Skip to main content
Log in

The Actomyosin Cortex of Cells: A Thin Film of Active Matter

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

The actomyosin cortex is a thin film, containing actin filaments and myosin molecular motors, located beneath the plasma-membrane of eukaryotic cells. Active processes, driven by ATP hydrolysis, can generate mechanical forces in the cortex. Coordinated force-generation drives large-scale mechanical flows and orientation patterns. These flows can pattern proteins coupled to the cortex leading to the emergence of active mechanochemical patterns. In this review, we discuss physical approaches to understand force-generation and the concomitant patterns observed in the actomyosin cortex. We briefly outline the hydrodynamic theory of active gels as applicable to the cortex and discuss its consequences. We speculate on the role of the actomyosin cortex in sculpting large-scale tissues and end with an outlook for open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1:

Similar content being viewed by others

References

  1. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Sunderland, Massachusetts

  2. Boal D (2012) Mechanics of the cell, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Kolomeisky AB (2015) Motor proteins and molecular motors. CRC Press, Boca Raton

    Book  Google Scholar 

  4. Shaevitz J, Nørrelykke S (2010) The cytoskeleton: I-beams of the cell. Phys Today 63:60

    Article  Google Scholar 

  5. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485

    Article  CAS  Google Scholar 

  6. Kraning-Rush CM, Carey SP, Califano JP, Smith BN, Reinhart-King C (2011) The role of the cytoskeleton in cellular force generation in 2D and 3D environments. Phys Biol 8:015009

    Article  Google Scholar 

  7. Huber F, Schnauß J, Rönicke S, Rauch P, Müller K, Fütterer C, Käs J (2013) Emergent complexity of the cytoskeleton: from single filaments to tissue. Adv Phys 62:1

    Article  CAS  Google Scholar 

  8. Harris AR, Jreij P, Fletcher DA (2018) Mechanotransduction by the actin cytoskeleton: converting mechanical stimuli into biochemical signals. Annu Rev Biophys 47:617

    Article  CAS  Google Scholar 

  9. Huber F, Boire A, López MP, Koenderink GH (2015) Cytoskeletal crosstalk: when three different personalities team up. Curr Opin Cell Biol Cell Archit 32:39

    Article  CAS  Google Scholar 

  10. Herrmann H, Bär H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8:562

    Article  CAS  Google Scholar 

  11. Block J, Schroeder V, Pawelzyk P, Willenbacher N, Köster S (2015) Physical properties of cytoplasmic intermediate filaments. Biochimica et Biophysica Acta (BBA) Mol Cell Res Mechanobiol 1853:3053

    CAS  Google Scholar 

  12. Wickstead B, Gull K (2011) The evolution of the cytoskeleton. J Cell Biol 194:513

    Article  CAS  Google Scholar 

  13. Pollard TD, Goldman RD (2018) Overview of the cytoskeleton from an evolutionary perspective. Cold Spring Harbor Perspect Biol 10:a030288

    Article  Google Scholar 

  14. Mast SO (1926) Structure, movement, locomotion, and stimulation in amoeba. J Morphol 41:347

    Article  Google Scholar 

  15. White JG, Borisy GG (1983) On the mechanisms of cytokinesis in animal cells. J Theor Biol 101:289

    Article  CAS  Google Scholar 

  16. Bray D, Heath J, Moss D (1986) The membrane-associated ‘Cortex’ of animal cells: its structure and mechanical properties. J Cell Sci 1986:71

    Article  Google Scholar 

  17. Bray D, White J (1988) Cortical flow in animal cells. Science 239:883

    Article  CAS  Google Scholar 

  18. Levayer R, Lecuit T (2012) Biomechanical regulation of contractility: spatial control and dynamics. Trends Cell Biol 22:61

    Article  Google Scholar 

  19. Salbreux G, Charras G, Paluch E (2012) Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol 22:536

    Article  CAS  Google Scholar 

  20. Clark AG, Wartlick O, Salbreux G, Paluch EK (2014) Stresses at the cell surface during animal cell morphogenesis. Curr Biol 24:R484

    Article  CAS  Google Scholar 

  21. Chalut KJ, Paluch EK (2016) The actin cortex: a bridge between cell shape and function. Dev Cell 38:571

    Article  CAS  Google Scholar 

  22. Koenderink GH, Paluch EK (2018) Architecture shapes contractility in actomyosin networks. Curr Opin Cell Biol 50:79

    Article  CAS  Google Scholar 

  23. Chugh P, Paluch EK (2018) The actin cortex at a glance. J Cell Sci 131:jcs186254

    Article  Google Scholar 

  24. Agarwal P, Zaidel-Bar R (2019) Principles of actomyosin regulation in vivo. Trends Cell Biol 29:150

    Article  CAS  Google Scholar 

  25. Illukkumbura R, Bland T, Goehring NW (2020) Patterning and polarization of cells by intracellular flows. Curr Opin Cell Biol 62:123

    Article  CAS  Google Scholar 

  26. Kelkar M, Bohec P, Charras G (2020) Mechanics of the cellular actin cortex: from signalling to shape change. Curr Opin Cell Biol 66:69

    Article  CAS  Google Scholar 

  27. Svitkina TM, Verkhovsky AB, McQuade KM, Borisy GG (1997) Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J Cell Biol 139:397

    Article  CAS  Google Scholar 

  28. Verkhovsky AB, Svitkina TM, Borisy GG (1999) Self-polarization and directional motility of cytoplasm. Curr Biol 9:11

    Article  CAS  Google Scholar 

  29. Eghiaian F, Rigato A, Scheuring S (2015) Structural, mechanical, and dynamical variability of the actin cortex in living cells. Biophys J 108:1330

    Article  CAS  Google Scholar 

  30. Clark AG, Dierkes K, Paluch EK (2013) Monitoring actin cortex thickness in live cells. Biophys J 105:570

    Article  CAS  Google Scholar 

  31. Fritzsche M, Erlenkämper C, Moeendarbary E, Charras G, Kruse K (2016) Actin kinetics shapes cortical network structure and mechanics. Sci Adv 2:e1501337

    Article  Google Scholar 

  32. Saha A, Nishikawa M, Behrndt M, Heisenberg C-P, Jülicher F, Grill SW (2016) Determining physical properties of the cell cortex. Biophys J 110:1421

    Article  CAS  Google Scholar 

  33. Jülicher F, Ajdari A, Prost J (1997) Modeling molecular motors. Rev Mod Phys 69:1269

    Article  Google Scholar 

  34. Sweeney HL, Hammers DW (2018) Muscle contraction. Cold Spring Harb Perspect Biol 10:a023200

    Article  Google Scholar 

  35. Murrell MP, Gardel ML (2012) F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex. Proc Natl Acad Sci 109:20820

    Article  CAS  Google Scholar 

  36. Lenz M, Gardel ML, Dinner AR (2012a) Requirements for contractility in disordered cytoskeletal bundles. New J Phys 14:033037

    Article  Google Scholar 

  37. Lenz M, Thoresen T, Gardel ML, Dinner AR (2012b) Contractile units in disordered actomyosin bundles arise from F-actin buckling. Phys Rev Lett 108:238107

    Article  Google Scholar 

  38. Lenz M (2014) Geometrical origins of contractility in disordered actomyosin networks. Phys Rev X 4:041002

    Google Scholar 

  39. Murrell M, Oakes PW, Lenz M, Gardel ML (2015) Forcing cells into shape: the mechanics of actomyosin contractility. Nat Rev Mol Cell Biol 16:486

    Article  CAS  Google Scholar 

  40. Chen S, Markovich T, MacKintosh FC (2020) Motor-free contractility in active gels. Phys Rev Lett 125:208101

    Article  CAS  Google Scholar 

  41. Chugh P, Clark AG, Smith MB, Cassani DAD, Dierkes K, Ragab A, Roux PP, Charras G, Salbreux G, Paluch EK (2017) Actin cortex architecture regulates cell surface tension. Nat Cell Biol 19:689

    Article  CAS  Google Scholar 

  42. Ennomani H, Letort G, Guérin C, Martiel J-L, Cao W, Nédélec F, De La Cruz EM, Théry M, Blanchoin L (2016) Architecture and connectivity govern actin network contractility. Curr Biol 26:616

    Article  CAS  Google Scholar 

  43. Dasanayake NL, Michalski PJ, Carlsson AE (2011) General mechanism of actomyosin contractility. Phys Rev Lett 107:118101

    Article  Google Scholar 

  44. Wang S, Wolynes PG (2012) Active contractility in actomyosin networks. Proc Natl Acad Sci 109:6446

    Article  CAS  Google Scholar 

  45. Ditlev JA, Mayer BJ, Loew LM (2013) There is more than one way to model an elephant. Experiment-driven modeling of the actin cytoskeleton. Biophys J 104:520

    Article  CAS  Google Scholar 

  46. Hawkins RJ, Liverpool TB (2014) Stress reorganization and response in active solids. Phys Rev Lett 113:028102

    Article  Google Scholar 

  47. Hiraiwa T, Salbreux G (2016) Role of turnover in active stress generation in a filament network. Phys Rev Lett 116:188101

    Article  Google Scholar 

  48. Ronceray P, Broedersz CP, Lenz M (2016) Fiber networks amplify active stress. Proc Natl Acad Sci 113:2827

    Article  CAS  Google Scholar 

  49. Liman J, Bueno C, Eliaz Y, Schafer NP, Waxham MN, Wolynes PG, Levine H, Cheung MS (2020) The role of the Arp2/3 complex in shaping the dynamics and structures of branched actomyosin networks. Proc Natl Acad Sci 117:10825

    Article  Google Scholar 

  50. Chaikin PM, Lubensky TC (1995) Principles of condensed matter physics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  51. Fang X, Kruse K, Lu T, Wang J (2019) Nonequilibrium physics in biology. Rev Mod Phys 91:045004

    Article  CAS  Google Scholar 

  52. de Groot SR, Mazur P (1962) Non-equilibrium thermodynamics. Wiley, New York

    Google Scholar 

  53. Ramaswamy S (2017) Active matter. J Stat Mech Theory Exp 2017:054002

    Article  Google Scholar 

  54. Kruse K, Joanny JF, Jülicher F, Prost J, Sekimoto K (2005) Generic theory of active polar gels: a paradigm for cytoskeletal dynamics. Eur Phys J E 16:5

    Article  CAS  Google Scholar 

  55. Jülicher F, Kruse K, Prost J, Joanny JF (2007) Active behavior of the cytoskeleton. Phys Rep 449:3

    Article  Google Scholar 

  56. Joanny J-F, Prost J (2009) Active gels as a description of the actin-myosin cytoskeleton. HFSP J 3:94

    Article  CAS  Google Scholar 

  57. Ramaswamy S (2010) The mechanics and statistics of active matter. Annu Rev Cond Matter Phys 1:323

    Article  Google Scholar 

  58. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J, Rao M, Simha RA (2013) Hydrodynamics of soft active matter. Rev Mod Phys 85:1143

    Article  CAS  Google Scholar 

  59. Prost J, Jülicher F, Joanny J-F (2015) Active gel physics. Nat Phys 11:111

    Article  CAS  Google Scholar 

  60. Jülicher F, Grill SW, Salbreux G (2018) Hydrodynamic theory of active matter. Rep Prog Phys 81:076601

    Article  Google Scholar 

  61. Doostmohammadi A, Ignés-Mullol J, Yeomans JM, Sagués F (2018) Active nematics. Nat Commun 9:3246

    Article  Google Scholar 

  62. Ramaswamy S (2019) Active fluids. Nat Rev Phys 1:640

    Article  Google Scholar 

  63. de Gennes PG, Prost J (1993) The physics of liquid crystals, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  64. Fürthauer S, Strempel M, Grill SW, Jülicher F (2012) Active chiral fluids. Eur Phys J E 35:1

    Article  Google Scholar 

  65. Fürthauer S, Strempel M, Grill SW, Jülicher F (2013) Active chiral processes in thin films. Phys Rev Lett 110:048103

    Article  Google Scholar 

  66. Markovich T, Tjhung E, Cates ME (2019) Chiral active matter: microscopic ‘torque dipoles’ have more than one hydrodynamic description. New J Phys 21:112001

    Article  CAS  Google Scholar 

  67. Naganathan SR, Fürthauer S, Nishikawa M, Jülicher F, Grill SW (2014) Active torque generation by the actomyosin cell cortex drives left-right symmetry breaking. eLife 3:e04165

    Article  Google Scholar 

  68. Tee YH, Shemesh T, Thiagarajan V, Hariadi RF, Anderson KL, Page C, Volkmann N, Hanein D, Sivaramakrishnan S, Kozlov MM, Bershadsky AD (2015) Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat Cell Biol 17:445

    Article  CAS  Google Scholar 

  69. Pimpale LG, Middelkoop TC, Mietke A, Grill SW (2020) Cell lineage-dependent chiral actomyosin flows drive cellular rearrangements in early Caenorhabditis elegans development. eLife 9:e54930

    Article  CAS  Google Scholar 

  70. Naganathan SR, Middelkoop TC, Fürthauer S, Grill SW (2016) Actomyosin-driven left-right asymmetry: from molecular torques to chiral self organization. Curr Opin Cell Biol 38:24

    Article  CAS  Google Scholar 

  71. Inaki M, Liu J, Matsuno K (2016) Cell chirality: its origin and roles in left- right asymmetric development. Philos Trans R Soc B 371:20150403

    Article  Google Scholar 

  72. Banerjee DS, Munjal A, Lecuit T, Rao M (2017) Actomyosin pulsation and flows in an active elastomer with turnover and network remodeling. Nat Commun 8:1121

    Article  Google Scholar 

  73. Garzon-Coral C, Fantana HA, Howard J (2016) A force-generating machinery maintains the spindle at the cell center during mitosis. Science 352:1124

    Article  CAS  Google Scholar 

  74. Mayer M, Depken M, Bois JS, Jülicher F, Grill SW (2010) Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature 467:617

    Article  CAS  Google Scholar 

  75. Nishikawa M, Naganathan SR, Jülicher F, Grill SW (2017) Controlling contractile instabilities in the actomyosin cortex. eLife 6:e19595

    Article  Google Scholar 

  76. Doubrovinski K, Swan M, Polyakov O, Wieschaus EF (2017) Measurement of cortical elasticity in Drosophila melanogaster embryos using ferrofluids. Proc Natl Acad Sci 114:1051

    Article  CAS  Google Scholar 

  77. Peukes J, Betz T (2014) Direct measurement of the cortical tension during the growth of membrane blebs. Biophys J 107:1810

    Article  CAS  Google Scholar 

  78. Fischer-Friedrich E, Toyoda Y, Cattin CJ, Müller DJ, Hyman AA, Jülicher F (2016) Rheology of the active cell cortex in mitosis. Biophys J 111:589

    Article  CAS  Google Scholar 

  79. eSilva MS, Stuhrmann B, Betz T, Koenderink GH (2014) Time-resolved microrheology of actively remodeling actomyosin networks. New J Phys 16:075010

    Article  Google Scholar 

  80. Bois JS, Jülicher F, Grill S (2011) Pattern formation in active fluids. Phys Rev Lett 106:1

    Article  Google Scholar 

  81. Kumar KV, Bois JS, Jülicher F, Grill SW (2014) Pulsatory patterns in active fluids. Phys Rev Lett 112:208101

    Article  Google Scholar 

  82. Howard J, Grill SW, Bois JS (2011) Turing’s next steps: the mechanochemical basis of morphogenesis. Nat Rev Mol Cell Biol 12:392

    Article  Google Scholar 

  83. Husain K, Rao M (2017) Emergent structures in an active polar fluid: dynamics of shape, scattering, and merger. Phys Rev Lett 118:078104

    Article  Google Scholar 

  84. Das A, Polley A, Rao M (2016) Phase segregation of passive advective particles in an active medium. Phys Rev Lett 116:068306

    Article  Google Scholar 

  85. Goswami D, Gowrishankar K, Bilgrami S, Ghosh S, Raghupathy R, Chadda R, Vishwakarma R, Rao M, Mayor S (2008) Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135:1085

    Article  CAS  Google Scholar 

  86. Chaudhuri A, Bhattacharya B, Gowrishankar K, Mayor S, Rao M (2011) Spatiotemporal regulation of chemical reactions by active cytoskeletal remodeling. Proc Natl Acad Sci 108:14825

    Article  CAS  Google Scholar 

  87. Gowrishankar K, Ghosh S, Saha S, Rumamol C, Mayor S, Rao M, (2012) Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules. Cell 149:1353

    Article  CAS  Google Scholar 

  88. Salbreux G, Prost J, Joanny JF (2009) Hydrodynamics of cellular cortical flows and the formation of contractile rings. Phys Rev Lett 103:058102

    Article  CAS  Google Scholar 

  89. Reymann A-C, Staniscia F, Erzberger A, Salbreux G, Grill SW (2016) Cortical flow aligns actin filaments to form a furrow. eLife 5:e17807

    Article  Google Scholar 

  90. Mietke A, Jemseena V, Kumar KV, Sbalzarini IF, Jülicher F (2019a) Minimal model of cellular symmetry breaking. Phys Rev Lett 123:188101

    Article  CAS  Google Scholar 

  91. Menon VV, Soumya SS, Agarwal A, Naganathan SR, Inamdar MM, Sain A (2017) Asymmetric flows in the intercellular membrane during cytokinesis. Biophys J 113:2787

    Article  CAS  Google Scholar 

  92. Grill SW, Howard J, Schäffer E, Stelzer EHK, Hyman AA (2003) The distribution of active force generators controls mitotic spindle position. Science 301:518

    Article  CAS  Google Scholar 

  93. Grill S, Kruse K, Jülicher F (2005) Theory of mitotic spindle oscillations. Phys Rev Lett 94:108104

    Article  Google Scholar 

  94. Pollard TD (2017) Nine unanswered questions about cytokinesis. J Cell Biol 216:3007

    Article  CAS  Google Scholar 

  95. Pollard TD, O’Shaughnessy B (2019) Molecular mechanism of cytokinesis. Annu Rev Biochem 88:661

    Article  CAS  Google Scholar 

  96. Pollard TD (2014) The value of mechanistic biophysical information for systems-level understanding of complex biological processes such as cytokinesis. Biophys J 107:2499

    Article  CAS  Google Scholar 

  97. Hird SN, White JG (1993) Cortical and cytoplasmic flow polarity in early embryonic cells of Caenorhabditis elegans. J Cell Biol 121:1343

    Article  CAS  Google Scholar 

  98. Munro E, Nance J, Priess JR (2004) Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev Cell 7:413

    Article  CAS  Google Scholar 

  99. Goehring NW, Trong PK, Bois JS, Chowdhury D, Nicola EM, Hyman A, Grill SW (2011) Polarization of PAR proteins by advective triggering of a pattern-forming system. Science 334:1137

    Article  CAS  Google Scholar 

  100. Gross P, Kumar KV, Goehring NW, Bois JS, Hoege C, Jülicher F, Grill SW (2019) Guiding self-organized pattern formation in cell polarity establishment. Nat Phys 15:293

    Article  CAS  Google Scholar 

  101. Niwayama R, Shinohara K, Kimura A (2011) Hydrodynamic property of the cytoplasm is sufficient to mediate cytoplasmic streaming in the Caenorhabditis elegans embryo. Proc Natl Acad Sci 108:11900

    Article  CAS  Google Scholar 

  102. Mogilner A, Manhart A (2018) Intracellular fluid mechanics: coupling cytoplasmic flow with active cytoskeletal gel. Annu Rev Fluid Mech 50:347

    Article  Google Scholar 

  103. Mittasch M, Gross P, Nestler M, Fritsch AW, Iserman C, Kar M, Munder M, Voigt A, Alberti S, Grill SW, Kreysing M (2018) Non-invasive perturbations of intracellular flow reveal physical principles of cell organization. Nat Cell Biol 20:344

    Article  CAS  Google Scholar 

  104. Kruse K, Joanny JF, Jülicher F, Prost J (2006) Contractility and retrograde flow in lamellipodium motion. Phys Biol 3:130

    Article  CAS  Google Scholar 

  105. Hawkins RJ, Poincloux R, Bénichou O, Piel M, Chavrier P, Voituriez R (2011) Spontaneous contractility-mediated cortical flow generates cell migration in three-dimensional environments. Biophys J 101:1041

    Article  CAS  Google Scholar 

  106. Álvarez-González B, Meili R, Bastounis E, Firtel RA, Lasheras JC, del Álamo JC (2015) Three-dimensional balance of cortical tension and axial contractility enables fast amoeboid migration. Biophys J 108:821

    Article  Google Scholar 

  107. Callan-Jones AC, Voituriez R (2013) Active gel model of amoeboid cell motility. New J Phys 15:025022

    Article  Google Scholar 

  108. Charras G, Paluch E (2008) Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol 9:730

    Article  CAS  Google Scholar 

  109. Paluch EK, Raz E (2013) The role and regulation of blebs in cell migration. Curr Opin Cell Biol 25:582

    Article  CAS  Google Scholar 

  110. Lim FY, Chiam K-H, Mahadevan L (2012) The size, shape, and dynamics of cellular blebs. Europhys Lett 100:28004

    Article  Google Scholar 

  111. Alert R, Casademunt J (2016) Bleb nucleation through membrane peeling. Phys Rev Lett 116:068101

    Article  Google Scholar 

  112. Manakova K, Yan H, Lowengrub J, Allard J (2016) Cell surface mechanochemistry and the determinants of bleb formation, healing, and travel velocity. Biophys J 110:1636

    Article  CAS  Google Scholar 

  113. Mizuno D, Tardin C, Schmidt CF, MacKintosh FC (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science 315:370

    Article  CAS  Google Scholar 

  114. Soares e Silva M, Depken M, Stuhrmann B, Korsten M, MacKintosh FC, Koenderink GH, (2011) Active multistage coarsening of actin networks driven by myosin motors. Proc Natl Acad Sci 108:9408

    Article  Google Scholar 

  115. Shah EA, Keren K (2014) Symmetry breaking in reconstituted actin cortices. eLife 3:e01433

    Article  Google Scholar 

  116. Malik-Garbi M, Ierushalmi N, Jansen S, Abu-Shah E, Goode BL, Mogilner A, Keren K (2019) Scaling behaviour in steady-state contracting actomyosin networks. Nat Phys 15:509

    Article  CAS  Google Scholar 

  117. Ierushalmi N, Malik-Garbi M, Manhart A, Shah EA, Goode BL, Mogilner A, Keren K (2020) Centering and symmetry breaking in confined contracting actomyosin networks. eLife 9:e55368

    Article  Google Scholar 

  118. Tan TH, Malik-Garbi M, Abu-Shah E, Li J, Sharma A, MacKintosh FC, Keren K, Schmidt CF, Fakhri N (2018) Self-organized stress patterns drive state transitions in actin cortices. Sci Adv 4:eaar2847

    Article  Google Scholar 

  119. Schaller V, Weber C, Semmrich C, Frey E, Bausch AR (2010) Polar patterns of driven filaments. Nature 467:73

    Article  CAS  Google Scholar 

  120. Huber L, Suzuki R, Krüger T, Frey E, Bausch AR (2018) Emergence of coexisting ordered states in active matter systems. Science 361:255

    Article  CAS  Google Scholar 

  121. Pontani L-L, van der Gucht J, Salbreux G, Heuvingh J, Joanny J-F, Sykes C (2009) Reconstitution of an actin cortex inside a liposome. Biophys J 96:192

    Article  CAS  Google Scholar 

  122. Köster DV, Husain K, Iljazi E, Bhat A, Bieling P, Mullins RD, Rao M, Mayor S (2016) Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer. Proc Natl Acad Sci 113:E1645

    Article  Google Scholar 

  123. Thompson DW (1992) On growth and form: the complete, Revised edn. Dover Publications, New York

    Book  Google Scholar 

  124. Lecuit T, Lenne P-F, Munro E (2011) Force generation, transmission, and integration during cell and tissue morphogenesis. Annu Rev Cell Dev Biol 27:157

    Article  CAS  Google Scholar 

  125. Munjal A, Lecuit T (2014) Actomyosin networks and tissue morphogenesis. Development 141:1789

    Article  CAS  Google Scholar 

  126. Gross P, Kumar KV, Grill SW (2017) How active mechanics and regulatory biochemistry combine to form patterns in development. Annu Rev Biophys 46:337

    Article  CAS  Google Scholar 

  127. Ranft J, Basan M, Elgeti J, Joanny J-F, Prost J, Jülicher F (2010) Fluidization of tissues by cell division and apoptosis. Proc Natl Acad Sci USA 107:20863

    Article  CAS  Google Scholar 

  128. Hannezo E, Prost J, Joanny J-F (2011) Instabilities of monolayered epithelia: shape and structure of villi and crypts. Phys Rev Lett 107:1

    Article  Google Scholar 

  129. Hannezo E, Dong B, Recho P, Joanny J-F, Hayashi S (2015) Cortical instability drives periodic supracellular actin pattern formation in epithelial tubes. Proc Natl Acad Sci 112:8620

    Article  CAS  Google Scholar 

  130. Maître J-L, Berthoumieux H, Krens SFG, Salbreux G, Jülicher F, Paluch E, Heisenberg C-P (2012) Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338:253

    Article  Google Scholar 

  131. Rauzi M, Lenne P-F, Lecuit T (2010) Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 468:1110

    Article  CAS  Google Scholar 

  132. Collinet C, Rauzi M, Lenne P-F, Lecuit T (2012) Local and tissue-scale forces drive oriented junction growth during tissue extension. Nat Cell Biol 17:1247

    Article  Google Scholar 

  133. Munjal A, Philippe J-M, Munro E, Lecuit T (2015) A self-organized biomechanical network drives shape changes during tissue morphogenesis. Nature 524:351

    Article  CAS  Google Scholar 

  134. Etournay R, Popović M, Merkel M, Nandi A, Blasse C, Aigouy B, Brandl H, Myers G, Salbreux G, Jülicher F, Eaton S (2015) Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing. eLife 4:e07090

  135. Popović M, Nandi A, Merkel M, Etournay R, Eaton S, Jülicher F, Salbreux G (2017) Active dynamics of tissue shear flow. New J Phys 19:033006

    Article  Google Scholar 

  136. Behrndt M, Salbreux G, Campinho P, Hauschild R, Oswald F, Roensch J, Grill SW, Heisenberg C-P (2012) Forces driving epithelial spreading in zebrafish gastrulation. Science 338:257

    Article  CAS  Google Scholar 

  137. Begnaud S, Chen T, Delacour D, Mège R-M, Ladoux B (2016) Mechanics of epithelial tissues during gap closure. Curr Opin Cell Biol Cell Dyn 42:52

    Article  CAS  Google Scholar 

  138. Srivastava P, Shlomovitz R, Gov NS, Rao M (2013) Patterning of polar active filaments on a tense cylindrical membrane. Phys Rev Lett 110:168104

    Article  Google Scholar 

  139. Münster S, Jain A, Mietke A, Pavlopoulos A, Grill SW, Tomancak P (2019) Attachment of the blastoderm to the vitelline envelope affects gastrulation of insects. Nature 568:395

  140. Jain A, Ulman V, Mukherjee A, Prakash M, Cuenca MB, Pimpale LG, Münster S, Haase R, Panfilio KA, Jug F, Grill SW, Tomancak P, Pavlopoulos A (2020) Regionalized tissue fluidization is required for epithelial gap closure during insect gastrulation. Nat Commun 11:5604

    Article  CAS  Google Scholar 

  141. Brugués A, Anon E, Conte V, Veldhuis JH, Gupta M, Colombelli J, Muñoz JJ, Brodland GW, Ladoux B, Trepat X (2014) Forces driving epithelial wound healing. Nat Phys 10:683

    Article  Google Scholar 

  142. Alert R, Trepat X (2020) Physical models of collective cell migration. Annu Rev Cond Matter Phys 11:77

    Article  Google Scholar 

  143. Boocock D, Hino N, Ruzickova N, Hirashima T, Hannezo E (2020) Theory of mechanochemical patterning and optimal migration in cell monolayers. Nat Phys. https://doi.org/10.1038/s41567-020-01037-7

  144. Pérez-González C, Alert R, Blanch-Mercader C, Gómez-González M, Kolodziej T, Bazellieres E, Casademunt J, Trepat X (2018) Active wetting of epithelial tissues. Nat Phys 15:79

    Article  Google Scholar 

  145. Farhadifar R, Röper J-C, Aigouy B, Eaton S, Jülicher F (2007) The influence of cell mechanics, cell–cell interactions, and proliferation on epithelial packing. Curr Biol 17:2095

    Article  CAS  Google Scholar 

  146. Fletcher AG, Osterfield M, Baker RE, Shvartsman SY (2014) Vertex models of epithelial morphogenesis. Biophys J 106:2291

    Article  CAS  Google Scholar 

  147. Hannezo E, Prost J, Joanny J-F (2014) Theory of epithelial sheet morphology in three dimensions. Proc Natl Acad Sci 111:27

    Article  CAS  Google Scholar 

  148. Monier B, Gettings M, Gay G, Mangeat T, Schott S, Guarner A, Suzanne M (2015) Apico-basal forces exerted by apoptotic cells drive epithelium folding. Nature 518:245

    Article  CAS  Google Scholar 

  149. Alt S, Ganguly P, Salbreux G (2017) Vertex models: from cell mechanics to tissue morphogenesis. Philos Trans R Soc B 372:20150520

    Article  Google Scholar 

  150. Turlier H, Audoly B, Prost J, Joanny J-F (2014) Furrow constriction in animal cell cytokinesis. Biophys J 106:114

    Article  CAS  Google Scholar 

  151. Maitra A, Srivastava P, Rao M, Ramaswamy S (2014) Activating membranes. Phys Rev Lett 112:258101

    Article  Google Scholar 

  152. Berthoumieux H, Maître J-L, Heisenberg C-P, Paluch EK, Jülicher F, Salbreux G (2014) Active elastic thin shell theory for cellular deformations. New J Phys 16:065005

    Article  Google Scholar 

  153. Callan-Jones AC, Ruprecht V, Wieser S, Heisenberg CP, Voituriez R (2016) Cortical flow-driven shapes of nonadherent cells. Phys Rev Lett 116:028102

    Article  CAS  Google Scholar 

  154. Salbreux G, Jülicher F (2017) Mechanics of active surfaces. Phys Rev E 96:032404

    Article  Google Scholar 

  155. Rowghanian P, Campàs O (2017) Non-equilibrium membrane homeostasis in expanding cellular domains. Biophys J 113:132

    Article  CAS  Google Scholar 

  156. Mietke A, Jülicher F, Sbalzarini IF (2019b) Self-organized shape dynamics of active surfaces. Proc Natl Acad Sci 116:29

    Article  CAS  Google Scholar 

  157. Torres-Sánchez A, Millán D, Arroyo M (2019) Modelling fluid deformable surfaces with an emphasis on biological interfaces. J Fluid Mech 872:218

    Article  Google Scholar 

  158. Morris RG, Rao M (2019) Active morphogenesis of epithelial monolayers. Phys Rev E 100:022413

    Article  CAS  Google Scholar 

  159. Braun E, Keren K (2018) Hydra regeneration: closing the loop with mechanical processes in morphogenesis. BioEssays 0:1700204

    Article  Google Scholar 

  160. Maroudas-Sacks Y, Garion L, Shani-Zerbib L, Livshits A, Braun E, Keren K (2020) Topological defects in the nematic order of actin fibres as organization centres of Hydra morphogenesis. Nat Phys. https://doi.org/10.1038/s41567-020-01083-1

  161. Grill SW (2011) Growing up is stressful: biophysical laws of morphogenesis. Curr Opin Genet Dev 21:647

    Article  CAS  Google Scholar 

  162. Naganathan SR, Fürthauer S, Rodriguez J, Fievet BT, Jülicher F, Ahringer J, Cannistraci CV, Grill SW (2018) Morphogenetic degeneracies in the actomyosin cortex. eLife 7:e37677

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Department of Atomic Energy, Government of India, under project number 12-R&D-TFR-5.10-1100, the Department of Biotechnology, Government of India for a Ramalingaswami re-entry fellowship, and the Max Planck Society via a Max-Planck-Partner-Group at ICTS-TIFR. We thank Aditya Singh Rajput and Siddharth Jha for discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vijay Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K.V. The Actomyosin Cortex of Cells: A Thin Film of Active Matter. J Indian Inst Sci 101, 97–112 (2021). https://doi.org/10.1007/s41745-020-00220-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-020-00220-2

Navigation