Skip to main content

Advertisement

Log in

Effects of Spaceflight on the Human Gastrointestinal Tract Microbiome

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Space travel has been shown to affect various physiological and psychological processes in humans including the composition and function of the gut microbiome. In addition to the unique conditions of space, space travel is associated with changes in diet, circadian and diurnal rhythms, and physical activity, all of which can impact the gut microbiome. Additionally, the microgravity and radiation exposure encountered during space travel may have direct effects on gut microbiome composition and function. In this short review, we summarize the current state of knowledge on the effect of space travel on the human gut microbiome, including research designs that include animals (rodents), humans, and novel simulations. Experiments were conducted under conditions of spaceflight, ground-based, and analogous flight simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Afshinnekoo E, Scott RT, MacKay MJ, Pariset E, Cekanaviciute E, Barker R, Gilroy S, Hassane D, Smith SM, Zwart SR, Nelman-Gonzalez M (2020) Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration. Cell 183(5):1162–1184

    Article  CAS  Google Scholar 

  2. Al KF, Chmiel JA, Stuivenberg GA, Reid G, Burton JP (2022) Long-duration space travel support must consider wider influences to conserve microbiota composition and function. Life 12(8):1163

    Article  CAS  Google Scholar 

  3. Aya V, Flórez A, Perez L, Ramírez JD (2021) Association between physical activity and changes in intestinal microbiota composition: a systematic review. PLoS One 16(2):e0247039

    Article  CAS  Google Scholar 

  4. Bigley AB, Agha NH, Baker FL, Spielmann G, Kunz HE, Mylabathula PL, Rooney BV, Laughlin MS, Mehta SK, Pierson DL, Crucian BE (2019) NK cell function is impaired during long-duration spaceflight. J Appl Physiol 126(4):842–853

    Article  CAS  Google Scholar 

  5. Casero D, Gill K, Sridharan V, Koturbash I, Nelson G, Hauer-Jensen M, Boerma M, Braun J, Cheema AK (2017) Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome. Microbiome 5(1):1–18

    Article  Google Scholar 

  6. Chang CJ, Lin TL, Tsai YL, Wu TR, Lai WF, Lu CC, Lai HC (2019) Next generation probiotics in disease amelioration. J Food Drug Anal 27(3):615–622

    Article  CAS  Google Scholar 

  7. Crucian B, Stowe R, Mehta S, Uchakin P, Quiriarte H, Pierson D, Sams C (2013) Immune system dysregulation occurs during short duration spaceflight on board the space shuttle. J Clin Immunol 33(2):456–465

    Article  CAS  Google Scholar 

  8. Cryan JF, O’Riordan KJ, Cowan CS, Sandhu KV, Bastiaanssen TF, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE (2019) The microbiota-gut-brain axis. Physiol Rev. https://doi.org/10.1152/physrev.00018.2018

    Article  Google Scholar 

  9. Czeisler CA, Chiasera AJ, Duffy JF (1991) Research on sleep, circadian rhythms and aging: applications to manned spaceflight. Exp Gerontol 26(2–3):217–232

    Article  CAS  Google Scholar 

  10. Danko DC, Singh N, Butler DJ, Mozsary C, Jiang P, Keshavarzian A, Maienschein-Cline M, Chlipala G, Afshinnekoo E, Bezdan D, Garrett-Bakelman F (2020) Genetic and immunological evidence for microbial transfer between the international space station and an astronaut. bioRxiv 19:731

    Google Scholar 

  11. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563

    Article  CAS  Google Scholar 

  12. DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E (2016) Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis 22(5):1137–1150

    Article  Google Scholar 

  13. Dinan TG, Cryan JF (2017) Microbes, immunity, and behavior: psychoneuroimmunology meets the microbiome. Neuropsychopharmacology 42(1):178–192

    Article  CAS  Google Scholar 

  14. Dong HS, Chen P, Yu YB, Zang P, Wei Z (2019) Simulated manned Mars exploration: effects of dietary and diurnal cycle variations on the gut microbiome of crew members in a controlled ecological life support system. PeerJ 7:e7762

    Article  Google Scholar 

  15. Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, McKenna MJ, Meydan C, Mishra T, Nasrini J, Piening BD et al (2019) The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science. https://doi.org/10.1126/science.aau8650

    Article  Google Scholar 

  16. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R (2018) Current understanding of the human microbiome. Nat Med 24(4):392–400

    Article  CAS  Google Scholar 

  17. Gilbert R, Torres M, Clemens R, Hateley S, Hosamani R, Wade W, Bhattacharya S (2020) Spaceflight and simulated microgravity conditions increase virulence of Serratia marcescens in the Drosophila melanogaster infection model. npj Microgravity 6(1):4

    Article  Google Scholar 

  18. Hao Z, Li L, Fu Y, Liu H (2018) The influence of bioregenerative life-support system dietary structure and lifestyle on the gut microbiota: a 105-day ground-based space simulation in Lunar Palace 1. Environ Microbiol 20(10):3643–3656

    Article  CAS  Google Scholar 

  19. Jiang P, Green SJ, Chlipala GE, Turek FW, Vitaterna MH (2019) Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight. Microbiome 7(1):1–18

    Article  CAS  Google Scholar 

  20. Jin M, Zhang H, Zhao K, Xu C, Shao D, Huang Q, Shi J, Yang H (2018) Responses of intestinal mucosal barrier functions of rats to simulated weightlessness. Front Physiol 9:729

    Article  Google Scholar 

  21. Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP (2015) Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. https://doi.org/10.3389/fncel.2015.00392

    Article  Google Scholar 

  22. Kirkpatrick AW, Hamilton DR, McKee JL, McDonald B, Pelosi P, Ball CG, Roberts DJ, McBeth PB, Coccolini F, Ansaloni L, Peireira BM (2020) Do we have the guts to go? The abdominal compartment, intra-abdominal hypertension, the human microbiome and exploration class space missions. Can J Surg 63(6):E581

    Article  Google Scholar 

  23. Kuehnast T, Abbott C, Pausan MR, Pearce DA, Moissl-Eichinger C, Mahnert A (2022) The crewed journey to Mars and its implications for the human microbiome. Microbiome 10(1):1–14

    Article  Google Scholar 

  24. Law J, Van Baalen M, Foy M, Mason SS, Mendez C, Wear ML, Meyers VE, Alexander D (2014) Relationship between carbon dioxide levels and reported headaches on the international space station. J Occup Environ Med 56(5):477–483

    Article  CAS  Google Scholar 

  25. Leeming ER, Johnson AJ, Spector TD, Le Roy CI (2019) Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients 11(12):2862

    Article  Google Scholar 

  26. Lee-Sarwar KA, Ramirez L (2022) Diversifying your diet portfolio: potential impacts of dietary diversity on the gut microbiome and human health. Am J Clin Nutr 116(4):844–845

    Article  Google Scholar 

  27. Levin AM, Sitarik AR, Havstad SL, Fujimura KE, Wegienka G, Cassidy-Bushrow AE, Kim H, Zoratti EM, Lukacs NW, Boushey HA, Ownby DR (2016) Joint effects of pregnancy, sociocultural, and environmental factors on early life gut microbiome structure and diversity. Sci Rep 6(1):1–16

    Article  Google Scholar 

  28. Li S, Hua D, Wang Q, Yang L, Wang X, Luo A, Yang C (2020) The role of bacteria and its derived metabolites in chronic pain and depression: recent findings and research progress. Int J Neuropsychopharmacol 23(1):26–41

    Article  CAS  Google Scholar 

  29. Liu Z, Luo G, Du R, Sun W, Li J, Lan H, Chen P, Yuan X, Cao D, Li Y, Liu C (2020) Effects of spaceflight on the composition and function of the human gut microbiota. Gut Microbes 11(4):807–819

    Article  CAS  Google Scholar 

  30. Madison A, Kiecolt-Glaser JK (2019) Stress, depression, diet, and the gut microbiota: human–bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr Opin Behav Sci 28:105–110

    Article  Google Scholar 

  31. Maki KA, Diallo AF, Lockwood MB, Franks AT, Green SJ, Joseph PV (2019) Considerations when designing a microbiome study: implications for nursing science. Biol Res Nurs 21(2):125–141

    Article  Google Scholar 

  32. Mardanov AV, Babykin MM, Beletsky AV, Grigoriev AI, Zinchenko VV, Kadnikov VV, Kirpichnikov MP, Mazur AM, Nedoluzhko AV, Novikova ND, Prokhortchouk EB (2013) Metagenomic analysis of the dynamic changes in the gut microbiome of the participants of the MARS-500 experiment, simulating long term space flight. Acta Nat (aнглoязычнaя вepcия) 5(3(18)):116–125

    CAS  Google Scholar 

  33. Martin CR, Osadchiy V, Kalani A, Mayer EA (2018) The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol 6(2):133–148

    Article  Google Scholar 

  34. Martinez KB, Leone V, Chang EB (2017) Western diets, gut dysbiosis, and metabolic diseases: are they linked? Gut microbes 8(2):130–142

    Article  Google Scholar 

  35. Morey-Holton E, Globus RK, Kaplansky A, Durnova G (2005) The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data. Adv Space Biol Med 10:7–40

    Article  Google Scholar 

  36. Natarajan N, Hori D, Flavahan S, Steppan J, Flavahan NA, Berkowitz DE, Pluznick JL (2016) Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol Genomics 48(11):826–834

    Article  CAS  Google Scholar 

  37. Ohira H, Tsutsui W, Fujioka Y (2017) Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J Atheroscler Thromb 24(7):660–672

    Article  CAS  Google Scholar 

  38. Peirce JM, Alviña K (2019) The role of inflammation and the gut microbiome in depression and anxiety. J Neurosci Res 97(10):1223–1241

    Article  CAS  Google Scholar 

  39. Ritchie LE, Taddeo SS, Weeks BR, Lima F, Bloomfield SA, Azcarate-Peril MA, Zwart SR, Smith SM, Turner ND (2015) Space environmental factor impacts upon murine colon microbiota and mucosal homeostasis. PLoS One 10(6):e0125792

    Article  Google Scholar 

  40. Roth W, Zadeh K, Vekariya R, Ge Y, Mohamadzadeh M (2021) Tryptophan metabolism and gut-brain homeostasis. Int J Mol Sci 22(6):2973

    Article  CAS  Google Scholar 

  41. Saei AA, Barzegari A (2012) The microbiome: the forgotten organ of the astronaut’s body–probiotics beyond terrestrial limits. Future Microbiol 7(9):1037–1046

    Article  CAS  Google Scholar 

  42. Schneeberger M, Everard A, Gómez-Valadés AG, Matamoros S, Ramírez S, Delzenne NM, Gomis R, Claret M, Cani PD (2015) Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep 5(1):1–14

    Article  Google Scholar 

  43. Schnorr SL, Bachner HA (2016) Focus: microbiome: integrative therapies in anxiety treatment with special emphasis on the gut microbiome. Yale J Biol Med 89(3):397

    Google Scholar 

  44. Siddiqui R, Akbar N, Khan NA (2021) Gut microbiome and human health under the space environment. J Appl Microbiol 130(1):14–24

    Article  CAS  Google Scholar 

  45. Siddiqui R, Qaisar R, Khan NA, Alharbi AM, Alfahemi H, Elmoselhi A (2022) Effect of microgravity on the gut microbiota bacterial composition in a hindlimb unloading model. Life 12(11):1865

    Article  CAS  Google Scholar 

  46. Song C, Gao X, Song W, Zeng D, Shan S, Yin Y, Li Y, Baranenko D, Lu W (2020) Simulated spatial radiation impacts learning and memory ability with alterations of neuromorphology and gut microbiota in mice. RSC Adv 10(27):16196–16208

    Article  CAS  Google Scholar 

  47. Stamper CE, Hoisington AJ, Gomez OM, Halweg-Edwards AL, Smith DG, Bates KL, Kinney KA, Postolache TT, Brenner LA, Rook GAW, Lowry CA (2016) The microbiome of the built environment and human behavior: implications for emotional health and well-being in postmodern western societies. Int Rev Neurobiol 131:289–323

    Article  CAS  Google Scholar 

  48. Tesei D, Jewczynko A, Lynch AM, Urbaniak C (2022) Understanding the complexities and changes of the astronaut microbiome for successful long-duration space missions. Life 12(4):495

    Article  Google Scholar 

  49. Thirsk R, Kuipers A, Mukai C, Williams D (2009) The space-flight environment: the International Space Station and beyond. CMAJ 180(12):1216–1220

    Article  Google Scholar 

  50. Trevelline BK, Kohl KD (2022) The gut microbiome influences host diet selection behavior. Proc Natl Acad Sci 119(17):e2117537119

    Article  CAS  Google Scholar 

  51. Turroni S, Magnani M, Kc P, Lesnik P, Vidal H, Heer M (2020) Gut microbiome and space travelers’ health: state of the art and possible pro/prebiotic strategies for long-term space missions. Front Physiol 11:553929

    Article  Google Scholar 

  52. Turroni S, Rampelli S, Biagi E, Consolandi C, Severgnini M, Peano C, Quercia S, Soverini M, Carbonero FG, Bianconi G, Rettberg P (2017) Temporal dynamics of the gut microbiota in people sharing a confined environment, a 520-day ground-based space simulation, MARS500. Microbiome 5(1):1–11

    Article  Google Scholar 

  53. Voorhies AA, Mark Ott C, Mehta S, Pierson DL, Crucian BE, Feiveson A, Oubre CM, Torralba M, Moncera K, Zhang Y, Zurek E (2019) Study of the impact of long-duration space missions at the International Space Station on the astronaut microbiome. Sci Rep 9(1):1–17

    Article  CAS  Google Scholar 

  54. Wang H, Yan Y, Rong D, Wang J, Wang H, Liu Z, Wang J, Yang R, Han Y (2016) Increased biofilm formation ability in Klebsiella pneumoniae after short-term exposure to a simulated microgravity environment. MicrobiologyOpen 5(5):793–801

    Article  CAS  Google Scholar 

  55. Wilson ID, Nicholson JK (2017) Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res 179:204–222

    Article  CAS  Google Scholar 

  56. Wilson JW, Ott CM, Zu Bentrup KH, Ramamurthy R, Quick L, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T, Hunt A (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci 104(41):16299–16304

    Article  CAS  Google Scholar 

  57. Zhou Y, Ni H, Li M, Sanzari JK, Diffenderfer ES, Lin L, Kennedy AR, Weissman D (2012) Effect of solar particle event radiation and hindlimb suspension on gastrointestinal tract bacterial translocation and immune activation. PLoS One. https://doi.org/10.1371/journal.pone.0044329

    Article  Google Scholar 

  58. Zmora N, Zeevi D, Korem T, Segal E, Elinav E (2016) Taking it personally: personalized utilization of the human microbiome in health and disease. Cell Host Microbe 19(1):12–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan J. Green.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almosa, A.S., Lockwood, M.B. & Green, S.J. Effects of Spaceflight on the Human Gastrointestinal Tract Microbiome. J Indian Inst Sci 103, 761–769 (2023). https://doi.org/10.1007/s41745-023-00384-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-023-00384-7

Keywords

Navigation