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Abstract
This paper assesses the skill of the Saudi-King Abdulaziz University coupled ocean–atmosphere Global Climate Model, 
namely Saudi-KAU CGCM, in forecasting the El Niño-Southern Oscillation (ENSO)-related sea surface temperature. The 
model performance is evaluated based on a reforecast of 38 years from 1982 to 2019, with 20 ensemble members of 12-month 
integrations. The analysis is executed on ensemble mean data separately for boreal winter (December to February: DJF), 
spring (March to May: MAM), summer (June to August: JJA), and autumn (September to November: SON) seasons. It is 
found that the Saudi-KAU model mimics the observed climatological pattern and variability of the SST in the tropical Pacific 
region. A cold bias of about 0.5–1.0 °C is noted in the ENSO region during all seasons at 1-month lead times. A statistically 
significant positive correlation coefficient is observed for the predicted SST anomalies in the tropical Pacific Ocean that lasts 
out to 6 months. Across varying times of the year and lead times, the model shows higher skill for autumn and winter target 
seasons than for spring or summer ones. The skill of the Saudi-KAU model in predicting Niño 3.4 index is comparable to 
that of state-of-the-art models available in the Copernicus Climate Change Service (C3S) and North American Multi-Model 
Ensemble (NMME) projects. The ENSO skill demonstrated in this study is potentially useful for regional climate services 
providing early warning for precipitation and temperature variations on sub-seasonal to seasonal time scales.
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1 Introduction

On seasonal time scales, the El Niño-Southern Oscillation 
(ENSO) is a major source of predictive skill for atmospheric 
circulation anomalies (McPhaden et al. 2006; Timmermann 
et al. 2018). Therefore, assessing and improving ENSO pre-
diction is one of the most important challenges in the mod-
eling and seasonal forecasting community (e.g., Barnston 
et al. 2012). There are various dynamical prediction systems 
(e.g., ECMWF; NCEP; Meteo-France and others participat-
ing in NMME and C3S multi-model projects) available in 
the community that provide seasonal forecasts on a regular 
basis (L’Heureux et al. 2020). Most of the models perform 
reasonably well for ENSO prediction with some limitations 
(Risbey et al. 2021; Tippett et al. 2012). Since March 2017, 
Saudi-KAU CGCM is a part of the ENSO plume published 
monthly at the International Research Institute for Climate 
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and Society (IRI).1 Therefore, it is important to analyze and 
document the ENSO prediction skill of this model.

ENSO is a naturally occurring atmosphere/ocean coupled 
phenomenon that originates in the tropical Pacific region. 
The warm (El Niño) and cold (La Niña) phases of ENSO are 
associated with the above and below normal SST anomalies 
in the central and eastern equatorial Pacific regions (Yang 
and DelSole, 2012; Yeh et al. 2018). The seesaw of warm 
and cold phases of ENSO has a large impact on the tempera-
ture and precipitation of different regions around the globe 
(e.g., Mason and Goddard, 2001; Diaz et al. 2001; Ehsan 
et al. 2013, 2020a, 2020a; Abid et al. 2016; Almazroui et al. 
2019; Atif et al. 2019; Ehsan 2020) and modulates the occur-
rence and intensity of heat waves, floods, droughts, severe 
storms and tropical cyclones (Camargo and Sobel, 2005; 
Curtis et al. 2007; Camargo et al. 2007; Allen et al. 2015; 
Sobel et al. 2016). Since ENSO is an important predictor for 
climate extremes and for the regional and global climate, it 
is important that models predict the ENSO reasonably well 
in advance.

There is a long history in the literature of assessing vari-
ous aspects of the skill of ENSO forecasts. Recently, Tippett 
et al. (2019) investigated probabilistic forecasts of ENSO 
phases and strength from the North American Multi-Model 
Ensemble (NMME), complementary to the examination by 
Barnston et al. (2019) of the skill of deterministic ENSO 
forecasts from the NMME. Similarly, Trenary et al. (2018) 
explored the ENSO forecast skill and the optimal lagged 
ensemble size to reduce the forecast error of the Climate 
Forecast System version 2 (CFSv2). Furthermore, Jin et al. 
(2008) analyzed the ENSO prediction skill by using the data-
sets of “APCC-CliPAS” and “DEMETER” projects. Other 
studies highlight particular aspects of ENSO prediction 
skill. For example, the evaluation of ENSO predictability 
up to 2–4 years has been discussed in Chen et al. (2004) 
and Luo et al. (2008). The initialization of ENSO prediction 
prior to March/April in any year leads to a sharp decrease in 
skill, which is referred to as a “spring predictability barrier” 
(Webster and Yang, 1992; Zhu et al. 2015). This spring pre-
dictability barrier typically restricts the seasonal prediction 
based on the coupled atmosphere–ocean model up to 1 year 
lead time (Graham et al. 2011). Larson and Kirtman (2017) 
investigated the dynamical processes that are responsible for 
the growth of certain errors and the sources of error which 
limits the ENSO predictability.

The Saudi-KAU Atmospheric Global Climate Model 
(AGCM) forced with observed SSTs has been used in 
many studies to understand the potential predictability due 
to ENSO and the influence of ENSO on regional climate 

(e.g., Ehsan et al. 2017a, b; Abid et al. 2018; Rahman et al. 
2018; Kamil et al. 2019; Almazroui et al. 2019). However, 
to date, there has been no study available that analyses the 
skill of the Saudi-KAU initialized coupled model (CGCM) 
in forecasting ENSO. The article is organized as follows. 
Section 2 introduces the Saudi-KAU model, prediction, and 
observational datasets and methods. Observed and simulated 
mean and variability analysis of SST, and skill assessment 
are presented in Sect. 3. A summary and conclusions are 
given in Sect. 4.

2  Model, Experiment Design, and Data

2.1  Description of the Saudi‑KAU Coupled GCM

The prediction data used in this study comes from the Saudi-
KAU CGCM. Briefly, the numerical design of Saudi-KAU 
spectral dynamical core can be traced back to Bourke 
(1974). The code solves prognostic equations for vorticity 
and divergence, from which the zonal and meridional com-
ponents of the wind are derived diagnostically. Fast Fourier 
transform and Legendre transforms are performed at each 
time step so that all linear calculations are done in spec-
tral or wave space, while all nonlinear calculations are per-
formed in (physical) grid space. To advance the model state 
forward in time, a semi-implicit time integration scheme 
is adopted. The atmospheric model can be used at several 
horizontal and vertical resolutions, but in this work we use 
spectral T42 (2.8° × 2.8°) horizontal resolution with 20 ver-
tical levels (For details please see Almazroui et al. 2017). 
The atmospheric model is coupled with the modular ocean 
model version 2.2 (MOM2.2), developed at the Geophysi-
cal Fluid Dynamics Laboratory, (GFDL; Pacanowski 1995). 
MOM2.2 uses the Arakawa B-grid to solve the primitive 
equations and the hydrostatic and Boussinesq approxima-
tions. In MOM2.2, the zonal grid spacing is 1.0°, while 
the (1/3)° meridional grid spacing between 8°S and 8°N 
increases gradually to 3.0° between 30° S and 30° N, being 
fixed at 3.0° for the higher latitudes, and it has 32 vertical 
levels. In MOM2.2, a mixed layer model developed by Noh 
and Kim (1999) is implanted to improve the vertical struc-
ture of the upper ocean. The convection, radiation, planetary 
boundary layer (PBL), and Land–Surface Model (LSM) are 
based on the Simplified Arakawa–Schubert Cumulus (SAS) 
scheme by Moorthi and Suarez (1992), Nakajima and Tan-
aka (1986), Holtslag and Boville (1993), and Bonan (1998) 
parametrizations, respectively. The physical schemes used in 
the initial conditions and hindcast simulations are identical.

1 https:// iri. colum bia. edu/ our- exper tise/ clima te/ forec asts/ enso/ curre 
nt/

https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/
https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/
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2.2  Experimental Design

The initialization method described in Fig. 1a is based on 
an atmosphere and ocean nudging performed at every model 
time step. Zonal and meridional winds, specific humidity, 
temperature and surface pressure are nudged in the AGCM, 
while potential temperature and salinity are nudged in the 
OGCM. A typical equation used for nudging is:

Here, “T” is the potential temperature, Cp is the specific 
heat capacity at constant pressure, “ � ” is the density, “Q” 
the heat energy, and “H” the enthalpy; the last term on the 
right-hand side of the above equation is the nudging term. 
The main parameter that controls the nudging strength is 
τ, also known as the relaxation time. This factor is chosen 
based on empirical considerations and differs from variable 
to variable. For example, τ is set to 5 days (432,000 s) for 
the temperature and salinity in case of ocean models, and for 
atmospheric variables, the atmospheric nudging time scale 
“τ” is fixed at 6 h (21,600 s). If τ is small, the solution con-
verges toward the observations quickly, and the dynamics 
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Q
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+
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�
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does not have time to adjust. That is, nudging terms contrib-
ute significantly to prognostic tendencies. In this case, the 
dynamical balance may not be satisfied when the nudging 
terms are removed and the analysis field is used as the initial 
condition (e.g., initial shocks). If τ is large, the model can 
grow too far away from observations before the nudging 
becomes effective.

Initial conditions are available for the period 01 Mar 1980 
to 31 Dec 2019 with 6-hourly output frequency. The lagged 
average forecast (LAF) is used as a perturbation method to 
generate the initial conditions for the ensemble hindcast 
simulations (Hoffman and Kalnay 1983). Importantly, the 
atmospheric initial conditions are perturbed with a 6-h inter-
val while the ocean initial condition remains the same for 
all ensemble members (Fig. 1b). The retrospective ensemble 
forecast dataset from Saudi-KAU CGCM with 20 ensemble 
members starts on the first of each month and extends 12 
months beyond the start day.

2.3  Observational Data

The NCEP Reanalysis-2 (Kanamitsu et al. 2002) for the 
atmospheric nudging is at 2.5° × 2.5° horizontal resolu-
tion and 17 vertical levels (ftp:// ftp. cpc. ncep. noaa. gov/ 

Fig. 1  Schematic diagrams 
showing the (a) nudging initiali-
zation process and (b) lagged 
average forecast (LAF) method

(a) Nudging Process

-2.5 0 -2.5 0 -2.5 0 -2.5 0 Time…

1st Nov. 1980 1st Nov. 1981 1st Nov. 1982 1st Nov. 1983 Time…Ocn. IC

Atm. IC

(b) Lagged Average Forecast Process

ftp://ftp.cpc.ncep.noaa.gov/wd51we/reanalysis-2/6hr/pgb
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wd51we/ reana lysis-2/ 6hr/ pgb) and the GODAS pentad 
data (Behringer and Xue 2004; https:// cfs. ncep. noaa. 
gov/ cfs/ godas/ pentad/) for ocean nudging has 1.0° × 0.3° 
horizontal resolution and 40 vertical levels. For compari-
son, the observed SST used is from the global monthly 
Extended Reconstructed Sea Surface Temperature version 
5 (ERSSTv5: Huang et al. 2017).

2.4  NMME and C3S Models Data

In this study, we analyze the ENSO forecast skill of the 
Saudi-KAU CGCM and compare it to that of operational 
models in the NMME and C3S projects. The NMME pro-
ject contains models from operational forecast centers and 
research institutes in the USA and Canada, while C3S con-
tains models from European countries. The exceptional fea-
ture of the “NMME” is the accessibility of consistent hind-
casts on seasonal to sub-seasonal time scales. For details, 
please see Kirtman et al. (2014). The real-time forecasts are 
generated on the 8th day of every month to use in opera-
tional sub-seasonal to seasonal climate prediction. From 
C3S, we utilized the forecast data from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF), and 
Météo-France. Forecasts from these models are launched 
on the 1st day of the month and released on the 13th day by 
C3S, which causes a slight delay in the forecast availability. 
Recently, Ehsan et al. 2020b explored the ENSO forecast 
skill in ECMWF SEAS5 during the boreal summer season 
of Jul-–Aug (JA) for June, May and April start. They found 
a very high correlation at Lead-1 (CC = 0.90) in the Niño3.4 
region, while skill decreases as the lead time increases. 
For further details about the performance of SEAS5 and 
other models, readers are encouraged to explore Johnson 

et al. (2019) and https:// cds. clima te. coper nicus. eu/. Table 1 
provides an overview of the different models along with 
Saudi-KAU used in this study including native atmospheric 
and oceanic resolutions, number of ensemble members, the 
time period employed in this study, as well as the related 
references.

2.5  Methods

Saudi-KAU model provides the reforecast for all the calen-
dar months. To compare with our model, we selected only 
those models from NMME and C3S which are operational 
and most importantly have reforecast available for all calen-
dar months. In this setup, we have different time periods for 
different models. In this regard, the lead seasonal (December 
to February: DJF, March to May: MAM, June to August: 
JJA, and September to November: SON) or monthly ensem-
ble mean climatologies for each model were constructed 
over the period mentioned in Table 1, while the respective 
anomalies were computed by removing these climatologies 
from the corresponding model climate. The observed sea-
sonal and monthly climatologies and anomalies match those 
for individual models. For all analysis, the ensemble mean is 
utilized for Saudi-KAU as well as NMME and C3S models. 
The Niño 3.4 index (Barnston et al. 1997) is the spatially 
averaged SST anomaly over the equatorial Pacific region 
(5°S–5°N and 170°W–120°W). Two other ENSO indices are 
used together with Niño 3.4, to represent the ENSO diver-
sity (Capotondi et al. 2015), namely Niño 3 (5°S–5°N and 
150°–90°W) and Niño 4 (5°S–5°N and 160°E–150°W). For 
the analysis purpose, we re-gridded the model and observa-
tion datasets to 1.0° × 1.0° resolution by using the bi-linear 
re-gridding technique.

Table 1  Overview of the models used in this study

a CanSIPSv2 is multi-model of CanCM4i and GEM-NEMO

Model Acronym used Ensemble 
members

Native Atm. Res Native Ocn. Res Period References

Saudi-KAU CGCM Saudi-KAU 20 2.8° × 2.8°, L20 1° × 1°, L32 1982–2019 Almazroui et al. (2017)
NCEP-CFSv2 CFSv2 24 0.9° × 0.9°, L64 0.25° × 0.25°, L40 1982–2019 Saha et al. (2014)
COLA-RSMAS-

CCSM4
COLA 10 1.25° × 0.9°, L26 1.1° × 1.1°, L60 1982–2019 Gent et al. (2011)

GFDL-SPEAR GFDL-SPEAR 15 0.5o × 0.5°, L33 1° × 1°, L75 1991–2019 Delworth et al. (2020)
*CanSIPSv2 CanSIPSv2 20 CanCM4i + GEM-

NEMO
CanCM4i + GEM-

NEMO
1982–2019 Lin et al. (2020)

CanCM4i CanCM4i 10 2.8° × 2.8°, L35 1.4o × 0.9°, L40 1982–2019 Merryfield et al. (2013)
GEM-NEMO GEM-NEMO 10 1.4o × 1.4°, L79 1° × 1°, L50 1982–2019 Smith et al. (2018)
ECMWF-SEAS5 ECMWF 25 0.6o × 0.6°, L91 0.5o × 0.5°, L75 1982–2019 Jhonson et al. (2019)
Meteo-France-SYS7 Meteo-France-SYS7 25 0.5o × 0.5°, L91 1o × 1°, L75 1993–2016 Voldoire et al. (2019)

ftp://ftp.cpc.ncep.noaa.gov/wd51we/reanalysis-2/6hr/pgb
https://cfs.ncep.noaa.gov/cfs/godas/pentad/
https://cfs.ncep.noaa.gov/cfs/godas/pentad/
https://cds.climate.copernicus.eu/
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3  Results

First, we compare the mean state and variability of SST in 
the tropical Pacific Ocean, followed by the skill assessment, 
and we finish by comparing the skill of the Saudi-KAU 
CGCM with other models in predicting Niño 3.4 index.

3.1  Mean and Variability of SSTs in Tropical Pacific 
Ocean: Saudi‑KAU vs Observation

The seasonal climatology of the predicted SSTs from the 
Saudi-KAU model is estimated based on the 20-ensemble 
members and compared with the observed SSTs shown in 
Fig. 2. The model predicted seasonal mean SSTs for each 
season (i.e., DJF, MAM, JJA, and SON) is at Lead-1 fore-
casts (i.e., initialization dates in the preceding Novem-
ber, February, May and August respectively), over the 
1982–2019 study period. Figure 2 shows that the zonal 
gradient of the mean SSTs in the tropical Pacific is well 
simulated by the model compared to the observations. The 
Saudi-KAU model captures well the equatorial cold tongue 
along the equator over the eastern Pacific. However, the cold 
tongue extends westward more than in observations, which 
introduces a cold bias in the model. To explain it further, 
supplementary Fig. S1 shows the SST bias (negative in all 
seasons, but varying in magnitude) over the tropical Pacific 
domain during all four seasons. The analysis reveals the time 
when the errors in the SST in the tropical Pacific Ocean are 
greatest among the seasons, and when they are the small-
est as simulated by the Saudi-KAU model. Typically, we 
can see cold bias in all seasons, and the highest cold bias 
(~ 1.0 to 1.5 °C) is observed during SON, while the low-
est (0.5–1.0 °C) cold bias is observed in boreal winter time 
(Fig. S1-a) in the central-eastern equatorial Pacific. Moreo-
ver, a strong positive bias is observed near the coasts of 
South America in the Niño 1 + 2 region during all seasons 
(Fig. S1). This positive bias is also highest during boreal fall 
(SON) (Fig. S1-d).

Figure 3 shows the interannual variability of the predicted 
SSTs as measured by the standard deviation of each seasonal 
pattern in the tropical Pacific region, compared to observa-
tions for DJF, MAM, JJA, and SON at Lead-1. The overall 
structure of the SST variability in observations is well cap-
tured by the Saudi-KAU model in all seasons. Generally, 
tropical Pacific SST anomalies tend to have a maximum 
variance during boreal fall and winter time, and minimum 
values during boreal spring and summer, and the Saudi-
KAU model simulates this feature quite well (Fig. 3), with 
reduced latitudinal extent in all seasons. In observations, 
the highest variability (~ 1.5 to 1.75 °C) is observed during 
SON and DJF, while MAM and JJA have lower standard 
deviation values (~ 0.75 to 1.0 °C) in the central-eastern 

equatorial Pacific. The Saudi-KAU model is able to capture 
the variability of the most variable seasons (DJF and SON) 
with good accuracy relative to observations. However, the 
longitudinal extent of the variability is small compared to 
observations in both seasons (Fig. 3a-b for DJF, and 3 g-h 
for SON). Spring (MAM) and summer (JJA) are the seasons 
with low variability, and the model also has low variability 
during these two seasons with a reduced longitudinal extent 
(Fig. 3c, d for MAM, and 3e-f for JJA).

3.2  Trajectory Maps and Skill Assessment

Figure 4 shows the trajectory maps of the Niño3.4 index, 
comparing the predictions of the Saudi-KAU CGCM with 
the observations. The prediction trajectories are shown as 
lines from each consecutive start month extended to the 
maximum lead, which is 12 months in this case. Generally, 
the prediction anomalies closely match the observations. 
However, this correspondence weakens with increasing lead 
time. Some ENSO events (e.g., 1998, and 2015) were rela-
tively very well predicted even at long leads; on the other 
hand, several other specific events were less well predicted 
(Tippett et al. 2020). These results are largely consistent with 
the results from Barnston et al. (2019), who compared the 
Niño3.4 trajectories in CMC11-CanCM3, NCEP-CFSv2, as 
well as a multi-model ensemble (MME) composed of eight 
individual models. Importantly, the predictions started dur-
ing El Niño years have less spread compared to those in 
normal years.

In Fig. 5, we compare the warm (El Niño: 13 events) 
and cold (La Niña: 13 events) episodes in observations and 
model (at six leads) during the period 1982–2019, for the 
boreal winter/DJF season. Again, Niño 3.4 is used to define 
the warm (SST anomaly in the Niño 3.4 region must be 
greater than or equal to + 0.5 C) and cold (SST anomaly in 
the Niño 3.4 region must be less than or equal to − 0.5 C) 
episodes. 11 out of 13 warm episodes were well predicted by 
the Saudi-KAU model up to 6 months in advance. However, 
all forecasts missed the1987–1988 warm event. While the 
warm event of 1994–95 was missed at longer leads (Lead-5 
and 6), the model was able to capture this event at shorter 
lead times, but with a lower amplitude than in observations. 
Turning our attention to cold episodes, the model is some-
what able to capture 12 out of 13 events quite well, with the 
exception of the last (2000-01) of the triplet La Niña event 
(1999–2001). In addition, the model amplitude of Niño 3.4 
during cold episodes is typically higher than in observations.

Figure 6 shows the anomaly correlation coefficients 
(ACC) of the three ENSO indices for four seasons and 
for lead time up to 6 months. Among the three ENSO 
indices, the Niño 3.4 shows a comparatively higher predic-
tion skill for all seasons. By season, the lowest correlation 
skill is observed during boreal summer. For instance, the 
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correlation coefficient of the Niño 3 index during JJA at 
Lead-1 is about 0.82, and at a 6-month lead time, its value 
reduces to 0.35. These findings are in line with the Kug 
et al. (2005) results that show reasonably good forecast 
skill up to 6 months lead time in an intermediate El Niño 
prediction model.

Next, the anomaly correlation skill of the model-pre-
dicted SSTs in the tropical Pacific region is estimated 
for different seasons (i.e., DJF, MAM, JJA and SON) at 
Lead-1 as shown in Fig. 7. Prediction skill for other lead 
times is depicted in the supplementary figures S2 to S6. 
The Saudi-KAU model highest values (greater than 0.9) 

Fig. 2  Climatology of SST in the tropical Pacific Ocean in observation (Left Column) and Saudi-KAU model forecast (Right Column) at Lead-1 
for DJF (a, b), MAM (c, d), JJA (e, f), and SON (g, h) seasons. The period of analysis is 1982 to 2019. The unit of SST climatology is oC
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occur in DJF (Fig. 7a), similar to Kim et al. (2012) find-
ings that the ENSO prediction skill is higher during the 
winter. In the case of MAM (Fig. 7b) and JJA (Fig. 7c), 
the highest values are located slightly off the equator 
(north-central and southwestern); however, in case of SON 
(Fig. 7d) the highest contour values are located right at the 

central-eastern equatorial Pacific. Furthermore, we see a 
sharp drop in the correlation values during JJA and MAM 
at longer lead times as compared to DJF and SON (sup-
plementary Figs. 2, 4, 5, 6). The lowest skill values occur 
during JJA at longer leads and MAM for February initial 
conditions, which may be due to the spring predictability 

Fig. 3  Standard deviation of SST in the tropical Pacific Ocean in 
observation (Left Column) and Saudi-KAU model forecast (Right 
Column) at Lead-1 for DJF (a, b), MAM (c, d), JJA (e, f), and SON 

(g, h) seasons. The period of analysis is 1982 to 2019. The unit of 
SST standard deviation is oC
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barrier, as this remains a large challenge that limits the 
models’ skill in forecasting ENSO (e.g., Chen et al. 2020; 
Zhang et al. 2021). Nonetheless, the correlation analysis 
indicates that the Saudi-KAU CGCM skill remains statisti-
cally significant at approximately the 6-month lead time, 
and therefore, it can be potentially useful for regional cli-
mate services providing early warning of seasonal climate 
forecasts for precipitation and temperature that depend on 

the predictions of the ENSO (e.g., Timmermann et al. 
2018).

3.3  Saudi‑KAU CGCM vs NMME and C3S Models

In this section, we compute the temporal anomaly correla-
tion coefficients between the ensemble mean of the models’ 
forecasts and observations for each target calendar month 

Fig. 4  Observed (black) and 
forecasted (Saudi-KAU model: 
blue) SST anomalies spatially 
averaged over Niño3.4 region 
during the period (1982–
2019). A forecast trajectory 
(12 month’s forecast) is shown 
for each calendar month. The 
unit of SST anomalies is oC
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and lead separately for Saudi-KAU CGCM and other eight 
models from the NMME and C3S projects. Figure 8 shows 
the temporal anomaly correlation between the ensemble 
mean of the models’ forecast and observations as a function 
of target month and lead. The correlation tables for differ-
ent models can be used to compare the predictive poten-
tial in each model. CanSIPSv2, CanCM4i, GEM-NEMO, 
Meteo-France-Sys7, and ECMWF are among those models 
that show the highest skill (greater than 0.90), which can 
persist for several months. It is important to mention here 
that CanSIPSv2 that is basically the multi-model mean of 
CanCM4i and GEM-NEMO (Lin et al. 2020) shows the 
highest skill as compared to individual models, which pro-
vides further evidence that a multi-model approach is bet-
ter than using the single model (e.g., Palmer et al. 2004; 
Hagedorn et al. 2005; DelSole and Tippett, 2014; Delsole 
et al. 2014). Saudi-KAU, NCEP-CFSv2, COLA-RSMAS-
CCSM4, and GFDL-SPEAR, also show high skill for short 
leads. However, this skill diminishes quickly as the lead time 
increases. Nevertheless, the Saudi-KAU CGCM predictions 

are at approximately the same skill level as the other state-
of-the-art models.

4  Summary and Conclusions

The Saudi-KAU CGCM skillfully predicts ENSO-related 
SST anomalies. The hindcast from the Saudi-KAU CGCM 
is based on 20 ensemble members for the period 1982–2019, 
while the other models have different hindcast periods. The 
verification measures used here for the skill assessment are 
the mean, variability, and the temporal anomaly correlation 
coefficients of the Saudi-KAU CGCM. Overall, the Saudi-
KAU CGCM is able to capture the observed SST climato-
logical pattern and interannual variability (measured as the 
standard deviation) over the tropical Pacific region during 
four standard seasons. The Saudi-KAU CGCM shows a cold 
bias (0.5–1 °C) in the equatorial Pacific and a warm bias 
near the coast of South America in almost all seasons (SON 
shows highest bias). Trajectory maps of the Nino3.4 index 

Fig. 5  Observed and pre-
dicted SST anomalies spatially 
averaged over Niño3.4 region 
during a the warm and b the 
cold episodes during the boreal 
winter season (DJF) at six dif-
ferent lead times. The unit of 
SST anomalies is oC
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Fig. 6  Anomaly correlation 
coefficients (ACC) averaged 
over the three ENSO ((a) Niño 
3, (b) Niño 3.4,(c) Niño 4) 
regions for four target seasons 
and six starts. On average, ACC 
is usually above significant level 
for three ENSO regions (except 
for Niño 3 region at lead 6 and 
target season JJA) and four 
target seasons, representing the 
positive skill of the Saudi-KAU 
seasonal forecasting system
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from the Saudi-KAU CGCM generally follow the observed 
pattern, particularly during the strong ENSO events. A 
statistically significant positive prediction skill of the SST 
anomalies in the tropical Pacific Ocean during all seasons is 
noted up to six months in advance of the forecasts. Compara-
tively, the skill is lower in spring and summer than fall and 
winter varying by year and lead times. A multi-model com-
parison of Niño3.4 index skill shows that the Saudi-KAU 
predictions are in line with the other state-of-the-art models.

The high skill demonstrated by the Saudi-KAU CGCM 
forecasts suggests that useful operational forecasts of the 
ENSO are feasible. However, there are a number of caveats 
which are of concern as compared to other state-of-the-art 
ENSO forecasting models, namely:

(1) Low horizontal and vertical resolution of the Saudi-
KAU AGCM.

(2) Obsolete Oceanic component (MOM2.2).
(3) Low prediction skill during boreal summer at longer 

leads.

The current Saudi-KAU CGCM can be upgraded to a ver-
sion with higher horizontal and vertical resolutions in addi-
tion to the new physical schemes for convection, microphys-
ics, and land surface processes that have been introduced 
during recent years (e.g., Almazroui et al. 2017). Future 
plans also include an upgrade to a more up-to-date oceanic 
component, because the current ocean model MOM2.2 is 
quite old and does not contain recent improvements in the 
representation of oceanic physical processes. Finally, the 
cold bias in the central-eastern equatorial Pacific, and warm 
bias over some localized areas, is another area of focus for 
future improvements of the Saudi-KAU CGCM. Due to the 

Fig. 7  Saudi-KAU model forecast skill at Lead-1 for Sea surface tem-
perature (SST) over the tropical Pacific Ocean measured as the tem-
poral anomaly correlation between the observed and ensemble mean 

(a–d) DJF, MAM, JJA, and SON SST anomalies respectively, during 
1982–2019. Here, the color bar is adjusted to minimum value 0.3, 
which is the 95% confidence level threshold
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disproportionate impacts of ENSO on the climate in differ-
ent parts of the world, progress in these topics will prob-
ably result in better ENSO forecasts at longer lead times 
that may lead to better forecasts of regional seasonal rainfall 

and temperature anomalies (e.g., Ehsan et al. 2021; Acharya 
et al. 2021) which may have direct positive societal impacts.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s41748- 022- 00311-3.

Fig. 8  Anomaly correlation of ensemble mean forecast and observed Niño3.4 SST index as a function of target month and lead time up to 
6 months

https://doi.org/10.1007/s41748-022-00311-3
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