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Abstract
As an effect of climate change, cities need detailed information on urban climates at decision scale that cannot be easily 
delivered using current observation networks, nor global and even regional climate models. A review is presented of the 
recent literature and recommendations are formulated for future work. In most cities, historical observational records are too 
short, discontinuous, or of too poor quality to support trend analysis and climate change attribution. For climate modeling, 
on the other hand, specific dynamical and thermal parameterization dedicated to the exchange of water and energy between 
the atmosphere and the urban surfaces have to be implemented. Therefore, to fully understand how cities are impacted by 
climate change, it is important to have (1) simulations of the urban climate at fine spatial scales (including coastal hazards 
for coastal cities) integrating global climate scenarios with urban expansion and population growth scenarios and their 
associated uncertainty estimates, (2) urban climate observations, especially in Global South cities, and (3) spatial data of 
high resolution on urban structure and form, human behavior, and energy consumption.
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1 Introduction

Nowadays, 55% of the global population lives in urban areas 
(Seto et al. 2017). By 2050, it is projected that the urban 
population will be increased by more than 2.5 billion with an 
associated 70% increase in urbanization rate (Grimm et al. 
2008; Seto et al. 2017; Kuang 2019a). Efforts towards envi-
ronmental sustainability have to be, therefore, on the front 
line to improve the habitability in cities as well as to main-
tain a sustainable biodiversity in rural areas while promoting 

economic development. Urban areas are already vulnerable 
to heat wave episodes and floods, and the globally projected 
urban growth will increase their vulnerability (Rosenzweig 
et al. 2018). Urban citizens are exposed to additional heat 
stress due to the urban heat island with warmer near-sur-
face air temperature in urban centers compared to the sur-
rounding areas. As the urban dwellers are unable to recover 
from extreme temperature during daytime, the urban heat 
island (UHI) effect can be particularly detrimental to public 
health during heat waves (De Troeyer et al. 2020). Land-use 
and land-cover changes (LULCC) are expected to strongly 
impact climate warming trajectories in the near future 
(Cugnon et al. 2019; IPCC 2019; Kuang 2020b). Optimizing 
LULCC may lead to reduced climate warming at regional 
scale, as well as increased carbon sequestration. Therefore, 
to achieve the UN 2030 Sustainable Development Goals, 
it is critical to improve the quality of human settlements 
(Kuang 2020a).

Cities alter the local weather and climate conditions by 
perturbing temperature, moisture, surface energy and radia-
tion fields, wind, and turbulence as compared to rural envi-
ronments. Another unique feature of cities is the release 
of the anthropogenic heat flux from energy consumption 
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(Ichinose et al. 1999; Bohnenstengel et al. 2014; Ma et al. 
2017; Kuang 2019b). A well-known phenomenon is the so-
called UHI. Three main factors contribute to the establish-
ment of the UHI: 3-D urban geometry, thermal character-
istics of impervious surfaces, and anthropogenic heat (see 
Fig. 1). There is also a strong contribution of local back-
ground climate to the UHI magnitude (Zhao et al. 2014; 
Ward et al. 2016). As can be seen from Fig. 1, 3-D urban 
geometry (vegetation) is the most important factor contribut-
ing to the development (mitigation) of the UHI phenomena 
independently from the background climate. The anthropo-
genic heat release comes as the second important factor for 
the UHI development with a bigger contribution than that 
of the thermal parameters of the urban materials used for 
the building construction. The presence of urban vegetation 
and water apparently leads to urban cooling to the point of 
negating the UHI effect completely.

Cities are also subject to other phenomena such as the 
urban dryness island that refers to the lower relative humid-
ity in cities as compared to more rural locations (Jia 2020) 
and the urban wind island where cities experience slower 
wind speeds as compared to their adjacent suburban and 
countryside (Wu et al. 2017; Bader et al. 2018). Finally, dur-
ing periods of heavy rainfall, the urban hydrological system 
has to cope with a large amount of surface runoff water due 
to the large fraction of impermeable surface (Hamdi et al. 
2011).

Only one very recent review paper has been published by 
Masson et al. (2020) on urban climate and climate change. 
As a complement, in this review article, we present the 
state-of-the art of observations and modeling of the urban 
climate in Sects. 2 and 3, respectively. Sections 4 and 5 
contain information about the observed urban climate trend 
and its interaction with global and regional-scale change, 

respectively. Section 6 provides a literature review of future 
urban climate under global climate change as a complement 
to Masson et al. (2020). Sections 7 and 8 provide, respec-
tively, information for two use case studies, one for the city 
of Brussels (Belgium) and the other one for three Asian 
mega-cities representing both developed and developing 
countries. Section 9 provides the main conclusions and rec-
ommendation from this review article.

2  Observations in Cities

A typical city has a horizontal equivalent diameter ranging 
from a few kilometers to a few tens of kilometers and has 
structural features that influence the air flow at dimensions 
of few 10 m vertically (street canyon). According to Britter 
and Hanna (2003), length scales in the urban environment 
can be divided into four conceptual ranges: street scale (less 
than 100 m), neighborhood scale (up to 1 or 2 km), city scale 
(up to 10 or 20 km), and greater metropolitan and regional 
scale (up to 100 or 200 km). Therefore, the siting of an urban 
station depends on an appreciation of the concept of scale. 
Urban station networks can be, therefore, classified accord-
ing to the aforementioned four scales (Muller et al. 2013). 
Since, in an urban environment, the standard conditions pre-
scribed for meteorological and climatological observations 
by WMO (2017) cannot be met due to the 3-D geometry of 
the city environment, Oke (2006) has published a WMO 
report about guidelines to obtain representative meteorologi-
cal observations at urban sites.

Consider, for example, the urban canopy layer which is 
defined roughly as the air layer below the roof level. In this 
layer, the thermal and dynamical perturbation are very com-
plex and depend on the 3-D geometry of the street canyon. 

Fig. 1  Factors contributing to the development of the UHI in different 
cities around the world under different background climate. Data are 
compiled from the recent literature since 2007 (www.iauc.org news-
letter bibliography section). The red and blue colors bars represent, 

respectively, positive and negative mean observed and/or modeled 
values. Horizontal black bars represent the standard deviation. Ther-
mal parameters represent albedo, emissivity, heat capacity, and ther-
mal conductivity of urban materials

http://www.iauc.org
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Measurements in this layer are therefore strongly determined 
by microscale features. Considering homogeneous urban 
areas and by horizontal averaging, the neighborhood scale 
restores homogeneity of the urban surfaces at a scale large 
enough to filter out repetitive surface inhomogeneity at the 
street canyon scale. Finally, the roughness sublayer extends 
from the surface up to a height in the vertical at which hori-
zontal homogeneity of the flow is achieved. Barlow (2014) 
pointed out that a significant part of the atmospheric bound-
ary layer can be occupied by the roughness sublayer in par-
ticular in areas with high buildings, and that roughness sub-
layer turbulence characteristics, inconsistent to the ones in 
the above inertial sublayer, can significantly affect dispersion 
characteristics in an urban environment. Local advection and 
horizontal turbulent transports are not negligible within the 
roughness sublayer; moreover, time averaged turbulence sta-
tistics and flux densities averaged over time are horizontally 
and vertically inhomogeneous (Salmond et al. 2012; Roth 
et al. 2015; Sugawara et al. 2016; Kuang et al. 2020).

At the city and regional scales, the altered surface condi-
tions and modified urban surface exchange results in the 
well-known urban climate phenomenon known as the UHI, 
and these spatial scales focus on the whole boundary layer 
and its modification due to the presence of an urban environ-
ment. Both scales focus on the modification of the whole 
boundary layer. Processes in the urban roughness sublayer 
and the canopy sublayer are not of central importance at 
this spatial scale. The urban heat island generally prevails 
at night because of a faster cooling of rural areas compared 
to the urban ones. Across large mega-cities, UHI magnitude 
of up to 10–12 °C has been measured under certain weather 
conditions (Bader et al. 2018) where thermodynamically 
driven regional flows can be induced (Oke et al. 2017).

For numerous studies on the UHI, the scarcity of in situ 
measurement networks with high spatial density and quality-
controlled observations remains a strong limiting factor even 
for the measurements of standard meteorological variables 
across urban areas. Moreover, when present, such measure-
ments are frequently limited to measurement campaigns, and 
long-term datasets (more than year), as required for urban 
climatology, remain very scarce. They provide very useful 
information on the seasonal evolution of the urban climate at 
the decision scale for decision-makers, end-users, stakehold-
ers, and the end-users.

Several urban networks have been set up recently. One well-
known example is the Helsinki Testbed (Wood et al. 2013). 
This network aims to (1) help better understanding of process 
at mesoscale that can be implemented in weather forecast 
and dispersion modeling, (2) validate and calibrate satellite 
products, (3) provide verification data and initial conditions 
for climate research models, operational forecast models, and 
dispersion models, (4) develop end-user products and create an 
integrated information system (e.g., the Helsinki Testbed data 

archive), and (5) disseminate mesoscale meteorological and air 
quality data for both the research community and the general 
public. Another interesting example is the Tokyo Metropoli-
tan Area Convection Study (TOMACS; Nakatani et al. 2015) 
using dense meteorological networks, and TOMACS aims 
to better understand the mechanisms and processes related 
to extreme weather such as torrential rainfall, lightning, and 
tornadoes in the Tokyo metropolitan district. In collabora-
tion with related government institutions, private companies, 
local government, and residents, TOMACS aims to develop 
a predicting and monitoring early warning system of extreme 
phenomena, and to implement social experiments on extreme-
weather-resilient cities. In addition, a number of major field 
campaigns in different cities around the world have been 
conducted (1) in USA, for example URBAN 2000 (Allwine 
et al. 2002); Joint Urban 2003 (Allwine et al. 2004); Pentagon 
Shield (Warner et al. 2007); Madison Square Garden (Hanna 
et al. 2003); (2) in Europe, for example ESCOMPTE (Mes-
tayer et al. 2005); CAPITOUL (Masson et al. 2008); BUBBLE 
(Rotach et al. 2005); DAPPLE (Arnold et al. 2004), MOCCA 
(Caluwaerts et al. 2020), and for examples in the city of Sze-
ged (Skarbit et al. 2017) and Novi Sad (Secerov et al. 2015; 
Šećerov et al. 2019). Finally, there is still a need to harmo-
nize collection practice, instrumentation, station location, and 
quality controls across cities to facilitate collaborative research 
(Muller et al. 2015).

In the last decade, more crowdsourcing data are becoming 
available for the urban climate community, through the use of 
cheap sensors available in real time (IoT technology) that are 
built in various applications, e.g., in cars or in amateur weather 
stations in citizen science projects, etc. (e.g., see review of 
Muller et al. (2015). While they are far less reliable and accu-
rate than the professional observations, they are abundantly 
available, despite their limited public accessibility (since they 
are mostly owned by private companies), and can give spatial 
representations with very high spatial resolutions. These sen-
sors have larger errors than professional ones and the resulting 
data sets are much noisier than the ones have dealt with so far. 
However, this strong technological trend should be taken seri-
ously and the urban climate community is making efforts to 
understand how far these data are usable, at least as a comple-
ment to the traditional meteorological data (e.g., Meier et al. 
(2017)). Stated differently, there is a need to develop methods 
to identify the signal-to-noise ratios of such crowdsourcing 
data in comparison to the data that are developed and used by 
the meteorological community.
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3  Urban Parameterization in Climate 
Models

Specific dynamical and thermal parameterizations dedicated 
to the exchange of energy and water between the urban sur-
faces and the atmosphere have to be implemented in climate 
models to take into account the interactions between the 
surface and the atmosphere of the cities (Fig. 2).

These schemes were strongly developed after the year 
2000 and vary considerably in their complexity. In general, 
three different types can be distinguished (Kusaka et al. 
2001a; Masson 2006; Grimmond et al. 2010, 2011; Chen 
et al. 2011; Best and Grimmond 2015):

 (i) Slab or bulk approach by modifying soil and vegeta-
tion parameters in the Soil–Vegetation–Atmosphere 
transfer models. They generally apply an updated 
roughness classification following evidences from 
observational studies, which indicate that both rough-
ness length and displacement height are extra-large 
over cities. To take into account the anthropogenic 
heat fluxes, radiation trapping in the urban canopy, 
heat storage, and evaporation, the energy balance is 
also modified. However, these models do not resolve 
the three-dimensional structure of the city.

 (ii) In single-layer urban canopy modules (embedded 
within the lowest model layer), they are best fitted 
for use for a typical dense city center. They represent 
the city with a simplified urban canyon geometry that 
is able to capture almost all the 3-D physical process 
influencing the radiative and energy fluxes (Masson 
2000; Kusaka et al. 2001b).

 (iii) Multi-layer urban canopy modules integrate a direct 
interaction with the planetary boundary layer, since 
the urban effects are computed vertically throughout 
the urban canopy (Martilli et al. 2002; Hamdi and 
Masson 2008).

Since 2010, global climate modeling groups have begun 
to implement urban parameterization within the land surface 
scheme of their global circulations models. McCarthy et al. 
(2010) investigated the changes in the UHI intensity under 
doubled  CO2 conditions and anthropogenic heat scenarios 
using the Hadley Center Global Climate Model coupled to the 
bulk parameterization of (Best et al. 2006). Similarly, Oleson 
et al. (2011) used the Community Atmosphere Model version 
3.5 coupled to the Community Land Model-Urban single-layer 
module. Recently, Chen et al. (2016b) introduced an estimate 
of the global distribution of anthropogenic heat release into a 
global climate model. Modeling groups working at the regional 

Fig. 2  Schematic representation of the dynamical and thermal effect 
of urban environment. The principal dynamical effects of buildings 
on airflow close to ground are: (1) drag forces induced by vertical 
surfaces of the buildings with an associated loss of momentum, (2) 
friction forces from horizontal surfaces (canyon floors and roofs), 
with an associated loss of momentum, and (3) a more intense gen-
eration of turbulent kinetic energy from mean kinetic energy. In gen-
eral, the exchanges of momentum on the vertical surfaces (walls) are 
parameterized as the effect of pressure and drag forces induced by the 

buildings. The main thermal effect of the buildings is: (1) the calcula-
tion of the radiation (short and long wave) taking into account shad-
owing and radiative trapping effects of the buildings. View factors are 
computed, while multiple reflections of the incident solar radiation 
and long-wave reemission between walls and canyon floors are con-
sidered, (2) anthropogenic heat release, and (3) thermal parameters 
representing albedo, emissivity, heat capacity, and thermal conductiv-
ity of urban materials
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scale are also beginning to implement the three types of urban 
parameterizations described above within the land surface 
model component of their regional climate model (Kusaka 
et al. 2012a; Mccarthy et al. 2012; Hamdi et al. 2014; Trusi-
lova et al. 2016). Other modeling groups generally employ a 
dynamical downscaling of global climate model information 
with a non-urbanized regional climate model, while further 
high-resolution simulations are often performed using some 
type of statistical and/or dynamical downscaling by running 
offline urban modules (Früh et al. 2011; Lemonsu et al. 2013; 
Conry et al. 2015; Lauwaet et al. 2015; Hamdi et al. 2016; 
Hoffmann et al. 2018; Darmanto et al. 2019; Duchêne et al. 
2020). Finally, recent studies on the urban parameterization 
comparison (Kusaka et al. 2012b; Best and Grimmond 2015; 
Trusilova et al. 2016; Jänicke et al. 2017; Daniel et al. 2018) all 
suggest that a simple single-layer parameterization is sufficient 
for UHI modeling at regional scale and that we should take 
into account the requirement for increasing model complexity 
against what is actually needed for urban climate modeling.

4  Urban Climate and Global Scale Change

The impact of urban land cover on the global weather and 
climate is considered negligible by global climate mode-
ling groups, since the cities cover only 0.2% of the world’s 
land area. Lamptey (2010) showed, from an analytical 
approach, that urbanization produces globally 0.12 W m−2 
and 0.08 W m−2 of sensible and latent heat flux, respec-
tively, which has a minimal impact on the global climate 
compared to the other cover types (water, forest, vegetation, 
and desert). Zhang et al. (2013) and Chen et al. (2016b) 
introduced an estimation of the anthropogenic heat released 
globally as an external energy source into the lowest model 
layer of a global climate model. They found that while the 
global mean surface air temperature responses are insignifi-
cant (0.01 K annual mean), they are statistically significant 
with a change up to 1 K in mid and high latitude in winter 
and autumn over Eurasia and North America.

The winter mid-latitude jet has been simulated with an 
equatorward shift with increasing westerly wind at 20° N 
and decreasing westerly wind at 40° N. This suggests that 
global anthropogenic heat could produce a remote effect 
on surface air temperature and therefore disturb the normal 
atmospheric circulation.

5  Urban Climate and Regional Scale Change

At the regional scale, a percentage of the warming trend can 
be linked to the historical urbanization in rapidly industrial-
ized countries such as China. Sun et al. (2016) found that 
while China’s recorded annual-mean temperature increased 
by 1.44 °C over the period 1961–2013, urban warming 

influences account for about a third (0.49 °C). The annual-
mean minimum temperature is substantially more affected 
by urbanization than the maximum temperature (Liao et al. 
2017; Wang et al. 2017). In the United States, Hausfather 
et al. (2013) found that urbanization accounted for between 
14 and 21% of the increase of minimum temperatures since 
1895 and 6–9% since 1960 (the trends vary between 0.2 
and 0.6 °C per century for the period 1960–2010). Over 
Europe, Chrysanthou et  al. (2014) show that urbaniza-
tion could explain 0.003 °C/decade of the annual averaged 
pan-European temperature trend of 0.179 °C/decade. The 
strongest effect of urbanization was found in the summer 
(0.007 °C/decade). A similar effect was reported in other 
regions Japan—(Fujibe 2009), PuertoRico—(Torres-Valcár-
cel et al. 2015), and other cities (Bader et al. 2018), while no 
effect of urbanization was observed in Saudi Arabia (Almaz-
roui et al. 2013).

Therefore, if observations of near-surface air tempera-
tures in growing cities are used in the assessment of global 
warming trends, these trends may be overestimated (Fig. 3) 
(Hamdi 2010; Elagib 2011; Robaa 2013; Alizadeh-Choobari 
et al. 2016; Sachindra et al. 2016; Lokoshchenko 2017b; 
Arsiso et al. 2018). This urban warming is smaller for a 
station that was established originally in a densely built-up 
area (Jones and Lister 2009). Adjusting global temperature 
data to remove the impacts of urban effects revealed that, 
for 42% of global stations, urban areas warmed at slower 
rates compared to the surrounding non-urban areas (Bader 
et al. 2018).

There is more evidence from recent observational stud-
ies that statistically significant positive anomalies in mean 
but also in extreme precipitation are found over and down-
wind of the urban areas in different climate regions of 
the world, especially in the afternoon and early evening, 
Atlanta (Haberlie et al. 2015; McLeod et al. 2017); dif-
ferent inland and coastal US cities (Ganeshan and Mur-
tugudde 2015); Dutch coastal cities (Daniels et al. 2016); 
Hamburg (Schlünzen et al. 2010); Shanghai (Liang and 
Ding 2017). Over Beijing, Dou et al. (2015) found, how-
ever, that depending on the strength of the UHI, maximum 
precipitation values were found either over the most urban-
ized area of Beijing in the case of strong UHI (> 1.25 °C) 
or along its downwind lateral edges for a weak UHI 
(< 1.25 °C). Theoretical analysis (Han and Baik 2008) and 
regional climate models using urban canopy parameteri-
zations (Trusilova et al. 2008; Kusaka et al., 2014, 2019; 
Pathirana et al. 2014; Ganeshan and Murtugudde 2015; 
Zhong and Yang 2015; Song et al. 2016; Zhong et al. 2017; 
Zhu et al. 2017; Li et al. 2017; Ooi et al. 2017) have been 
used to simulate the impact of urbanization on the pre-
cipitation patterns near urban centers. Three mechanisms 
could be assessed: (1) upward motion induced by the urban 
heat island circulation can initiate moist convection by 
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creating an urban-induced convergence which may inter-
act with sea breeze for coastal cities, (2) increased urban 
roughness which may attract propagating storms toward 
the urban centers, and (3) urban aerosols which may inter-
act synergistically with the previous mechanisms produc-
ing a rainfall enhancement (Schmid and Niyogi 2014). 
Other studies suggest that increased aerosol concentra-
tions in urban areas can stop the precipitation formation 
process and therefore reduce heavy precipitation (Zhong 
et al. 2017; Daniel et al. 2018). Recently, studies have 
been conducted on the urbanization impact on Indian sum-
mer monsoon rainfall extremes (Shastri et al. 2015; Singh 
et al. 2016) and on the East Asian summer monsoon (Chen 
et al. 2016a; Jiang et al. 2017). Overall, the studies reveal 
the sensitivity of extreme monsoon rainfall events to the 
increased urbanization, but further work is still required 
to reduce uncertainties. Finally, urban areas also affect 
the other components of the water cycle by increasing the 
demand for evapotranspiration by the plants in cities by 

as much as 10% (Zipper et al. 2017) and increasing the 
surface runoff (Hamdi et al. 2011).

Zhang et al. (2009) reported that upstream urbaniza-
tion exacerbates UHI effects along the Washington–Balti-
more corridor in the US. Similar effect was found in the 
Suzhou–Wuxi area (China) by Zhang and Chen (2014) and 
more recently over the UK by Bassett et al. (2017) where 
the heat advection from small urban centers increases the 
mean nocturnal air temperature by 0.6 °C up to a horizontal 
distance of 0.5 km. There are also examples of interaction 
between sea-breeze front penetration and urban areas, either 
enhancing the sea-breeze front (Kusaka et al. 2000, 2019; Li 
et al. 2015) or decelerating its penetration inland (Yoshikado 
and Kondo 1989; Kusaka et al. 2000, 2019; Hamdi et al. 
2012a; Rojas et al. 2018) and therefore impacting the spatial 
distribution of the urban heat island. Finally, there is also 
evidences of synergistic interactions between UHI and heat 
wave episodes making the heat wave more intense in urban 
than rural areas and the nocturnal UHI during heat wave 

Fig. 3  Change in the annual-mean surface temperature over the 
period 1950–2018 based on local linear trend retrieved from the GIS-
TEMP data (Lenssen et al. 2019). This background warming is added 
to the local warming that has been reported during 1950–2018 in the 
literature from historical urbanization in different cities and plotted 
on top of the background as circle for each city. Colors of the circles 
refer to the magnitude of the urban warming calculated as the back-
ground warming plus the historical urbanization warming. This map 

has been compiled using the following studies: (Ajaaj et  al. 2018; 
Alizadeh-Choobari et al. 2016; Bader et al. 2018; Chen et al. 2016a, 
b; Chrysanthou et al. 2014; Doan et al. 2016; Dou et al. 2015; Ela-
gib 2011; Founda et al. 2015; Fujibe 2009; Gaffin et al. 2008; Hinkel 
and Nelson 2007; Li et al. 2018a, b; Liao et al. 2017; Lokoshchenko 
2017a, 2017b; Polydoros et  al. 2018; Sun et  al. 2016; Wang et  al. 
2018; Zhou et al. 2016, 2017)
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stronger than its climatological mean: along the Washing-
ton–Baltimore corridor in the US (Li and Bou-Zeid 2013), 
across the Yangtze River Delta in China (Wang et al. 2017), 
Western Europe, Brussels (Hamdi et al. 2016), and in the 
Mediterranean climate, Athens (Founda and Santamouris 
2017).

6  Urban Climate Under Future Climate 
Change

It is very uncertain to estimate the UHI under climate change 
conditions, because several studies use different methods 
and report contrasting results. McCarthy et al. (2010), Ole-
son et al. (2011), and Oleson (2012) investigated the changes 
in the UHI using global climate models coupled to urban 
canopy parameterizations. The results show that both urban 
and rural areas warm substantially in response to greenhouse 
gas induced climate change under the simulation constraints 
of no urban growth. In general, the rural areas warm slightly 
more than urban areas and therefore reduce the urban to 
rural contrast. The larger storage capacity of urban areas 
was found to buffer the increase in long-wave radiation, the 
sensible heat flux is reduced accordingly, and the urban air 
temperature warms less than rural air temperature. Some 
researchers (e.g., Adachi et al. 2012; Kusaka et al. 2012a, 
b; Mccarthy et al. 2012; Hamdi et al. 2014) used a regional 
climate model coupled to a single-layer urban scheme, and 
the results show that the relative magnitude of UHIs in the 
UK and Japan would remain the same, while, for Brussels, 
summertime rural areas were found to warm more than 
urban due to a soil dryness over rural areas limiting the 
evapotranspiration. Other studies have performed a two-step 
downscaling approach: first, a dynamical downscaling of the 
global climate model to the regional scale, and then, further 
high-resolution simulations are conducted with statistical 
downscaling (Früh et al. 2011; Hatchett et al. 2016; Sachin-
dra et al. 2016; Arsiso et al. 2018; Hoffmann et al. 2018). 
These studies found an increase of the UHIs in both Ham-
burg and Melbourne and a decrease during the summer in 
Addis Ababa under climate change conditions and the urban 
growth constraint. Finally, in some studies the regionally 
downscaled model output is used to force an offline urban-
ized land surface scheme (Lemonsu et al. 2013; Lauwaet 
et al. 2015; Rafael et al. 2017). These studies report also 
contrasting results about the changes in the UHIs. However, 
the contribution and feedback processes by urban heat island 
and climate change are not taken into account because of 
the offline nature of these simulations. Finally, there is clear 
evidence, showing that future urbanization will increase air 
temperature in different areas (Mahmood et al. 2014) under 
both present (Doan et al. 2016; Kaplan et al. 2017; Li et al. 
2018b) or future climate conditions (Georgescu et al. 2013; 

Argüeso et al. 2014; Kim et al. 2016; Kusaka et al. 2016; 
Grossman-Clarke et al. 2017), especially on the minimum 
temperatures that could be comparable to the climate change 
signal of the near future (up to 2035) over western Europe 
(+ 0.6 °C; Berckmans et al. 2019).

7  Case Study on Brussels, Belgium

In 2014, researchers from Belgium proposed a new method 
to quantify the averaged present and future UHI at a kilomet-
ric spatial scale over an area that covers the entire Brussels 
Capital Region (BCR) (Hamdi et al. 2014). A new version 
of the limited-area model of the ARPEGE-IFS system run-
ning at 4-km resolution called ALARO was used for the 
regional climate simulations (Hamdi et al. 2012b; De Troch 
et al. 2013; Giot et al. 2016; Termonia et al. 2018). This new 
version was coupled with the Town Energy Balance scheme 
(TEB) (Masson 2000). A stand-alone surface scheme is 
employed further in offline mode to downscale the regional 
climate projections to an urban scale of 1 km resolution. 
The method was first applied to the period 1961–1990 to 
test its feasibility. The evolution of UHI of Brussels for the 
future 2071–2100 is then studied in the context of one of 
the climate scenarios proposed by the IPCC, the so-called 
scenario A1B. The results were also compared to a simula-
tion where the regional climate simulations did not take into 
account signature of the urban heat island effect and were 
conducted with the assumption that were conducted with the 
city replaced by a bare rocky surface.

7.1  UHI of Brussels for the Present Climate

UHI is defined here as the difference between the minimum 
air temperature inside the city and the minimum air tempera-
ture simulated in the surrounding rural areas. This difference 
was analyzed in this study for the minimum temperature 
(overnight) and maximum temperature (daytime), called 
nocturnal and daily UHI, respectively.

Nocturnal UHI is of great interest, since it has a poten-
tial impact on human health and can amplify the intensity 
of heat waves. Figure 4 upper left shows the spatial distri-
bution of the nocturnal UHI averaged over 30 years. The 
highest values up to three degrees occur in the center of the 
city, while the values gradually decrease toward the periph-
ery of Brussels. This can be explained by the higher heat 
storage capacity of buildings, which, in combination with 
a lower reflection of solar radiation, delays the nocturnal 
cooling compared to the rural environment. Additionally, 
the effects of radiation trapping within the urban canyon play 
an important role and were taken into account in this study. 
And finally, the lower percentage of vegetation in the city 
prevents evaporative cooling of urban areas.
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The UHI is usually more pronounced during the night. 
Contrary to what has been found for the nocturnal UHI, the 
daily UHI (Fig. 4 lower left) is higher in the suburbs than in 
the city center. This is caused by the partial shading within 
the urban canyons in the center of the city leading to a cool-
ing inside the street. In contrast, the daily UHI is lower in the 
south-eastern part of Brussels. The Sonian Forest is indeed 
responsible for the cooling of that area. Forests, urban parks 
and gardens usually reduce the heat of urban areas through 
shading, evaporation, and production of fresh air. Finally, 
the study confirms that the nocturnal UHI is higher than the 
daily UHI by approximately two times in the city center. 
With respect to the observations, the daily and nocturnal 
UHI values obtained when using TEB (Fig. 4 left panel) are 
closer to observations (Hamdi et al. 2014).

7.2  UHI of Brussels for the Future Climate

According to the A1B scenario, the Brussels city and the 
surrounding rural areas will warm considerably in response 
to climate change for the period 2071–2100. The warming 
is more pronounced for the maximum temperature than the 
minimum temperature (nearly three degrees for maximum 

temperature against two degrees for minimum temperature). 
In the future climate (see Fig. 5), under the A1B emission 
scenario, the two urban downscaling methods, with and 
without TEB, project a decrease of daytime UHI of about 
− 0.20 °C at the city center (Fig. 5 bottom). However, their 
responses are different for nocturnal UHI (Fig. 5 top): (1) 
the values obtained by the simulation without TEB remain 
unaltered (Fig. 5 top right); (2) for the simulation with TEB 
(Fig. 5 top left), it was found that the city warms slightly 
less than the suburbs and rural areas. This will therefore 
reduce the urban/rural contrast in the future. Indeed, the 
higher increase of temperatures in rural areas is related to 
soil dryness during the summer where the projected summer 
precipitation over the Brussels capital area will decrease by 
one-third.

Compared to the warming due to climate change (an 
increase of a few degrees), the magnitude of the nocturnal 
and daily UHI is smaller (a decrease of a few degrees in 
the city center). The study indicates that the nocturnal UHI 
will decrease in the future by three-tenths of degrees in the 
center of Brussels, but the UHI will always stay positive 
(still higher air temperatures in urban environment than in 
the surrounding rural areas) with values between 0 and 7 °C 

Fig. 4  The UHI of Brussels averaged over 30  years [1961–1990]. 
Left column using the Town Energy Balance (TEB) scheme and 
right column without TEB. Top nocturnal values and bottom daily 
values. The three black dots represent the city center of Brussels and 
two RMI observation stations: the Uccle station situated some 6 km 

south of the center of the capital in a suburban area, and the rural 
Brussegem station situated 13 km far away from the center of Brus-
sels where the model output has been verified with respect to obser-
vations
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as in the current climate. The findings of this study are very 
important for policy makers concerned with the uncertainty 
of the effects of global climate change on the climate of 
the Brussels Capital Region. Indeed, it showed a significant 
positive impact of green areas on the thermal environment 
of urban areas, especially the role of the Sonian Forest. To 
be able to propagate the uncertainties from global, regional 
up to the city level (Duchêne et al. 2020) developed a new 
downscaling method combining dynamical and statistical 
methods with the use of a stand-alone land surface model. 
This method is now being applied to the EURO-Cordex 
ensemble and results will be published in a separate paper.

8  Case Study on Asian Mega Cities

In Asia, there are mature large cities such as Tokyo and 
cities which are developing remarkably like the ones in 
China and Southeast Asia. In this section, we introduce 
the studies of future climate projection for Tokyo and two 
major cities of Vietnam, Ho Chi Minh (HCM) city and 
Hanoi that are selected as a developing use case cities. 

A reason why the mega-cities of Vietnam are selected is 
that those have a robust, long-term urban Master plan. 
Another reason is that the future urbanization of Hanoi and 
HCM city is greater than other mega-cities in Southeast 
Asia (Labbé and Boudreau 2015) and that these cities are 
among the most studied ones in the Southeast Asian coun-
tries with respect to climate change projections.

Study on future urban climate projection using regional 
climate models is roughly classified into three types:

• The first type is a high-resolution dynamical downscal-
ing (DDS) experiment for cities while keeping the size 
of the city the same under future climate conditions. 
Here, this type is called Future Climate-Current Urban 
(FC-CU) experiment in this section. In this experiment, 
climate projections performed by the GCM are used 
as lateral boundary conditions. This experiment is the 
same as a standard DDS except that it is conducted 
using a regional climate model at a kilometric spa-
tial scale and with dedicated urban parameterization 
embedded within its land surface model.

Fig. 5  2071–2100 minus 1961–1990 spatial distribution of 30-year average nocturnal (top) and daytime (bottom) UHI [°C]. Left column using 
the town energy balance (TEB) scheme and right column without TEB
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• The second type of downscaling experiment is performed 
by running a regional climate model under current con-
ditions using the reanalysis as a lateral boundary condi-
tion. Here, this type is called Current Climate-Current 
Urban (CC-CU) experiment in this section. Comparing 
the results of the CC-CU experiment with the results of 
FC-CU experiments, it is possible to study the current 
urban environment under future climate projections.

• The third type of downscaling experiment is done by 
combining future climate conditions together with future 
city planning scenarios. Here, this type is called Future 
Climate-Future Urban (FC-FU) experiment. Comparing 
the results of the FC-FU experiment with the results of 
CC-CU experiments, it is possible to more accurately 
evaluate the magnitude of both future global warming 
effect and urbanization effect.

A pioneer study of urban climate projection (FC-CU) 
was conducted for Tokyo Kusaka et al. (2012a, b). They 
present the projected urban climate for the 2070s’ August 
under SRES A1B scenario, using the WRF model at 3-km 
spatial resolution and coupled to a single-layer urban canopy 
parameterization. The monthly average August temperatures 
in the 2070s are projected to be higher than those in the 
2000s by about 2.3 °C and, therefore, comparable to those 
in the record-breaking hot summer of 2010. The reason why 
such a research is attracting attention in Japanese mega-cities 
is that as the summer is very hot and humid, there is a strong 
concern that the total number of future heat stroke patients 
as well as the cooling demand will increase. Indeed, the 
combined effect of both urbanization and global warming 
increases the summertime heat stress in Japan. It has come 
to the point that the number of heat stroke casualties has 
reached the number of more than 1000 per year, putting this 
threat greater than other natural disasters such as typhoons 
or tornados (Fujibe 2018).

Recently, urban climate projection considering future 
urban planning scenario, i.e., FC-FU experiment, has been 
conducted. Adachi et al. (2012) studied the projected future 
urban climate of Tokyo under the assumption that the expan-
sion of Tokyo in the past 30 years will continue as it is. 
They found that future global warming for the 2070s under 
the A1B scenario will have the larger contribution from the 
future urban warming rather than the future urbanization. 
Kusaka et al. (2016) computed the future urban climate 
projection in 2050s under RCP4.5 scenario, assuming both 
a compact-city and a distributed-city scenario for greater 
Tokyo. The projected temperature increase in the plain was 
reduced by 0.2 °C in the compact-city scenario compared 
to the status quo scenario, while an increase of 0.3 °C was 
been simulated by the dispersed city scenario in the wide 
area surrounding central Tokyo, suggesting that the alterna-
tive urban scenarios have little impact on Tokyo’s thermal 

environment. This result is consistent with the results of 
Brussels (Hamdi et al. 2015), but different from Beijing (Yan 
et al. 2016), Hanoi (Lee et al. 2017), HCM city (Doan and 
Kusaka 2018), and US cities (Georgescu et al. 2013). This 
might be due to the fact that Tokyo is a mature metropolis, 
with little remaining opportunity for significant changes 
in its urban structure. In Japan, when making future urban 
planning, it is necessary to respond to tsunami disasters 
due to earthquake while considering adaptation to future 
heat stress, as well. Urbanization influences precipitation as 
well as temperature, especially in the case of mega-cities. In 
Tokyo, summertime heavy rainfalls are of concern to citi-
zen. Nevertheless, almost all of the numerical studies are 
case studies, focusing on a specific rainfall event. Kusaka 
et al. (2014) conducted sensitivity experiment with/without 
urban areas based on an ensemble, regional climatological 
simulations that was the first attempt. The results showed 
that the past and the idealized future urbanizations cause a 
statistically significant and robust increase in the amount of 
heavy precipitation in Tokyo and reduction in the surround-
ing inland areas.

The growth of the industrialization and urbanization of 
Hanoi has reach unpreceded levels, since the country opened 
to the market economy in the late 1980s. Its inhabitants went 
from about 0.9 million to over 3 million between 1990 and 
2010. At this rate, it is projected to reach approximately 
10 million people by 2030 as the urbanization progress. 
This development is the fastest in Southeast Asia countries 
(Labbé and Boudreau 2015). Lee et al. (2017) compared the 
future urbanization effect of Hanoi with the future global 
climate change effect for the 2030s horizon under RCP 4.5 
and 8.5 scenarios (FC-FU). Here, the Master plan is used for 
future urban planning scenarios. The results indicated that 
the temperature increase due to global climate change and 
local urbanization is at most 70% and 30%, respectively. This 
is completely different from Tokyo case, as shown in Adachi 
et al. (2012) and Kusaka et al. (2016). Doan et al. (2019) 
further investigated the roles of land-use/land-cover (LULC) 
and anthropogenic heat (AH) on the past, present, and future 
UHI effect over the greater Hanoi. The results showed that 
the LULC-AH coupled changes during 2010–2030 will have 
much greater impact on UHI than those of 1990–2010. In 
dense urban zones, the monthly mean surface air tempera-
ture in July is predicted to increase by 0.7 °C by 2030, which 
is a doubling of the increase of 0.35 °C during 1990–2010.

On the other hand, (Doan and Kusaka 2018) conducted 
future climate projection for greater HCM (GHCM) city 
until 2050s. Here, the Master plan is used for future urban 
planning scenario. The results showed that the spatially 
averaged April mean temperature is projected to increase 
by 1.2 °C and 1.7 °C by the 2050s under the RCP4.5 and 
RCP8.5 scenarios, respectively. In urban area only, the tem-
perature increase goes to 1.7 and 2.2 °C, respectively, which 



641The State-of-the-Art of Urban Climate Change Modeling and Observations  

1 3Published in partnership with CECCR at King Abdulaziz University

represent a further increase of 0.5 °C, or an equivalent of 
20–30% of the global warming. This additional heating 
can go over 0.8 °C during the night. The impact of future 
urbanization is therefore comparable to the change of the 
temperature induced by the climate change and should then 
be taken into account in future studies. (Doan and Kusaka, 
2016) examined the impact of urbanization since the late 
1980s on the urban heat island effect over Greater HCM city. 
As expected, the spatial evolution of the UHI follows the one 
of the urban expansion. During the last 20 years, the temper-
ature went from 0.3 to 0.6 °C in the pre-existing urbanized 
and the newly urbanized area, respectively. This is mainly 
due to the conversion of agriculture (or grassland) to urban 
structure, resulting in an increase of sensible heating and a 
decrease in latent heating. Moreover, in the last 20 years, in 
the central GHCM, the increase of observed temperature was 
estimated at 0.64 °C, while the one coming from urbaniza-
tion was nearly half of it (0.31 °C). Therefore, urbaniza-
tion may contribute by about half to the increase of surface 
air temperature in the central GHCM in the past 20 years. 
The increase in the local UHI effect due to urbanization is 
known to affect heat-related mortality rate even in a tropi-
cal city like GHCM, where people are likely accustomed 
to hot environment (Tran et al. 2018). Also, comparing the 
past and future urbanization effects, it is mentioning worthy 
that Asian mega-city like HCM city is still developing and 
urbanization impact should be included in the RCM when 
future climate projection is performed.

Finally, Kusaka et al. (2016) were the first to quantify 
the combined uncertainties of climate projections due to 
RCM and urban planning scenarios. They first showed that 
the impacts of urbanization plan and RCM differences are 
larger during the night than during the day, by at most 0.6 
˚C. They also indicate that the combined uncertainties of 
both scenarios are significantly smaller than those of GCM 
projections. However, it is worth mentioning that there are 
large differences between the RCM with and without urban 
land use, indicating that this impact is comparable to the 
differences between GCMs.

9  Conclusion

Today, policy makers, urban planners, and scientists are 
starting to work together to further understand and monitor 
the interactions and feedback between climate change and 
urban environment to find the most adequate adaptation or 
mitigation options. However, detailed information on future 
urban climate at the decision scale is needed to maintain or 
even improve the quality of life in cities. Most of the global 
circulation models that are used for climate change research 
do not account for urban surfaces within their land surface 
schemes, because they consider that the impervious surfaces 

only cover between 1 and 2% of the world’s land areas. The 
latest report from the Intergovernmental Panel on Climate 
Change (IPCC 2014) recognizes that urban warming has 
not explicitly been taken into account in climate change 
simulations. A special report on climate change and cities 
is planned for the next assessment cycle 7.

Recently, since 2010, Global and regional climate mod-
eling groups are beginning to implement urban parameteri-
zations within the land surface model component of their 
climate models. However climate change signal projected 
by global or regional climate models may not capture cer-
tain mesoscale features of the urban heat island such as the 
thermodynamically driven regional-scale flows induced by 
the urban heat island circulation. Therefore, it will be neces-
sary to set the detailed land-use map with urban areas and 
urban canopy parameterization when projecting future urban 
climate for cities. Impact assessments and adaptation plans 
for cities will require high spatial resolution climate projec-
tions along with:

• Urban climate observations;
• Models that represent urban processes;;
• Ensemble dynamical and statistical downscaling;
• Local-impact models.
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