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Abstract
Forest fires are a common feature in the Mediterranean forests through the years, as a wide tract of forest fortune is lost 
because of the incendiary fires in the forests. The enormous damages caused by forest fires enhanced the efforts of scien-
tists towards the attenuation of the negative effects of forest fire and consequently the minimization of biodiversity losses 
by searching more for the adequate distribution of attempts on forest fire prevention and, suppression. The multi-temporal 
Principal Components Analysis is applied to a pair of images of consecutive years obtained from Landsat-8 satellite to 
unconventional map and assess the spatial extent of the burned areas on the island of Thasos, Greece. First, the PCA was 
applied on the before fire image, and then a multi-temporal image is created from the 3rd, 4th, and 5th band of before and 
after images including Normalized Difference Vegetation Index to enhance the results. The results from the different steps 
of this analysis robustly mapped the burned areas by 82.28 ha confirmed by almost 85%. Are compared with data provided 
by the local forest service in order to assess their accuracy. The multi-temporal PCA outputs including NDVI (PC 4, PC %, 
and PC 6) give better accuracy due to its ability to distinguish the burned areas of older years and to the Normalized Differ-
ence Vegetation Index that gives better variance to the image.

Keywords  Forest fire · Mediterranean ecosystem · Normalized difference vegetation index · Principal components 
analysis · Temporal analysis

1  Introduction

The counting of forest fires has been increasing since that 
to reach a maximum of 206 fires in 2016 from a mini-
mum of 83 fires in 1984; corresponding burned areas were 
6938.8 ha and 2198.8 ha, respectively (Christopoulou et al. 
2014; Kazanis and Arianoutsou 1996; Paula et al. 2009). 
In Greece, almost all forest lands, a total of 2,615,000 ha, 
have forest fire problems in the fire season. In recent years, 
there has been a substantial increase in the areas burned by 
wildfires, related to weather conditions (Koutsias et al. 2013) 
especially to arson, the total number of the fire incidents 
varying from a minimum of 968 in 2012 to a maximum of 
1443 in 2018, with corresponding areas burned of 19,613 ha 
and 105,450 ha, respectively (Elhag et al. 2018; Turco et al. 
2016).

Crete with its favorable climatic conditions in the sum-
mer (high temperature, low moisture, long drought period) 
and the inflammable vegetation (phryganics, thorny bushes, 
evergreen broad-leaf plants) has a high fire risk (Duguy et al. 
2012; Riva et al. 2017). Early study of Papanastasis (1980) 
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has gathered available information’s on fuel attributes con-
ducted from the phrygana communities in Crete related 
to fire risk. Thus, the phryganic ecosystem is intended to 
accumulate fuel that became a self-indulgent if remains 
unburned. Starting from 1980 and the number of forest fires 
increases, many occurred due to natural causes and some 
were prescribed fires (Kavouras et al. 2012; Palaiologou 
et al. 2018).

The problem of appraising damage caused by forest fires 
has been of increasing interest since the appearance of forest 
fires. Mills et al. (1987) described the basis of appraising 
forest fire damages. Agee (1998) has been concerned spe-
cifically with the value of timber in the context of deciding 
about forest fire suppression. Shackleton et al. (2011) and 
Palaiologou et al. (2018) used decision analysis to evaluate 
the fire hazard effects of timber harvesting.

Mapping the spatial extent of burned areas is essential 
to evaluate ecological impacts and economical losses, to 
monitor Land Use and Land Cover (LULC) change, and 
nowadays to model climatic influences of the burning of 
biomasses (Elhag and Boteva 2016b; Viedma et al. 2017). 
Recently, a new approach based on the eXtreme Gradient 
Boosting (XGBoost) feature selection and Random For-
est classification was conducted by Abdullah et al. (2019), 
which proved to have better LULC accuracies.

Optical sensors use the emission properties of materials to 
characterize land surface objects including forest fires, thus 
the forest fires were detected from space using the unique 
spectra characteristics of wood (Souza Jr et al. 2005; Waigl 
et al. 2019). In the Infrared region of the Electromagnetic 
radiation (EMR) spectrum, burned soils absorb the incom-
ing energy, whereas the surrounding land features including 
vegetation are comparatively high reflective. Based on this 
unique physical principle of reflectance, several studies had 
been conducted to map burned areas from space (Robinson 
1991; Sharma et al. 2017; Töreyin et al. 2007).

According to Coppin and Bauer (1996) and Lausch et al. 
(2017), Remote Sensing applications in forest fire detection 
and burned areas assessment has been comprehensively devel-
oped using the advantages of the high spatial resolution and 
multispectral bands. These were the opportunity of large-area 
observation in a single image, the ability to have consecutive 
data and data already in digital format, and the wide range of 
wavelength a satellite sensor can cover (Elhag 2017; Korch-
enko et al. 2019). Different techniques of remote sensing have 
been tested, including supervised and unsupervised classifica-
tion (Cihlar et al. 1998; Erbek et al. 2004; Tuia et al. 2011), 
vegetation indices including Normalized Difference Veg-
etation Index (NDVI) according to Aldhebiani et al. (2018), 
Goward et al. (1991), Yuan and Bauer (2007), Intensity-Hue-
Saturation (IHS) transformation (Carper et al. 1990; Choi 
2006; Leung et al. 2013), logistic regression modeling and 

Principal Component Analysis (PCA) according to Rodarmel 
and Shan (2002), and Fauvel et al. (2009).

Karhunen–Loeve transformation and its additive models of 
Abbas and Fahmy (1992) and Kouassi et al. (2001) is a well-
known dimensionality reduction technique, maybe leads to a 
description of multidimensional data in which the axis variable 
are uncorrelated, with the first variable (or component) con-
taining most of the variance of the original data set (Epstein 
et al. 1992; Liu 1999) and the succeeding components contain-
ing decreasing proportions of data scatter (Gastpar et al. 2006; 
Siljestrom Ribed and Moreno López 1995; Singh and Har-
rison 1985). The data decorrelation produced in this process 
is extremely significant in change detection analysis in multi-
temporal Landsat multi-spectral image data (Elhag 2016; Li 
et al. 2013). This specific method is known as multi-temporal 
PCA and discriminates the differences of the burnt areas using 
the pre and post-fire differences of the area of interest (Lanorte 
et al. 2015; Singh and Harrison 1985; Waigl et al. 2019).

There are several methods to be used to map burned 
areas, mostly they are conventional methods based on the 
extensive field visits and the use of aerial photography in 
Greece. Meanwhile, the method that is going to be applied 
in this research paper is based on the use of remote sensing 
indices for forest fire mapping. The Principle Component 
Analysis (PCA) tends to envisage the linear transformation 
of a single set of variables in an attempt to maximize the 
projected variance of the dataset under investigation (Jolliffe 
et al. 2003; Lanorte et al. 2015). To this end and within the 
temporal image’s dataset, areas with no significant changes 
are estimated to be highly correlated. Meanwhile, substan-
tially changed areas were estimated to be less correlated 
(Fairbanks and McGwire 2004; Su et al. 2016). The natural 
vegetation cover as well as agricultural lands were investi-
gated under the PCA concepts by Volpi et al. (2015) to iden-
tify the key feature affecting the behavior of the vegetation 
cover.The current work aims to map recently burned areas 
in Thasos using satellite images and to assess the accuracy 
of mapping through Remote Sensing. The schematic tasks 
are: to explore the effectiveness of multi-temporal PCA as an 
image enhancement technique on Landsat-8 data to map the 
burnt area, to define the best band combination to employ 
selective band multi-temporal PCA of Landsat-8 data with 
the purpose of mapping the burnt area and to assess the 
accuracy of the map produced and to compare it with the 
official data provided by the National Forest Service.

2 � Materials and Methods

2.1 � Study Area Description

The study area is located on the island of Thasos, the most 
northern island of Greece. It belongs to the prefecture of 
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Kavala, Macedonia, and it extends from 24o30′ to 24o48′ E 
and from 40o33′ to 40o49′ N. Its area is 399 sq. km, while 
its perimeter is approximately 102 km (Fig. 1). It has a vol-
canic origin, limestone and marbles cover its crystalline 
base, so the island is an important source of the latter (Elhag 
and Alshamsi 2019). The topographic characteristic of the 
island is mountainous, and the maximum height is 1217 m. 
over sea level. The climate of Thasos is the typical Medi-
terranean, characterized by hot, dry, and sunny summers 
and cool winters (Elhag and Bahrawi 2016a). The National 
Forest Service, Forest Station of Thasos, holds records of 
fire incidents. According to these records, the biggest for-
est fires in this century occurred in 1928 (1500 ha), 1938 
(1700 ha), 1945 (700 ha), 1984 (1669), 1985 (10,405 ha), 
1989 (8401 ha) and 2000 (187 ha). However, in the period 
between 2010 and 2020, there was an overwhelming increase 
in the number of fires and surface area burned. Indeed, the 
largest fires in the last century occurred in this period and 
resulted in the loss of about 20,000 ha of Pinus brutia and 
Pinus nigra forests (Elhag and Boteva 2020). The area 
affected constituted more than half the size of Thasos Island.

2.2 � Remote Sensing Data

The geomorphology of the island, the large extent of the 
2016 and 2018 fires, the land cover types, as well as the 
existence of water bodies render the location of the case 
study an ideal site for operational burned area mapping 

(Sakellariou et al. 2019). The two fires that are depicted are 
between 2016 and 2018. The fire of 2016 was a mixed crown 
and surface fire that burned for 8 days, while the fire of 2018 
was a mainly crown fire that destroyed 11.870 ha of different 
land types (Sakellariou et al. 2019; Tampekis et al. 2015).

The data obtained for this study consisted of two satel-
lite images with less than 5% cloud coverage, as well as a 
topographic map and the official fire perimeters published 
by the Forest Service and the ‘Roads and Coastlines’ digital 
map of Thasos. The two satellite images were acquired from 
the Landsat-8 platform, one collected 6 days after the first 
fire (4 August 2016) and the other after the second fire had 
burned out (24 October 2018).

Landsat-8 is fashioned to generate 11 spectral bands in 
total, 9 bands known as the Operational Land Imager (OLI), 
and 2 bands known as the Thermal Infrared Sensor (TIRS). 
The OLI bands (1–9) are registered in the Visible, Infrared, 
and Shortwave Infrared, the bands are composed of 30-m 
spatial resolution bands except band 8 (Panchromatic band, 
15-m) and Band 7 (SWIR, 60-m). Additionally, the TIRS 
bands (bands 10 and 11) are composed of 100-m spatial 
resolution and it represents the Long-wavelength infrared 
(LWIR) bands (Table 1).

2.3 � Conceptual Framework

Before image classification, preprocessing of remotely 
sensed data is required. The two major techniques used in 

Fig. 1   The location Thasos Island at the Aegean Sea, Greece
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preprocessing are radiometric and geometric corrections. 
Radiometric error results in atmospheric attenuation or 
noise, which is a result of light scattering and absorption as 
it travels through the Earth’s atmosphere (Boers et al. 1996), 
while geometric distortions occur because the imagery is 
representing the curved surface of the Earth in two dimen-
sions (Singh 1989). Radiometric corrections in this study 
were not performed since they are important only when the 
objective is to detect very subtle changes. Besides, most land 
cover-related remote sensing investigations have ignored the 
atmospheric correction problem, because the signals from 
the objects being studied are strong enough that they can be 
detected despite atmospheric attenuation (Boers et al. 1996).

Furthermore, the lack of time did not allow the applica-
tion of such techniques. Accordingly, an assumption that 
differences in the reflectance are due to changes in features 
and land cover changes and not related to the radiometric 
errors was made (Elhag and Alshamsi 2019). Therefore, the 
only geometric correction was performed. To enable change 
detection to be analyzed from the satellite imagery, the data 
must be co-registered and preferably matched to a map pro-
jection system (Vogelmann et al. 2001).

Image classification for the identification of different 
classes related to the Land Cover of the study area, a super-
vised classification was performed, based on the two satel-
lite images, and previous knowledge of the terrain. For the 
Landsat-8 images, all the seven bands in a color composite 
were used, the band combination was 4-3-2, which corre-
sponds respectively to the Near IR, Red, and Green bands of 
the sensor. This combination gives the best visual contrast 
between the different land cover categories. Training areas 
were located for each category using the Area Of Interest 
(AOI) Tools, and their spectral signatures were defined 
(Elhag 2017). Eight discretional classes conducted from the 
early image, in addition to the ninth class (burnt areas) con-
ducted from the late image were defined based on the pixel 

spectral signature according to Chaudhry et al. (2006) Elhag 
and Boteva, (2016a) using the Maximum likelihood classi-
fier of Ritchie et al. (2018); Robert and Gene Hwang (1996).

This parametric algorithm has been the most popular 
for the classification of remote sensing imagery (Xu et al. 
2005). It is based on the ranges of values within the train-
ing data to define regions within a multidimensional data 
space, and the unclassified pixels that fall within the regions 
defined by the training data are assigned to the appropriate 
categories (Skidmore 1989). Casasent and Neiberg (1995) 
mentioned that the other classification classifiers are gener-
ally comparable to the Maximum Likelihood classification if 
the only objective is to classify targets at the "macro" level. 
The Likelihood classification is performed according to the 
following equation:

where i is the class, x is the n-dimensional data (where n is 
the number of bands), p(ωi)  is the probability that class ωi 
occurs in the image and is assumed the same for all classes, 
|Σi|= determinant of the covariance matrix of the data in 
class ωi, Σi−1 is the its inverse matrix, mi is the mean vector.

Correspondingly, the accuracy of the two resulting clas-
sifications was assessed by using a contingency error matrix 
and a Kappa coefficient. Error matrices compare, on a cat-
egory-by-category basis, the relationship between known 
reference data (76 ground truth data points collected on the 
field) and the corresponding results of automated classifica-
tion (Lillesand et al. 2014). The error or confusion matrix 
is a very effective way to represent map accuracy as well 
as other accuracy measures, such as overall accuracy, pro-
ducer’s and user’s accuracy (Congalton 1991; Congalton and 
Mead 1983). The overall accuracy is computed by dividing 
the total number of correctly classified pixels (the sum of the 
elements along the diagonal) by the total number of refer-
ence pixels (Lillesand et al. 2014).

The user’s accuracy tells the user of the map if a given 
class on the map corresponds to the same class in the 
ground, while the producer’s accuracy informs the ana-
lyst how each class was correctly classified (Casasent and 
Neiberg 1995). However, these procedures only indicate how 
the classification strategy being employed works well in the 
training areas, and nothing more (Lillesand et al. 2014). For 
this reason, proposed applications of other techniques as a 
mean of improving the interpretation of the error matrix 
among them, the Kappa coefficient were developed. The 
computation of this coefficient is used to determine whether 
the results presented in the error matrix are significantly 
better than a random result (Green and Congalton 2004).

Producer’s accuracy is calculated as follows:
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Table 1   Landsat-8 Operational Land Imager (OLI), spectra and spa-
tial characteristics

Bands Wavelength Resolution
(µm) (m)

Band 1—Coastal aerosol 0.43–0.45 30
Band 2—Blue 0.45–0.51 30
Band 3—Green 0.53–0.59 30
Band 4—Red 0.64–0.67 30
Band 5—Near Infrared (NIR) 0.85–0.88 30
Band 6—SWIR 1 1.57–1.65 30
Band 7—SWIR 2 2.11–2.29 30
Band 8—Panchromatic 0.50–0.68 15
Band 9—Cirrus 1.36–1.38 30
Band 10—Thermal Infrared (TIRS) 1 10.6–11.19 100
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where, Caa is an element at position ath row and ath 
column, C∗a is column sums, User’s accuracy is calculated 
as follows:

Cii is an element at position ath row and ath column, 
Ci∗ is row sums.

Overall accuracy is calculated as follows:

where Q and U is the total number of pixels and classes, 
respectively.

Matching of user’s and producer’s accuracies delivers 
accurateness to the classification and assures a robust lia-
bility of the implemented accuracy assessment (Congalton 
1991).

Khat statistics is a second measure accuracy agreement. 
This measure of agreement is based on Congalton et al. 
(1983) findings. Khat was calculated using the following 
equation:

where r is the number of rows in the error matrix, xii 
is the number of observations in row i and column i (the 
diagonal cells), xi+ is the total observations of row i, x+I is 
the total observations of column i, N is the total of obser-
vations in the matrix.

PCA is a multivariate statistical method in which data-
set axes are transformed into principal axes, or components, 
that maximize dataset inconsistencies (Lanorte et al. 2015). 
The first step was to derive a PCA transformation from the 
corrected 2018 image. After combining the different compo-
nents, or bands, of the outcome of this transformation, band 
#5 is identified as the one with the more contrast relevant to 
the burned areas of 2018. The problem though with this prod-
uct is that it also includes the area that was burned through 
the 2016 fire. To apply the multi-temporal image analysis 
from the two initial images, the layer stack technique was 
used and the three bands from each image were selected and 
comprised in the new image. This analysis comes from a 
band selection that has been applied in many scholarly works 

(2)Producer accuracy =
Caa

C∗a

× 100%,

(3)User accuracy =
Cii

Ci∗

× 100%.
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and it is well documented (Chuvieco et al. 1997). Following 
Monahan (2000), PCA fundamental equations are:

First vector w(1) should be answered as follows:

The matrix form of the above equation gives the 
following:

w(1) should be answered as follows:

Originated w(1) suggests that first component of a data 
vector x(i) can then be expressed as a score of t1(i) = x(i) ⋅ 
w(1) in the transformed coordinates, or as the corresponding 
vector in the original variables, (x(i) ⋅ w(1)) w(1).

NDVI image differencing change detection is the result of 
subtracting the NDVI ratios for two dates of imagery. This 
technique has been used to describe vegetation dynamics 
and changes in vegetation cover (Singh 1989). In this study, 
the normalized difference vegetation index images were 
calculated from Landsat-8 images. For the extraction and 
subtraction of the NDVI values, an assumption was made: 
the spectral and temporal differences between the two sen-
sors produce minor differences. This assumption was con-
sidered reasonable in a similar study of Aldhebiani et al. 
(2018) since the objective was not to perform an accurate 
assessment but a relative evaluation of the difference that 
occurred between the two dates (2016 and 2018). From the 
two images, NDVI was performed according to the formula:

where NIR, R is the Near Infrared and the Red bands of 
Landsat-8.

The two resulting NDVI images were subtracted from 
the Landsat-8 temporal data set, and the resulting image 
was scaled to assign to the study area classes of change. 
The threshold was based on visual interpretation and NDVI 
values. Lillesand et al. (2014), mentioned that immediate 
visual feedback on the suitability of a given threshold can be 
obtained from most image analysis system. The flowchart of 
the adopted methodology is illustrated in Fig. 2.

The current methodology is based on the integration 
of the PCA and the use of the NDVI values to assess and 
to map the burned areas in Thasos Island. The PCA was 
implemented as a data transformation technique to compre-
hensively envisage areas with multi-temporal changes. The 
multi-temporal images main segments are associated with 
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(9)NDVI = (NIR − R)∕(NIR + R),
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continual Land cover types, areas of substantial changes will 
be addressed in the PCA components. Specifically, each suc-
cessive component encompasses less of the total multi-tem-
poral dataset variance. Consequently, the integration of the 
NDVI shall emphasize the variances of small areas (Lanorte 
et al. 2015; Lasaponara 2006).

3 � Results and Discussion

Seventeen GCP was created to register the image to the 
topographic map. The topographic map is projected accord-
ing to Transverse Mercator / Spheroid GRS 1980 / Datum 
EGSA87. The accuracy achieved was lower than one pixel 
(RMS error = 0.39) and the resampling method applied was 
the nearest neighbor. The second step is to do an image-to-
image rectification using the 2016 image as a reference for 
the 2018 image. The accuracy, in this case, was calculated 
in meters (RMS error = 11.44), which is lower than a pixel 
(1 pixel ~ 30 m).

From the two satellite images Landsat-8, two supervised 
classification maps were produced. Eight classes were 
derived after the supervised classification of each image. 

Tables 2 and 3 show the confusion matrices, which sum-
marize the agreement and confusion of the classified images 
with the reference data from the ground truth. Pixels that 
were used for testing accuracy are located along the diago-
nal of the error matrix, while pixels misclassified are rep-
resented along with the non-diagonal elements of the error 
matrix. Table 4 shows the total accuracy and Kappa coef-
ficient of all the two supervised classifications. The result 
showed that the Kappa coefficient was 0.92 and 0.94 for the 
temporal image analysis, respectively.

Where OG is the Olive Groves, NG is Natural Grassland, 
SV is Sparsely Vegetated Areas, MF is Mixed Forest, ES is 
Mineral Extraction Sites, UA is Urban Areas and SM is Salt 
Marshes. The eighth class is the surrounding water bodies 
(sea surface) and it did not interfere or overlap with any 
other conducted classes due to its spectral behavior (Elhag 
2017). The night class (Burnt Area) appeared only on the 
late acquisition of the Landsat-8 image (2018) because of 
the forest fire occurrence (see Fig. 3).

The classification results generate many limitations in 
vegetation classification and mapping. The problem of the 
effect of the heterogeneity and fragmentation of Mediterra-
nean landscapes was pointed out by Modugno et al. (2016). 

Fig. 2   Schematic flowchart 
of the adopted methodology, 
different shapes mean different 
procedural steps, inputs (hex-
agonal), outputs (square), and 
conditional processors (circle)

2016 
Image

2018 
Image

DEM

Pre-Processing

2016 
Or thor
ectified

2018 
Or thor
ectified

2016 & 
2018 

Images

PCA

PCA

NDVI 
2016

NDVI 
2018

2016 & 
2018 

NDVI’s
PCA

Topographic Map

Layer  Stack

Accuracy 
Assessment

Rejected

Estimated Burned 
Areas Forest Service

Processing

Table 2   Error matrix of the 
early Landsat supervised 
classification

OG NG SV MF ES UA SM Total

OG 189 0 0 4 0 0 6 199 92.20%
NG 3 133 0 1 0 0 2 139 95.00%
SV 0 0 201 0 6 1 0 208 96.63%
MF 2 0 0 128 0 0 1 131 97.71%
ES 0 0 3 0 129 4 0 136 94.85%
UA 0 0 3 0 3 347 0 353 98.02%
SM 1 0 0 3 0 0 108 112 93.91%
Total 197 133 207 143 138 352 152 1235

95.94% 100.00% 97.10% 89.51% 93.48% 98.58% 71.05% 96.08%
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They had mentioned that mixing the different life forms and 
vegetation patterns require an understanding of the scale 
dependency of the vegetation classes particularly in Mediter-
ranean countries, since there are substantial mixing classes 
of vegetation. The typical pattern of Mediterranean vegeta-
tion is the difference in species composition, size, and life 
form between north- and south-facing slopes (Rishmawi and 
Gitas 2001).

The following task was to apply PCA on a multi-tem-
poral image from the two initial images. The first step was 
to derive a PCA transformation from the corrected 2018 
image (Fig. 4). After combining the different components, 
or bands, of the outcome of this transformation, band four 
(Table 5) is identified as the one with the more contrast rel-
evant to the burned area of 2018. The problem though with 
this product is that it also includes the area that was burned 
through the 2016 fire.

The non-burned pixels represented water, urban fabric, 
bare surfaces, vegetation, and shade. Burned areas were 
assigned the value zero, whereas non-burned areas were 

assigned the value one to create the dependent variable in the 
modelling process. The PCA stacking was structured using 
the radiometrically corrected bands along with transformed 
values arising from multispectral transformations. Follow-
ing the construction of the equations, the performance of 
each was evaluated by calculating the percentage of cor-
rect classified observations (burned, unburned and overall). 
The models with the better performance were applied to the 
entire satellite data to map the burned areas.

From the previous PCA, it was known that the bands 
which explain better the burned areas are three, four, five, 
and seven, so these bands were preferred for the new investi-
gation. The results showed the burned area with black tones 
in the PC5 (Table 6). In this case, there is no confusion 
with the old burned area of 2016, which remains in white 
tones, but with the clouds. The loadings showed that the 
most important bands for PC5 are bands 5 and 6 from both 
images. Once again, the NIR and the MIR seem to be the 
most decisive regions of the spectrum for discriminating 
burned areas.

Following another concept was examined. NDVI was 
derived for both images and included as a different layer 
through layer stack (Table 7). The grayscale interpretation 
of band five can be identified in black tone as the burned 
areas of 2016 (Fig. 5) and on the contrary, the burned area 
of 2018 is easily recognized because of its white color by 
the interpretation of band six (Fig. 6). The main threshold to 
differentiate between the burned and the non-burned areas 
is the estimated variances obtained from the PCA (Lanorte 
et al. 2015).

Stacking the PC-4, PC-5, and PC-6 from Table 6 to visu-
alize the burned areas in color (Fig. 7), burned areas appear 
precisely in white concerning NDVI changing and PCA 
analysis. The burned area estimated in this last analysis is 
more helpful since it not only discriminates the difference 
between the two burned areas but also using a combination 
of the sixth and the fifth band the clouds over the area of 
interest can be discriminated against.

The NDVI differencing image resulted from the subtrac-
tion of the late image (2018) from the early image (2016) 

Table 3   Error matrix of 
the late Landsat supervised 
classification

OG NG SV MF ES UA SM Total

OG 360 0 0 20 0 0 7 387 91.14%
NG 6 185 0 4 0 0 3 198 92.50%
SV 0 0 951 0 0 6 0 957 99.37%
MF 8 1 0 842 0 0 6 857 97.79%
ES 0 0 0 0 272 2 0 274 97.14%
UA 0 0 0 0 2 50 0 52 96.15%
SM 2 0 0 0 0 0 40 42 90.91%
Total 435 188 951 914 276 58 69 2710

82.76% 98.40% 100.00% 92.12% 98.55% 86.21% 57.97% 97.33%

Table 4   Total accuracy and Kappa Coefficient of supervised classifi-
cation maps

Early classification 
image

Late classification image

User’s 
accuracy 
(%)

Producer’s 
accuracy 
(%)

User’s 
accuracy 
(%)

Producer’s 
accuracy (%)

OG 91.14 82.76 92.20 95.94
NG 92.50 98.40 95.00 100.00
SV 99.37 100.00 96.63 97.10
MF 97.79 92.12 97.71 89.51
ES 97.14 98.55 94.85 93.48
UA 96.15 86.21 98.02 98.58
SM 90.91 57.97 93.91 71.05
Overall Accu-

racy %
96.08 97.33

Kappa Coef-
ficient

0.92 0.94



820	 M. Elhag et al.

1 3 Published in partnership with CECCR at King Abdulaziz University

demonstrated in a grayscale single band image (Fig. 8), 
and based on the values of the NDVI differencing image 
and a visual interpretation, three categories of change were 
derived: positive change, moderate and negative change. 
According to Lillesand et al. (2014), the analyst can obtain 
immediate visual feedback on the suitability of a given 
threshold. The numeric results of Landsat-8 temporal 
images, as well as the values of NDVI differencing, are 
reported in Table 8. Furthermore, areas of change in terms 
of vegetation (indicated by the biomass), where negative 
values with dark color correspond to vegetation regression 

(negative change), and positive values with bright colors 
correspond to vegetation evolution (positive change).

Spatial variations in habitat conditions and the effect of 
disturbance caused by forest fires can be detected by com-
paring NDVI maps and may provide the basis for an early 
warning of degradation (Lanfredi et al. 2003). According 
to Hall et al. (2016), burned areas can be best detected dur-
ing wet periods as the differences between burned and non-
burned areas stand out most clearly. This justifies the choice 
of the date of image acquisition in this study. Furthermore, 
the choice of these two dates was favorable since it reduces 

Fig. 3   The Maximum Likeli-
hood classification image of the 
study area acquired in 2016 (up) 
and 2018 (down)
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Fig. 4   PCA transformation of 
the late acquired Landsat image 
(2018)

Table 5   PCA transformation 
contrast values of the 2018 
Landsat image

Bold means statistically significant (higher goodness)

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6

Band 2-18 0.52 – 0.08 0.06 – 0.04 – 0.01 0.00
Band 3-18 0.44 0.04 0.04 – 0.04 0.02 -0.03
Band 4-18 0.81 0.29 0.11 – 0.07 0.10 0.02
Band 5-18 0.15 0.11 – 0.54 – 0.39 – 0.02 0.00
Band 6-18 0.32 0.40 0.31 0.32 – 0.06 0.00
Band 7-18 0.14 – 0.18 – 0.56 0.53 0.04 0.00

Table 6   PCA transformation 
contrast values of the temporal 
Landsat images

Bold means statistically significant (higher goodness)

PC1 PC2 PC3 PC4 PC5 PC6

Band-4-16 0.331 − 0.555 0.211 0.596 − 0.148 0.402
Band-5-16 0.456 − 0.355 − 0.551 − 0.401 − 0.428 -0.139
Band-6-16 0.608 − 0.033 0.592 − 0.371 0.323 − 0.189
Band-4-18 0.214 0.050 − 0.209 0.554 0.181 − 0.754
Band-5-18 0.271 0.105 − 0.508 0.024 0.699 0.410
Band-6-18 0.440 0.743 0.007 0.197 − 0.411 0.218

Table 7   The PCA of the 
temporal Landsat images with 
the NDVI understanding

Bold means statistically significant (higher goodness)

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Band-4-16 0.331 – 0.555 0.211 – 0.596 0.147 0.402 – 0.009 – 0.004
Band-5-16 0.456 – 0.355 – 0.551 0.401 0.428 – 0.139 0.009 0.005
Band-6-16 0.608 – 0.033 0.592 0.371 – 0.323 – 0.189 0.001 – 0.001
Band-NDVI-16 0.001 0.003 – 0.007 0.015 0.004 0.001 – 0.812 – 0.583
Band-4-18 0.214 0.050 – 0.209 – 0.554 – 0.181 – 0.753 – 0.019 0.012
Band-5-18 0.271 0.105 – 0.508 – 0.024 – 0.699 0.410 0.010 – 0.011
Band-6-18 0.440 0.743 0.007 – 0.197 0.411 0.218 0.002 0.000
Band-NDVI-18 0.001 0.002 – 0.004 0.013 – 0.006 0.021 – 0.583 0.812
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the problem related to vegetation phenology differences 
(Van Leeuwen 2008).

The comparison of the classification with the burned area 
perimeter using 256 points is reported in Table 9. The clas-
sification error matrix shows the commission and emission 
errors in the classification. Of the 128 pixels predicted by 
the hue component to be burned, 11 pixels were errone-
ously classified as burned (commission error). The land-
cover types confused with the burned areas were bare/low 
vegetated areas and coastal areas. The emission error was 

higher than the commission error where 20 pixels were erro-
neously classified as unburned. It was noticed that slightly 
or moderately burned areas were classified as unburned. The 
overall classification accuracy was estimated to be 87.9%. It 
is interesting to note that topographically shaded areas were 
not confused with burned areas.

From the results of the NDVI subtraction of late from 
early acquisitions, the mean value was found—0.036. This 
means a priori a regression in the vegetation cover. Jimenez-
Gonzalez et al. (2016) confirmed that the brighter the pixel 

Fig. 5   Multi-temporal PCA 
of Landsat-8 image Band-5 
acquired in 2016

Fig. 6   Multi-temporal PCA 
of Landsat-8 image Band-6 
acquired in 2018
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is, the greater the amount of vegetation matter. From the 
image of NDVI differencing (excluding the water body), 
dark pixels with low NDVI values belong to areas where 
high regression of vegetation occurred. On another hand, 
bright pixels represent areas of vegetation evolution which 
unfortunately does not concern semi-natural vegetation, as a 
result, the soil becomes very sensitive to degradation (Bah-
rawi et al. 2016).

Using the image from 2016, the conclusion can be drawn 
as the burned areas were not included in the forest fire esti-
mation because of the limestone quarries coverage and not 

Fig. 7   The burned areas appear 
in green of the temporal Land-
sat images

Fig. 8   The burned area mapping 
using the NDVI differencing of 
Landsat-8 images

Table 8   Statistics of Landsat-8 temporal NDVIs differencing

NDVI-2016 NDVI-2018 NDVI differencing

Minimum values − 0.261 − 0.340 − 0.465
Maximum values 0.409 0.361 0.325
Mean values 0.086 0.050 − 0.036
Standard deviation 0.104 0.095 0.074
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vegetation coverage even before the fire of 2018 (Christo-
poulou et al. 2014). Having this in mind, the accuracy might 
even be greater than calculated. Another reason for this dif-
ference can be that the spatial resolution of the image is not 
high enough to differentiate vegetation when it is over on 
areas with high reflection like bare rock surfaces (Koutsias 
et al. 2013; Turco et al. 2016).

To better understand the changes that occurred between 
the two dates of image acquisition (2016 and 2018), espe-
cially in terms of land degradation caused by forest fires and 
its impact on vegetation, change detection techniques are 
very helpful. Vegetation change due to forest fires will be 
followed by a high decrease in primary production and bio-
mass and the best example is Xilokastron in Greece, where 
20% of the vegetation cover was mainly associated with the 
destruction of permanent shrublands and woodlands, which 
were subject to land degradation (Palaiologou et al. 2018).

4 � Conclusions

Forest fires are considered as an integral mechanism of the 
ecology of the Mediterranean ecosystems and have defined, 
through thousands of years, the main characteristics of the 
Mediterranean basin forests. However, throughout the last 
decades the occurrence of these fires has increased, making 
their extent to be crucial and causing a big problem mainly 
because of the intense human influence, and the severe 
urbanization mainly on islands and remote rural areas. These 
have a large effect on erosion and are related to global cli-
mate change.

High spatial resolution images, provided by satellites as 
Landsat-8, can be used in cooperation with powerful digi-
tal image processing techniques, to present accurate results 
about burned areas on the Earth’s surface. The results of this 
research confirm the capability to precisely delineate fire 
scars using remote sensing science. Images can be greatly 
enhanced by statistic-based techniques like PCA and in the 
case of multi-temporal PCA; the outcome can be interpreted 
to discriminate burned areas at different moments in time. 
The bands that have been proven most useful in this work 
are bands four and five. NDVI on the other hand has proven 

to influence the image only in a way to detect the clouds 
and the shadows and distinguish them from the burnt area.

Finally, the approximation of the burned area using the 
adopted methodology reaches a high accuracy percentage 
of 84.61%. Multi-temporal PCA separates the two different 
burned areas of 2016 and 2018 although it underestimates 
the burned area in the middle of the island which is cov-
ered by bare rock. It would be very interesting to examine 
the prospect of enhancing the results by combining other 
methods as HIS or even to try to include band seven in the 
incoming research.
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