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Abstract | Discovering exoplanets and satellites in habitable zones 
within and beyond our solar system has sparked intrigue in planetary 
setting varieties that could support life. Based on our understanding of 
life on Earth, we can shed light on the origin, evolution, and future of 
Earth-like organisms in the galaxy and predict extinct or extant extrater-
restrial life. Hence, extremophiles thriving in mimic outer space environ-
ments are particularly interesting as they exhibit traits that preponderate 
our comprehension regarding the possibility of life elsewhere and in situ 
life detection. Additionally, many extremophiles have been used for 
astrobiological research model organisms to unveil native alien life or 
possible life-produced metabolites outside Earth. Laboratory-based 
simulation chambers mimic this outer space condition, helping research-
ers study life beyond Earth in near identical conditions and understand 
molecular mechanisms for survival. This review summarizes relevant 
studies with isolated microorganisms from extreme analog Earth environ-
ments, harnessing them as promising astrobiological model candidates 
for pursuing life potentialities in other planetary bodies. We also highlight 
the necessity of environmental simulation chamber approaches for mim-
icking extraterrestrial habitats.
Keywords: Extremophilic microorganisms, Analog environments, Astrobiological model, Space 
simulation chamber, Space exploration

1 Introduction
Can life originate, evolve, or survive in extrater-
restrial environments? Such fundamental ques-
tions motivate scientists to search for life beyond 
Earth. Astrobiology is a relatively new branch of 
space-related science merging astronomy and 
biology.1 Searching for habitable environments is 
quintessential when investigating extraterrestrial 
life. Nowadays, nearly 200 planets and satellites in 
the solar system and more than 5000 exoplanets 
orbiting stars in the universe have been discov-
ered, inspiring an exploration mission concern-
ing planetary environment diversity that may 
host life. However, Earth remains the only known 
living planetary body that can guide us to these 
answers.2,3

Based on what we know, several planetary 
bodies exhibit extinct or extant life potential. 

Prokaryotic life dominates our planet’s evolu-
tionary history, evolving to occupy every possible 
environmental habitat, including various extreme 
environments. Common Earth life forms have 
traditionally taught us about terrestrial bounda-
ries and abilities. We now appreciate living organ-
isms’ physiological and biochemical capabilities as 
it illuminates an extensive origin, evolution, and 
future for Earth-like beings in our solar system 
and beyond, primarily due to an ever-increasing 
awareness of extremophile varieties over the past 
50 years.4–6

Extremophiles can survive in a myriad of plan-
etary environments and present relevant charac-
teristics advancing our understanding of potential 
life elsewhere and in situ life detection. Thus, extre-
mophilic microbes, especially those thriving under 
multiple extremes (polyextremophiles), represent a 
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vital research avenue for astrobiological and space 
exploration.7 Furthermore, many extremophiles 
are ideal astrobiology models, aiding in finding 
indigenous extraterrestrial life or potential life-pro-
duced metabolites outside Earth.8,9

Although space missions offer essential and dis-
tinctive planetary exploration knowledge, they are 
expensive and time-consuming. Therefore, to over-
come in situ planetary exploration’s economic and 
technical limitations, laboratory simulations play a 
crucial role in achieving outer space conditions on 
Earth, establishing a critical link between the labo-
ratory and life beyond Earth. Prominent factors for 
designing planetary simulation chambers include 
atmospheric composition, gas pressure, tempera-
ture, humidity, and UV radiation levels. Substan-
tial model and instrumental design improvements 
of these simulation chambers over time enabled 
various simulated experiments related to Mars,10–15 
the Moon,16 and asteroid/cometary/solar system 
small bodies,17 aiding mineral analysis,18 astrobiol-
ogy,19,20 instrument calibration/materials testing,21 
and planetary exploration studies.22,23

Herein, we review extremophilic microorgan-
isms’ relevance and application in astrobiology and 
space-related studies, discussing their potential as 
astrobiological models. Additionally, we cover envi-
ronmental simulation chamber development and 
use for simulating extraterrestrial habitats. Finally, 
we detail prospects concerning this emerging field 
and priorities for the upcoming decades.

2  Life Beyond Earth: Extremophiles 
as Models for Astrobiology

Astrobiology’s primary goal is to search for life on 
planetary bodies beyond Earth. Mars, Venus, and 
the icy moons Europa, Enceladus, and Titan offer 
numerous opportunities for investigating life’s 
chemical evolution and origin. In addition, their 
similar biochemistry features to those that sup-
port life on Earth make them targets for exten-
sive research.24 To ascertain extraterrestrial life, 
we must first define boundary conditions where 
life can thrive. Outer space presents severely harsh 
and inhabitable environmental conditions del-
eterious for life growth, including high radiation 
doses, extreme temperatures, different gravity, 
pressure, pH, salinity, energy source, and nutri-
ent scarcity.25 Nevertheless, as microbial life can 
flourish within broad physicochemical spectrums 
and extremely inhospitable habitats on Earth, 
they may be capable of surviving space’s harsh 
conditions.4 Thus, understanding living extremo-
philes’ molecular mechanisms and unique physi-
ological characteristics is paramount for defining 

Earth’s boundary life limits and identifying con-
ditions likely to originate or support life on other 
planetary bodies.4,26

2.1  (Poly)Extremophilic Microorganisms 
in the Planetary Context

Environmental parameters, such as extreme tem-
perature, pH, salinity, water availability, pressure, 
radiation, and nutrients, can limit microbial life. 
Extremophiles are microorganisms that flour-
ish in these intense conditions, whereas poly-
extremophiles optimally grow under multiple 
extreme stresses in the habitat simultaneously.27 
Most extremophiles are affiliated with Archaea 
and Bacteria domains, while very few belong 
to Eukarya.28,29 Despite our progress in extre-
mophile biology, (poly)extremophiles remain a 
novel microorganism group in different environ-
ments distributed around the biosphere, classi-
fied relative to the physicochemical conditions 
in which they grow: i) psychrophiles thrive in 
cold habitats, such as polar regions, deep-sea, 
and high mountain  altitudes30; ii) thermophiles 
and hyperthermophiles flourish under high tem-
peratures in volcanoes, desert hot springs, and 
hydrothermal  vents31; iii) acidophiles localize 
in acid-mine drainage sites and acidic lakes as 
they require a pH less than 5.032; iv) alkaliphiles 
grow at high pH levels, such as in sodic  lakes33; 
v) piezophiles prosper when highly pressur-
ized deep inside the  ocean34; vi) halophiles pre-
fer the high salt concentrations of the sea, salars, 
saline lakes, and brine  pools35; vii) xerophiles 
can thrive in the desert’s low water  availability36; 
viii) oligotrophic microbes require low nutrient 
 concentrations37; ix) radioresistant microbes can 
tolerate a high radiation  incidence38–41; and x) 
metallophiles can prosper in high metals/heavy 
metals concentrations.42

Moreover, various environments on our 
planet’s surface—especially subsurfaces—exhibit 
extremes in one or more physical or chemi-
cal conditions. Mirroring Earth, other planetary 
bodies may have different environments with var-
ying ranges for each condition. Even when natu-
ral terrestrial environments appear too strenuous 
and incompatible, such as volcanic and sulfuric 
hot springs, dry and hot deserts, deep-sea hydro-
thermal vents, acid-mine drainages, highly pres-
surized deep seas, cold and high UV irradiated 
polar environments, sub-surface caves, or super-
saturated salt lakes, life still exists.8,43

These organisms endure selective pressure 
in such extremes by developing an extensive 
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adaptation range for local survival, providing 
a unique perspective on fundamental biologi-
cal process characteristics and exhibiting broad 
metabolic diversities and physiological capabili-
ties.44,45 These adaptations include proteins and 
enzymes capable of functioning under extreme 
conditions, microbial membrane property 
modifications (proton permeability, lipid struc-
ture, and composition), and genomic modifica-
tions with horizontal gene transfer of mobile 
genetic elements (plasmids, integrons, and 
bacteriophages).46,47

Due to these unique and versatile charac-
teristics to thrive in hostile conditions, isolated 
extremophiles are highly adapted and promis-
ing candidates for astrobiology study. Most eco-
logical extremophile habitats on Earth resemble 
planetary bodies in outer space regarding biogeo-
chemistry, nutrient composition, or topological 
similarities.48 Therefore, exploring modern living 
extremophiles on Earth is critical in understand-
ing their adaptation mechanisms and helps iden-
tify novel biosignatures applicable in habitable 
zones beyond Earth.49 Furthermore, assessing 
potential extraterrestrial colonizers by investi-
gating extreme microbiomes analogous to Earth 
could provide clues to whether (and how) life 
persists on other planetary bodies. Additionally, 
extremophiles can provide insight into how those 
microbes can support the terraformation of plan-
ets constantly facing extreme conditions.6,26 In 
this way, (poly)extremophiles are invaluable for 
predicting living organisms’ boundaries and deci-
phering mechanisms and strategies behind sur-
vival in extreme environments.

2.2  Extremophiles as Great Candidates 
for Astrobiological Studies

Mars (with several ongoing missions, including 
Curiosity and Perseverance) and the icy moons, 
Enceladus and Europa, are the leading candi-
dates for harboring microbial life in the past or 
extant.50–52 However, technological restrictions, 
distances between planets, and time make collect-
ing and retrieving samples for study exceptionally 
difficult. Thus, this hypothesis of life as we know 
it beyond Earth remains mysterious, which has 
led astrobiologists to discuss possible forms of life 
and their characteristics under extreme environ-
ments in our solar system.

Earth harbors a myriad of analogous terres-
trial environments that can be our foundation for 
understanding other planetary bodies’ potential 
habitability, including Antarctica’s dry valleys,53,54 
the Atacama Desert,55 hydrothermal vents,56 and 

deactivated nuclear reactors.38,41 These microbial-
colonized environments are potential organism 
models in this search for life. In astrobiology, 
model microorganisms can survive one or more 
extreme environmental conditions found on 
planets, moons, and asteroids which may be bio-
chemically similar. All life domains (Archaea, 
Bacteria, and Eukarya) present these extremo-
philic  models4 (Table 1). Prokaryotes are consid-
ered the oldest reported microorganisms on our 
planet and have survived all mass extinctions; 
therefore, prokaryotes are one of the most studied 
groups in astrobiology.

Among known extremophiles with consider-
able astrobiological model potential, halophilic 
archaea members are also promising models for 
space-related studies due to their evolutionar-
ily ancient and physiologically versatile charac-
teristics.57 They are frequently observed in brine 
pools, soda lakes, salt mines, and marine solar 
salterns in terrestrial environments. Haloarchaea 
constitute polyextremophilic microbes that can 
withstand salinity, anaerobic conditions, high 
ultraviolet and ionizing radiation levels, subzero 
temperatures, desiccation, and toxic ions.58 Hal-
ophilic archaea may survive in diverse planetary 
environments in outer space, including exposure 
to various extreme conditions found on Mars, 
such as desiccation, radiation, subzero tempera-
tures, and perchlorate oxidizer exposure.5

Haloarchaea survived launches into Earth’s 
stratosphere and exposure to space conditions 
similar to those observed on Mars’ surface.59,60 
Several studies have elucidated how these 
microbes function in high ionic strengths, per-
chlorate salts, and substantial negative tempera-
tures. Haloarchaea also synthesizes red–orange 
isoprenoid carotenoids for protection and photo-
repair processes against UV irradiation. Among 
Haloarchaea, two species are widely studied as 
astrobiology models: Halobacterium sp. NRC-1, 
a pigmented strain isolated from solar salterns in 
California (USA),59 and Halobacterium lacuspro-
fundi, a more brightly pigmented and biofilm-
forming strain isolated from a hypersaline lake in 
Antarctica.60

Bacteria are easily manipulated, preserve 
ancient ancestors from our planet’s origin, and 
contain various extensively studied extremophile 
specimens. Different studies demonstrated that 
Bacillus spores could survive arid conditions,61 
high radiation levels,62,63 temperature fluctua-
tions,64 outer space conditions,63,65,66 high per-
chlorate salt concentrations,65 and also regoliths 
that mimic the geochemical composition of Mars’ 
soil.67,68 For instance, Bacillus pumilus SAF-032 
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Table 1: Notable extremophilic microbes as astrobiological planets and icy moons models.

Extraterrestrial 
Environment

Microorganism

References
Celestial body Phylum Species Sampling location Resistance/Toler-

ance

Mars (planet) Euryarchaeota Halobacterium sp. 
NRC-1

Solar salterns, Cali-
fornia, USA

High and low 
osmolarity and 
temperatures, 
heavy metals, 
UV-C radiation

5, 60, 85, 86

Euryarchaeota Halobacterium 
lacusprofundi

Hypersaline Deep 
Lake, Antarctica

Cold-adapted, 
high salinity and 
sodium or magne-
sium perchlorate 
concentrations

5, 57, 87

Euryarchaeota Haloterrigena his-
panica

Fuente de Piedra 
Salt Lake, Spain

Desiccation, low 
pressure, high 
salinity

88

Euryarchaeota Thermococcus gam-
matolerans EJ3

Hydrothermal 
chimney, Guaymas 
Basin

High temperatures 
and salinity, UV-C 
radiation

89

Deinococcota Deinococcus radio-
durans

Oregon, USA UV-C and γ-rays 
radiation, desicca-
tion, low pressure 
and pH

69–74

Pseudomonadota Brevundimonas sp. 
MV.7

Miers Valley, 
McMurdo Dry Val-
leys, Antarctica

Low temperatures, 
UV-C radiation

90

Pseudomonadota Pseudomonas sp. 
MV.27

Miers Valley, 
McMurdo Dry Val-
leys, Antarctica

Low temperatures, 
UV-C radiation

90

Pseudomonadota Halomonas spp. 
MVT 161, 463, 
464, 468

Miers Valley Tran-
sect, McMurdo Dry 
Valleys, Antarctica

Low temperatures, 
UV-C radiation

90

Pseudomonadota Psychrobacter pacifi-
censis L0S3S-03b

Hydrothermal vent, 
Rodriguez Triple 
Junction, Indian 
Ocean

Desiccation, per-
oxide exposure, 
UV-C and γ-rays 
radiation

91

Bacillota Parageobacillus 
thermantarcticus

Mount Melbourne, 
Antarctica

UV-C and γ-rays 
radiation, desic-
cation, low tem-
peratures, space 
environment

92–94

Bacillota Bacillus subtilis Massachusetts, USA UV-C radiation, 
low pressures and 
temperatures, 
magnesium per-
chlorate concen-
trations

61, 62, 

95–97

Bacillota Bacillus pumilus 
SAFR-032

Jet Propulsion Labo-
ratory – spacecraft 
assembly facility, 
USA

High temperatures, 
low or no nutri-
ent availability, 
extreme desicca-
tion, H2O2, UV-C 
radiation, chemical 
desinfection

63, 65

Bacillota Halarsenatibacter
silvermanii SLAS-1

Searles Lake, USA High salinity and 
pH, desiccation, 
arsenic, hydrocar-
bons

98, 99
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Table 1: (continued)

Extraterrestrial 
Environment

Microorganism

References
Celestial body Phylum Species Sampling location Resistance/Toler-

ance

Cyanobacteria Chroococcidiopsis 
sp. CCMEE 029

Negev Desert, Israel UV-C radiation, 
desiccation, space 
environment, 
high perchlorate 
concentrations

75–79, 

100–102

Ascomycota Exophiala sp. Atacama Desert, 
Chile

Cold temperatures, 
high salinity, UV-C 
radiation

81

Ascomycota Cryomyces antarcti-
cus

McMurdo Dry Val-
leys, Antarctica

UV-C and γ-rays 
radiation, desic-
cation, low tem-
peratures, space 
environment

84

Ascomycota Debaryomyces 
hansenii DSM 
3428

Spoilt sake High sodium per-
chlorate concen-
trations

80

Ascomycota Purpureocillium 
lilacinum

Sodium perchlorate 
contamination, 
Berlin, Germany

High sodium per-
chlorate concen-
trations

80

Ascomycota Rhizocarpon geo-
graphicum

Plataforma de Gre-
dos, Spain

Extreme tempera-
tures, desiccation, 
UV-C radiation

103

Ascomycota Xanthoria elegans Peñones de San 
Francisco, Spain

Extreme tempera-
tures, desiccation, 
UV-C radiation

103

Ascomycota Circinaria gyrosa Zaorejas highlands, 
Spain

Extreme tempera-
tures, desiccation, 
UV-C radiation

104

Venus (planet) Rhodophyta Galdieria sulphuraria Sulfuric hot springs, 
Japan

Low pH, high tem-
peratures

105

Rhodophyta Cyanidium cal-
darium

Nymph Creek, Yel-
lowstone National 
Park, WY, USA

Low pH, high tem-
peratures

106

Ceres (dwarf 
planet)

Pseudomonadota Colwellia hornerae Ellis Fjord, Antarctica High aliphatic 
substrate, cold-
adapted

107

Enceladus (icy 
moon)

Euryarchaeota Methanothermococ-
cus okinawensis

Iheya Ridge deep-
sea hydrother-
mal vent field, 
Okinawa Trough, 
Japan

Extreme tem-
peratures, anoxic 
conditions,

108

Euryarchaeota Methanococcus 
villosu

Hydrothermal 
system, Kolbeinsey 
Ridge, north of 
Iceland

Extreme tem-
peratures, anoxic 
conditions

108, 109

Euryarchaeota Methanothermobac-
ter wolfeii

Germany Extreme tem-
peratures and pH, 
anoxic conditions, 
high-pressure

110, 111

Pseudomonadota Psychromonas ant-
arcticus

Pond sediment, 
McMurdo Ice 
Shelf, Antarctica

Cold-adapted, high 
salinity

112

Pseudomonadota Syntrophotalea 
acetylenivorans 
SFB93

South San Francisco 
Bay, USA

Extreme tempera-
tures, high pH and 
salinity, acetylene

99, 113
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spores are a potential astrobiology model as they 
have repeatedly demonstrated an ability to sur-
vive numerous extreme conditions encountered 
in outer space, specifically heightened UV irra-
diation 63,65.

Deinococcus radiodurans is also known for its 
high radiation resistance; it is one of Earth’s two 
most radiation-resistant organisms, surviving 
a dose of up to 10,000 Gy.69 Unlike other bacte-
ria that produce specialized cellular structures 
(spores) or remain vegetative when exposed to 
stress, this microorganism remains metaboli-
cally active even at exceptionally high ultraviolet 
radiation levels. However, this ability necessitates 
a carbon source and a rich amino acid environ-
ment.70 For instance,  Venkateswaran70 reported 
that D. radiodurans could grow on a rich nutrient 
medium in continuous radiation (6000 rads/h) 
without lethality. Contrarily, when in a nutrient-
limiting condition, cells did not grow and were 
killed by continuous radiation. In addition, this 
study identified prominent nutritional con-
stituents that restored D. radiodurans’ growth in 
nutritionally limiting radioactive environments, 
such as nicotinic acid, amino acids, and some 
salts.

Furthermore, D. radiodurans can survive 
prolonged desiccation under very low relative 
humidity and even in an ultra-high vacuum.71 
Araujo et al.72 demonstrated that this bacte-
rium could survive irradiation with synchrotron 

ultraviolet light in its dry form. In recent Inter-
national Space Station (ISS) experiments, D. 
radiodurans survived three years outside the 
space station (in a shielded compartment), estab-
lishing it as a relevant planetary protection and 
panspermia model.73 It is speculated that these 
forms of stress resistance are mainly associated 
with efficient DNA repair and antioxidant sys-
tems that protect cellular components from oxi-
dative damage.74

Astrobiology also has a place for photosyn-
thetic extremophilic organisms. Several astrobi-
ological survival experiments have incorporated 
Chroococcidiopsidales members, which occupy 
diverse ecological niches in our planet’s most 
diverse and extreme habitats. For example, some 
Chroococcidiopsis strains can tolerate at least 
four years of air drying,75,76 up to 13 kJ m − 2 
of UV-C radiation,75–77 15 kGy of X-rays,78 and 
12 kGy of γ radiation.79 Although prokaryotes 
are common astrobiology and space-related 
study models, eukaryotes (yeast and mold) are 
promising astrobiology representatives. For 
instance, the fungi Cladosporium sphaerosper-
mum and Cremonium murorum isolated from 
a Chernobyl nuclear reactor (Reactor 4 walls) 
extracted energy from the emitted ionizing 
radiation by the extensive radioactive mate-
rial still present there.29 Some authors describe 
these microorganisms as a viable life model of 

Table 1: (continued)

Extraterrestrial 
Environment

Microorganism

References
Celestial body Phylum Species Sampling location Resistance/Toler-

ance

Europa (icy moon) Thermoproteota Saccharolobus 
shibatae

Acid hot spring, 
Japan

Extreme tem-
peratures, low pH, 
high sulfate and 
salt concentrations

114

Bacillota Bacillus pumilus Jet Propulsion Labo-
ratory—spacecraft 
assembly facility, 
USA

High temperatures, 
low or no nutri-
ent availability, 
extreme desicca-
tion, H2O2, UV-C 
radiation, chemical 
disinfection

63, 65, 115, 

116

Bacillota Candidatus Desul-
forudis audaxvia-
tor

Mponeng gold 
mine, South Africa

Radioactive materi-
als

117, 118

Titan (icy moon) Pseudomonadota Syntrophotalea 
acetylenica

Sewage treatment 
plants, Konstanz, 
Germany

Extreme tempera-
tures, high pH and 
salinity, acetylene

99, 119

Io (icy moon) Pseudomonadota Desulfotalea psy-
chrophila

Sediments, Arctic Cold-adapted,
high sulfur species 

concentrations

120
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space bodies due to the constant cosmic radia-
tion exposure in these places.29,38

Another intriguing example is the halotoler-
ant yeast Debaryomyces hansenii, considered the 
most perchlorate-tolerant microbe described thus 
far. Studies have shown that this microorgan-
ism can withstand 2.4 M of sodium perchlorate. 
This finding is particularly relevant for deter-
mining life potential on Mars due to the planet’s 
high concentration of this salt, which favors liq-
uid water even at negative temperatures. In addi-
tion, species resistant to this chemical stress are 
pertinent for understanding possible life forms 
biochemistries that may be present in Mars’ per-
chlorate brines.80

Still, black yeasts stand out the most among 
fungi as eukaryotic astrobiology models,81,82 
as their polyextremophilic nature allows these 
microorganisms to withstand various environ-
mental stresses. Several studies have tested black 
yeast’s survival in space conditions through 
ground facility simulations and on space mis-
sions. Black yeasts isolated from Antarctica’s dry 
valleys (Cryomyces antarcticus and C. minteri) 
are the best-studied examples within this group. 
Onofri and  collaborators83,84 indicated that the 
black yeast C. antarcticus maintained survival, 
DNA integrity, ultrastructural stability, and rapid 
metabolic activity recovery after 18 months 
of exposure to space and Mars-like conditions 
in various ISS experiments. Many studies still 
require further development to fully understand 
terrestrial life limits and how they are applicable 
for astrobiology purposes. Still, with the recent 
years’ increased extremophile research advance-
ments, we can design new analog environments, 
plan new experiments, and lead the next steps in 
the search for life beyond Earth.

3  Extraterrestrial Environment Simulation
Numerous studies in modern astrobiology 
research use laboratory-based simulation facili-
ties, demonstrating simulation chamber necessity 
and potential in space research. Although labo-
ratory-based simulation chambers aid in various 
space research aspects, such as geology, astron-
omy, cosmo-chemistry, and planetology, these 
machines usually comprise an uncomplicated 
system that imitates a particular temperature 
and gas composition. Some sophisticated simula-
tion chambers incorporate multiple techniques, 
including gas chromatography–mass spectrom-
etry (GCMS), quadrupole mass spectrometry 
(QMS), and infrared spectroscopy. For example, 
 Andromeda121 is a planetary simulation chamber 

that simulates Martian conditions. At the same 
time,  Exocam10 and  SURFRESIDE122 help in 
studying physical–chemical interactions between 
Mars’ atmosphere, surface, and sub-surface and 
simulating interstellar and protostellar condi-
tions, respectively.

In the late 2000s, a simulation chamber 
capable of reproducing most planetary objects’ 
atmospheric compositions and surface tempera-
tures was constructed,123 achieving pressures and 
temperatures ranging from 5 to 5 ×  10–9 mbar 
and 4 K to 325 K, respectively. This versatile 
simulation chamber can also study irradiation-
induced chemical changes in controlled condi-
tions. Furthermore, a planetary environment and 
analysis chamber (PEACh)18 uses in situ ana-
lytical techniques like laser Raman spectroscopy, 
laser-induced breakdown spectroscopy, near-
IR reflectance spectroscopy, mid-IR attenuated 
total reflectance spectroscopy, and microscopic 
imaging for studying geological samples under 
relevant planetary environmental conditions. In 
addition, Sobrado et al.12 developed a Mars envi-
ronmental simulation chamber incorporating 
a dust generation mechanism to study Martian 
dust deposition while controlling temperature 
and UV irradiation, the two essential planetary 
conditions.

A research group investigated the UV irradia-
tion processing of biomarkers adsorbed on min-
erals (Mars soil analog) under Martian conditions 
using the planetary surface simulation facility 
(PALLAS).124 This study determined that these 
biomarkers degraded under Martian-like condi-
tions at a substantially slower rate than terres-
trial ambient conditions, indicating that current 
Martian conditions favor potential biomarker 
preservation embedded in Mars analog mineral 
matrices.125 In addition, UV radiation damages 
extremophilic yeast more in the stratospheric 
atmosphere than reduced atmospheric pressure, 
high desiccation, and low temperatures.81 Chroo-
coccidiopsis biofilms with Martian mineral analog 
expressed enhanced biomarker protection when 
exposed to a Martian-simulated atmosphere 
combined with or without UV irradiation, signi-
fying ground-based simulations’ importance for 
interpreting space experiment data..13,126

Bacillus and Paenibacillus species are cultiva-
ble microbial communities found in spacecraft 
assembly facilities (SAFs)63,65,127,128 with elevated 
UV irradiation and hydrogen peroxide treat-
ment resistance due to the presence of several 
genes, gene orders, and proteins linked to provid-
ing extreme condition resistance.129–131 Another 
study examined simulated Martian solar UV 
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radiation effects on bacteriophage T7 and iso-
lated T7 DNA. The UV treatment decreased bio-
logical activity and lowered PCR product levels, 
indicating UV radiation damage.132,133 Recently, 
Li and  colleagues134 administered simulation 
microbial community (represented by cyanobac-
terial crusts microbial communities) experiments 
and concluded that low stratospheric tempera-
tures (similar to Martian conditions) alter micro-
bial community structures by modifying their 
genomic and transcriptomic content.

4  Future Directions
A 2015 document, the NASA Astrobiology Strat-
egy, addressed questions and defined goals and 
objectives to guide and inspire astrobiology 
research more effectively for the next decade.135 
While a lot has improved since then, outstand-
ing questions and challenges remain. Detecting 
unknown biological systems on unknown worlds 
is astrobiology’s biggest challenge. Scientists stress 
that to overcome this critical and complex hurdle, 
we need to understand how life on Earth func-
tions because it is our only sample to examine. 
Despite current advances, we have only started to 
characterize extreme terrestrial microbiomes and 
understand their tolerance to multiple environ-
mental extremes. Furthermore, more microbial 
diversity exists in unexpected and unexplored 
Earth ecosystems that will push the current 
boundary of life even further. Thus, continued 
analog environments and microbiome experi-
ments will provide valuable insights regarding 
life limits on Earth and how extremophiles can 
support the terraformation of planets exhibiting 
extreme conditions.

Additionally, extremophilic microbes may 
assist in designing and developing future orbit-
ers, lander missions, and planetary protection 
practices.136 Increasing the available microorgan-
ism culture collection isolated from astrobiology-
relevant terrestrial environments is urgent; thus, 
novel microbial culture strategy customization, 
optimization, and development will be relevant. 
In addition, integrating omics-based approaches 
(genomics, transcriptomics, proteomics, metabo-
lomics, and epigenetics) with customized micro-
bial cultivation will permit us to understand 
adaptation mechanisms that enable extreme envi-
ronment survival on Earth and in other habitats 
past our solar system (Fig. 1).

Astrovirology, or our understanding of viruses 
in astrobiology, is another avenue astrobiol-
ogists have been moving toward, yet very little 
is known.137 Viruses co-occurring with archaea 

and bacteria on Earth’s biosphere express highly 
diverse structural and genomic sequences. These 
are vital in biogeochemical cycles in terrestrial 
ecosystems and evolution, mediating horizontal 
gene transfer and influencing microbial commu-
nity dynamics. Overall, astrovirologists hypoth-
esize that viruses are as vital in other planet 
ecosystems as they are paramount contributors 
on Earth.137,138 Furthermore, viral signatures may 
be pivotal in searching for life in other biospheres 
and understanding their evolutionary mechan-
ics.138 Nowadays, two main field priorities are 1) 
viruses that inhabit extreme analog environments 
characterization and 2) virus-detection experi-
ments in ancient oceans (Europa and Enceladus) 
using flight instruments to detect viral particles 
or sequences.137,138

Novel biological activity signature advances 
shed light on future frontiers for life detection 
missions. Since the Viking age, the astrobiol-
ogy community has gained a palpable awareness 
about defining experimental protocols in the 
search for life on other worlds and the guiding 
principles needed to interpret generated data.139 
In the coming years, several missions will be 
launched to answer fundamental astrobiology 
queries: how planets form, evolve, and support 
life. Current and planned planetary missions will 
examine extraterrestrial environments’ physical 
and chemical characteristics. Furthermore, space 
agencies (NASA, ESA, CNSA) are expected to 
develop biosignature strategies for Mars, Europa, 
and Enceladus soon.

Mars, Titan, Europa, Enceladus, and Venus 
planetary missions will require specialized tools 
for distinguishing signs of life. As part of the 
ExoMars mission, ESA’s and ROSCOSMO’s 
Rosalind Franklin rover will collect subsurface 
(up to 2 m) samples, where radiation shielding 
could preserve life, encouraging the possibility 
of active life on Mars.140 The Mars Organic Mol-
ecule Analyzer (MOMA) instrument cluster is on 
board this rover,141 equipped with a gas chroma-
tography system and mass spectrometry equip-
ment. This portable laboratory will elucidate 
molecular species with complex chemical com-
positions. However, MOMA will face challenges, 
as the mass spectrometry system must measure 
complex organic molecules’ induced fragmenta-
tion, an approach never attempted outside Earth 
until now.142

The Dragonfly Mass Spectrometer (DraMS), 
another MOMA-like instrument NASA plans to 
launch in 2024, will explore an even more dis-
tant and bizarre world, Titan, Saturn’s largest 
and richly organic moon. Titan is an attractive 
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astrobiology target because its surface contains 
abundant and complex carbon-rich chemistry 
and presents liquid (transient) water and hydro-
carbons, possibly producing a primordial prebi-
otic soup.143 Other analytical instruments 
planned to be on board the spacecraft include 
the Dragonfly Gamma-Ray and Neutron Spec-
trometer, Dragonfly Geophysics and Meteorol-
ogy Package, and the Dragonfly Camera Suite, 
a microscopic and panoramic camera suite for 
imaging Titan’s terrain and exploring scientifi-
cally interesting landing sites.144

Jupiter’s icy moons, such as Europa, Gany-
mede, and Callisto, will welcome a new mass 
spectrometer aboard an ESA orbital mission 
scheduled for launch in 2022. The Jupiter Icy 
Moon Explorer will harbor neutral gas and ion 
mass spectrometry (NIM), making inaugural 
exosphere measurements for Jupiter’s three icy 
moons.145,146 NIM can detect neutral and charged 
molecules from biosignatures in a molecular mass 
range, including lipids, small peptides, and some 
secondary metabolites. By examining their exo-
spheres in detail, we could potentially gain insight 
into how life originates, necessary resources, and 
how these moons differ from each other and 
other planetary bodies in the Solar System.147

The strong evidence of liquid water under 
an icy crust denotes Europa as one of the most 
promising locations in our solar system for dis-
covering currently habitable environments.148 
Scientists hope to launch the Europa Clipper mis-
sion in the mid-2030s to determine if life exists 
beneath Europa’s surface. The spacecraft payload 
for this mission will include the Mass Spectrome-
ter for Planetary Exploration/Europa instrument, 
a high-resolution TOF–MS for measuring trace 
organic compounds at parts-per-billion levels, 
and cameras to produce high-resolution images 
and compositional maps of Europa’s surface and 
thin atmosphere.149 Included in the Europa Clip-
per mission, a solid-state UV laser source is inte-
grated into the Ocean Debris and Life Signature 
Characterization instrument, a candidate instru-
ment for the Europa Lander mission. The device 
can obtain 2D chemical images of Europa sam-
ples using an Orbitrap mass analyzer and active 
beam scanning.150 With these high-resolution 
instruments, it will be possible to determine if 
organic compounds originate from biological 
processes.151

We generally look for Earth-like life on 
Earth-like worlds. So, if life is rare or differ-
ent from Earth’s, our current extraterrestrial 

Figure 1: Strategic overview. A Sampling sites in extreme environments; B Samples processing through 
two strategies: i. extremophiles isolation and ii. (meta)omics approaches; C Both strategy outcomes are 
potential products for use in different biotechnological areas on Earth or space.
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life and biosignature detection approaches may 
fail. Expanded efforts are required to develop 
robust quantitative approaches to remotely 
detect biosignatures in stellar or planetary con-
texts.3 Whether or not other planetary bod-
ies (Mars, Venus, Enceladus, Europa, or Titan) 
could or did support life, studying Earth’s life 
in extreme analog environments and their asso-
ciated microbiomes will further space explora-
tion and could shed light into the origination 
of life on and beyond Earth. Although simu-
lating extraterrestrial environments in labora-
tory conditions is challenging, many research 
organizations have designed new technologies 
to interpret outer space data. Given the impor-
tance and booming interest in extraterrestrial 
environment study, new and improved simu-
lation chambers are frequently constructed 
around the globe guaranteeing success in astro-
biological studies.

5  Concluding Remarks
Microbial life has colonized most of Earth’s 
environments, even the most extreme and hos-
tile. Microorganisms diversify their metabo-
lisms and utilize available resources in habitats 
that may be extreme, and modify their cells’ 
components to function at life frontiers. Hence, 
extremophilic microorganisms are crucial for 
astrobiology studies since they thrive in various 
terrestrial analog environments, face extreme 
stresses, and are relevant for in situ life detection 
(cells, biomolecules, or biosignatures) of plan-
etary bodies in the Solar System and exoplanets. 
Furthermore, studying life on Earth’s edge ena-
bles us to uncover extremophile potential and 
answer primary questions concerning how life 
originates and evolves in the universe. Lastly, 
these studies have provided an avenue for inves-
tigating microbe means and survival extents in 
extreme environmental conditions, broadening 
the scope of space biology.
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