Skip to main content

Advertisement

Log in

Development of Advanced Nuclear Structural Materials for Sustainable Energy Development

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Structural materials used in nuclear reactors face many challenges due to elevated temperature operation, high neutron flux induced transmutations and radiation damage. In the present article, we review the core structural materials used in thermal as well as fast reactors. Due to emphasis on neutron economy and relatively low temperature operation, Zirconium-based alloys are used in thermal reactors and their evolution and materials challenges are discussed. In the case of fast reactors, due to intense fast neutron flux and high temperatures, austenitic stainless steels and its variants are used. Advanced structural materials with better radiation performance and for enhanced burn-up applications are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:

Similar content being viewed by others

References

  1. https://powermin.gov.in/en/content/power-sector-glance-all-india; https://www.energy.gov/energy-sources. Accessed 30 Sept 2021

  2. https://www.ntpc.co.in/en/power-generation/coal-based-power-stationshttps://www.worldcoal.org/coal-facts/coal-electricity/. Accessed 29 Oct 2021

  3. International Renewable Energy Agency, https://www.irena.org/; Ministry of New & Renewable Energy, Govt of India, https://mnre.gov.in/. Accessed 29 Oct 2021

  4. International Atomic Energy Agency (IAEA), https://www.iaea.org/topics/energy; Department of Atomic Energy, https://dae.gov.in/;

  5. Bhabha and his Magnificent Obsessions, G Venkataraman, Universities Press (India) Ltd., Hyderabad (1994)

  6. https://www.energy.gov/ne/articles/3-reasons-why-nuclear-clean-and-sustainableGeneral

  7. Nuclear Power Corporation of India, https://www.npcil.nic.in/

  8. Three stage nuclear power programme, https://dae.gov.in/node/212

  9. Suri AK (2013) Materials development for India’s nuclear power programme. Sadhana 38:859

    Article  Google Scholar 

  10. Chetal SC, Chellapandi P (2013) Indian fast reactor technology: current status and future programme. Sadhana 38:795

    Article  Google Scholar 

  11. Baldev R, Mannan SL, Rao PRV, Mathew MD (2002) Development of fuels and structural materials for fast breeder reactors. Sadhana 27:527

    Article  Google Scholar 

  12. Mannan SL, Mathew MD, Jayakumar T, Chetal SC (2013) Fast reactor technology for energy security: challenges for materials development. J Solid Mech Mater Eng 7:473

    Article  Google Scholar 

  13. Jayakumar T, Mathew MD, Laha K (2013) High temperature materials for nuclear fast fission and fusion reactors and advanced fossil power plants. Procedia Eng 55:259

    Article  CAS  Google Scholar 

  14. Bhaduri AK, Laha K (2015) Development of improved materials for structural components of sodium-cooled fast reactors. Procedia Eng 130:598

    Article  CAS  Google Scholar 

  15. Onimus F, Béchade JL (2012) Radiation effects in Zirconium alloys. Compr Nucl Mater 4:1

    CAS  Google Scholar 

  16. Lemaignan C (2012) Zirconium alloys: properties and characteristics. Compr Nucl Mater 2:217

    Article  CAS  Google Scholar 

  17. Krishnan R, Asundi MK (1981) Zirconium alloys in nuclear technology. Proc Indian Acad Sci (Eng Sci) 4:41

    Article  CAS  Google Scholar 

  18. Lemaignan C, Motta AT (1994) Nuclear materials, materials science and technology, a comprehensive treatment. In: Cahn RW, Hassen P, Kramer EJ (eds) Zirconium alloys in nuclear applications, Chapter 7, VCH, New York, p 10B

    Google Scholar 

  19. Banerjee S, Krishnan R (1973) Martensitic transformation in Zr–Ti alloys. Metall Trans 4:1811

    Article  CAS  Google Scholar 

  20. Tewari R, Srivastava D, Dey GK, Chakravarty JK, Banerjee S (2008) Microstructural evolution in Zirconium based alloys. J Nucl Mater 383:153

    Article  CAS  Google Scholar 

  21. Neogy S, Srivastava D, Tewari R, Singh RN, Dey GK, De PK, Banerjee S (2003) Understanding hydride formation in Zr-1% Nb alloy through microstructural characterization, BARC Report

  22. Srivastava D, Dey GK, Banerjee S (1995) Evolution of microstructure during fabrication of Zr-2.5 wt% Nb alloys pressure tubes. Metall Mater Trans 26A:2707

    Article  CAS  Google Scholar 

  23. Srivastava D, Gopal KM, Banerjee S, Ranganathan S (1993) Self accommodation morphology of martensite variants in Zr-2.5 wt% Nb alloy. Acta Metal Mater 41:3445

    Article  CAS  Google Scholar 

  24. Singh RN (2002) Flow behaviour and hydrogen embrittlement of Zr-2.5 Nb pressure tube alloy, Ph.D thesis, IIT Bombay, India

  25. Chetal SC, Chellapandi P (2013) Indian fast reactor technology: current status and future programme. Sadhana 38:795; Fast breeder programme, https://dae.gov.in/node/208; www.igcar.gov.in

  26. Garner FA (2012) Radiation-induced damage in austenitic structural steels used in nuclear reactors. Compr Nucl Mater 4:33

    Article  CAS  Google Scholar 

  27. Straalsund JL, Powell RW, Chin BA (1982) An overview of neutron irradiation effects in LMFBR materials. J Nucl Mater 108&109:299

    Article  Google Scholar 

  28. Kalidas R, Kapoor K, Jha SK (2006) Current status and future perspectives of clad and structural materials for liquid metal cooled fast breeder reactors, IAEA Techdoc

  29. Srivastava SK, Nair KGM, Suresh K, Panigrahi BK, Magudapathy P, Chinnathambi S (2011) Beam optics design for a dual beam irradiation setup. Proceedings of the DAE-BRNS Indian particle accelerator conference

  30. Taller S, Vancoevering G, Wirth BD, Was GS (2021) Predicting structural material degradation in advanced nuclear reactors with ion irradiation. Nat Sci Rep 11:2949

    Article  CAS  Google Scholar 

  31. Amarendra G, Panigrahi BK, Abhaya S, David C, Rajaraman R, Nair KGM, Sundar CS, Raj B (2008) Positron beam studies of void swelling in ion irradiated Ti-modified stainless steel. Appl Surf Sci 255:139

    Article  CAS  Google Scholar 

  32. David C (2016) Application of Ion accelerators in defect studies and investigation of non-linear effects due to molecular ion implantation, Ph.D thesis, University of Madras

  33. Venkiteswaran CN, Karthik V, Ramachandran D, Ojha BK, Jayaraj VV, Padmaprabu C, Anandraj V, Visweswaran P, Kumar R, Kurien S, Johny T, Joseph J, Venugopal S, Jayakumar T (2012) Electron microscopy for microstructural studies on fast reactor structural materials. In: 49th Annual Meeting of Working Group on Hot Laboratories and Remote Handling (HotLab-2012), Marcoule, France, September 24–27

  34. David C, Panigrahi BK, Balaji S, Balamurugan AK, Nair KGM, Amarendra G, Sundar CS, Baldev R (2008) A study of the effect of titanium on the void swelling behavior of D9 steels by ion beam simulation. J Nucl Mater 383:132

    Article  CAS  Google Scholar 

  35. David C, Panigrahi BK, Amarendra G, Abhaya S, Balaji S, Balamurugan AK, Nair KGM, Viswanathan B, Sundar CS, Raj B (2009) Ti-modified stainless steel: a study using positron annihilation and step height measurements. Surf Coat Technol 203:2363

    Article  CAS  Google Scholar 

  36. Mathew MD, Gopal KA, Murugan S, Panigrahi BK, Bhaduri AK, Jayakumar T (2013) Development of IFAC-1 SS: an advanced austenitic stainless steel for cladding and wrapper tube applications in sodium cooled Fast reactors. In: Kain VK, Singhal LK, Dwivedi KP, Eswaran R, Dey GK, Raja VS, Kumar MK (eds) Advanced materials research, vol 794. Trans Tech. Pub, Ltd, Switzerland, p 749

    Google Scholar 

  37. Baldev R, Kamachi Mudali U, Vijayalakshmi M, Mathew MD, Bhaduri AK, Chellapandi P, Venugopal S, Sundar CS, Rao BPC, Venktaraman B (2013) Development of stainless steel in Nuclear Industry: with emphasis on sodium cooled fast spectrum reactors: history, technology and foresight, vol 794. Trans Tech. Pub. Ltd, Switzerland, p 3

    Google Scholar 

  38. Saroja S, Dasgupta A, Divakar R, Raju S, Mohandas E, Vijayalakshmi M, Rao KBS, Raj B (2011) Development and characterization of advanced 9 Cr ferritic/martensitic steels for fission and fusion reactors. J Nucl Mater 409:131

    Article  CAS  Google Scholar 

  39. Raj B, Jayakumar T (2011) Development of reduced activation Ferritic–Martenisitic steels and fabrication technologies for Indian test blanket module. J Nucl Mater 417:72

    Article  CAS  Google Scholar 

  40. Laha K, Saroja S, Moitra A, Sandhya R, Mathew MD, Jayakumar T, Kumar ER (2013) Development of India-specific RAFM steel through optimization of tungsten and tantalum contents for better combination of impact, tensile, low cycle fatigue and creep properties. J Nucl Mater 439:41

    Article  CAS  Google Scholar 

  41. Ramachandran R, David C, Rajaraman R, Panigrahi BK, Amarendra G (2016) Evolution, migration and clustering of helium-vacancy complexes in RAFM steel-depth resolved positron annihilation Doppler broadening study. Philos Mag 96:2385

    Article  CAS  Google Scholar 

  42. Ramachandran R (2019) Study of irradiation effects in reduced activation ferritic/martensitic steel using positron beam based doppler broadening spectroscopy. Ph D. Thesis, Homi Bhabha National Institute (HBNI)

  43. Ramachandran R, David C, Magudapathy P, Rajaraman R, Govindaraj R, Amarendra G (2019) Study of defect complexes and their evolution with temperature in hydrogen and helium irradiated RAFM steel using positron annihilation spectroscopy. Fusion Eng Des 142:55

    Article  CAS  Google Scholar 

  44. Ukai S, Mizuta S, Fujiwara M, Okuda T, Kobayashi T (2002) Development of 9Cr-ODS martensitic steel claddings for fuel pins by means of ferrite to austenite phase transformation. J Nucl Sci Technol 39:778

    Article  CAS  Google Scholar 

  45. Odette GR, Alinger MJ, Wirth BD (2008) Recent developments in irradiation-resistant steels. Ann Rev Mater Res 38:471

    Article  CAS  Google Scholar 

  46. Zinkle SJ, Snead LL (2014) Designing radiation resistance in materials for fusion energy. Ann Rev Mater Res 44:241

    Article  CAS  Google Scholar 

  47. Sundararajan G, Vijay R, Reddy AV (2013) Development of 9Cr ferritic-martensitic and 18Cr ferritic oxide dispersion strengthened steels. Curr Sci 105:1100

    CAS  Google Scholar 

  48. London AJ, Santra S, Amirthapandian S, Panigrahi BK, Sarguna RM, Balaji S, Vijay R, Sundar CS, Lozano-Perez S, Grovenor CRM (2015) Effect of Ti and Cr on dispersion, structure and composition of oxide nano-particles in model ODS alloys. Acta Mater 97:223

    Article  CAS  Google Scholar 

  49. Lakhminarayana B, Tonpe S, Jha SK, Kapoor K, Dubey AK, Gurunadh J, Surender A, Deshpande KVK, Maity PK (2011) Development of process route for the production of Fe-0.12C-9Cr-2W-0.35Y2O3 ODS alloy tubes for Indian FBR application. In: Proceedings of the second international conference on advances in nuclear materials, BARC, Mumbai, Feb 9–11

  50. Santra S, Amirthapandian S, Balaji S, Panigrahi BK, Serruys Y, Robertson C (2020) Ion irradiation stability of oxide nano-particles in ODS alloys: TEM studies. J Nucl Mater 528:151861

    Article  CAS  Google Scholar 

  51. Santra S (2021) Oxide dispersion, microstructure, texture and radiation stability of high Cr ODS alloys, Ph.D. thesis, Homi Bhabha National Institute (HBNI)

  52. Mohan S (2021) Ab initio simulations and experimental studies of irradiation-induced defects in Zr and Al containing ODS steels and constituent Y4 Zr3 O precipitates, Ph.D. thesis, Homi Bhabha National Institute (HBNI)

  53. Heintze C, Bergner F, Hernández-Mayoral M, Kögler R, Müller G, Ulbricht A (2016) Irradiation hardening of Fe–9Cr-based alloys and ODS Eurofer: effect of helium implantation and iron-ion irradiation at 300 °C including sequence effects. J Nucl Mater 470:258

    Article  CAS  Google Scholar 

  54. Ukai S, Ohtsuka S (2007) Low cycle fatigue properties of ODS ferritic–martensitic steels at high temperature. J Nucl Mater 367–370:234

    Article  Google Scholar 

  55. Susila P, Sturmb D, Heilmaier M, Murty BS, Sarma VS (2011) Effect of yttria particle size on the microstructure and compression creep properties of nanostructured oxide dispersion strengthened ferritic (Fe–12Cr–2W–05Y2O3) alloy. Mater Sci Eng A 528:4579

    Article  Google Scholar 

  56. Dade M, Malaplate J, Garnier J, De Geuser F, Barcelo F, Wident P, Deschamps A (2017) Influence of microstructural parameters on the mechanical properties of oxide dispersion strengthened Fe-14Cr steels. Acta Mater 127:165

    Article  CAS  Google Scholar 

  57. Chauhan A, Straberger L, Führer U, Litvinov D, Aktaa J (2017) Creep–fatigue interaction in a bimodal 12Cr-ODS steel. Int J Fatigue 102:82

    Article  Google Scholar 

Download references

Acknowledgements

The research work reported in the article had been a collective work of many colleagues at Bhabha Atomic Research Centre (BARC), Indira Gandhi Centre for Atomic Research (IGCAR), Nuclear Fuel Complex (NFC), Mishra Dhatu Nigam Ltd (MIDHANI) and other collaborating institutions and the authors gratefully acknowledge them. The authors are thankful to Sri Balaji Rao for useful discussions. They also thank Dr. Sumita Santra for assistance in the preparation of the article. One of the authors (GA) acknowledges the Department of Atomic Energy (DAE) for the award of Raja Ramanna Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, D., Kapoor, K. & Amarendra, G. Development of Advanced Nuclear Structural Materials for Sustainable Energy Development. J Indian Inst Sci 102, 391–404 (2022). https://doi.org/10.1007/s41745-022-00287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-022-00287-z

Keywords

Navigation