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Abstract
The aim of the study was to analyse spatial variability of selected parameters of subsurface waters in the area of approxi-
mately 10 ha, located in the valley of the Ciemięga River in the village of Snopków, near Lublin, Poland. For the purpose 
of this study, nine sections were delimited, each with four points of collecting groundwater. In the groundwater samples, 
there were measured NH+

4
 , NO−

3
, and NO−

2
 . Due to the small number of samples, the analysis was limited to deterministic 

interpolation methods. The following methods were compared using leave-one-out cross-validation procedure: triangulation, 
inverse distance weighting, radial base function, and modified Shepard’s method. The methods which proved to be optimal 
were used to create spatial variability maps of the analysed parameters. Spatial interpolation and visualization of the results 
were performed in Surfer ver.16, and other calculations were conducted using R software.

Article Highlights

• The selection of an appropriate interpolation technique is the crucial factor in producing a reliable map of spatial 
variability in environmental research.

• Both the spatial distribution and the number of the sample data being interpolated have to be included in the 
decision making process.

• Radial basis function and modified Shepard’s methods were superior to other methods in preserving the original 
sample point values.

• Spatial interpolation by inverse distance weighting method performed among the poorest interpolators.
• There are strong arguments for using simple interpolation techniques in the case of data sets spread over a wide 

range.

Keywords Deterministic interpolation methods · Cross-validation · Prediction maps · Groundwater · Nitrogen compounds

Introduction

In recent years, geostatistical methods have become a key 
element of studies in the areas of science where spatial 
aspects play an essential role (earth sciences, environmental 

engineering, and environmental sciences). Compared with 
the procedures of classical statistics, we receive tools that 
enable the creation of more advanced models of analysed 
phenomena, which results in better understanding and more 
precise conclusions. These methods are especially useful in 
the analysis of spatially continuous phenomena (Webster and 
Oliver 2007; Zhu 2016). Due to technical and economic lim-
itations, samples for analysis are typically collected by point 
sampling over the region of interest. Interpolation geostatis-
tical methods enable the construction of maps which present 
variability of an analysed feature in a continuous way in the 
area of interest. Depending on fulfilled preconditions, inter-
polation can be performed using deterministic or stochastic 
methods. The selection of an appropriate variant depends 
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on the minimum sample size, sampling schedule, distribu-
tion of an examined feature, etc. There are several variants 
of stochastic methods, which are also referred to as kriging 
methods. The choice of an appropriate variant should be 
determined by the type of spatial relation of the examined 
phenomenon and fulfilling of the assumptions (appropriate 
number of samples, data distribution, stationarity, and isot-
ropy). The advantage of stochastic approach is that it can be 
used both to interpolate the values at unsampled locations 
and to model uncertainty or errors of the estimated surface. 
Deterministic interpolation methods do not incorporate such 
errors. They predict solely the values at unsampled locations 
within region of interest using appropriate criteria for select-
ing the optimal degree of smoothing or similarity.

Using different interpolation methods can lead to different 
estimations of parameter values at interpolation points, and 
consequently to the creation of different maps presenting 
changes in the values of the analysed parameters. For this 
reason, the selection of an appropriate method is a key ele-
ment of the conducted analysis.

The aim of the study was to analyse spatial variability 
of selected parameters of subsurface waters using deter-
ministic interpolation methods. In the study, we compared 
the following methods: triangulation with linear interpola-
tion (TWL), inverse distance weighting (IDW), modified 
Shepard’s method (MS), and radial basis function with two 
systems of basis functions: multiquadratic (RBF–MQ) and 
thin-plate spline (RBF–TPS).

Geostatistical interpolation and visualization were per-
formed in  Surfer®16 software (Golden Software LLC 2018). 
All further data analyses were carried out using R software 
(version 3.4.0) (R Core Team 2018).

Materials and Methods

This section contains a brief description of interpolation 
methods compared here.

The following notations will be used throughout the rest 
of the paper. Suppose that we are given a set 
S =

{
xi =

(
xi, yi

)
∶ i = 1, 2,… , n

}
 of n distinct sample 

points on the plane. In addition, suppose that we are given 
the values of a real-valued function z(x, y) at the points in S . 
Let x0 ∉ S be an arbitrary but fixed interpolation point with 
coordinates 

(
x0, y0

)
 at which an interpolated value z

(
x0, y0

)
 

is required. The symbol d
(
x0, xi

)
 will be used to denote the 

Euclidean distance between x0 and xi ∈ S , and �
(
xi|x0

)
 to 

denote the corresponding weight parameter assigned to xi . 
We will generally abbreviate z

(
xi

)
 , d

(
x0, xi

)
 , and �

(
x0|xi

)
 

to zi , di , and �i , respectively.

Estimates provided by some interpolation techniques 
employed here (TWL, IDW, and MS) can be represented 
as a weighted average of the values available at the known 
points. They share the same general prediction formula:

where �
(
x0

)
 is the estimated value of an attribute at the 

point of interest x0 , �i represents the weight assigned to the 
sampled point xi with respect to x0 , and zi is the observed 
value at the sampled point xi.

Let us briefly introduce the interpolation methods used 
in this study.

Triangulation with Linear Interpolation (TWL)

The general idea of TWL algorithm consists in connecting 
the sampled points into triangles creating a network in such 
a way that the sides of any of the triangles do not intersect. 
The function values inside a specific triangle are estimated 
by a linear interpolation with a weighting mechanism taking 
into account the coordinates associated with the vertices of 
the triangle. The advantage of TWL is its simplicity and 
that it can be used in small data sets. The disadvantages of 
TWL are that each prediction depends on only three nearby 
sample points, and the resulting surface is not smooth and 
TWL does not extrapolate � values beyond the range of data.

Inverse Distance Weighting (IDW)

The second method—IDW—is based on the assumption that 
the sampled values zi closest to the prediction location x0 
have more influence on the predicted value �

(
x0

)
 than those 

farther away. This causes that predictions are obtained from 
the nearest sampling points. The weights �i could be written 
as follows:

where p is a positive power parameter and it is chosen arbi-
trarily (Isaaks and Srivastava 1989). The most common 
choice for the power parameter is 2. IDW interpolation is 
easy to use and fast to compute, which makes it very popu-
lar. The disadvantages of IDW are sensitivity to outliers and 
sampling configuration. Furthermore, IDW is always exact 
interpolation (i.e., no smoothing). Frequently, maps gener-
ated from IDW interpolation are characterised by the pres-
ence of the “bull’s-eye” effects. IDW is one of the form of 
the Shepard’s interpolation method (Shepard 1968).

(1)�

(
x0

)
=

n∑

i=1

�izi,

(2)�i =

d
−p

i∑n

k=1
d
−p

k

,
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Modified Shepard’s Method (MS)

The next considered method—MS—is the result of modi-
fication to classical Shepard’s procedure, developed by 
Franke and Nielson (1980). MS uses an inverse distance 
weighted least-squares method and gives similar interpola-
tors to these received from IDW. However, the use of local 
least-squares eliminates or reduces the “bull’s-eye” pat-
terns, and for large data sets, MS algorithm is faster than 
original inverse distance weighting algorithm.

Local Polynomial Interpolation (LPI)

LPI fits a local polynomial using a subset of points within 
the specified neighborhood defined by an ellipse. LPI pro-
vides the predicted value at the center of the neighbor-
hood. Noteworthy, the neighborhoods in the covering are 
allowed to overlap.

Radial Basis Function (RBF)

In this paper, we deal with the following commonly used 
radial basis function (RBF) methods: the multiquadratic 
(MQ) method of Hardy (1971, 1990) and the thin-plate 
spline (TPS) method of Duchon (1977). Given a set S of 
sample locations, the RBF approximation at x0 takes the 
following form:

where d∗
i
 denotes the parameterized distance between x0 and 

xi and defined as follows:

and �1 and �2 are fixed positive scalars. In an interpolation, 
the unknown coefficients �i are determined by ensuring that 
the approximation will exactly match the given data at the 
points in S . This is accomplished by enforcing the interpola-
tion condition �

(
xi

)
= z

(
xi

)
 . The usual radial basis func-

tions are Hardy’s multiquadrics with �(t) =
√
1 + t2 and 

thin-plate splines where �(t) = t2ln(t) (Rocha 2009).

Evaluation Criteria for Interpolators

Leave–one–out (LOO) cross validation was adopted for 
evaluating and comparing the performance of different 
interpolation methods (Isaaks and Srivastava 1989; Wack-
ernagel 2003). For this procedure, one observation zi is 
removed from the data set and the interpolation is 

(3)�

(
x0

)
=

n∑

i=1

�i�
(
d∗
i

)
,

(4)d∗
i
=

√
�1
(
x0 − x1

)2
+ �2

(
y0 − y1

)2
,

performed to generate an estimate �i at the location xi ∈ S 
of the removed value. This procedure is then repeated for 
all locations in S . For each such cross-validation run, an 
estimate �i is compared to the true observation zi . In this 
study, such comparisons are made by means of several 
error statistics to assess the performance of interpolation 
methods. Lower values of the error statistics indicate 
higher accuracy of spatial interpolation. Let us briefly 
review error statistics which we have considered here for 
evaluating prediction accuracy (Li 2016).

The root-mean-square error (RMSE) is the most fre-
quently used measure to quantify the accuracy of spatial 
interpolation. The RMSE is defined as follows:

One of the most widely used alternatives to RMSE is the 
mean absolute error (MAE) which is given by the following:

In this paper, two relative-type measures have been used 
to evaluate the predictive ability of competitive spatial 
models. Following Li and Heap (2011), we define the rela-
tive mean absolute error (RMAE) as follows:

This is sometimes referred to as the mean magnitude 
relative error.

Likewise, a relative counterpart of mean square error 
(MSRE) takes the form:

Finally, the aforementioned error statistics have been 
complemented by adopting Willmott’s index of agreement 
D (Willmott 1981) which is expressed by the following 
equation:

where z�
i
= zi − z̄ , 𝜁 �

i
= 𝜁i − z̄ . The index of agreement varies 

between 0 and 1 where perfect agreement between observed 
and predicted values is indicated by 1.

(5)RMSE =

√√√√1

n

n∑

i=1

(
zi − �i

)2
.

(6)MAE =
1

n

n∑

i=1

||zi − �i
||.

(7)RMAE =
1

n

n∑

i=1

||||
zi − 𝜁i

zi

||||
, zi > 0.

(8)MSRE =
1

n

n∑

i=1

(
zi − 𝜁i

)2

z2
i

=
1

n

n∑

i=1

(
1 −

𝜁i

zi

)2

, zi > 0.

(9)D = 1 −

∑n

i=1

�
zi − �i

�2

∑n

i=1

����z
�

i

��� +
����

�

i

���
�2

,
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Data Source

The examination of the quality of subsurface waters was 
conducted in the valley of the Ciemięga River in the vil-
lage of Snopków, near Lublin, Poland. The Ciemięga River 
basin is characterised by its varied relief, and the slope gra-
dients reach 10%. The slopes are generally made of brown 
soil, whereas the valleys’ bottoms are dominated by bog and 
muck soil (Orlik et al. 2005). For the purpose of the study, an 
area of approximately 10 ha was selected, where nine routes 
were designed (Fig. 1). On each route, four boreholes were 
made to the depth of 1.5 m for the purpose of collecting 
water samples. The northernmost borehole on each route was 
located on the arable land, whereas the other three boreholes 
were on the grassland. A total of 36 water samples were col-
lected in September 2014. In the samples, NH+

4
 , NO−

3
, and 

NO
−

2
 were determined using photometric method. Ammo-

nium was measured with a PC Spectro spectrophotometer 

from AQUALYTIC, nitrate were determined with a Slandi 
LF 300 photometer, and nitrite was determined with WTW’s 
MPM 2010 spectrophotometer.

Results and Discussion

Selected descriptive statistics of the analysed parameters of 
groundwater quality is presented in Table 1.

In the analysed parameters, the largest range of vari-
ability of recorded values was observed for nitrates. The 
lowest measured value for this index was 0.1 and the 
highest 97 mg NO−

3
 dm−3. The mean value for NO−

3
 was 

12.85  mg  NO−

3
  dm−3 and standard deviation reached 

24.99 mg NO−

3
 dm−3 and was the highest of all the analysed 

indices.
The concentration of nitrites in the groundwater samples 

ranged from 0.04 to 0.82 mg NO−

2
 dm−3. The mean value 

Fig. 1  Water sampling points in 
the valley of Ciemięga River

Table 1  Descriptive statistics 
of subsurface water quality 
parameters

Parameter 
(mg dm−3)

Min Max Mean Median Variance Standard deviation Inter-
quartile 
range

Range Skewness

NH
+

4
0.04 0.97 0.305 0.25 0.051 0.227 0.3 0.93 1.115

NO
−

2
0.04 0.82 0.294 0.24 0.041 0.203 0.33 0.78 0.756

NO
−

3
0.1 97 12.853 1.01 624.610 24.992 2.9 96.9 2.037
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for NO−

2
 was 0.29 mg NO−

2
 dm−3 and standard deviation was 

0.20 mg NO−

2
 dm−3.

In the case of NH+

4
 , the lowest recorded value in the 

groundwater was 0.04, and the highest 0.97 mg NH+

4
 dm−3. 

The mean value and standard deviation were on the levels 
similar to NO−

2
 , and reached 0.30 and 0.22 mg NH+

4
 dm−3, 

respectively.
Figure 2 shows the spatial distribution of nitrogen com-

pounds in groundwater used for interpolation.
Nitrates ( NO−

3
 ) are among the most common groundwater 

contamination in the world (Spalding and Exner 1993), and 
when surface waters are transferred, they can worsen water 
quality and adversely affect ecosystems (Boesch et al. 2001; 
Rabalais et al. 2001).

The concentration of NO−

3
 in the analysed area was char-

acterised by much greater variability than in the case of 
other parameters. Almost all positions showed an increase 
in the parameter in the arable field. Many factors could 
have influenced this: on one hand, the lack of crops and the 
limited collection of nitrates by plants; on the other hand, 
the remains of nitrogen fertilization. NO−

2
 can also be prod-

ucts of mineralization of plant debris. The high content of 
nitrites may be related to the intensification of nitrification or 
denitrification processes in which nitrates are a transitional 
form. The increase in NH+

4
 concentration usually takes place 

in autumn and coincides with the growth of other forms 
of nitrogen. The ammonium content in groundwater in the 
cultivated field was high. The reason may be the lack of 
plants in the field and the intensification of mineralization 
processes of organic matter contained in plant debris and 
residues after mineral fertilization. The obtained values of 
parameters are characterised by variability obtained by the 
other researchers (Orlik et al. 2005; Kennedy et al. 2009).

Next, interpolation with the use of the methods described 
above (in the case of the IDW method, the power parameter 
p = 2 was used) as well as cross-validation procedures were 
conducted for the characteristics of water quality. In particu-
lar, RMSE, MAE, RMAE, MSRE, and D were chosen as 
accuracy criteria for selecting among available interpolation 
technics. The leave-one-out cross-validation error rates are 
shown in Table 2.

In relation to NH+

4
 , MS proved to be the dominating 

method, which reached the maximum D value and minimum 
values of the remaining error statistics. TWL method was 
characterised by the lowest accuracy.

In general, the fittings obtained for NO−

2
 were character-

ised by a higher accuracy than for NH+

4
 and had slight diver-

gence. RBF–MQ method reached the best indices RMSE, 
RMAE, MSRE, and D. TWL method reached the minimum 
in relation to MAE and the maximum in relation to D. It is 

Fig. 2  Spatial distribution of 
nitrogen compounds in ground-
water. Values of NH+

4
 NO−

2
 and 

NO
−

3
 are presented
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important to note that all the indices for MS method were 
close to the optimal values.

In the case of NO−

3
 , it should be emphasized that the 

measurements were characterised by considerable disper-
sion, which resulted in the lowest quality of fitting (error 
statistics reached very high values and variability). As far as 
RMSE, MAE, RMAE, and D indices are concerned, TWL 
method reached the highest degree of accuracy, whereas 
RBF–MQ method obtained the minimum in relation to 
MSRE.

Visualization of Prediction

For each of the parameters, there were created prediction 
maps for the methods which were found the best in view of 
the adopted criteria. Figures 3, 4, 5 show the spatial distribu-
tion of nitrogen compounds in groundwater.

The best methods for the presentation of spatial distri-
bution of NH+

4
 concentration in groundwater proved to be 

MS and RBF–TPS (Fig. 3). On each of the designed routes, 
the highest NH+

4
 values were recorded at the northernmost 

points located on the arable land. At the other points located 
on the grassland, however, ammonium concentration was 
lower. Higher NH+

4
 values on the arable land can be attrib-

uted to mineral fertilization for cereals grown in this area. 
On the maps generated using MS and RBF–TPS methods, 
the lowest NH+

4
 values were recorded in the central zone of 

the analysed area, which was in accordance with the results.
In view of the adopted criteria RBF–MQ and MS proved 

to be the best methods for generating maps of nitrate spatial 

distribution in the analysed area (Fig. 4). The maps gener-
ated by means of these methods were very similar to each 
other. The highest NO−

2
 values were found by the northern 

border of the analysed area and were decreasing in south-
ern direction. High nitrite content in the places where high 
NH

+

4
 and NO−

3
 concentration values were recorded can be 

connected with the intensification of nitrification and deni-
trification processes, in which nitrates constitute transitional 
forms.

NO
−

3
 spatial distribution in the analysed area was pre-

sented using TWL and RBF–MQ methods (Fig. 5). This 
indicator was revealed to display the highest variability of 
the three analysed indices. The highest nitrate values were 
found, as it was the case with the other parameters, in the 
north of the analysed area. This might have been the result 
of mineral fertilization and the area topography which facili-
tates surface and subsurface flow of nitrate-polluted water. 
Substantial decrease of nitrates on the grassland can be 
attributed to intensive intake of nitrate form, especially that 
nitrates are highly soluble and easily absorbed by plants. 
The low concentration of NO−

3
 on the grassland could have 

also been caused by the reduction of nitrification processes 
due to a high level of groundwater and smaller thickness of 
aeration zone at the bottom of the valley.

Spatial distribution analysis of nitrogen compounds in 
groundwater or soil has received some recent attention in 
environmental studies. While various aspects of the subject 
were investigated fairly extensively in research literature, 
rather, little attention has been paid to the comparison of 
prediction accuracy. Hong et al. (2007) used two techniques 

Table 2  Quantitative measures 
of model performance

The terms RMAE, MSRE, D are dimensionless, while remaining terms have units (mg dm−3)

Parameter Method RMSE MAE RMAE MSRE D

NH
+

4
TWL 0.2245 0.1549 0.99 4.4907 0.61
IDW 0.2171 0.1373 0.82 2.8039 0.56
MS 0.1606 0.0960 0.65 1.8923 0.81
LPI 0.2109 0.1515 0.89 2.7022 0.61
RBF–MQ 0.1781 0.1111 0.67 2.3956 0.76
RBF–TPS 0.1654 0.1076 0.69 2.3890 0.80

NO
−

2
TWL 0.1383 0.1046 0.51 0.4527 0.96
IDW 0.1534 0.1180 0.58 0.6865 0.94
MS 0.1358 0.1061 0.47 0.4009 0.96
LPI 0.1431 0.1118 0.56 0.6053 0.74
RBF–MQ 0.1330 0.1118 0.47 0.3383 0.96
RBF–TPS 0.1413 0.1174 0.5 0.4032 0.95

NO
−

3
TWL 19.9056 12.8651 16.49 1830.45 0.87
IDW 28.1737 18.9359 21.08 1431.84 0.18
MS 22.0928 16.7795 35.84 5915.86 0.74
LPI 21.8179 16.3315 29.36 3197.98 0.74
RBF–MQ 23.5406 15.4937 18.40 1376.53 0.63
RBF–TPS 21.5602 14.4393 22.68 2509.38 0.71
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Fig. 3  Spatial distribution of NH+

4
 interpolated by MS method (a) and RBF–TPS method (b)

Fig. 4  Spatial distribution of NO−

2
 interpolated by RBF–MQ method (a) and MS method (b)
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including ordinary kriging and IDW interpolation for pre-
senting spatial variation of groundwater nitrate. In turn, 
Bernard-Jannin et al. (2017) used IDW method to evaluate 
spatial and temporal variability of denitrification rates in a 
floodplain area.

Relatively few papers have dealt with quantitative assess-
ment of accuracy of different spatial interpolation tech-
niques. Notable examples include Kazemi et al. (2017) and 
Ohmer et al. (2017). The study described in Kazemi et al. 
(2017) is of particular relevance here. This investigation 
evaluated the IDW, spline, natural neighbor, and ordinary 
kriging (OK) methods for estimation of nitrate concentra-
tion in groundwater. MRE (mean relative error), RMSE, and 
%RMSE were considered as the criteria for the evaluation of 
the accuracy of each method. It was found that the spline and 
natural neighbor methods produced more accurate estimates 
than the IDW and OK methods. In the study conducted by 
Ohmer et al. (2017), a total of nine deterministic (IDW, RBF, 
LPI, and GPI—global polynomial interpolation) and geosta-
tistical (OK, SK—simple kriging, UK—universal kriging, 
Co-OK—co-ordinary kriging, and BK—empirical Bayes-
ian kriging) methods were examined for optimal contour 
mapping of groundwater levels. The comparison was made 
using seven error statistics: ME (mean error), MSE (mean 
standard error), MAE, RMSE, RMSSE (root mean standard-
ized error), MAPE (mean absolute percentage error), and 

Pearson correlation coefficient. In conclusion, geostatistical 
methods showed better fitting performance than did deter-
ministic methods. Whilst there was not a universal superior 
method, the most accurate results were provided by Co-OK.

In contrast to these related works, the present paper 
focuses only on deterministic interpolation methods. For the 
sake of comparison, we used both the conventional (MAE 
and RMSE) and relative (RMAE, MSRE, and Willmott’s 
D) error statistics. Our study revealed that the performance 
of RBF and MS methods was superior to IDW. It is worth 
highlighting that: in Ohmer et al. (2017), the LPI method 
was ranked the highest among the deterministic methods 
under consideration. Moreover, IDW appeared to be supe-
rior to RBF and GPI techniques, which is in contrast to the 
observations of our study.

Conclusions

The aim of this study was to compare the results of the 
applied interpolators and finding a method characterised 
by the highest accuracy of point estimations. The analyses 
conducted in this study enabled to create the most reliable 
picture of variability of subsurface water quality parameters 
in the examined area.

Fig. 5  Spatial distribution of NO−

3
 interpolated by TWL method (a) and RBF–MQ method (b)
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The best of the analysed interpolation methods were 
RBF–MQ for NO−

2
 as well as the MS method for NH+

4
 . 

In relation to the parameter NO−

3
 , whose distribution was 

characterised by a very big range, the simplest of the meth-
ods—TWL—proved to be the best. On the other hand, it 
is important to note that IDW method, which is the most 
frequently used deterministic method (also in the context of 
comparison with stochastic methods—kriging) (Li and Heap 
2011), was characterised by the highest values of RMSE and 
MAE for NO−

2
 and NO−

3
 , and for NH+

4
 , only TWL turned out 

to be a worse method than IDW. The study results imply 
that, in the analysis of similar problems (with small sample 
sizes), the highest accuracy of maps can be obtained when 
using RBF or MS methods.

It is impossible to find a universal method for choosing 
interpolation type. The creation of the most reliable picture 
of spatial variability of an analysed characteristic should 
always be preceded by the selection of an interpolation 
method. In the preliminary selection, the following should 
be taken into consideration: sample sizes, sampling types, 
and data distribution. After performing specific interpola-
tions, the best method can be selected on the basis of appro-
priate quality measures.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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