
the complex relationship between natural phenomena and 
human activities.

In the present study, the identification of slope as a sig-
nificant factor in flood susceptibility mapping of As-Suwayq 
indicates the need for measures that mitigate flood risk in 
the region, such as flood control structures, channel stabi-
lisation, and land-use planning that take into account the 
specific terrain and climatic conditions of the area (Joseph 
et al. 2023). Thus, the region experiences irregular and infre-
quent rainfall because of its arid climate. However, when 
heavy rain does occur, it can overwhelm local drainage 
systems and cause flooding, especially in areas with poor 
drainage infrastructure (Etri et al. 2023). Oman’s proximity 
to the Arabian Sea makes it vulnerable to tropical cyclones, 
which can bring intense rainfall and flooding (Al-Awadhi 
et al. 2019). The interaction between these cyclones and 
local climatic conditions can significantly increase flood 
risks (Terry et al. 2022). The risk of flooding in Oman can 
escalate because of rapid urban development, unregulated 
urban expansion, and alterations in land use, impacting not 
just Wilayat As-Suwayq, but also the entire country (Al-
Kindi et al. 2023). Paved surfaces and inadequate drainage 
systems can lead to surface runoff during heavy rains, exac-
erbating flooding. The quality and capacity of the infrastruc-
ture, including stormwater drainage systems, play a crucial 
role in managing flood risks. Inadequate infrastructure can 
leave the region vulnerable to flooding, especially in urban 
areas. The socio-economic status of the population can also 
impact their resilience to flooding. Lower-income commu-
nities in the city may have limited resources to prepare for 
and recover from flood events, making them more vulner-
able (Mansour et al. 2021). Geological and soil factors play 
a crucial role in influencing flood risks in this region. The 
geological composition of the land can impact the speed and 
direction of water flow. Geological factors, such as the pres-
ence of fault lines, karst landscapes, or underground caves, 
can affect the movement of water and contribute to flood 
hazards. Therefore, impermeable rock or clay soils can lead 
to increased runoff, thus exacerbating flood risks (Collentine 
and Futter 2018).

The present study has revealed the critical factors 
influencing flood events in As-Suwayq, such as curvature, 
elevation, rainfall patterns, slope, NDVI, TWI, TRI, SPI 
soil types, drainage density, distance from drainage, and 
distance from roads. This information can aid in devel-
oping accurate flood forecasting models, implementing 
advanced flood warning systems, and guiding urban plan-
ning and infrastructure development. Recommendations 
for flood-resilient construction, drainage systems, and 
land-use zoning can be proposed based on these factors. 
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Understanding soil and geological factors can guide land 
and water resource management, such as afforestation, soil 
conservation, and river channel maintenance. Preserving 
natural floodplains and wetlands can serve as a natural 
buffer against flooding. Climate adaptation strategies, 
such as building flood defences, elevating infrastructure, 
and enhancing coastal protection, can be recommended. 
The findings can also be used to educate the local popula-
tion about flood risks and preparedness, and policymak-
ers can revise disaster risk reduction and flood manage-
ment policies. However, international collaboration may 
be necessary for effective transboundary flood manage-
ment. Regular monitoring of geological, hydrological, and 
meteorological conditions is crucial. Additionally, ongoing 
monitoring of geological and hydrological conditions is 
necessary to respond to changing risk factors over time.

5 � Conclusions

In the present study, As-Suwayq City’s vulnerability to 
flooding was thoroughly investigated using a wide range of 
scientific factors. These factors included elevation, proxim-
ity to rivers, drainage density, geological composition, soil 
type, annual precipitation, and topography. The study found 
that elevation was a critical factor, emphasising the need 
for floodplain management and zoning regulations in low-
lying areas. Proximity to rivers and drainage density also 
significantly contributed to flood vulnerability, highlighting 
the importance of floodplain management and green infra-
structure. Understanding local geology and soil conditions 
is essential for informed flood risk assessments and land-use 
planning. Annual rainfall levels played a pivotal role, neces-
sitating the adoption of stormwater management systems in 
high-rainfall areas. Furthermore, the present study identified 
variables, such as SPI, TRI, and TWI, as helpful in identify-
ing flash flood–prone regions, calling for improved drainage 
infrastructure, and reduced impervious surfaces. To protect 
As-Suwayq City from floods, a comprehensive and proactive 
approach that considers all these factors in flood risk man-
agement strategies and can enhance community safety and 
resilience is vital. To safeguard Wilayat As-Suwayq against 
floods, a complete and proactive approach must be devised. 
To improve community safety and resilience, such a strat-
egy should combine all specified components into flood risk 
management strategies. More research should be done in 
the future to improve prediction models, investigate cutting-
edge technology for early warning systems, and assess the 
long-term efficacy of existing flood control techniques. This 
commitment to continual study and adaptable techniques 
will be critical to build long-term solutions and ensure the 
community's safety in the face of shifting flood hazards.
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