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Abstract | Over the past decade there have been many advances in dia-
betes technologies, such as continuous glucose monitors (CGMs), insu-
lin-delivery devices, and hybrid closed loop systems. Now most CGMs 
(Medtronic-Guardian, Dexcom-G6, and Abbott-Libre-2) have MARD val-
ues of < 10%, in contrast to two decades ago when the MARD used to 
be > 20%. In addition, the majority of the new CGMs do not require cali-
brations, and the latest CGMs last for 10–14  days. An implanta-
ble  6-months CGM by Eversense-3 is now approved in the USA and 
Europe. Recently, the FDA approved Libre 3 which provides real-time 
glucose values every minute. Even though it is approved as an iCGM it is 
not interoperable with automatic-insulin-delivery (AID) systems. The 
newer CGMs that are likely to be launched in the next few months in the 
USA include the 10–11 days Dexcom G7 (60% smaller than the existing 
G6), and the 7-days Medtronic Guardian 4. Most of the newer CGM have 
several features like automatic initialization, easy insertion, predictive 
alarms, and alerts. It has also been noticed that an arm insertion site 
might have better accuracy than abdomen or other sites, like the buttock 
for kids. Lag time between YSI and different sensors have been reported 
differently, sometimes it is down to 2–3 min; however, in many instances, 
it is still 15–20  min, especially when the rate of change of glucose 
is > 2 mg/min. We believe that in the next decade there will be a signifi-
cant increase in the number of people who use CGM for their day-to-day 
diabetes care.
Keywords:  CGM, HCL, TIR, TAR​, HbA1c, Hypoglycemia

CGM: A device that measures 
glucose values in the subcuta-
neous space via a sensor and 
is transmitted to a receiver/
smartphone.

Hybrid Closed Loop (HCL) 
Systems: An insulin pump 
able to deliver variable insulin 
dosages based on CGM values 
using an algorithm.

1  Introduction
The global prevalence of diabetes has continued 
to increase in the past several decades. Over 530 
million people are currently living with diabetes 
worldwide1. Unfortunately, there has been a dis-
proportional increase in diabetes prevalence in 
emerging economies; such as India, China, Mid-
dle East, and Southeast Asia2. Diabetes is also 
more prevalent amongst minorities and socio-
economically disadvantaged individuals, such as, 
Black Americans, Native Americans, Asian Amer-
icans, and Latinx in the United States of America 
(USA)3–6.

It is known that socio-economically disadvan-
taged and minorities do not receive similar diabe-
tes care7–10. For example, many times minorities 
are not even presented with new technologies as 
an option to facilitate their diabetes care. Both 
type 1 diabetes (T1D) and type 2 diabetes (T2D) 
are increasing globally at a rate of about 4% per 
year1,11,12. In the USA, 35–40 million people 
have diabetes13; of which, between 1.5 and 3 mil-
lion have T1D14. The increasing prevalence, as 
reported by IDF, has been in part due to a lack of 
registries in many parts of the world and avail-
ability of inadequate data1.
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Due to increasing prevalence of diabetes, 
the healthcare cost related to diabetes manage-
ment has significantly increased in the past dec-
ade. For example, the total healthcare cost has 
increased to $4USD trillion per year. In the USA, 
the lifetime cost for managing a person with 
T1D is about $1.5USD million with a total cost 
of about $1.5USD trillion15,16. On an average, 
about 8% of the total healthcare expenditure 
is spent every year for diabetes management in 
the USA, which amounts to about $327USD bil-
lion annually16. About $1USD billion is spent on 
acute diabetes complications (diabetes ketoaci-
dosis (DKA) and severe hypoglycemia (SH)). It is 
also been reported that about $800 billion USD 
is spent globally annually for type 2 diabetes 
management17.

Recently,  there has been a significant change 
in delivering diabetes care due to the COVID-19 
pandemic since March of 2020. The development 
and rapid adoption of telehealth and virtual dia-
betes care has increased not only in the USA but 
throughout the world. It is expected that digital 
health expenditure in the next few years will out-
pace investments in other facets of diabetes care. 
The majority of this was facilitated by the availa-
bility of remote data through continuous glucose 
monitors (CGM), continuous subcutaneous 
insulin infusion (CSII or insulin pump), and 
hybrid closed-loop systems (HCL). In part, this 
was facilitated by the US Federal government’s 
Food and Drug Administration (FDA) authoriz-
ing the availability of data from these emerging 
technologies to the patients and providers (tem-
porarily, even across different States in the USA). 
It appears that telehealth is here to stay especially 
for ongoing diabetes management. As we have 
learned through the pandemic, one can deliver 
effective virtual care while initiating new technol-
ogies like CGM, insulin pumps, and HCL 
remotely.

It appears that about 150 million people 
require insulin therapy globally for their day-to-
day diabetes management18, 19. About 30 million 
people have T1D globally and another 15–20% of 
people with T2D are misdiagnosed as they have 
positive antibodies (GAD, IAA, ICA, and ZnTr8), 
indicating beta-cell autoimmunity with slower 
onset of insulin dependence (T1D)20. In addition, 
10–15% of patients with T2D will exhaust their 
beta-cell function during their lifetimes, as T2D 
diagnosis is occurring at an earlier age. Insulin-
requiring patients will need close monitoring of 
their glucose levels so that their insulin dose can 
be manipulated safely. The CGM use, insulin 
pump therapy or a HCL, improves overall glucose 

Insulin Pump: A device that 
delivers insulin doses (basal 
and bolus).

control, especially reducing overnight hypoglyce-
mia. However, less than 20–30% of T1D and less 
than 1% of T2D of insulin-requiring patients in 
the USA are on some sort of pump therapy21. 
Limited use is due to several barriers: cost, lack 
of knowledge, availability, and implementation 
challenges22.

In the past three decades, there has been sig-
nificant development of new technologies, newer 
non-insulin medications for T2D, and insulins for 
improving diabetes outcomes23. Due to all these 
advances, most people with T1D and T2D are liv-
ing longer. It is not uncommon to see people with 
T1D living into their 8th or 9th decade of their 
lives15,24. In contrast, 40 years ago we were taught 
that the majority of T1D patients would not live 
beyond 30–40 years of age and most women were 
not allowed to conceive because of challenges in 
diabetes management and complications associ-
ated with pregnancy.

Despite advances in technologies and ther-
apeutics, life expectancy is still reduced by 
10–15  years in patients with T1D and T2D25,26. 
Generally, long-term diabetes complications have 
significantly decreased. However, the total num-
ber has risen due to an overall increase in preva-
lence. Recent data from the T1D Exchange in the 
US, Diabetes Registry in Germany (DPP), and 
SWEET Registry between US and Europe have 
shown that overall glucose control in patients 
with T1D is suboptimal despite an increase in 
the  use of CGMs and insulin pumps27. Only 
about 1 out of 4 patients reach the American Dia-
betes Association (ADA) and the European Asso-
ciation of Study for Diabetes (EASD) target of 
glucose control (< 7%) as measured by A1c.

2 � Glucose Monitoring
2.1 � Urine Monitoring and Self‑Monitoring 

of Blood Glucose (SMBG)
More than 40 years ago, patients diagnosed with 
diabetes could only monitor their blood glu-
cose levels indirectly by checking the amount 
of glucose present in their urine (glucosuria)28. 
About 35  years ago, SMBG became first avail-
able where patients would acquire blood from 
a fingerstick, which then could be placed on a 
test strip to get the glucose values28. Nearly four 
decades ago, many physicians were questioning 
the usability of SMBG in clinical practice. It was 
not uncommon to hear “Who?” “When?” and 
“Why?” from providers and patients. However, 
SMBG was first used successfully in a large clini-
cal trial sponsored by the National Institutes of 
Health (NIH, Bethesda, MD); Diabetes Control 
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and Complications Trial (DCCT)29. Since then, 
SMBG has been widely utilized for insulin-
requiring patients to adjust their insulin dose and 
infrequently for patients with T2D not requiring 
insulin30.

2.2 � Continuous Glucose Monitoring 
(CGM)

In recent years, experts in diabetes have stressed 
the importance of CGM use, for improved gly-
cemic outcomes31–47. What was commonly said 
about SMBG 35 years ago, was repeated two dec-
ades ago about CGM (Who? Why? When?)28. 
However, there are now > 7 million CGM users 
worldwide, with a market cap of about $7USD 
billion at the time of this writing48. We believe 
that CGM will become the choice for glucose 
monitoring (replace SMBG) in clinical prac-
tice over the next 5–10  years in insulin-requir-
ing patients with diabetes, assuming it is cost 
effective.

The first professional CGM was iPro, devel-
oped by MiniMed (now Medtronic Diabetes, 
Northridge, CA) in 199949. The iPro collected 
continuous glucose data and after 3 days, the pro-
vider was able to download the data and adjust 
the patient’s treatment accordingly. The earliest 
adjunctive real-time CGM (rtCGM) approved 
by the FDA was the GlucoWatch (GW) Biog-
rapher, developed about 24  years ago (Cygnus, 
Redwood City, CA)31. GW had a warm up period 
of 2  h and used reverse-iontophoresis to extract 
a small amount of interstitial fluid and measure 
glucose concentrations32. This data was displayed 
as a glucose value every 20  min on the GW for 
12 h. When released, GW had a very high MARD 
(22%)31,50; whereas, most current CGMs have 
MARD values in the single digits (between 8 and 
10%). Over the years several advancements in 
personal CGM devices included: better accuracy, 
increased duration of use, non-adjunctive, stand-
alone, and decreased size.

The majority of CGMs measure glucose in 
the interstitial fluid every 1–5 min depending on 
the type of sensor51. These systems are consid-
ered personal (unmasked), where patients can 
access their glucose data in real-time. Or they 
can be professional (masked), where glucose val-
ues are downloaded and retrospectively reviewed 
in a clinic/research setting. Currently, patients 
with diabetes primarily utilize personal CGMs, 
and professional (retrospective) CGMs are rarely 
used; but are still utilized for research purposes.

A CGM can be worn on the skin or implanted 
subcutaneously52,53. Sensors can be real-time 

(rtCGM), where glucose values are transmitted 
to a receiver/smartphone continuously. Intermit-
tently scanned CGMs (isCGM) require patients to 
scan with a receiver/smartphone. It is known that 
there is a lag period of 3–15 min between inter-
stitial and blood glucose values depending on the 
device. Early CGMs required SMBG confirmation 
before user intervention (adjunctive)31–44. Newer 
CGMs data are used to make treatment decisions 
as standalone devices. Currently there are four 
major CGMs that are available and approved by 
the FDA in the USA: Medtronic, Dexcom (San 
Diego, CA), FreeStyle Libre (Alameda, CA), and 
Eversense (Senseonics, Baltimore, MD).

Medtronic introduced their Guardian CGM 
series in early 2000. Their first CGM was the 
Guardian REAL-Time system which provided 
glucose values every 5  min. Guardian 3 was an 
integrated CGM, that was only compatible with 
MiniMed insulin pumps54,55. Last year the Guard-
ian 4 sensor was approved as a non-adjunctive 
CGM in Europe that can link to the 780G pump 
and the smart/memory insulin pen (Inpen)56. 
The Guardian 4 is currently not approved as an 
iCGM because of paracetamol interference and 
a MARD > 10%57 (Fig.  1). The manufacturer 
has also been working on a new non-adjunctive 
7-days CGM (Simplera formally known as Syn-
ergy) that combines both sensor and transmit-
ter into one device like the Dexcom G7 and 
Libre 2 and 358. Presently, Simplera has not been 
approved in the USA or Europe.

Dexcom has had many versions of CGMs. 
Initially, the Dexcom short-term sensor (STS) 
was approved in 2006 by the FDA as a 3-days 
adjunctive CGM. STS had higher MARD values, 
16–25% when compared with SMBG and YSI35. A 
year later, the Dexcom SEVEN system was intro-
duced which included 7 days of continuous wear 
and offered more convenience59. Subsequently, 
the introduction of the G4 PLATINUM in 2012 
featured improved overall accuracy, especially in 
detection of hypoglycemia. The G4 expanded its’ 
capabilities in 2015 by including a SHARE fea-
ture60. SHARE gave patients the ability to share 
their glucose data with up to five users. This fea-
ture allowed caretakers to remotely monitor glu-
cose levels and offer treatment support. The same 
year, the G5 sensor was released, which incorpo-
rated wireless rapid data downloads on a smart 
phone and/or receiver61. The G6 was approved in 
2018 as the first iCGM that allowed integration 
with different insulin pumps, such as Tandem 
and Omnipod 562,63. In addition, iCGM doubled 
its’ SHARE capabilities and increased wear time 
to 10 days64,65. The G7 iCGM is not yet approved 
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by the FDA but is  available in Europe (EMA). 
The G7 is 60% smaller, lasts 10.5 days, and has a 
warm-up period of less than 30 min. G7 has the 
sensor and transmitter as one piece66 (Fig. 2).

Abbott originally developed their Naviga-
tor 5-days adjunctive CGM67. Many years later 
a smaller, factory-calibrated version, called the 
FreeStyle Libre (isCGM) was launched initially 
in Europe and then in the USA68. When released, 
the Libre had a 1-h warm-up period. The Libre 
and Libre 2 are approved as a 14-days isCGM, 
that need to be scanned every 8  h. Libre 2 also 
includes alarms to notify the user of hypo- and 
hyperglycemic events69, 70. The Libre 3 has a 
70% thinner profile (size of a penny) and is an 
rtCGM that was recently FDA approved in the 
USA (though not available freely in the USA); it 
relays glucose values every minute71. In Europe, 
the Libre 3 has been approved and used by 
investigators with an automatic insulin delivery 
(AID) system. Although the Libre 3 is approved 
as an iCGM in the USA, it is not allowed for AID 
use due to interference with aspirin and Vitamin 
C. The MARD reported at Advanced Technology 
and Therapeutics in Diabetes (ATTD) 2022 in 

Barcelona was 7.9%, though no data is available 
in published literature (Fig. 3).

There have been attempts for a longer-term 
implantable sensor. The first attempt at an 
implantable sensor was developed by Dexcom 
more than 24  years ago. It was the size of a AA 
battery that was implanted in the abdomen (sub-
cutaneously). Only 15 patients were enrolled in a 
small pilot study34. The sensor had a high MARD 
value of 25% and did not last the intended 
6  months. In addition, the sensor moved in the 
subcutaneous space, especially in obese individu-
als. As a result, the studies were terminated early, 
and the data was never submitted for FDA or 
EMA for approval.

It was not until 2018 that an implantable sen-
sor was approved by both the FDA and EMA. 
Senseonics (Baltimore, MD) developed a smaller 
sensor, the Eversense® for 90-day wear72. The 
sensor insertion requires a surgical intervention 
under local anesthesia. The sensor is implanted 
in the upper arm and requires a transmitter to be 
replaced every 24  h that relays glucose values to 
a smart phone/receiver. This sensor is capable of 
vibratory alerts through the transmitter. Sensor 
duration up to 180  days with the Eversense XL 
was approved only in Europe. Eversense 3 (E3) 

Model

Guardian Real 
Time

iPro 2 Enlite Guardian 3 Guardian 4

Year of FDA 
Approval 2005 2011 2016 2018 Not approved by 

FDA

MARD 17.2% 13.6% in adult
15% in pediatric 18.3%

8.7-9.14% in arm
9.6-10.5% in 

abdomen
10.6%

Wear Length 
Time 3 days 6 days 6 days 7 days

Warm Up Time 2 hours 1 hour 2 hours

Repeated 
Calibrations 

Needed
Every 12 hours 3-4 times a day

First day, every 6 
hours. Afterwards, 

every 12 hours
Every 12 hours

No 
(Once the 1st 

day)

Measures 
Glucose Every 5 minutes

Wireless Data 
Sharing N/A N/A N/A 5 people

Alerts N/A N/A N/A Yes
Transmitter 

Duration 12 months

Interference 
With Acetaminophen Acetaminophen None Acetaminophen Unknown

Pump 
Integration N/A N/A Veo, MiniMed 

530G,630G, & 670G
MiniMed 670G & 

770G MiniMed780G

Figure 1:  Development of Medtronic’s Guardian CGMs. Features of Guardian sensors over the years. The 
figure gives details of MARD, wear length time, warm-up time, calibrations needed, transmitter duration, 
wireless data sharing, and different drug interferences. Images taken at the Barbara Davis Center for Dia-
betes.
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Model

Short Term 
Sensor 
(STS)

Dexcom SEVEN 
PLUS

Dexcom 
G4

Dexcom 
G5

Dexcom G6 Dexcom G6 
Pro

Dexcom 
G7

Year of FDA 
Approval 2006 2007 2012 2015 2019 2019 Not 

Approved

MARD 26% 16% 13% 9% 9% 9%

8.1% in 
arm

9.1% in 
abdomen

Wear 
Length 
Time

3 days 7days 10 days 10.5 days

Warm Up 
Time 2 hours 27 

minutes

Repeated 
Calibrations 

Needed
Every 6 hours No

Measures 
Glucose Every 5 minutes

Wireless 
Data 

Sharing
N/A 5 people 10 people N/A 10 people

Alerts Only for 
hypoglycemia Yes

Transmitter 
Duration 6 months 3 months 1 month 10 days

Interference 
With

Aspirin
Vitamin C Acetaminophen Acetaminophen

Hydroxyurea Hydroxyurea Ascorbic Acid
Salicylic Acid Unknown

Pump 
Integration

N/A Tandem Tandem
Omnipod 5 N/A Unknown

Figure 2:  Development of Dexcom’s CGMs. Features of Dexcom sensors over the years. The figure gives 
details of MARD, wear length time, warm-up time, calibrations needed, transmitter duration, wireless data 
sharing, and different drug interferences. Images taken at the Barbara Davis Center for Diabetes.

Model

FreeStyle Libre Pro FreeStyle Libre FreeStyle Libre 2 FreeStyle Libre 3

Year of FDA Approval 2016 2017 2018 2022

MARD 12.3% 12% 9.5% 7.9%
Wear Length Time 14 days

Warm Up Time 1 hour

Repeated 
Calibrations Needed None

Measures Glucose Every 15 minutes Every 1 minute
Wireless Data 

Sharing N/A 20 people

Alerts N/A Yes; when scanned Yes

Transmitter Duration 14 days

Interference With Hydroxyurea Vitamin C
Aspirin

Pump Integration N/A 

Figure  3:  Development of Abbot’s FreeStyle Libre CGMs. Features of Freestyle Libre sensors over the 
years. The figure gives details of MARD, wear length time, warm-up time, calibrations needed, transmit-
ter duration, wireless data sharing, and different drug interferences. Images taken at the Barbara Davis 
Center for Diabetes.
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was approved by the FDA for 6-months use in 
adults in 202253. E3 had already been approved 
as non-adjunctive by the EMA > 2 years ago. The 
E3 has sacrificial boronic acid which increased 
the life expectancy of the sensor. In preliminary 
studies, the E3 lasted the full 6 months in 90% of 
patients. The new E3 has improved accuracy with 
a MARD of 8.5%53. No AID studies have been 
conducted in the USA with the E3. The manufac-
turer is developing a 1-year implantable sensor 
(Fig. 4).

With improved accuracy, connectivity to insu-
lin pumps, and improved insurance coverage, 
CGMs are increasingly adopted in clinical prac-
tice. At the time of enrollment the T1D Exchange 
Study (2010–2012) conducted in the USA, 7% of 
25,833 patients were using a CGM73. The 5-year 
follow-up study reported that about 30% of those 
patients were now using a CGM74. The number 
of users is expected to increase exponentially in 
the next 5 years to about 15–20 million users.

The continued progression of CGMs have 
allowed for pump integration and compat-
ibility between different manufactures. The FDA 
introduced a new category that allows expe-
dited approval, called integrated/interoperable 
CGM (iCGM)62. CGM accuracy is assessed is 
by calculating the mean absolute relative dif-
ference (MARD) between paired glucose values 
from the CGM versus BG values from the Yellow 
Spring Instrument 2300 (YSI, CITY, OH). Lower 
MARD indicates better accuracy. iCGM approval 
requires CGM values to be within ± 15  mg/dL 

or ± 15%, 20/20%, 30/30%, and 40/40% of the 
YSI value75. For example, CGM values need to be 
within 15  mg/dL if BG is < 70  mg/dL, or within 
15% if BG > 70 mg/dL, and so on. iCGM designa-
tion also requires no interference with paraceta-
mol and/or vitamin C.

There are many limitations of A1c measure-
ments (Table  1). It is still the gold standard for 
assessing long-term (1–3  months) diabetes con-
trol. Many international organizations like ADA, 
AACE, EASD, and ATTD now strongly recom-
mend CGM use in patients with TID and those 
with T2D on multiple daily injections (MDI). 
CGM use in patients with diabetes have consist-
ently shown improved time-in-range (TIR)76, 
quality of life77, glucose control (A1c)78–85, 
decrease in DKA and hypoglycemia (Level 1 and 
Level 2). No DCCT like trials have been per-
formed with CGMs, however, retrospective, and 
cross-sectional analysis have shown close cor-
relation of TIR with micro- and macro vascular 
complications76.

While the benefits of CGM use in T1D are 
well known, they are underutilized in patients 
with T2D on MDI. In a DIAMOND study of 148 
patients with T2D on MDI, patients were rand-
omized to a CGM or continued to use SMBG 
measurements. The  CGM group improved 
their A1c by 0.3%, in comparison to  the 
SMBG  group86. Similar conclusions were made 
in the MOBILE study with 175 patients with T2D 
on basal insulin. Along with reduced hypoglyce-
mia events, there was an overall reduction of A1c 

Model

Dexcom 
Implantable 

Sensor

Eversense Eversense XL Eversense (E3)

Year of FDA Approval Not approved by 
FDA

2018 Not approved by FDA 2022

MARD 16-25% 11.2% 11.6% 8.5%
Wear Length Time 3 months 90 days 180 days 180 days

Warm Up Time N/A 24 hours
Repeated 

Calibrations Needed
Every 12 hours 2 calibrations per day,

for the first 21 days of 
wear. Then, every 24 

hours.
Measures Glucose Every 5 minutes

Wireless Data 
Sharing

N/A 5 people

Alerts Yes
Transmitter Duration 51-58 days 3 months 6 months

Interference With N/A Tetracycline
Mannitol

Pump Integration N/A

Figure 4:  Implantable CGMs. Features of implantable sensors over the years. The figure gives details of 
MARD, wear length time, warm-up time, calibrations needed, transmitter duration, wireless data sharing, 
and different drug interferences. Images taken at the Barbara Davis Center for Diabetes.
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by 0.4%87. CGM use has also been proven to be 
advantageous in patients with T2D that are using 
oral anti-hyperglycemic agents to manage their 
diabetes. However, CGM use in patients with 
T2D not requiring MDI is limited. This may be 
in part due to cost and insurance reimbursement 
challenges88–93.

The CGM is used to assess glucose con-
trol and has built-in adjustable and predictive 
alarms/alerts for hyper- and hypo-glycemia. Dif-
ferent metrics include: TIR is 70–180  mg/dL, 
time-below-range (TBR) is < 70  mg/dL, time-
above-range (TAR) is > 180  mg/dL, and time-
in-tight-range (TITR) is 70–140 mg/dL (there is 

no consensus on TITR yet) (Table 2)94. 70% TIR 
usually represents an A1c of ~ 7%. Depending 
on the level of glucose control, a 5–10% change 
in TIR, may represent a 0.5% to 1% change in 
A1c95. The TIR goals may need to be modified for 
elderly, during pregnancy, toddlers, and high-risk 
individuals with diabetes (Fig. 5).

Additionally, these devices can be useful in 
managing diabetes in high-risk populations such 
as, toddlers, pregnant patients, the elderly, and 
patients with other comorbidities97. It is well 
known that elderly individuals with diabetes 
are at a higher risk of hypoglycemia98. CGM use 
can decrease occurrence of these events, which 

Table 1:  Limitations of A1C. Limitations of using A1c values in a medical setting.

1. Does not detect hypoglycemia, hyperglycemia, and variability 

2. Cannot be used for acute glycemic management plan 

3. Does not reflect rapid changes of blood glucose

4. False high and low values of A1C in certain situations: 

 a. Hematologic conditions

  • Anemia

  • Accelerate erythrocyte turnover

   • Thalassemia

   • Sickle cell disease

   • Reticulocytotic

   • Hemolysis

 b. Disease States 

   • HIV infection 

   • Uremia 

   • Hyperbilirubinemia 

   • Dyslipidemia 

   • Cirrhosis

   • Hypothyroidism

 c. Physiologic states

   • Aging 

   • Pregnancy

 d. Medical therapies

   • Blood transfusion

   • Hemodialysis

 e. Drugs/medications

   • Iron

   • Erythropoietin

   • Dapsone

   • Trimethoprim

 f. Miscellaneous

   • Alcoholism

   • Chronic kidney disease
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may improve diabetes outcomes as measured by 
A1c, GV as measured by SD or CV, and quality 
of life. Furthermore, CGM use has been shown 
to be particularly useful in pregnant patients 
with diabetes. For example, CONCEPTT was 
an international multi-center RCT that studied 
CGM efficacy in pregnant patients with T1D. 
The CONCEPTT study showed a significant 
reduction of patient hyperglycemia and, in turn, 
improved neonatal outcomes99. Lastly, even peo-
ple with prediabetes can benefit from CGM use. 
Patients with prediabetes have elevated post-
prandial glucose levels and CGM use may induce 
behavioral change, thus possibly delaying the 
onset of diabetes100,101 (Fig. 5).

Since the COVID-19 pandemic, CGM has 
been used in hospitalized patients. CGM devices 
have allowed health care professionals to remotely 
monitor glucose levels. This is particularly impor-
tant in ICU patients where frequent glucose 
measurements are recommended102. On the other 
hand, in certain circumstances such as in whole 
body cryotherapy, it is required to do SMBG 
measurements to avoid sensor inaccuracies, due 
to associated hypoxia103,104.

In summary, CGM has come a long way in the 
past 25 years. CGM’s accuracy has increased over 
time. Most have single-digit MARD values and 
can be used as non-adjunctive devices without 
requiring any SMBG calibrations. These devices 

Table 2:  Commonly used glucose metrics.

Keywords Definitions Interpretation

Standard Deviation (SD) A measure of glucose excursions from 
the mean

Reflects fluctuations (high/low) from 
their mean glucose level

 <SD = More glucose excursions
 >SD = Less glucose excursions

Coefficient of variation (CV) Divide the SD by the mean glucose and 
multiply by 100. Used to correct and 
calculate glycemic variability (GV), 
or fluctuations in glucose levels over 
time

Reflects how stable a patient’s glu-
cose levels are. Larger variability 
correlates with increased risk of 
hypoglycemia

 <CV = Poor glycemic control
 >CV = Good glycemic control
 CV<33% = Stable glucose levels

Mean Absolute Relative Difference 
(MARD: either ≥100 mg/dL glucose 
or all levels)

The mean absolute relative difference 
between all CGM numbers and 
matched reference values

Used to calculate the accuracy of a 
CGM sensor

Mean Absolute Deviation) (MAD: 
<100 mg/dL glucose)

The mean absolute deviation between 
each data value and the mean of a 
data set

Calculates the accuracy of a CGM 
within the hypoglycemia range

HbA1c Reflects the mean glucose levels for the 
previous three months. Used for test-
ing for and managing diabetes

Normal: Below 5.7%
Prediabetes: 5.7–6.4%
Diabetes: 6.5% or above
Diabetes management goal: 7% 

or less

Time In Range (TIR) The percentage of time that glucose 
levels are within the target range 
(generally 70-180 mg/dL)

Can be calculated for patients utilizing 
a CGM or fingerstick BGs (if <4x/day)

It is used in conjunction with SD/
CV variability to assess glycemic 
control

Ideal TIR= 70% 

Time Above Range (TAR)
Level 1 Hyperglycemia
Level 2 Hyperglycemia

The percentage of time glucose levels 
are above the target range, or hyper-
glycemia

 - Blood glucose > 180mg/dL
 - Blood glucose > 250mg/dL

- High glucose levels; needs moni-
toring

- Very high glucose levels; requires 
immediate management

Time Below Range (TBR)
Level 1 Hypoglycemia
Level 2 Hypoglycemia

The time the percentage of blood 
glucose is below the target range, 
hypoglycemia

 - Blood glucose <70mg/dL
 - Blood glucose < 54mg/dL

- Mild hypoglycemia; needs moni-
toring

- Moderate hypoglycemia; requires 
immediate management

Low blood glucose index (LBGI) An established metric of hypoglycemia 
risk (<70 mg/dL)

Assess hypoglycemic risk

High blood glucose index (HBGI) An established metric of hyperglycemia 
risk (<180 mg/dL)

Assess hyperglycemic risk
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have also become more convenient due to their 
reduced sized and simple insertion devices. Users 
can share their data with family member and 
providers to guide therapeutic decisions. Over-
all, CGM use helps with early detection of T1D/
T2D97,100,101, improves glucose control, facilitates 
in-patient diabetes care, and enhances  remote 
diabetes care through telehealth102,105–107.

2.3 � Insulin Pumps
In healthy individuals without diabetes, beta-
cells of the pancreas, secrete insulin every minute 
in response to a rise in glucose values. Insulin is 
released directly into the liver for optimized glu-
cose utilization. Physiologically, insulin is con-
tinuously secreted in small amounts to keep 
euglycemia, commonly referred to as basal insulin 
(long-acting). A burst of rapid-acting insulin is 
delivered based on food intake or to correct for 
high BG (bolus) after meals. Therapeutic goal in 
patients with diabetes has been to imitate normal 
insulin secretion108.

Over the last three decades many rapid-act-
ing insulin analogs (Lispro (Humalog), Aspart 
(Novolog, Fiasp), Glulisine (Apidra), Lispro-aabc 
(Lyumjev) have been made available that differ 
in pharmacokinetics and pharmacodynamics for 
insulin pump use108. Currently, human regular 
insulin is not approved for use in insulin pumps 
due to the risk of catheter occlusions, and as a 
result, higher risk of DKA109.

As mentioned earlier, the DCCT compared 
intensive therapy, insulin pumps or MDI (3 or 
more daily injections), along with SMBG meas-
urements vs. standard treatment (2 or less daily 
injections)110. The trial was terminated early due 

to the results being significantly positive in the 
intensively treated group. The DCCT established 
that maintaining glucose values within a specified 
range was key to reducing complications related 
to diabetes110. There was a significant reduction 
of all micro-vascular complications (diabetic kid-
ney disease and diabetic retinopathy). Since the 
conclusion of the DCCT in 1993, intensive ther-
apy has been the standard of care for manage-
ment of T1D. Intensive therapy has shown similar 
benefits in non-insulin requiring patients with 
T2D. The United Kingdom Prospective Diabetes 
Study (UKPDS) studied 5102 patients with T2D 
and demonstrated that intensive therapy reduces 
overall diabetic-complications111.

The first insulin pump was a large portable 
backpack developed by Kadish in 1963112. This 
prototype was an advanced closed-loop sys-
tem that delivered insulin intravenously based 
on continuous blood glucose measurements. 
Unfortunately, it was impractical for day-to-day 
patient use. In 1974, Miles Laboratory (Elkhart, 
Indiana; USA) developed the first commercial 
inpatient pump, the Biostator113. However, out-
patient use of this pump was not feasible due to 
its complexity and size. Two years later, Kamon 
engineered the first portable autosyringe insu-
lin pump, known as the “Big Blue Brick”112. 
Due to its intricacy and bulkiness, they were 
only offered to patients awaiting pancreas 
transplants. These early CSII systems paved the 
way for the development of smaller and more 
sophisticated models.

Pacesetter Systems, now Medtronic Mini-
Med Inc., introduced the first miniaturized ver-
sion of an insulin pump, the MiniMed 502114,115. 
This commercial pump allowed subcutaneous 
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Figure 5:  Blood glucose targets for different diabetes populations. Variable blood glucose targets specific 
to diabetes population. Data from: Kweon96.
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continuous delivery of small amounts of insu-
lin. Depending on food intake, patients could 
administer a bolus of an insulin analog. Three 
years later, the smaller 504 model was released, 
but with the same software as the 502. However, 
the launch of the MiniMed 506 in 1992 included 
significant advancements that incorporated daily 
insulin totals and bolus insulin memory. These 
new features centered on glucose trend tracking 
which helped users understand what contributed 
to a certain correction116.

Despite many improvements, patients 
expressed the desire to temporarily detach from 
their pump at the insertion site. Thus in 1996, 
the MiniMed 507 included a quick release. The 
507 model also increased the programmable 
basal rate from 6 to 12. The 507C model released 
three years later, again upgraded these rates, from 
12 to 48. Later that same year, the MiniMed 508 
included a vibration alerts, child-lock, specific 
programmable delivery patterns, and a remote-
control feature.

With every version, the physical features 
of MiniMed pumps were modified. In 2001, 
Medtronic acquired MiniMed and combined 
their advanced algorithm software with these 
pumps for improved diabetes care. A year later, 
the MiniMed Paradigm 511 system consisted of 
an insulin pump and a CGM data display. Glu-
cose values could be transferred from a SMBG 
meter to the Paradigm 511 insulin pump. This 
allowed patients to easily record, track, and share 
their glucose data. When Medtronic released 
the MiniMed Paradigm 512 in 2003, it included 
these same features but with wireless glucose data 
transmission. Although the Paradigm system was 
able to receive glucose data and suggest correc-
tions, it could not automatically deliver insulin.

Tandem Diabetes Care (San Diego, CA, USA) 
released their first insulin delivery system in 2012, 
the t:slim117. It was the first touch-screen insu-
lin pump in the USA118. Tandem received FDA 
approval in 2015 to integrate Dexcom G4 data 
using Bluetooth technology.

A tubeless insulin pump was released by Insu-
let (Bedford, MA, USA) in 2015, called the Omni-
pod119. The original Omnipod system consisted 
of a Personal Diabetes Manger (PDM) and a dis-
posable pump (Pod) that contained an insulin 
reservoir that lasted 3  days. When first released, 
the PDM was a handheld analysis device that 
could wirelessly deliver insulin. Three more ver-
sions with minor improvements of the Omnipod 
system were made. The Omnipod Dash in 2019 
included smartphone connectivity via Bluetooth, 
the Omnipod DISPLAY. The Dash also included 

Omnipod VIEW, which gave parents and care-
givers remote and real-time access to glucose 
data, and insulin history from their smartphone. 
Wireless communication between an insulin 
pump and CGM, became the expectation when 
developing these devices.

Other manufacturers of insulin pumps avail-
able for a limited time in the USA included: (a) 
Deltec Cozmo in 2002 (Smiths Medical, London, 
UK), but suspended its operation in 2009 due to 
financial reasons120. (b) The Animas Corpora-
tion (West Chester, PA, USA) manufactured two 
pumps, the Animas Vibe and the OneTouch Ping, 
but stopped production in 2017 due to the com-
petitive insulin pump market and financial infea-
sibility121. (c) In 2003, Roche Diabetes Care, Inc. 
(Indianapolis, IN) acquired Disetronic and mar-
keted a newly designed Accu-Chek Spirit 3 years 
later. Subsequently, the Accu-Chek Combo was 
released and consisted of an insulin pump and 
a Bluetooth connected SMBG meter. This gave 
the user full remote control over insulin deliv-
ery. It was made available in the USA in 2012, 
but discontinued production in 2017 due to lack 
of traction in the USA. Accu-Chek pump is still 
available in Europe, primarily in UK.122 The new 
Accu-Chek Solo is a tubeless insulin pump (like 
Omnipod) that features no screen and wireless 
connectivity and is only available in some parts of 
Europe.

Several other insulin pumps have also been 
manufactured worldwide, with limited patient 
use. The Kaleido, manufactured by ViCentra 
(Utrecht, Netherlands), is the smallest commer-
cially available insulin pump, but it is only offered 
in Europe123. It comes with two rechargeable and 
interchangeable patch pumps that permits insu-
lin delivery via a Bluetooth enabled PDM (like 
Omnipod). Notably, the Kaleido is a combination 
pump; it has a patch pump, but it also has tub-
ing for flexibility in pump location when wear-
ing specific clothes- the user wears two separate 
adhesives to their skin. SOOIL Development 
Co., Ltd. (Seoul, Korea) produces the DANA 
insulin pumps, which allow for remote control 
insulin dosing through a users’ smart phone124. 
The DANA system is currently only available for 
patients in Europe and Asia. In 2020, Ypsomed 
(Burgdorf, Sweden) announced a partnership 
with Eli Lilly and Company (Indianapolis, IN) 
to develop a closed loop system125. Presently, it is 
only available in Europe.

Most of the pumps used in the USA are made 
by: Medtronic MiniMed Inc., Tandem Diabetes 
Care Inc., and Insulet Corporation.
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2.4 � Hybrid Closed‑Loop Systems (HCL)
Unfortunately, at present there are no fully auto-
mated closed-loop systems available. Currently 
only HCL systems are approved for patients 
with diabetes. HCL is considered a hybrid sys-
tem because it requires a patient to bolus insulin 
for carbohydrate (CHO) intake. An HCL system 
consist of an integrated insulin pump, CGM, and 
algorithm, to help sustain users at a desired glu-
cose target. Many integrated HCL systems are 
now available. However, patients do not have the 
ability to customize and pair different insulin 
pumps, CGMs, and algorithms together. A fully 
automated closed-loop, or “bionic pancreas”, 
might consist of a dual or triple hormone system 
(insulin, glucagon, and/or pramlintide)126–128. 
These new systems might include artificial intel-
ligence to facilitate the algorithm that will auto-
matically adjust to individual patient needs over 
time.

The MiniMed Paradigm REAL-Time sys-
tem 515, released in 2006, was the first diabe-
tes management system that combined insulin 
pump therapy with real-time updated glucose 
values every 5 min129,130. Due to differing regula-
tions, the advanced MiniMed Veo which featured 
low-glucose suspend (LGS), was made available 
only in Europe in 2009131. This was the first LGS 
system, that suspended insulin delivery when 
glucose values reached a preset low value (40–
110 mg/dL). Medtronic developed one more reit-
eration of the Paradigm system in the USA, the 
MiniMed Paradigm REAL-Time Revel 523. This 
combined system included CGM predictive alerts 
up to 30 min before hypoglycemia.

The MiniMed Veo was known as the 530G 
(MiniMed) in the USA in 2013. The 530G pump 
was integrated with a CGM that suspended insu-
lin delivery using a preset modifiable low glucose 
range (60–90  mg/dL). When low glucose values 
were detected by the Enlite glucose (Medtronic, 
Northridge, CA) sensor, the 530G (also known as 
Threshold Suspend- TS) suspended insulin deliv-
ery for up to 2 h132. TS has been shown to signifi-
cantly reduce hypoglycemic events. The ASPIRE 
in-clinic crossover study, where patients were ran-
domized into LGS “on and off” (with a washout 
phase), supported this approval in the USA133. 
Patients spent significantly less time after exer-
cise induced hypoglycemia in the in-clinic setting. 
Due to the cross-over design with this study, there 
was a spillover effect of hypoglycemia, commonly 
referred to as “hypoglycemia begets hypoglyce-
mia”. This was one of the most unethical studies 
because patients, although under close observa-
tion, had to stay in a hypoglycemic state for 4 h to 

verify that the TS feature worked effectively. Dur-
ing extended periods of insulin suspend for 4 h, 
counterregulatory hormones compensate and 
gluconeogenesis may raise the BG, which can lead 
to DKA (not observed in the ASPIRE in-clinic 
study)134. This study observation resulted in most 
future HCL studies avoiding a cross-over design.

A 3-months RCT, ASPIRE at home study 
was conducted to study 247 T1D adult patients 
with documented nocturnal hypoglycemia. This 
study evaluated the effects of changes in A1C 
and nocturnal hypoglycemia events when TS 
“on” or “off”. Use of the TS system showed a 37% 
decrease in nocturnal hypoglycemia, in compari-
son to those using a sensor-augmented therapy 
without TS135,136.

The launch of the 620G in 2014 was the first 
integrated insulin pump with a CGM launched 
in Japan. The continued evidence in support of 
TS systems lead to the release of the 630G in the 
USA, with the same algorithm as the 530G but 
with waterproofing, remote blousing, and the 
insulin on board (IOB) displayed on the screen. 
A year before, in 2015, the MiniMed 640G was 
made available outside the USA. The MiniMed 
640G included “predictive low-glucose suspend” 
(PLGS) which predicted hypoglycemia (within 
20 mg/dL) using a preset, and then stopped insu-
lin delivery137,138. Although, never approved by 
the FDA, the 640G’s PLGS system was useful in 
getting a HCL system (670G).

The first HCL system was the 670G, which 
included insulin suspension during hypoglycemia 
and automatic insulin delivery based on hyper-
glycemia139–142. This system allowed for person-
alized and automated basal insulin delivery143. 
It adjusted basal insulin based on a Proportional 
Integral Derivative (PID) algorithm system144. 
This algorithm changed the rate of insulin deliv-
ery based on how far from the glucose target is, 
and how much it has changed. This enabled the 
background insulin delivery needed to maintain 
a stable blood glucose value. To test this device, 
a single arm study was designed, as allowed by 
the FDA for faster approval processes because 
it only tested for safety. It was shown to sig-
nificantly reduce hypoglycemia in patients with 
T1D141,145. The 670G was originally well-accepted 
by patients, however, due to repeated need for 
calibrations and multiple alarms, many patients 
discontinued device use146.

In 2020, the MiniMed 770G was released 
using the same SmartGuard algorithm as the 
670G but with added smartphone connectivity 
with possibility of shared data and increased user 
availability (age 2 and above). The MiniMed HCL 
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system began auto-mode after 48 h, so that it can 
program its own basal insulin rates, updating 
every 2–6  days. Within the same year, 780G was 
released with an advanced SmartGuard algorithm 
which included the ability for correction boluses 
every 5 min147. It featured auto-bolus capabilities, 
flexible target ranges 100, 110 or 120 mg/dL, and 
an improved exercise mode148. Initial registration 
studies showed improved TIR and a decrease of 
hypoglycemic events, especially nocturnal149. 
Real-world studies supported these findings150, 
151. Although offered internationally, the 780G is 
currently not approved by the FDA in the United 
States at the time of this writing150 (Fig. 6).

The tandem X2 pump can be used with two 
systems, Basal or Control-IQ152,153. Both systems 
were capable of suspending insulin delivery if 
sensor glucose is < 70  mg/dL154. The algorithm 
used is Model Predictive Control (MPC) which 
analyzes CGM data to reduce the risk of 

hypoglycemia. It automatically stopped insulin 
delivery if glucose was predicted to be < 80  mg/
dL within 30 min154. The user can also choose to 
upgrade their X2 pump from Basal-IQ to Control 
IQ through an online software update. The con-
trol-IQ system has an added feature that adjusts 
basal insulin rates based on preprogrammed set-
tings. Unlike MiniMed, Tandem allows users 
to set their body weight and basal insulin set-
tings, allowing immediate access to “Control-IQ” 
(Fig. 6).

Control-IQ has a feature that can correct 
for predicted hyperglycemia (> 180  mg/dL) by 
automatically delivering 60% of the insulin sen-
sitivity factor (ISF) as a correction bolus every 
hour to maintain a glucose target (112–160 mg/
dl)155. Like the 780G, the Control-IQ system has 
an “exercise” feature which decreased the basal 
rate to allow for a higher target. Control-IQ has 
additional features like sleep mode and extended 

Figure  6:  Commonly used HCL systems (FDA and/or EMA Approved). Comparison of commonly used 
HCL systems. Images from the PANTHER Program and through the Barbara Davis Center for Diabetes.
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bolus insulin delivery especially when high fat 
and protein meals are consumed156.

A RCT using Control-IQ system showed 
increased TIR (> 70%) in T1D patients, in both 
adult and pediatric age groups155, 157–159. The 
Control-IQ system was the first HCL that did not 
require finger calibrations to stay in an control-
IQ; this made it easier for patients and clinicians. 
The 780G and the Control-IQ system are very 
similar, and many studies have compared the 
two157,158,160. However, the 780G was shown to be 
more effective in treating hyperglycemia; this may 
be since the 780G system adjusts insulin delivery 
every 5 min while Control-IQ adjusts every hour. 
In contrast, Control-IQ was shown to be more 
effective in hypoglycemia than 780G160.

The Omnipod system  includes a tubeless 
pump, a disposable pod, and a handheld Personal 
Diabetes Manager (PDM). The Pod contains an 
insulin reservoir that can hold up to 200 units 
of insulin and needs to be changed every 3 days. 
The Omnipod DASH was released in 2019 where 
CGM data was displayed on a PDM. The Omni-
pod system uses an MPC algorithm embedded 
in the Pod which communicates directly with a 
Dexcom CGM. A multicenter, inpatient feasibility 
study, showed that the Omnipod system was safe 
to use in adult, adolescent, and pediatric patients 
with T1D161,162. Although, the DASH permitted 
12 different basal settings as well as a temp basal 
setting, it was not a HCL.

Omnipod 5 HCL was approved in 2022. 
Omnipod 5 is currently the only tubeless, AID 
system approved by the FDA. Like Tandem, 
Omnipod has an “automated mode feature that 
can be used without calibration. It adjusts insu-
lin delivery based on data analytics for the last 
72  h.163 Omnipod and Tandem utilize the same 
MPC algorithm to adjust insulin delivery, every 
5 min164. In contrast to MiniMed, Omnipod users 
can modify correction factors. The Omnipod 
system allows for up to 8 different glucose tar-
gets (110–150  mg/dL) in a day and allows small 
increments (10 mg/dL). The exercise mode is like 
other HCL systems. In a single arm study in pedi-
atric patients, use of this AID system was safe and 
showed improved glycemic outcomes, increased 
TIR, and reduced hypoglycemia163,165.The Omni-
pod is currently approved for patients with T1D 
above 2  years old166. All HCL systems revert to 
manual mode based on different safety param-
eters (Fig. 6).

There are many HCL algorithms currently 
not approved by the FDA. DBLG1 is a medical 
device company that customizes HCL systems 
with a self-learning algorithm between Dexcom 

and different insulin pumps (such as Roche Accu-
Chek, ViCentra, Kaleido, SOOIL, and Cellnovo). 
It adjusts basal insulin delivery and corrects high 
glucose every 5  min. It also has Zen Mode for 
temporary targets. It requires weight, TDD, meal 
ratio, and basal rates to be entered. Entering the 
meal size instead of carb counting is a unique 
parameter. It was approved in Europe based on 
studies that showed improved glycemic control, 
increased TIR, and decreased hypoglycemia167. 
However, the DBLG1 system is currently not 
approved by the FDA.

CamAPS FX is an Android app that manages 
glucose levels in patients with T1D. The app is 
compatible with the YpsoPump, DANA Diabe-
care RS, and the DANA-I insulin pump. It uses 
the Cambridge control algorithm to automati-
cally adjust insulin delivery every 12  min, based 
on Dexcom’s G6 CGM readings168. This glucose 
data is uploaded to a universal diabetes manage-
ment platform, Diasend or Glooko. A multicenter 
RCT study conducted on 86 T1D patients for 
12 weeks documented improved glycemic control 
and decreased hypoglycemia for ages 6 years and 
older169. Although only approved in Europe, there 
is limited patient use in the USA.

At times, a system can be customized and 
built specifically for each unique user. These Do-
It-Yourself (DIY) “artificial pancreas” systems 
(APS) are self-driven. Like commercial systems, 
they automatically adjust and control insulin 
dosing. Some examples of these systems include 
Open Artificial program system (OpenAPS) and 
the AndroidAPS; both utilize CGM readings 
(i.e. Dexcom or Medtronic Enlite) and a pump 
(Dana-RS) to make this possible. The community 
helps each other build their individualized system 
through these DIYAPS. Although these DIYAPS 
do not have any regulatory approvals, individuals 
are not prevented from using them170–174.

The HCL systems approved by the FDA have 
all shown increased TIR with overall reduction 
of hypoglycemic events175–179. These systems 
also include higher glucose thresholds, allowing 
patients the ability to exercise without large fluc-
tuations in glucose levels140, 141, 148, 158. Although 
none of these HCL systems are approved for use 
in patients with T1D associated with pregnancy, 
off-label use has shown improvement in glycemic 
control with improved maternal and fetal out-
comes99, 178, 180.

2.5 � Smart Insulin Pen
Due to the high cost of insulin pumps, most 
patients cannot afford them. As a result, many 

Smart Insulin Pens: A reus-
able smart insulin injector 
that suggests and tracks dos-
ing information via an app.
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have turned to smart pens (Memory/connected 
pens). Smart pens are more affordable and have 
proven to be beneficial for patients on MDI 
therapy. These pens use CGM data to help users 
guide their diabetes management, determine rec-
ommended insulin bolus, insulin dose remind-
ers, and track the insulin dose. Smart pens utilize 
a mobile app that can be downloaded by the 
provider or patient. Currently, only one smart 
pen has been approved by the FDA, the InPen 
(Medtronic, Northridge, CA)181–183. The Inpen 
connects to the Guardian 4 and the Dexcom G5/
G6 and was recently approved in Europe (EMA). 
Many trials have shown improvement in A1c, 
increase in TIR, and patient satisfaction and 
adherence to treatment while using these pens184, 
185.

Many smart pens are currently in develop-
ment: NovoPen 6, NovoPen Echo Plus (Novo 
Nordisk; Bagsværd, Denmark), Esyta (Emperra 
GmbH E-Health Technologies; Potsdam, Ger-
many), Pendiq 2.0 (Pendiq GmbH; Moers, Ger-
many), YpsoMate SmartPilot (YpsoMed Holding 
HG; Burgdorf, Switzerland), Vigipen (Diabnext; 
Switzerland), KiCoPen (Cambridge Consultants 
Ltd; Cambridge, UK), and the Eli Lilly tempo 
pen (Indianapolis, IN)19, 186. Some of these smart 
pens are already available in Europe. There is an 
attempt to standardize the reporting of smart 
pens, CGM data, and HCL systems so that the 
report appears like an EKG187–189. There are many 
platforms that are available to download these 
reports such as, Care Link, Glooko, Clarity, and 
Libre view.

An insulin pen cap is a lid that can be attached 
to all disposable insulin pens (basal and bolus 
insulin pens) and is able to transmit dosing data 
to an app19. Along with this, information from a 
CGM is used to recommend correction doses. In 
2021 the FDA approved the Bigfoot Unity Dia-
betes Management System (Bigfoot Biomedical; 
Milpitas, CA) insulin pen cap for use with the 
Libre 2 CGM (for patients > 12  years of age)190. 
Other smart caps such as the Insulclock (Insul-
cloud, Spain) and Go Cap (Common sensing 
company) are approved by the FDA but have lim-
ited patient use186. These Insulin pen caps have 
shown early promise in better diabetes control in 
T1D and T2M19, 185, 186.

2.6 � Exercise, hypoglycemia in T1D
Exercise continues to pose a significant risk of 
hypoglycemia in insulin-requiring patients with 
diabetes; whether they are using insulin pumps 
or MDI with/without CGM191. It has been shown 

that a mini-dose of glucagon can reduce events 
of exercise-induced hypoglycemia, even without 
carbohydrate counting127, 192–195. Investigators 
from UMASS have been developing a dual-hor-
mone (insulin and glucagon) pump system 
bionic pancreas, iLet (Beta Bionics; Concord, 
MA) where the second hormone is glucagon 
to help reduce this196. It is important to keep in 
mind that there is no glucagon preparation that 
has been approved for pump use in the USA or 
Europe. Recent development of a stable injectable 
glucagon molecule called zegalogue (dasigluca-
gon) by Zealand Pharmaceuticals (Copenhagen, 
Denmark) has been authorized for evaluation in 
a bionic pancreas system by Beta Bionics197. This 
September, Zealand Pharmaceuticals entered a 
global license and development agreement with 
Novo Nordisk to help salvage to launch of zega-
logue. These dual-hormone systems are in early 
stages and currently not available for commercial 
use.

As mentioned above, Beta Bionics (iLet bionic 
pancreas, Concord, MA) has been doing several 
studies in developing a bionic pancreas which 
replicates a healthy pancreas insulin and glucagon 
delivery. A small pilot study published in NEJM 
about 8  years ago showed promising results of 
using insulin and glucagon delivery in a hybrid 
closed-loop system198. Just like many other HCL 
systems the TIR and TBR were significantly lower 
with two hormones delivered through two sepa-
rate pumps based on the algorithm. It’s important 
to note that no glucagon preparations have been 
approved by the FDA for continuous pump use. 
Long term effects of continuous glucagon use are 
also unknown. As expected beyond the complex-
ity and increase in cost, in dual hormone models 
the amount of insulin needed was significantly 
higher than a single hormone (insulin alone) in 
the HCL system199.

At the time of this writing, Beta Bionics have 
successfully completed several insulin-only con-
figurations of their bionic pancreas (BP) in adults 
and pediatric patients with type 1 diabetes. The 
13-weeks trial, conducted at 16 clinical sites 
across the United States, enrolled 326 participants 
ages 6–79 years who had T1D and had been using 
insulin for at least 1 year200. This randomized 
trial was sponsored by the National Institutes of 
Health (Bethesda, MD). Participants were ran-
domly assigned to either a treatment group using 
the BP device or a standard-of-care control group 
using their personal pre-study insulin delivery 
method. All participants in the control group 
were provided with a continuous glucose moni-
tor, and nearly one-third of the control group 
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were using commercially available artificial pan-
creas technology during the study. This system 
is not approved in the USA (FDA) or in Europe 
(EMA). Their system does not require carbo-
hydrate counting however patients are asked to 
enter the size of a meal to deliver the bolus of 
insulin for the meal200. There are five manuscripts 
that were recently published with BP system in 
randomized control trials200–204. The BP with 
insulin Aspart or insulin Lispro was shown to sig-
nificantly improve A1c, TIR, and hyperglycemic 
metrics without increasing CGM measured hypo-
glycemia when compared with standard of care in 
adults and youth (ages 6–17 years) with T1D202. 
It is important to note that most of the studies 
with a BP system were short-term (13  weeks). 
The control arm included 32% of patients on 
MDI, 27% used a non-automated insulin pump, 
5% used a pump with PLGS, and about 36% 
were using an approved HCL system before the 
study201. In addition, there was one study that 
reported results on using a faster-acting insulin 
Aspart (FIASP) within a BP in adults with T1D. 
They concluded that the use of Fiasp was no bet-
ter than the reductions in A1c, TIR etc. observed 
with the BP using Aspart or Lispro203. Another 
study reported a 13-week extension of subjects 
who were randomized in the control arm who 
were allowed to use BP. The results concluded 
that the improvement in this extension study of 
BP was of similar magnitude to that observed in 
the RCT​204.

Hyperglycemic excursions especially after 
meals, even in HCL systems, continues to be a 
problem. One of the ways to mitigate hypergly-
cemia after meals is to use pramlintide to reduce 
these excursions205, 206. A study from researchers 
at Yale University proved that the use of pramlint-
ide is possible in significantly reducing post-meal 
hyperglycemic excursions207. The biggest risk of 
using pramlintide in patients with T1D has been 
the risk of severe hypoglycemia208,209. This will 
need to be properly evaluated before it can be 
made available for clinical use. One day we could 
see a triple-hormone pump system that includes: 
insulin, glucagon, and pramlintide in an HCL 
system.

2.7 � Inhaled (Afrezza) Insulin
Pulmonary delivery of insulin allows rapid onset 
of action with human regular insulin which is 
comparable to normal insulin action profile seen 
in healthy volunteers210–212. The first inhaled insu-
lin, Exubera by Pfizer, was approved by the FDA 
in 2006213. Due to challenges in dose calculations 

and long-term unknown association of higher 
risk on lung cancer, its uptake was not good in 
the USA and was discontinued a year later214. The 
only pulmonary insulin available in the USA is 
Technosphere Insulin (TI), marketed as Afrezza 
(Mannkind Corporation, Westlake Village, CA, 
USA). TI has been shown to have a faster onset of 
action, but a shorter duration profile when com-
pared to traditional rapid-action insulin analogs 
(Aspart, Lispro, or Glulisine)215–217. Many regis-
tration and other studies have shown its efficacy, 
lower hypoglycemia rates with tendency towards 
weight loss218,219. Due to the rapid onset of action 
but shorter duration of TI, studies have sug-
gested higher insulin dose requirements215, 216. In 
many instances, second dose of inhaled insulin 
1 or 2  h after meals may improve glycemic out-
comes215. Some investigators in the USA have 
proposed correction boluses with inhaled insulin 
in patients using insulin pump or HCL users for 
rapidly correcting post-meal glucose excursions 
(off-label use)220. However, inhaled insulin dose 
is not accounted for in the total daily insulin dose 
for pump or HCL users.

2.8 � Adjunctive Therapies
There has been recent interest in using SGLT1 
and SGLT2-inhibitors in insulin-requiring 
patients with T1D. Some SGLT2-inhibitors have 
been approved in Europe for T1D; however, none 
of them have been approved in the USA because 
of DKA risks221,222. Regardless, their use in T2D 
has shown remarkable improvement in diabetic 
kidney disease and cardiovascular disease asso-
ciated with diabetes223–226. Unless we have con-
tinuous ketone measurements (CKM) available 
(many companies are working adding CKM to 
CGMs)227, it is hard to imagine that regulators 
especially in the USA will approve the use of 
SGLT2-inhibitors in T1D.

3 � Conclusion
The technological and therapeutic advances in 
the field of diabetes over the last three decades 
has allowed patients to live longer and health-
ier lives228, 229. Quality and longevity of life has 
improved in patients with T1D/T2D, while 
simultaneously reducing overall diabetes burden. 
Implementation of CGMs, insulin pumps, and 
HCL systems, independently or in combination, 
have shown improved glucose control as meas-
ured by A1c and TIR230,231. Use of these technolo-
gies has shown significant reduction of long-term 
micro- and macrovascular complications and 



220

A. M. Almurashi et al.

1 3 J. Indian Inst. Sci.| VOL 103:1 | 205–230 January 2023 | journal.iisc.ernet.in

hypoglycemic excursions and facilitated remote 
virtual care for patients with diabetes.
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