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Abstract
Coronavirus disease (COVID-19), caused by acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a worldwide 
challenge effecting millions of people in more than 210 countries, including the Sultanate of Oman (Oman). Spatiotemporal 
analysis was adopted to explore the spatial patterns of the spread of COVID-19 during the period from 29th April to 30th 
June 2020. Our assessment was made using five geospatial techniques within a Geographical Information System (GIS) 
context, including a weighted mean centre (WMC), standard deviational ellipses, Moran’s I autocorrelation coefficient, 
Getis-Ord General-G high/low clustering, and Getis-Ord G∗

i
 statistic. The Moran’s I-/G- statistics proved that COVID-19 

cases in datasets (numbers of cases) were clustered throughout the study period. The Moran’s I and Z scores were above the 
2.25 threshold (a confidence level above 95%), ranging from 2274 cases on 29th April to 40,070 cases on 30th June 2020. 
The results of G∗

i
 showed varying rates of infections, with a large spatial variability between the different wilayats (district). 

The epidemic situation in some wilayats, such as Mutrah, As-Seeb, and Bowsher in the Muscat Governorate, was more 
severe, with Z score higher than 5, and the current transmission still presents an increasing trend. This study indicated that 
the directional pattern of COVID-19 cases has moved from northeast to northwest and southwest, with the total impacted 
region increasing over time. Also, the results indicate that the rate of COVID-19 infections is higher in the most populated 
areas. The findings of this paper provide a solid basis for future study by investigating the most resolute hotspots in more 
detail and may help decision-makers identify targeted zones for alleviation plans.

Keywords  COVID-19 · GIS · Moran’s I · Oman · G∗

i
 · Spatial analysis

1  Introduction

Coronavirus disease 2019 (COVID-19), the recent great-
est threats encountering the globe, has been declared as a 
pandemic by the World Health Organization (WHO) since 
March 2020. The ongoing global interest of this massive 
health risk is motivated mainly by the accelerated rate of 
spread this pandemic, besides its substantial health, socio-
economic, and even political consequences over both devel-
oped and developing countries (Torales et al. 2020; Coccia 
2020). According to the WMO Covid-19 dashboard (https​
://covid​19.who.int/), to date (17th November), the num-
ber of confirmed cases across the globe exceed 55 million, 
while deaths approach 1.4 million (Riou and Althaus 2020). 
According to Cutler and Summers. (2020), the estimated 
costs of the COVID-19 pandemic in the US may reach $16 
trillion (approximately 90% of the annual gross domestic 
product), exceeding the cost of the Iraq War and approaching 
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the costs of global climate change (Ficetola and Rubolini 
2020).

Much efforts have been made to control the spread of the 
COVID-19 at local, national, and global scales (Chakraborty 
and Maity 2020). However, the ‘global’ strategy to cope with 
this emerging pandemic has been hampered by many chal-
lenges, primarily its ‘creeping’ nature and rapid transmission 
rate, which to date has impacted more than 210 countries 
and territories worldwide (Nicola et al. 2020; Sohrabi et al. 
2020; Bourgonje et al. 2020). Several studies have confirmed 
its extraordinary rate of transmission, associated with certain 
socioeconomic and environmental factors (Shereen et al. 2020; 
Gupta et al. 2020; Li et al. 2020; Saadat et al. 2020). Amongst 
these efforts, many researchers worldwide have been attempt-
ing to understand the behavior of this pandemic, particularly its 
transmission, detection, treatment and socioeconomic impacts 
(Allington et al. 2020; Alzamora et al. 2020; Liu et al. 2020a,b; 
Gross et al. 2020; Elmousalami and Hassanien 2020).

The spread of diseases in general and infectious diseases in 
particular is inevitably spatial. Public health experts can iden-
tify how infections move via local or even global transmission 
by following contact trajectories within population networks 
(Salinsky and Gursky 2006; Mackey et al. 2014). In this regard, 
Geographical Information System (GIS) is a powerful analytical 
tool, not only coz it incorporates fundamental epidemiological 
information on humans, times and locations but also coz it acts 
as a shared interface for centralised reporting and tracking of 
indicators from various areas (e.g. epidemiologic data georef-
erencing) (Law and Wilfert 2004; Esri 2011). These advantages 
allow epidemiologists produce maps showing the spatial distri-
bution of diseases at various scales: global, regional, national, 
provincial or local. These maps enable scientists to better predict 
which populations will be vulnerable and their levels of expo-
sure to the risk of infections. Also, probabilistic risk maps at 
detailed spatial scales allow epidemics to be tracked, strategies 
for prevention and control to be prioritised, and local authori-
ties to assign appropriate budgets for disease control. In addi-
tion, GIS makes the propagation of infectious disease easier to 
visualise by temporary map animation and network analysis 
(Boulos and Geraghty 2020; Zhou et al. 2020). With the aid 
of information technology (IT) solutions, improved accuracy, 
efficiency, resource monitoring and cost savings can support 
sound and significant investments across the entire public health 
sector (Kittayapong et al. 2008; Allam and Jones 2020). Numer-
ous studies have provided evidences that, as part of a hospital or 
emergency operations centre, GIS is an essential tool for many 
situational awareness programs dealing with pandemic diseases 
(Sithiprasasna et al. 2004).

Understanding the spatiotemporal incidences of COVID-
19 at the national level is extremely important to deliver vital 
perspicacity into how epidemics occur, continue, and recede. 
Oman is one of the world countries facing the pandemic risk 
of COVID-19, with its first confirmed case registered on 28th 

February 2020 in Muscat. According to the Omani Ministry 
of Health, the infection rate has increased sharply since the 
late of April to the mid of August, with almost 2274–82,924 
confirmed cases over this period, with a broader distribution 
in the majority of wilayats. From the demographic perspective, 
Oman currently represents one of the top-ranking countries in 
terms of the percentage of confirmed cases to the total popula-
tion of the country, with almost 23,000 cases per million (https​
://covid​19.who.int/; mid-November 2020). Although many 
studies have employed spatial techniques to assess spatial and 
temporal characteristics (e.g. centre, density, hotspots, cold 
spots, direction, etc.) COVID-19 (e.g. Biswas and Sen 2020; 
Danon et al. 2020; Kang et al. 2020; Zhou et al. 2020), no 
research to yet was found for Oman. Such an assessment is 
important to quantify spatial and temporal patterns of COVID-
19 spread, assess its track changes over time, and determine 
the different demographic, environmental, and socioeconomic 
variables that may accelerate transmission and infection rates. 
From a policy standpoint, this assessment is desired to aid 
policy makers develop their plans and strategies in a more 
reliable way, taking into consideration spatial variations of 
this health massive threat. In this context, GIS—through a 
wide variety of spatial statistics—can play a significant role 
in delineating the spatial and temporal patterns of COVID-
19 in Oman. Specifically, advancements in GIS techniques, 
particularly spatial modeling and data mining, have made it is 
possible to provide an inclusive picture of the primary spatial 
hotspots of this virus at different spatial scales (e.g.  Wang 
et al 2020; Kamel Boulos and Geraghty 2020; Sarwar et al. 
2020; Mollalo et al. 2020; Bherwani et al. 2020; Zhu and Xie 
2020; Adekunle et al. 2020; Shi et al. 2020). A representative 
example is Ramírez-Aldana et al. (2020) who applied spatial 
statistics to characterize COVID-19 patterns over Iran.

The main aims of this study are to (1) assess the spatiotem-
poral patterns of COVID-19 spread using data of confirmed 
cases, which varied from 2274 (29th April) to 40,070 (30th 
June 2020); (2) quantify temporal variations of the rate of 
infection; and (3) compare variations in the daily infection 
rate at wilayat level. Results of this can contribute to under-
standing the dynamics and processes controlling the spread of 
COVID-19 over both space and time, which can help policy 
makers adopt more appropriate actions and strategies to miti-
gate the spread of this pandemic in Oman. Herein, it should 
be indicated that this study uses the term “wilayat”, which is 
a local administrative level, equal to a “county” in the U.S.

2 � Materials and Methods

2.1 � Study Area

Oman occupies the southeast corner of the Arabian Penin-
sula and is located between latitudes of 16° 40´ and 20° 20´ 

https://covid19.who.int/
https://covid19.who.int/
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N and longitudes of 51° 50´ and 59° 40 E. The total area of 
Oman is 309,500 km2 and it has a coastline extending almost 
165 km from the Strait of Hormuz in the north to the Repub-
lic of Yemen in the south. their are 11 governorates (Fig. 1b) 
and 61 wilayats in Oman (Fig. 1c). The total population of 
Oman is 4,617,927 based on the Oman’s National Centre 
for Statistics and Information data (NCSI 2019). Figure 2 
shows the population and population density (population/
km2) for each province in 2019. Based on Oman’s National 
Centre for Statistics and Information (NCSI 2019), Bowsher, 
As-Seeb and Salalah had the highest populations; Mutrah 
ranked fourth in population but first in population density 
(NCSI 2019).

2.2 � Data Set Description

Real-time data on COVID-19 were obtained using the Taras-
sud + App (TA +): a mobile application developed by the 
Oman’s Ministry of Health (OMH). The TA + displays the 

country status of COVID-19, guidelines, self-reported data, 
statements and other COVID-19 metadata, including an 
interactive world map for coronavirus statistics (Ming et al. 
2020; Sohrabi et al. 2020). The TA + is updated regularly—
on a daily basis—with data on new, existing confirmed 
cases, recoveries, and deaths through the Omani governo-
rate and local authorities. Although TA + has an application 
programming interface (API) to extract updated informa-
tion, official statements are delivered publicly only by the 
Ministry of Health (MOH). The virus was confirmed to has 
reached Oman on 24th February following a confirmed posi-
tive test for two citizens arrived from Iran.

This study deployed daily COVID-19 data for 8 weeks 
spanning the period between 29th April and 30th June 
2020. The early weeks of the spread were not included in 
this study given the low number of confirmed cases. Even 
these few cases distributed over a small number of wilayats. 
Figure 3 illustrates the growth in the accumulative, recov-
ered and death cases between 29th April and 30th June in 

Fig. 1   Study area, including: a location of Oman; b distribution of the 11 governorates in the study area; and c wilayats in the study area
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Oman. However, although the selected study period can be 
seen as an early stage in the proposed timeline of COVID-
19 in Oman, this period corresponded to a sharp increase 
in the total infected cases across the country. Accordingly, 
the selected study period gives an opportunity to explore 

the spatial distribution of COVID-19 in Omani wilayats in 
a more robust way. The daily data of COVID, combined 
with relevant spatial data (i.e., coordinates of locations of 
the cases), were employed in this study. Table 1 lists the 
different spatial data used in this study and their attributes. 

Fig. 2   Schematic map showing the distribution of population in Oman in 2019: a population distribution in 61 wilayats in 2019; b population 
density (population/km2) for each wilayat in 2019. The same scale is used for all maps

Fig. 3   A log–log plot showing 
the growth in the accumulative, 
recovered, and deaths cases 
between 29th April and 30th 
June 2020 in Oman
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Importantly, the data were collected at varying spatial scales 
(i.e., governorates, wilayats, districts, and even street level). 
All these spatial data were integrated in a geodatabase in a 
GIS environment. Figure 4 depicts the spatial distribution 
of the confirmed cases per each week over the period from 
29th April to 30th June 2020. Also, we showed the spatial 
distribution of COVID-19 cases, but per 100,000 of popula-
tion in each wilayat. This gives indications on the different 
hotspots of this pandemic, as a function of the total number 
of populations in each wilayat.  

2.3 � Spatial Analytic Methods

GIS provides a wide variety of tools that allow for deter-
mining different spatial statistics of any epidemic risk (e.g. 
distribution, hotspots, orientation, trajectories of spread, 
etc.). In this context, we employed GIS techniques to inves-
tigate spatial variations of disease incidence, visualize the 
epidemic information, and spatial tracking of pandemic 
hotspots over the study period. This is a preliminary, but 
necessary, step to understand spatial variability of incidence 
in relation to different environmental, socioeconomic, topo-
graphic, and demographic variables and also for a spatiotem-
poral prediction of regional transmission speed and magni-
tude in the near future.

2.3.1 � Calculating Geographic Distribution

The calculating geographic distribution (CGD) is a com-
monly used approach by epidemiologists to compare disease 
distributions over days or weeks (Dong et al. 2017). In this 
study, we employed CGD, using ArcPro 2.5 software, to 
analyze spatial distribution of COVID-19 in Oman, mainly 
its centres and tracing. Simply, this method was used to iden-
tify the spread of COVID-19 by calculating and mapping 
hotspots of spread on a weekly basis from 29th April to 
30th June. First, for each week, the mean centre of the out-
break was identified for the whole country. This was made 
based on daily aggregated data for each week. Second, we 
computed the weighted variation in the distance between 

each location with confirmed cases and this mean centres. 
This procedure was implemented using the standard distance 
tool within ArcPro 2.5 software. To account for changes in 
the mean centre over the whole study period, we employed 
the Standard Deviational Ellipse (SDE) method in ArcPro. 
This tool gives quantitative assessment of changes in the 
trajectories of COVID-19 hotspots over the study period 
(Samphutthanon el al. 2014). Statistically, for each week, 
SDE calculates the standard deviation of any location, rep-
resented in x- and y-coordinates, from the mean centre of 
the pandemic, illustrating these deviations in an ellipse 
with a diameter up to one standard deviation (Carnes & 
Ogneva-Himmelberger 2012). This ellipse has a directional 
axis, expressed in degrees (0–360), which defines the spa-
tial orientation of COVID-19 spread for this specific week 
(e.g. 90°: east expansion, 180°: south expansion, 270°: west 
expansion, etc.). This method allows to quantitatively define 
changes in the trajectory of COVID-19 main centre between 
the different weeks (Scott and Janikas 2010). These ellipses 
also give a visual inspection of changes in the trajectories of 
COVID-19 over time.

2.3.2 � Spatially Integrated Statistics

To define the spatial patterns of the spread of COVID-19, 
we employed two well-established geospatial statistics: 
global Moran’s I and G test. These statistics are well-non 
in the GIS literature as powerful tools to understand spa-
tial patterns of any phenomenon, including epidemic risks 
(Bailey 2001; Getis 1991; Cromley 2003; Bailey et al. 
2011; Adegboye et al. 2020). Moran’s I and G test are 
measures of spatial autocorrelation of data, allowing to 
define spatial clustering of COVID-19 incidence and its 
varying spatial densities. Spatial data are simply described 
as highly correlated if likely values are spatially close to 
each other, and conversely defined as independent or ran-
dom data if no pattern that explains the arrangement of 
these data can be identified (Naish et al. 2011; Huang et al. 
2020; Kang et al. 2020). In GIS, their are different tools 
that provide a value of Moran’s I magnitude, with positive 

Table 1   Datasets obtained 
from Oman’s Ministries and 
Departments

The geodatabase and an excel-sheet data coverage such as COVID-19 confirmed cases, validation data of 
confirmed cases were obtained from the Ministry of Health (MOH), while data on the population and pop-
ulation density were obtained from National Centre for Statistics and Information (NCSI 2019)

Variables Format Source

1 Population size GIS Shapefile (polygon) NCSI
2 Population density GIS Shapefile (polygon) NCSI
3 Districts map GIS Shapefile (polygon) NCSI
4 Governorates and Wilayats boundaries GIS Shapefile (polygon) NCSI
5 Daily COVID-19 data TA + (MOH) MOH
6 COVID-19 (validation data) Excel-Sheets MOH
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values indicating a tendency toward clustering, while 
negative values suggest a random pattern of distribution. 
Other relevant statistics to Moran’s I statistic is Z score, 
which quantifies the degree of deviation (i.e., dispersion 
or clustering around Moran’s I value) and p value, which 

gives indications on the statistical significance of clus-
tering outputs. In this context, significant autocorrelation 
reveals that the value of the variable at a given location 
depends on the values at neighbouring locations and vice 
versa. Typically, the global Moran’s I value lies within a 

Fig. 4   Maps showing the number of cases per week for each wilayat between 29th April and 30th June in Oman
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range of − 1.0 to + 1.0, with values close to -1 suggesting a 
typically random pattern of COVID-19 spread and values 
approaching 1 indicating more clustering (Adegboye et al. 
2020; Ceylan 2020). According to Prasannakumar et al. 
(2011), Moran’s I is computed, as:

where N is the number of COVID-19 cases, Xi is the vari-
able value at a particular location, Xj is the variable value 
at another location, X is the mean of the variable, and Wij is 
a weight applied to the comparison between location i and 
location j. This distance-based weight matrix is based on 
the inverse distance between locations I and  j (i.e.,, 1/dij).

Similar to Moran’s I test, G test is another indicator of 
spatial autocorrelation, identifying hotspots and local spatial 
clustering of COVID-19 (Getis & Aldstadt 2004). However, 
it is inversely related to Moran’s I test, as values close to − 1 
indicate aggregation of similar values (i.e., clustering), while 
values close to 1 suggest segregation (i.e,. random patterns). 
According to Getis and Aldstadt (2004), G is computed, as:

where xi and xj are attribute values for locations i and j, wi,j 
is the spatial weighted distance between locations i and j. N 
is the number of locations, ∀ j ≠ i indicates that locations i 
and j cannot reflect the same feature.

G test commonly returns four values: observed general G, 
expected general G, Z score, and p value (Getis and Aldstadt 
2004). Further details about the computation of these statis-
tics are outlined by Getis and Ord (2010). First, we looked 
at the p value of this statistic. If it is small and statistically 
significant, this suggests that their is a spatial clustering of 
the cases. Otherwise, their is a random distribution of the 
cases. If p value suggested a clustering, we look at the sign 
of Z score. A positive sign (i.e., observed General G index 
is larger than the expected General G index) indicates that 
higher values of COVID-19 cases tend to be clustered over 
the study domain. Rather, a negative sign of Z score (i.e., 
the observed General G index is smaller than the expected 
index) suggests that lower cases of COVID-19 tend to be 
grouped (Getis and Ord 2010).

Getis-Ord G∗

i
 is another test commonly used in hotspot 

analysis in GIS. Similar to G test, it provides two meas-
ures: Z score and p value. Both statistics indicate whether 
the highest/lowest numbers of COVID-19 cases tend to be 
spatially dependent (i.e., clustering) (Huang et al. 2020; 
Huling et al. 2020). Specifically, resultant Z score informs 
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where locations with either high or low incidence tend to be 
clustered over space. Importantly, according to Getis-Ord 
G∗

i
 , for any location to be considered as a significant hotspot 

of COVID-19, other locations in the neighbourhood should 
exhibit high incidence of COVID-19 as well. Accordingly, 
the local sum of cases for any specific point and its neigh-
bours is compared proportionally to the sum of cases for 
all points over space. For statistically significant positive Z 
scores, the larger the Z score is, the more intense the clus-
tering of high values (hot spot). A statistically significant Z 
score is determined when the local sum is much different 
than the expected local sum. Following this approach, a Z 
score is assigned to each location over space. For statistically 
significant positive Z scores, higher Z score suggests more 
clustering of higher number of cases (i.e., hot spot). In con-
trast, statistically significant negative and smaller Z scores 
indicate more clustering of lower incidence of COVID-19 
(i.e., cold spot) (Huling et al. 2020). Herein, we calculated 
G∗

i
 statistic to analyze spatial clustering of COVID-19 cases 

for each week independently for the period from April 29 
to June 30 and define the corresponding hotspots and cold 
spots sites. Herein, G∗

i
 is computed, as:

where N is the number of COVID-19 cases, Xi is the vari-
able value at a particular location, Xj is the variable value 
at another location, X is the mean of the variable, and Wij is 
a weight applied to the comparison between location i and 
location j. This distance-based weight matrix is based on the 
inverse distance between locations i and j (i.e., 1/dij).

3 � Results

3.1 � Spatiotemporal Orientation and Shifting

3.1.1 � Weighted Mean Center (WMC)

Figures 6 (a small circle highlighted in green) and 7 illus-
trate the weekly change in the WMC of COVID-19 infec-
tions from 29th April to 30th June 2020. During this 9-week 
phase, the x-coordinate of the mean centre of COVID-19 
in Oman moved many times. Overall, the tracking change 
results revealed that the centers of COVID-19 outbreaks 
moved or spread to the northwest and southwest of Oman. 
Specifically, the mean center was initially located at 58.22° 
E, 23.41  N, but an animation of the vicissitudes described 
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a transfer in the WMC over time. For instance, on 5 May 
2020 the WMC was placed at 58.23° E, 23.43° N, but had 
shifted to 58.23° E, 23.46° N, about 3 km northwest, by 13 
May 2020 (Table 2).

3.1.2 � Directional Distribution

Directional distribution (DD) analysis indicated that the 
trend of the COVID-19 cases shifted from northeast to 
northwest (Fig. 6). As noted, during the 9-week period, 
the main hotspots of COVID-19 were placed primarily in 
northern Oman (wilayats of Mutrah, Bowsher, and As-
Seeb). Getis-Ord G∗

i
 coefficient suggests that these three 

wilayats were defined as hotspots at a significance level 
of 99% (p < 0.02). While wilayat of Ibri was defined as a 
hotspot (p < 0.05) in the first week of the study area (30th 
April–4th May), it rapidly converted to a wilayat with 
non-significant clustering of COVID-19 cases in Oman 
(p > 0.05). Rather, few wilayats on the eastern coast were 
defined as significant hotspots in Oman. Notably, south-
ern and most of inner wilayats were classified wither as 
cold spot regions or regions with non-significant clus-
tering of COVID-19 incidence over the study period. 
It should be indicated that the virus expanded over the 
country, but the rate of westbound spread is notewor-
thy. Ellipses changed in size and shifted from the north-
east to the northwest and southwest during the study 
period. Table 3 displays the axis lengths, rotation, and 
area of each ellipse. The size of the ellipses increased 
and decreased over time. The orientation coincided with 
the spatiotemporal agglomerate characteristics such as 
population and population density, indicating that the 
spread of COVID-19 infections exhibited both orientation 
and direction and showed a spatiotemporal trend in the 
9 weeks from 29 April to 30 June 2020. Thus, the extent 
of the SD varied from week to week. For example, the 
width area of the ellipse was 194 km and its length was 

227 km on 29 April 2020, while on 29 May 2020, it was 
176 km in width area and 184 km in length (Fig. 6 and 
Table 3). Although Table 3 shows that the east axis moved 
40 km west by the end of the study phase, regardless of 
increase or decrease over time, the distribution relative to 
the mean centre was more concentrated between 57.97° 
and 58.25° E (see Fig. 7).  

3.2 � Spatiotemporal Spread

The global Moran’s I statistic showed that COVID-19 cases 
in datasets (numbers of confirmed cases) were clustering 
throughout the study. All of the Moran’s I and Z scores were 
well above the 2.25 threshold (a confidence level above 
95%), ranging from 2274 cases on 29 April to 40,070 cases 
on 30 June 2020. In regions wherever their existed higher 
numbers of cases, neighboring wilayats inclined to have 
analogous number of cases. Our results showed a signifi-
cant spatial autocorrelation, indicating that COVID-19 rates 
between wilayats were positively and significantly spatially 
related (clustering with distances) from 29 April to 30 June 
2020 (see Fig. 8). It appears that the pattern of COVID-
19 becomes more clustered over time in the study area; it 
could indicate that the disease is spreading less rapidly. 
Similarly, the Moran’s I and G test statistics indicated posi-
tive relationships between COVID-19 rates and population 
density (Moran’s I = 0.276, Z score = 7.274, p value = 0.0001 
and G = 0.0002, Z score = 7.506, p value = 0.0001, respec-
tively). Likewise, positive relationships were found between 
COVID-19 rates and total population (Moran’s I = 0.204, 
Z score = 4.367, p value = 0.0001 and G = 0.00007, Z 
score = 3.946, p value = 0.00007, respectively).

3.3 � Spatial Clustering

The results are presented every week from 29 April to 30 
June 2020 in Fig. 6. They indicate hotspot areas with sig-
nificantly high infection rates findings. However, our results 
showed varying rates of infections, and the pattern of risk 
changed with time (see Fig. 6): some wilayats had more or 
fewer infections than others. For example, wilayats such as 
As-Seeb and Bowsher in the Muscat Governorate, in particu-
lar, were considered medium-risk areas from 5 to 21 May 
2020 but were identified as high-risk areas (hotspot-95% 
confidence) from 29 May to 30 June 2020 the conditions that 
Z score higher than 3.50 (hotspot-95% confidence). Another 
example, wilayat Sohar in Al-Batinah North Governorate, 
was identified as a non-significant area from 5th May to 21st 
June 2020, but a low-risk area (hotspot- 90% confidence) 
from 29th June to 15th June and a medium-risk area on 23rd 
June 2020 (see Fig. 6). Based on the COVID-19 level for the 
9 weeks, we were able to identify willayat Mutrah (Muscat 

Table 2   The centre of COVID-19 weighted by the number of cases 
for each wilayat over the 9-weeks period (highlighted in green in 
Fig. 5)

Date X-Coord Y-Coord km2

29-Apr-20 58.255212 23.419215 0
5-May-20 58.239013 23.431584 2.29
13-May-20 58.240718 23.433133 0.490
21-May-20 58.234877 23.459678 3
29-May-20 58.209793 23.459678 3.32
7-June-20 58.234877 23.459678 4.11
15-June-20 58.106908 23.312946 13.44
23-June-20 58.047374 23.297791 6.4
30-June-20 57.97499 23.266568 8.14
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Governorate), as the one with the highest rates of infection 
in the whole country (Z scores ranging between 7.5 and 5.2 
from 30 April to 7 June 2020), whereas it classified as a 

second highest rates from 15 to 30 June 2020. This approach 
intimates that epidemiologists can understand illness case 
clusters when they factor in spatiotemporal characteristics.

Fig. 5   Maps showing COVID-19 count per 100,000 and week for each wilayat between 29th April and 30th June in Oman
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Fig. 6   Clustering of COVID-19 (using the infection rates for each 
wilayat as the attribute value). Locations with similarly high num-
bers of COVID-19 (hotspots) are shown in dark green. COVID-19 
rates coded by Gi* statistics display the prevalence of COVID-19 
based on weekly data from 29th April to 30th June 2020. The cen-

tre of COVID-19 is weighted by the number of cases and over each 
wilayat over the 9-weeks period (highlighted with green). Standard 
deviational ellipses of COVID-19 infections distribution in a study 
area over the 9-week period from 29th April to 30th June 2020 (high-
lighted in black)
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4 � Discussion

This study applied a different of spatiotemporal and statis-
tical methods including as a CGD, pattern, and clustering 
analysing, all of which are important to understand the 
spread of COVID-19 in Oman from 29 April to 30 June. 
The first approach applied in this study was to analyze 
the geographic distribution of COVID-19. The weighted 
mean centre changed throughout the study phase (see 
Fig. 6, a small circle highlighted in green). The capability 
to ascertain a weighted COVID-19 centre is valuable for 
tracing variations in the distribution coz it acts well when 
investigating the distribution of values related to an area. 
These results revealed dynamic areas of infections. One 
probable reason for the continued increase in COVID-19 
infections and the vicissitudes and shifts between wilayats 
stated in this research is the imperfection of the control 

strategies currently being practiced restricting the spread 
of the virus since the first case was identified on 24 Febru-
ary 2020. Another potential reason could be that COVID-
19 community transmission in certain regions may have 
been overlooked or certain regions were not classified as 
risk areas. Furthermore, the current data and limited study 
period may not be enough to discover the valid reasons for 
the high concentrations of COVID-19 infections.

Although control measures such as home quarantine, 
social distancing and wearing masks have been implemented 
across Oman, the number of confirmed cases continues to 
increase steadily. Tracking the changes in the distribution 
of infections will halp epidemiologists and authorities in 
Oman to predict where the next hotspot will appear, and 
thus attempt to prevent it by ordering lockdowns before the 
rate of infection increases. DD indicates this trend, coz it is 
a confidential statement and renders results based on an ana-
lytical method rather than merely a distinct representation of 
maps (see Fig. 6, ellipses highlighted in black). The ellipses 
of COVID-19 coincide with the population numbers and 
densities features of affected areas (see Fig. 6, ellipses high-
lighted in black). This may be due to the wilayat of Mutrah 
being a historic and busy trade centre—it also includes Mina 
Sultan Qaboos, Oman’s main port (Alkamali et al. 2017); 
Bowsher, a new town which is the location of various gov-
ernment offices and organisations; and As Seeb, an ancient 
town surrounded by a number of farms, a popular summer 
resort and industrial zone with high reliance on foreigners. 
All these circumstances may have facilitated the spread of 
COVID-19 in the area.

This research also aimed to identify the spatiotemporal 
patterns of COVID-19 in Oman. Moran’s I was applied 
to identify clusters using attribute values and locations of 
COVID-19. This is typically done with polygons containing 
a summary statistic, such as COVID-19 case rates, census 
data or population density data. It is critical to perceive that 
the autocorrelation cannot be used to identify clusters, as 
shown in spatially integrated charts such as Fig. 8. It indi-
cates whether the patterns of values over the study area 
are distributed in an assembled, irregular or dispersed way 
(Zhang and Zhang 2007).

Our results showed that the average difference between 
neighbouring features is less than those between all the fea-
tures; this remained true for the values which appeared to 
cluster throughout the study period, from 29 April to 30 
June 2020. However, the Moran’s I autocorrelations did not 
identify features of the variables (e.g. the distance between 
values, population or population density) as high and low 
cluster values, as we applied the G test for this purpose. 
theirfore, the autocorrelation and G test are essential meth-
ods to identify robust spatiotemporal patterns in the associa-
tions between factors and COVID-19 infections; however, 

Fig. 7   Shift in the weighted mean center over the study period. The 
centre of COVID-19 is weighted by the number of cases for each 
wilayat over the 9-weeks period (highlighted in green in Fig. 6)

Table 3   Changes in the DD (1 SD) from the weighted mean centre of 
COVID-19 infections over the 9-week period

Date Length Weight Area (km2) Rotation

29-Apr 227 195 34,862 50
5-May 225 194 34,487 55
13-May 211 192 31,921 53
21-May 196 181 24,253 74
29-May 175 188 22,384 88
7-June 176 184 25,391 90
15-June 326 194 47,966 18
23-June 360 211 55,889 23
30-June 399 213 65,624 27
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they only considered the distribution of an individual ele-
ment in a single layer at a time (see Fig. 8). It is hard to 
conclude whether robust or weak associations are enhancing 
higher or lower spatially ghettoized. For this, we applied Gi* 
to map hotspots and cold spots across the country. Mapping 
the hotspots and cold spots of infection was the third step in 
understanding how it spread. By applying procedures such 
as the Gi*, we were capable of recognizing spatial areas 
showing disease incidences with a higher certainty (Fig. 6). 
The G∗

i
 maps showed potential epidemics as well as explain-

ing the underlying origin of infection (Fig. 6). These maps 
also allowed us to compare places based on quantities (Baah 
et al. 2015) and to identify which sites meet our criteria to 
understand the relationships between locations in the study 
area.

Mapping the hotspots and cold spots of infection can 
be also used to map health statistics to compare the qual-
ity of health care in Oman (McLafferty 2003). The Min-
istry of Health in Oman and other public officials can 
apply classification maps to see how and where health 
care varies. Our results presented hotspots of the geo-
graphical distribution of COVID-19 from 29 April to 
30 June 2020 (see Fig. 6). The disease has prominent 
regional properties in terms of geographical distribu-
tion among 61 wilayats, with significant spatiotempo-
ral agglomeration. It is vital to note that the infection 
was initially concentrated in wilayat Mutrah; it spread 
first to neighbouring wilayats, particularly As-Seeb and 
Bowsher in the Muscat Governorate, and then throughout 
the country.

Fig. 8   a Autocorrelation (Moran’s I) and observed General G statistic 
marked with black, while (Moran’s I, and G test p values) is marked 
with red; Fig. 4b. Autocorrelation (Moran’s I) and observed General 

G statistic marked with black, while (Moran’s I, and G test Z score) is 
marked with red
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Analyzing the possible causes such as professions and 
industries most at risk, the density of living arrangements 
(not simply population density), of COVID-19 infec-
tions is halpful to hazard supervisors in deciding where 
to concentrate their resources. This research can signifi-
cantly halp make the country-wise healthcare policies by 
applying GIS tools to manage temporal assessments of 
pandemic diseases such as COVID-19. Thus, wise health-
care policies are required to provide developed COVID-
19 monitoring and provide more useful intervention and 
control of the novel coronavirus in Oman.

5 � Conclusion

Based on the data of COVID-19 in Oman from 29 April 
to 30 June 2020, in this study, the spatial CGD, Moran’s 
I, General- G, and G∗

i
 statistics were adopted to deduce 

that COVID-19 has had a significant spatial correlation 
and clustering in Oman. Although the global Moran’s I 
and G-statistic identified strong spatial patterns of the 
COVID-19 in the relationships between variables, these 
approaches only considered the distribution of single lay-
ers at a specific time. It was hard to determine whether 
strong or weak relationships were more and less spatially 
segregated. Using G∗

i
 (hotspots and cold-spots analysis), 

we were able to identify which spatial districts showed 
a high likelihood of infection events. Therefore, links 
between COVID-19 hotspots, cold-spots, density, density, 
presence, or absence, can be useful in future studies to 
investigate their correlations, such as ecological, climato-
logical, and socioeconomic variables. The epidemic situ-
ation in wilayat, such as Mutrah, As-Seeb, and Bowsher 
in the Muscat Governorate, is more severe, and the current 
transmission still presents an increasing trend. Therefore, 
the transmission capacity of COVID-19 in other wilay-
ats in Oman is strong. The spatiotemporal risk details 
exhibited in this research indicate that the temporal haz-
ard model − based on weekly infection rates produces a 
better understanding of changes. Remaining to develop 
the prevailing COVID-19 monitoring regime’s effective-
ness is vital to give more precise, comprehensive moni-
toring data. In turn, it will provide useful strategies for 
enhancing the transmission disease surveillance system 
and controlling interventions in any effected region. GIS 
can be used to map the disease’s occurrence against multi-
ple parameters, including demographics, the environment, 
geography, and past incidents to understand the origin of 
outbreaks, spread patterns, and intensity, which in turn 
supports the implementation of control, preventive and 
surveillance measures.
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