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Abstract
Artificial intelligence (AI) is gaining acceptance for modern control systems in various applications in daily life including 
the Chemical process industry. Above all, application of AI is increasing in the field of membrane-based treatment where it 
shows great potential until now. Membrane separations are generally recognized as energy-efficient processes. In particular, 
membrane desalination, forward osmosis, energy generation, and biomass treatment have shown substantial potential in 
modern industries, such as wastewater treatment, pharmaceuticals, petrochemicals, and natural products. All these industries 
consume more than 20% of total energy consumption in the world. Moreover, the laboratory research outcomes illuminate 
the way to better membrane design and development, including advanced process control and optimization. The membrane 
processes with existing technologies for a sustainable environment could be integrated with the AI model. This review sum-
marizes several membrane-based water treatment designs and plant performances where artificial intelligence is being used 
to minimize waste generation and lead to cleaner production.
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1  Introduction

The advent of the use of Artificial Intelligence (AI) and 
other intelligent approaches such as machine learning (ML) 
in membrane applications led to many improvements in 
environmental engineering problems, especially regarding 
the membrane fouling in the whole processes. As reported 
in Fig. 1, it has been discovered that modern methods such 
as Artificial Neural Networks (ANNs), Fuzzy Logic (FL), 
genetic programming, and model trees are the modeling 
techniques employed with success (Bagheri et al. 2019) in 
several parts of the world.

Continuative research in the fields of AI is continuously 
leading to the emersion of new engineering innovations and 

possibilities, with features like high-efficiency standards and 
a “greener” approach, which are two of the leading contem-
porary requests to any kind of newborn technologies. With 
the same importance, looking back to established technolo-
gies and appliances, this AI-based approach is a promising, 
yet concrete, methodology to renew and optimize existing 
membrane-based plants, like desalination or water treatment 
units, for more efficient resources and energy management. 
On the other hand, although Bayes Model Averaging (BMA) 
has no direct link with any membrane-based processes, it 
provides a Bayesian probabilistic model to understand the 
propagation of the uncertainty from various sources of the 
input data. Unlike the PCA which performs a base change on 
the data, most of the time using only the main components 
and sometimes ignoring the rest.

In this article, a membrane fouling control with the aid 
of a specific AI tool regarding a water treatment industrial 
plant application is explained and discussed (Fig. 2 shows an 
increasing trend of number of publications regarding it in the 
recent years); then, a new prespective of a suistainable and 
cleaner production of energy is also discussed.
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2 � AI in Membrane Applications

Fouling or concentration polarization is preventing the 
membrane to perform at its best efficiency. It can happen 
in all membrane-based processes. The main applications 
of AI in the membrane world essentially regard fouling 
prevention. For predicting different fouling parameters—
such as permeate f lux and Transmembrane Pressure 

(TMP)—different techniques of AI and ML have been 
used to improve the accuracy compared to mechanistic 
models and solve all types of calibration problems. In 
particular, the intelligent models ANNs were the first to 
predict and more precisely control the membrane foul-
ing, followed by FL which may use to model membrane 
fouling and develop automated systems to control and 
manage it automated way. Simultaneously, GP has been 
used for the prediction and simulation (Zhao et al. 2020) 

Fig. 1   A classification table of AI and ML techniques useful in the water systems

Fig. 2   Publications regarding 
AI applications to wastewater 
treatment (Zhao et al. 2020)
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(Arefi-Oskoui et al. 2017) (Badrnezhad and Mirza 2014) 
(Salahi et al. 2010) (Soleimani et al. 2013) (Yusuf et al. 
2017) (Lecun et al. 2015) (Chew et al. 2017) (Gao et al. 
2012) (Huyskens et al. 2011) (Ruder 2016) (Kamali et al. 
2020) (Netzband and Rohbrecht-Buck 1992) (Zandi et al. 
2019) (Pan et al. 2008) (Sarkar et al. 2021) (Pan et al. 
2009) of a wastewater process design. Alternatively, 
Model Trees (MTs) are hierarchical structures with nodes 
and branches and can be applied too in different foul-
ing prevention mechanisms. The internal nodes contain 
tests on the input variables; MT identifies a set of subdo-
mains characterized by regression functions. Unlike other 
models, it could partly explain the hidden relationships 
between different parametric data of complex water treat-
ment systems.

A typical approach to optimize the fouling is rep-
resented by the Genetic Algorithms (GA) and Particle 
Swarm Optimization (PSO) with intelligent data pre-pro-
cessing capabilities to mitigate fouling and reduce the 
cost of the cleaning mechanism. Badrnezhad and Mirza 
(2014) used GA techniques for optimizing different oper-
ating parameters such as TMP, pH, feed temperature, and 
filtration time to control fouling in ultrafiltration of oily 
wastewater, on the other hand, Salahi et al. (2010) used 
GA to find the minimum and maximum values of flux. 
Soleimani et al. (2013) proposed a GA-based multi-objec-
tive optimization for the filtration of oil from industrial 
wastewater for an efficient predictive system. In a very 
interesting work, Yusuf et al. (2017) introduced a model-
based controller for Submerged Membrane Bio-Reactor 
(SMBR) filtration process, where the PSO algorithm was 
used as a real optimizer in updating the model-based con-
troller cost function. Drews et al. (2007) developed an 
optimization framework that can automatically recognize 
the current dominant filtration mechanisms.

Moreover, some more hybrid intelligent models exploit 
intelligent modeling methods and different optimization 
techniques. For example, Chew et al. (2017) (Coppola 
et al. 2021) developed a hybrid model composed of a 
physical model and a Multilayer Perceptron Artificial 
Neural Network (MLPANN) for predicting the fouling 
parameters into an ultrafiltration water treatment.

The clustering approach is an ML technique used in the 
membrane filtration processes to analyze the effects of 
the temperature impacts on the properties of sludge, the 
structure of the cake layer, and the fouling in an anaero-
bic SMBR (Alwatban et al. 2019) (Osman et al. 2019). 
Moreover, clustering techniques were used to grouping 
data in different membrane fouling problems. In addition, 
the image recognition technology was used to control the 
membrane fouling, particularly in the control of the opti-
mal filtration conditions (Huyskens et al. 2011).

2.1 � Water Treatment Plant Monitoring

2.1.1 � Neural Networks

Over the last years, significant progresses have been made 
in several Deep Learning (DL) frameworks such as Deep 
Dense Neural Network (DDNN), Convolutional Neural 
Networks (CNN) and Recurrent Neural Networks (RNN). 
A DNN model consists of an input layer, multiple hidden 
layers, and an output layer. Each layer is composed of a set 
of artificial neurons (sometimes called nodes), which are 
connected with the neurons of the succeeding layer. Figure 3 
shows a network with two hidden layers where both the first 
and the second hidden layer have four neurons.

More generally, Deep Learning (DL) is a subset of 
Machine Learning (ML) which has revolutionized many 
tasks ranging from computer vision, speak recognition, text 
processing, molecular and drug analysis. Basically, DL is 
a representation learning method composed of several rep-
resentation layers, obtained by composing simple but non-
linear modules (Lecun et al. 2015). Using neural networks as 
the main architecture, DL is able to learn complex functions 
from new data instead of using handcrafted or more specula-
tive functions, based on domain experts. Even though neural 
networks are not a recent paradigm, they became more suc-
cessful in the past decade due to the availability of big train-
ing data and of inexpensive, parallel hardware (e.g., GPU).

Figure 4 illustrates the mathematical model of an artificial 
neuron. Each of these neurons aggregates the connections 
coming from the neurons in the previous layers and applies 
an activation function whose selection depends on the kind 
of modeling data and scale of values (e.g., sigmoid function 
for binary classification problems). The following equation 
describes the work of a single neuron, referring to Fig. 4 for 
the meaning of each symbol:

(1)y = �

(

n
∑

i=1

xi�i + b

)

Fig. 3   A neural network with 2 hidden layers
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The strength of neuron connection is determined by 
the learnable weights w; the higher the weight, the higher 
the importance of information to be propagated. A Deep 
Neural Network (DNN) exploits innovative techniques 
(Momentum, Nesterov Accelerated Gradient AdaGrad, 
RMSProp, Adam) (Ruder 2016) to overcome the problems 
that characterize the gradient descent and backpropaga-
tion algorithms (explosion/vanishing gradient, overfitting, 
very long training times). DNN layers are independent of 
one another, that is, a specific layer can have an arbitrary 
number of neurons (generally, this is defined as a hyper-
parameter of the network). A DNN with multiple hidden 
layers can have the earlier layers learn about simple low-
level features and have the later deeper layers detect more 
complex features.

Convolutional Neural Networks, introduced in 1998, is 
inspired by the behavior of the human visual cortex. Just like 
ordinary Neural Networks, Convolutional Neural Networks 
(CNN) are made up of neurons with learnable weights and 
biases. However, they deal with the problem that the number 
of training parameters of a dense neural network can grow 
very fast as the network becomes bigger. For example, if 
you have a grayscale image of size 100 × 100 every neuron 
in a first hidden layer of a regular neural network would 
have 100 × 100 = 10,000 parameters. For facing this problem 
CNN’s introduces convolutional layers that use the convo-
lution operation (from signal theory) by applying a filter 
(or also called kernel) in different positions of the input to 
extract local features stored in the features map. Each of the 
neurons of a convolutional layer does not receive all inputs 
(e.g., all the pixels of the image) as in dense networks, but 
only those belonging to the area determined by the filter.

Another typical layer of CNNs is the pooling layer that 
can be considered as a subsampling layer for reducing the 
size of the input layer. Generally, after stacking convolu-
tional and pooling layers, one or more fully connected layers 
are added.

Neural networks that allow just “forward” connections, or 
in which information flows sequentially from layer to layer 
towards the output, are called feedforward neural networks.

Other types of neural networks with feedback connections 
are called recurrent neural networks (RNNs). They are spe-
cialized in analyzing temporal sequences of data. The output 
that a recurrent network returns depends on both the current 
input and the previously processed inputs, which allows the 
creation of internal memory for the network.

If the sequences to be processed are of considerable 
length, the state cannot remember the oldest inputs. This 
phenomenon could represent a problem, for example, in the 
analysis of a sentence where the first words can have sig-
nificant importance in determining its meaning. Long short-
term memory networks (LSTMs) and Gated Recurrent Unit 
(GRU) are special kinds of RNN designed to avoid the long-
term dependency problem.

In general, the challenges of wastewater treatment are 
many, e.g.: the correct balances of microbes into the acti-
vated sludge plant treatments, the optimization of the treat-
ment, the daily or weekly or seasonally variation of the 
influent hydraulic and organic loads, to remain within the 
discharge limits, the reduction of the environmental dam-
age and the pollution incidents. In this context, the smart 
network monitoring of the plant results in a real and actual 
challenge to improve all aspects of the plant. A topic like 
AI application for Membrane Bio-Reactor (MBR)-based 
technologies is increasing drastically and more and more 
research are going on around us (Kamali et al. 2020). The 
first report about it was by Netzband and Rohbrecht-Buck 
(1992), and it talked about an expert system for effluent 
discharged treatment from degraded material disposal. 
Recently, Zandi et al. (2019) suggested that MBRs for waste-
water treatment get popular since 1990s. Kamali et al. (2020) 
analyzed different lab-scale and pilot-scale Membrane Bio-
Reactor (MBR) applications and the integration with differ-
ent AI models able to predict the performance of the MBR 
technologies.

The first decade of the twenty-first century has seen the 
first approaches of DL methods in the chemical domain (Pan 
et al. 2008) (Pan et al. 2009), also as regards the water treat-
ment plant monitoring (Singh and Gupta 2012). In the last 
few years, the growing interest to understand the complexity 
of chemical data through DL models and its ability to dis-
cover connections between input data and output data led to 
several other fascinating applications.

As a practical example, Jha et al. (2018) presented a deep 
neural network that captures the physical and chemical inter-
actions and similarities between different elements allowing 
us to predict the properties of the material.

It is a dense DNN on which the authors have performed 
in-depth research on the architecture and hyper-parameters 
(see Fig. 5) noting a decrease in the error as the depth of the 
neural network increases.

The research was performed starting from the two-layer 
architecture and increasing the depth incrementally to 

Fig. 4   Mathematical model of an artificial neuron
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improve the learning capabilities of the model up to a satu-
ration point. Specifically, although the research continued up 
to 24 layers, the authors refer to “ElemNet” as the best pre-
dictive model, therefore the one with the architecture with 
17 layers and with the hyperparameter tuning (performed 
with particular attention to the value of the learning rate and 
dropout). This method has demonstrated that even with only 
a few thousand training samples, using a DL approach we 
can bypass manual feature engineering.

2.1.2 � Water Desalination

The availability of conventional water sources is decreasing 
more and more every day (Rodrigues et al. 2018) (Dikshit 
et al. 2020). Thus, the new technologies for the water supply 
and its ever-increasing efficiency play a fundamental role 
in this world emergency analyzed through a computational 
method how the graphene nanometer-scale pores can fil-
ter the NaCl into the water, modeling a series of graphene 
nanopores with different functionalization and diameters 
(Cohen-Tanugi 2012). The pore sizes varied within the range 
of 1.5–55 Å2. The study was made on pores passivated with 
hydroxyl groups—commonly hydrophilic to examine the 
effect of the pores’ chemistry on desalination dynamics. This 
research established that desalination performance is more 
sensitive to pore chemistry and size. Hydrogenated pores’ 
hydrophobic character reduces the water flow by imposing 
additional order to the system. However, the limited-hydro-
gen bond allows a higher salt rejection compared to the pores 
hydroxylated.

Alwatban et al. (2019) conducted a computational fluid 
dynamic simulation to study the effects of the membrane 
properties and the system performance’s operational param-
eters: the membrane porosity, the membrane thickness, the 
pore size feed flow rate, and the feed temperature. The net 
spacers were used to mitigate the polarization, and a laminar 
model was used to characterize the weather, the velocity, and 

the concentration range in the empty channels. The simula-
tion results underline that the pore size and the porosity are 
increased, while the intensity of temperature, the permea-
tion flux, and the concentration of polarization increase as 
the thickness decreases. The spacers’ presence increases 
the membrane flux’s performance more significantly than 
50% and attenuates polarization by 30%. On the other hand, 
Osman et al. (2019) compared the experimental results about 
the treatment for the water and salt recovery through Reverse 
Osmosis (RO) from the wastewater of the petrochemical 
industries in South Africa, and the simulated results of a 
transition predictive model which solved through a math-
ematical algorithm developed into the MATLAB code. The 
model was able to predict well the water flux values and 
thus, it could be used as a potential process design tool.

Esfandiari et al. (2019) studied a 2D computational fluid 
dynamic modeling of water desalination with a low-energy 
continuous Direct Contact Membrane Distillation (DCMD) 
system. This model contains all phenomena equations 
(momentum, energy, and mass transfer) and could predict 
the freshwater amount produced by the considered system. 
The phenomena equations were written in three domains, 
that are membrane, cold and hot channels. MATLAB soft-
ware was used to discretize the domains with the finite vol-
ume methods and to solve the system. Moreover, the impact 
of different parameters was also studied and so, temperature 
and velocity of the input currents influence the performance 
of the system.

Essentially, all these applications listed above are about 
the use of Computational Fluid Dynamic (CFD), without the 
use of an AI tool, even if some studies deepened this novel 
aspect into the membrane applications. Yusuf et al. (2020) 
described some emerging trends in sustainable membrane 
water treatment, and also some benefits from the use of the 
Molecular Dynamic Simulation (MDS) and AI tools, which 
have been employed in Decision Support Systems (DSS), 
ANNs, FL, and GA. MDS and AI tools manage to solve 

Fig. 5   Performance of DL 
models of different depths in the 
model architecture. The refer-
ence model is ElemNet: a the 
mean absolute error (MAE) on 
the test dataset. b The MFA for 
different depths of DL model 
architectures. (Jha et al. 2018)
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real problems more than deterministic solutions. Thus, both 
approaches should be developed into 3D, but at this moment 
this research is limited. The 3D approach could improve 
the performance indicators, as the membrane selectivity. In 
addition, in membrane-based desalination such as into all 
water treatment processes—the AI application is at a pri-
mary stage, but in the future could be improved to manage 
the water resource. A DSS is essentially a framework that 
helps the user to find the best solutions through the analysis 
of a large amount of data coming from the water plant.

ANN results are the most used AI tool, particularly for 
pollutant removal and the prevention of membranes and also 
for membrane performance. Regarding desalination pro-
cesses, ANN was used to predict and optimize the sodium 
chloride removal and also for the disinfection of by-products 
through chlorination or membrane distillation or Reverse 
Osmosis (RO). In "Wastewater and Sewage Treatments", an 
example of this application will be treated in detail.

2.1.3 � Wastewater and Sewage Treatments

The wastewater treatment system is a highly non-linear, 
uncertain, and time-varying industrial process control 
system. In recent years, the number of published articles 
attempting to apply AI approaches to the wastewater treat-
ment problem has increased significantly (Zhao et al. 2020).

Chen et al. (2003) used a neural network model to assess 
the reuse potential of wastewater. The neural network was 
specifically designed to provide accurate predictions of the 
nitrogen content in treated tributaries to be used for ground-
water recharge.

As shown in Fig. 6, the authors used a partial recurrent 
neural network (PRNN) with an input layer of 14 normalized 
parameters, and with a single hidden layer, demonstrating 

that a simple well-trained neural network model can be use-
ful in evaluating wastewater remediation practices.

A more recent approach for wastewater treatment plants 
(WWTPs) has been proposed by Mamandipoor et al. Specifi-
cally, it is a deep LSTM neural network designed to process 
time data from the various sensors used to control energy 
consumption and the quality of the discharge (Mamandipoor 
et al. 2020) (Fig. 7).

The authors compared their method (LSTM) with tradi-
tional Machine Learning (SVM / PCA) and statistical analy-
sis (Variance) methods, demonstrating the best performance 
of LSTM compared to the other methods considered, under 
its ability to model complex dependencies between time-
varying data (in this case coming from sensors).

Wang et al. propose the management of energy and mate-
rial savings through the use of Deep Learning techniques for 
WWTP. Specifically, a hybrid neural network model called 
PCA-CNN-LSTM (principal component analysis–convolu-
tional neural network–long-short-term memory neural net-
work) was used, trained with historical data from the WWTP 
domain, and used to predict the parameters of the effluents 
(Fig. 8). Besides, the genetic algorithm (GA) was also intro-
duced to optimize energy and material consumption with 
multi-target effluent parameters. The authors estimated that 
the model reduces the total cost of energy and materials by 
10–15% (Wang et al. 2020).

Tryland et al. (2015) described the online monitoring of 
Escherichia coli in raw water into the Oset Drinking Water 
Treatment Plant in Oslo (Norway) through the installation 
of a wholly automized Colifast ALARM™. Unlike the 
weekly or monthly traditional monitoring of the hygienic 
quality on the raw water sample used for drinking water 
production, this monitoring system was for daily monitor-
ing, and it was fully automated. It consisted of pumps and 

Fig. 6   Partial recurrent neural 
network model as proposed by 
Chen et al. (2003)
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Fig. 7   Architecture of the method proposed by Mamandipoor et al. (2020)

Fig. 8   Hybrid neural network model proposed by Wang et al. (2020)
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valves for accurate management of the liquid, an incubator/
reaction cell connected to a detector, and control/interfac-
ing units. This monitoring system supported the hypothesis 
that warmer winters with shorter periods with ice cover on 
the lakes can be a consequence of climate changes and can 
reduce the sanitary barrier efficiency in deep lakes used as 
sources of drinking water. The daily fully automated moni-
toring could be partly offset by lower costs for manual sam-
pling and water analysis.

Thus, a fully automated monitoring of a wastewater plant 
joined with AI tools could improve both quality of the water 
and the operating costs. The growing need for high-quality 
drinking and process water allowed the development of the 
automated control of water treatment plants; moreover, the 
growing public awareness of possible contamination also 
makes monitoring the sewage plant essential. Now, the mem-
brane filtration processes considered safe against organic, 
inorganic, and microbial contamination, but to guarantee the 
high quality of the final water and to boost the confidence in 
the end-user, intensive and continuative monitoring of the 
water could be a useful instrument to control the quality of 
the water and also of the membrane used into the treatments.

Figure 9 shows typical monitoring on the sewage treat-
ment plant, which consists of non-continuous measurements. 
To improve the quality of the entire plant, the monitoring 
should be done continuously and online.

About this, Buysschaert et al. (2018) developed cytomet-
ric monitoring in the online flow of the microbial quality of 
the water in a full-scale water treatment plant, demonstrat-
ing that it is possible to observe the quality change of the 
water with this monitoring, unlike the parameter commonly 
used. Moreover, they showed that the process conditions 
influenced the flow cytometric cell counts in the ultrafiltra-
tion (UF) states.

Deena and Sureshkumar (2014) showed an AI approach 
for MBR in sewage water treatment. MBR use has a large 
amount of uncertainty, for example, regarding the inflow 
conditions and the limited measurement information. Thus, 
the development of the controller results is fundamental to 
structure the uncertainty and attenuate the damages. The 
framework for the MBR control was developed, such as a 
model-based predictive controller.

The water quality is always different due to the water 
provenience and the suffered treatments. Therefore, to obtain 
clean water is necessary different energy requirements. Of 
consequence, these systems are a combination of several 
unitary processes, which have been designed to manage 
each of these qualities. Thus, there are some cases where 
the chemical and physical phenomena are insufficient to 
implement the proper operation and control, increasing the 
expectation in the AI use. For example, Hitachi developed 
its technology—called H technology—which provides func-
tions that result and visually represents the correlations from 
a large amount of numerical data, and actually, it may be 
used for many different applications and fields (e.g., cancer 
screening, food waste, shipping, fight cyber bullying into 
the Japanese schools, financial) (Moriwaki et al. 2016) (Ltd. 
2015). In this case for the water, wastewater, and sewage 
treatment, this smart system can extract the most useful indi-
ces for the objective variables and then use them to create 
specific measures (Embutsu et al. 2016).

This technology was born from the need to control the 
fouling and to prevent the clogging of the RO membranes 
used into Intelligent Water System by Hitachi, given by the 
combination of a classic seawater desalination system and 
a sewage water reuse process. In the transition to intelli-
gent technology, the company intended the entire water sys-
tem as the water environment which is characterized by an 

Fig. 9   Monitoring at a typical sewage treatment plant (Richard 2020)
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information flow based on tracing of different water features, 
e.g.: water volume, water quality, and water pressure.

Thus, the use of Information and Communication tech-
nologies led to continuous monitoring and prevention of 
membrane clogging. In fact, Hitachi’s AI technology is 
capable of analyzing data from the system controllers, iden-
tifying the factors relates to the clogging, and also reducing 
6% of the pumping system costs.

Briefly, this technology consisting of four steps, as shown 
in Fig. 10.

An additional step is a visualization in a network format 
of the correlation between the extracted influencing fac-
tors and the objective variable. Then, thanks to the control 
logic—deducted from the phenomenological knowledge 
about fouling–—the benefit due to the fouling suppres-
sion was estimated and the feasibility of the system was 
evaluated.

In particular, regarding the water treatment system in 
question, was seen that the electrical conductivity of con-
centrated water of the RO membrane connected to the water 
flow rate and the inlet pressure. Therefore, controlling the 
electrical conductivity of the mixed water, the fouling is 
controlled and the clogging is prevented. Thus, the control 
method was extracted from the knowledge was obtained 
from the Hitachi technology. As a summarized in Fig. 11, 
we are showing the flowchart of this control method.

3 � Applications for Cleaner Productions

3.1 � AI‑Driven Biomass Production

The assessments of hotspots analysis within the process opti-
mization and the improved design are essential for cleaner 
production. This last involves the complex interactions of 
social and economic performance. Van Fan et al. (2020) 
provided an overview of cleaner production achievements. 
Regarding the AI tools, besides the ANNs approach, they 
also reported an extension of the Analytic Hierarchy Process 

(AHP) framework, that is the Analytic Network Process 
(ANP) model.

A cleaner production from the wastewater treatment 
can also be associated with biomass, and an AI applica-
tion results be useful in this case because it drives process 
optimization.

Nayak et al. (2018) presented an optimized process that 
involves integrated events on the sequestration of CO2 of the 
combustion gases and the use of wastewater to improve the 
microalgal biomass production more cleanly. They present 
an ANN model combined with an optimization algorithm 
GA tool, which was able to predict the optimal conditions 
of the process to improve the biomass of the green micro-
algal—Scenedesmus sp.—through the use of the domestic 
wastewater as a culture medium and coal-fired combustion 
gases as a carbon source in an integrated chain. This study’s 
results seem to advance that the environmental factors—
such as temperature, pH, photoperiod, and light intensity—
have a strong influence on the microalga’s growth and the 
production of the biomass. Thus, the AI tools’ application 
could successfully predict the productivity of the biomass 
for a different range of the critical parameters of the process.

3.2 � Blue Energy Generation Overview

The emergency in energy sourcing is one of the main dif-
ficulties that need to be faced worldwide by seriously evalu-
ating every new technological advance at our disposal. The 
main answer to this problem seems to reside in the usage of 
the most sustainable kinds of energy, therefore, combining 
both the use of renewable sources and a fine optimization of 
the efficiency of these sources. Blue energy is one of these 
sustainable and well promising sources of energy, they are 
mainly membrane-based technologies that can be finely opti-
mized by the use of AI techniques.

Blue energy is a term mainly related to osmotic power, 
which is a kind of energy that can be gathered by exploiting 
the salinity gradient among two different streams of water, 
for example freshwater and seawater. By these means, it is 

STEP 1: Extract influencing factors concerning the control objective using Hitachi AI Technology/H

STEP 2: Show the correlations between the indices in a network format

STEP 3: Extract control indices using pre-existing knowledge and propose control logic

STEP 4: Estimate the benefit of proposed control logic, 

or assess the feasibility and practicality of the system.

Fig. 10   Four-step analysis by Hitachi for H technology regarding the flow analysis for consideration of the control logic
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Fig. 11   Control method of flow 
for the mitigation of fouling of 
membrane for the H technology 
by Hitachi
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possible to imagine large amounts of energy harvested from 
the intersection of rivers and oceans. The two main mem-
brane technologies appliable to recover osmotic energy are 
pressure-retarded osmosis (PRO) and Reverse Electrodialy-
sis (RED).

The Reverse Osmosis technique exploits hydraulic pres-
sure to control the gradient of osmotic pressure, generated 
through a semipermeable membrane, thus resulting in a 
water flow going from a concentrated stream to the perme-
ate side of the membrane. In addition, Pressure-Retarded 
Osmosis generates hydraulic pressure in the saline concen-
trated stream. This pressure is low compared to the osmotic 
pressure gradient, and as a result, a flux of water is generated 
through the membrane, but this time the water is flowing 
towards the side of a draw solution.

Therefore, blue energy can be defined as a particular 
source of energy produced by the environment. This kind of 
life can be harvested from solar, radiofrequency radiation, 
piezoelectric, thermal, body motion and water flows sources. 
The latter resides in water masses’ movement of any head, 
including ocean tides, rivers and even raindrops.

The conventional energy harvesting from flowing water 
sources comprises bulky devices where mechanical energy 
from water is transformed into electrical power (Prudell 
et al. 2010). As an example of the previously cited Pressure-
Retarded Osmosis, a study by Prof. Sidney Loeb (1975) is 
shown as pressure-retarded osmosis could be used to har-
vest energy from two aqueous solutions with different saline 
concentrations, segregated by a semipermeable membrane.

The application of these principles has been illustrated 
through three main applications methods, in fact, nanogen-
erators can be divided into sliding droplet, flowing water, 
and phase change-based devices, all of them are the so-
called TENGs (triboelectric energy generators), where the 
surface charge relocation between two materials in close 
contact generates a polarization as long as the two are dis-
connected. At this stage, a repetition of contact-and-release 
actions produces a current.

Much research has been brought on the topic, and many 
materials have been investigated, including nanostruc-
tures. ZnO is one of the most typical materials used, having 
outstanding piezoelectric and semiconducting properties 
(Zhang et al. 2019).

Many types of devices have been studied, including Drop-
let-based electricity generators (DEGs) (Xu et al. 2020), 
Reverse Electrodialysis devices (Liu et al. 2018), flowing 
water devices (Ravelo et al. 2011) (Park et al. 2018), elec-
trical double layer devices (Moon et al. 2013), zinc oxide 
nanosheets, where PTFE balls are placed as the superhydro-
phobic bottom of the system. Nanopore devises designs have 
been studied, including boron nitride nanotubes (BNNTs) 
and molybdenum disulfide (MoS2) nanopores (Siria et al. 
2013) (Feng et al. 2016).

The interest in harvesting ambient energy from sources 
such as solar, Radio Frequency or Wi-Fi, or even thermal 
gradients or motion energy by piezoelectric energy harvest-
ing devices have reached good promising steps, but any of 
these devices have to face the issue of relying on a source 
that is not stable and constant, this primarily due to their 
strong dependence to environment influences (Parks et al. 
2013). From here, it is necessary to develop systems highly 
tolerant to power fluctuations, especially for those devices 
that need to respond to certain computational needs. In 
addition to that, ambient energy sources often translate to 
poor conversion efficiencies. As an example, ambient RF 
power sources are drastically dependent on variables as fre-
quency, source distance, the presence of obstacles, interac-
tions with other electromagnetic sources to mention a few 
of them (Visser et al. 2008). In Fig. 12, a typical scheme of 
the structure of a harvesting system is presented, as defined 
by Ma et al. (2015), where the three main blocks represent 
the energy harvesting and management section, the digital 
signal processor and the I/O interface.

The figure above analyses a generic case where ambient 
sourced energy is used to feed a typical device. The energy 
harvesting and management sector are responsible for the 
power available for the sensor, processor, and transmit-
ter units. The so-called I/O interface can comprise digital 
devices attached to sensing units, display units or others, 
or even analog units combined with antennas or electrodes. 
The whole design of the device is meant to reduce the power 
needed and, in the meantime, to address the requirements of 
the system.

Recent works have focused on optimizing energy harvest-
ing systems with AI architectures that can suit different energy 
sources and applications. Fluctuations in energy harvesting 
directly translate to devices that frequently switch on and off, 
so that every computational progress that is not saved in time 
gets lost. Using non-volatile processors (NVP), every com-
putational progress can be stored in non-volatile memory 

Fig. 12   Typical scheme of the structure of a harvesting system (Ma 
et al. 2015)
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(NVM). This process, known as checkpointing, assures the 
device’s recovery at the same state before the switch off due 
to lack of power. This process has a consistent drawback; this 
writing process is time and energy consuming, so it needs to 
be optimized at its best. This problem can be addressed either 
with hardware than software extents.

Software-side optimization can be reached by both reduc-
ing the checkpoint data load and the checkpointing rate of 
recurrence. The latter can be addressed by the avoidance of 
unnecessary checkpoints or by the augmentation of the stored 
energy before the switch on so that the subsequent execution 
can last longer.

Actions on the hardware side can include reducing the 
capacitor’s target voltage, where the energy is stored so that 
the switch on of the device can occur earlier. Consequently, 
a lower amount of energy results to be harvested, so this can 
lead to more frequent checkpointing.

As the two optimization methods seem to act in reciprocal 
contrast, a good trade-off between them must be reached. Pan 
et al. (2019) proposed an algorithm to reduce the checkpoints 
data size, in junction with another algorithm to avoid unneces-
sary checkpoint recurrence. The two were combined to a wake-
up procedure to mitigate between the software and hardware 
side optimizations.

The above-mentioned work proposes three power-saving 
methods to augment efficiency in energy management in a 
self-powered Internet of Things (IoT) device. This providing 
a power supply that is ultra-low-harvesting. A non-volatile 
processor (NVP)-aware task scheduling (NTS) is proposed 
to reduce the data size of the checkpointing process. Sub-
sequently, a tentative checkpointing withdrawal (TCW) is 
provided to eliminate checkpointing which could result as 
unwanted. As the last step, a dual wake-up procedure (DWP) 
is added to equalize software and hardware overheads as an 
additive maximization of energy efficiency. In the work of 
Khorsand et al. (2020) artificial intelligence is applied on a 
rotary TENG system, as presented in Fig. 13, to achieve an 
adequate characterization of its output features under diverse 
kinematic and geometrical conditions. The mathematical 
model applied considers variables such as the number of seg-
ments, the rotational speed, and the device’s surface spacing.

The proposed algorithm, used to analyze the TENG’s out-
put, is meant to iterate a comparison between all results the 
best solution, identified with the maximum output power. At 
the same time, two solvers face all the equations of the mod-
eled system at each loop.

4 � Conclusions

Artificial Intelligence nowadays is seriously taken into 
account to optimize and develop many membrane appli-
cations, allowing the most settled ones to be renewed and 
better optimized to work in more efficient ways.

Conspicuous research in this field seems to unceasingly 
lead to new promises in a wide area of engineering appli-
cations, thus meeting either high-efficiency standards and 
“green” and low environmental impact criteria, being the 
two the main features requested to any innovative technol-
ogy nowadays.

Artificial intelligence or ML-based algorithms are intel-
ligent techniques which is highly advantageous to under-
stand membrane fouling or energy production nowadays. 
This study demonstrates that the optimization and mod-
eling techniques in combination with other AI and ML 
algorithms can be utilized to intelligently monitor and con-
trol membrane fouling in different wastewater processes as 
well as during the generation of clean blue energy.

The most innovative and sophisticated ones to gain 
more significant interest and, consequently, a more con-
sistent place in the world’s industrial appliances. Constant 
improvements in this research topic can open routes for 
new application possibilities, extending the present-day 
membrane device usage in more cost-effective and “green” 
forms that help society improve their energy resources 
utilization and management and the quality of life itself. 
From wastewater management to blue energy production, 
AI-based implementations lead to better results, lifting 
engineering processes towards a whole new level of effi-
ciency and sustainability.
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Fig. 13   Scheme of a rotary TENG system (Khorsand et al. 2020)
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