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Abstract
The navigation of robotic systems in construction sites often relies on sensor data from the robot. While mapping and navi-
gation protocols such as simultaneous localization and mapping (SLAM) are quite useful for navigation, they often require 
a preliminary mapping of the site, which is usually done manually. Waypoint generation for certain tasks, such as 3D scan-
ning, cannot be done before obtaining said preliminary map, which can be tedious. Building information model (BIM) files 
contain rich semantic information about buildings; therefore, it is worth considering an approach where the information in 
BIM is leveraged to minimize the need for manual preliminary mapping of sites. This study proposes a methodology to get 
information from BIM—in the form of IFC files—to an autonomous robotic system (ARS) in the form of navigation maps, 
simulation environments, JSON files with useful semantic information, and proposed waypoints for stop-and-go missions. 
The schedule element present in IFC is used to generate obstacle maps relevant to the level of construction progress at the 
time the ARS is deployed. The results are validated with a case study of the entire process from the IFC file input to the 
waypoint generation for an ARS to complete a 3D reconstruction of an indoor space.
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1  Introduction

An autonomous robotic system (ARS) is a framework com-
bining robotic hardware, advanced algorithms, and sensor 
systems to enable self-governing operation and intelligent 
decision-making capabilities during deployment. Applica-
tions of autonomous robotic systems (arss) in construction 
often use multiple sensors to navigate their environment. 
While sensor technology such as LiDAR can be quite sophis-
ticated, and mapping algorithms based on SLAM (P. Kim 
et al. 2018) are robust and accurate, ARS navigation requires 
prior knowledge of a site before tasks such as 3D digitization 
can occur. This prior knowledge is often obtained on-site 

before deployment, usually as a preliminary site map. This 
preliminary map is typically obtained by a human opera-
tor manually piloting the ARS on the site. Despite being a 
one-time task, it can be tedious for large and dynamic con-
struction environments. The generated maps may also con-
tain temporary items, such as people or equipment, which 
are not part of the building and hence often require manual 
processing (e.g., filtering and cleaning). The main point of 
an ARS is to perform tasks with minimal human interven-
tion, and the preliminary manual mapping stage prevents 
full autonomy. In the age of BIM, rich semantic information 
about sites is already available digitally. Spatial informa-
tion, geometry, and different properties of building elements 
are examples of information in BIM that could be lever-
aged to improve ARS navigation. Instead of only relying 
on the sensors and manual piloting to create a preliminary 
map, prior site information could be obtained from BIM 
files before ARS deployment. This information can also be 
used as ground truth in other applications, such as evaluating 
exploration algorithms in ARSs.

Building information modeling (BIM) is a collaborative 
process that involves creating and managing digital models 
of a building’s characteristics. BIM encompasses 3D models 
and associated data, including geometry, materials, spatial 
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relationships, and performance attributes. This information-
rich approach enables the visualization and simulations 
of designs, improving coordination, reducing errors, and 
enhancing project efficiency. The main research question 
that this work tackles is how can the rich information present 
in BIM be made more accessible and compatible with ARSs.

The Industry Foundation Classes (IFC) format (build-
ingSMART, n.d.) is a standardized file format used in BIM 
that stores data about building elements, such as walls, 
floors, doors, and windows, along with their properties and 
relationships. It was introduced to improve interoperabil-
ity between various BIM platforms. It is non-proprietary 
and can be used in most BIM applications. IFC files are, 
therefore, a good candidate for parsing semantic information 
due to their standard formatting and object-oriented struc-
ture. IFC files are structured hierarchically, and each object 
has attributes that can be identified using tags or labels and 
nested within each other. This makes them easy to under-
stand and extract information from. Figure 1 shows how an 
IFC file is structured.

IFC files generally contain an object with the IfcProject 
tag that is decomposed into IfcBuildingStorey elements 
and broken down into IfcSpace elements. This study lever-
ages the structure and content of IFC files to make seman-
tic BIM information available to ARS. ARS cannot read 
directly from IFC files, so an interface is needed. This 
paper presents possible interfaces in the form of color-
coded 2D obstacle maps, JSON files, and Gazebo simula-
tion environments. For an ARS to perform a particular 
task, such as 3D scanning the environment, waypoint gen-
eration is required to give the ARS a predefined path that 
covers the entire building. For certain applications, such 
as progress monitoring, the ARS may be deployed on-site 

before construction is completed, which can decrease the 
usefulness of an obstacle map generated based on the com-
pleted IFC model (i.e., one that is “schedule agnostic”). 
To address this, the IfcWorkSchedule element can be lev-
eraged to determine which building elements have been 
constructed at a particular time or which spaces should 
be blocked from the ARS working environment due to 
construction work in progress that could interfere with the 
ARS performance. With this knowledge, the obstacle maps 
can be schedule aware in the sense that they are generated 
to match the current progress state of the building. Finally, 
this study presents a case study that showcases an entire 
pipeline with an IFC file as input and an autonomously 
generated 3D building scan as output, using the generated 
obstacle maps from the IFC file. This paper does not aim 
to replace traditional mapping protocols such as SLAM 
but to instead augment them with additional information 
so that the autonomy of ARS can be increased. This work 
is an extension of Gopee et al. (2022), which dealt with 
generating color-coded 2D maps and JSON files from IFC 
that lack the schedule-awareness component and simula-
tion environments present in this work.

The rest of this article is organized as follows. Section 2 
provides an overview of relevant literature on generating 
navigation maps and their use in simulated environments. 
Section 3 presents the proposed methodology and explains 
the main steps. Section 4 gives an example of applying 
the methodology in a real case to automatically generate 
2D obstacle maps, 3D simulation environments and way-
points. Section 5 summarizes the results and indicates the 
limitations of the study. Finally, Sect. 6 shows the conclu-
sion and outlook for future work.

Fig. 1   Part of the structure of an IFC file for a simple model
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2 � Literature review

This section discusses the state-of-the-art information 
extraction from IFC files or BIM in general and its use in 
ARS deployment. It is not about the details of navigation 
itself but how information from the IFC/BIM can be lever-
aged to increase the autonomy of integrating the robotic 
system in construction environments.

2.1 � Navigation maps

This section includes previous research on generating BIM 
navigation maps. Certain approaches, such as those by Xu 
et al. (2017), have focused on human navigation and activi-
ties rather than ARS navigation, but the general idea is 
to parse the semantic information available in BIM and 
present it in a navigation map. Parsing of this informa-
tion can be done by either the development of a custom 
parser (Dimyadi et al. 2008; Kim et al. 2013; Wang and 
Tang 2021) that leverages the ordered structure of IFC 
files or by the use of existing parsing libraries such as 
IfcOpenShell (Follini et al. 2020a, b; Hamieh et al. 2020; 
Krijnen 2011).

Ibrahim et al. (2019) propose a solution for the autono-
mous mapping of indoor sites using a ground rover. While 
mainly focused on the autonomous navigation of the rover 
and the automatic data collection method, their work also 
describes a planning phase that leverages 4D BIM. They 
used a 4D BIM to extract a 2D floor plan, on which the 
user manually defines the locations and orientations of the 
navigation waypoints in the middle of each room/space. 
While this approach works well, it does not automate 
the information retrieval process from the BIM. In their 
approach, user interaction is still required to select way-
points. They also indicate using a color-coding scheme to 
identify the progress state of building elements, but it is 
unclear whether this is done automatically or not. Since 
BIM contains rich semantic information about each ele-
ment and the geometry of the spaces, these steps can also 
be automated to reduce the need for user interaction.

Follini et al. (2020a, b) recognize the need to automate 
the setup part of ARS deployment. They mention how the 
rich information in 4D BIM can be leveraged to facili-
tate the deployment of ARSs. Their approach parses the 
geometry in the IFC file using the IfcOpenShell (Krijnen 
2011) Python library and renders the 3D objects in Open-
CASCADE (Open Cascade 2023.). The main processing 
is done in OpenCASCADE, and they filter out elements 
based on whether they pose a risk of collision with the 
mobile platform. A second round of time-dependent fil-
tering is done on the obstacles to determine if they have 

been built when the BIM-ARS interface is requested. Their 
approach pays great attention to detail and ensures that 
the resulting navigation map is accurate and relevant to 
the ARS. However, given that they provide a black-and-
white 2D map, they only get information about obstacle 
geometry (as well as their time relevance). This is fine for 
applications that only require obstacle avoidance, but do 
not leverage all the semantic information in the IFC file. 
While geometry is considered, other information, such as 
element types, is not. As a result, their map cannot be used 
for more sophisticated path planning that could, for exam-
ple, consider obstacle types (e.g., doors, stairs, permanent 
furniture, etc.) to generate a path that accounts for differ-
ent safety distances from obstacles. This could be useful 
for sites with sensitive items such as fragile materials like 
glass. Furthermore, information could have been included 
in their obstacle maps, such as color coding to differentiate 
the obstacles, distinguishing those permanent ones from 
those that can be interacted with (e.g., doors).

Song et al. (2020) have a section dedicated to map gen-
eration for UAVs from BIM, but they do not leverage the 
present semantic information. Instead, they convert the BIM 
geometry into a point cloud that can only be used for basic 
obstacle avoidance.

Karimi et al. (2021) propose a solution that leverages the 
semantic information in BIM for more sophisticated path 
planning. Attributes, such as the obstacle type, are used to 
determine the weight of an obstacle in the path-planning 
algorithm. An illustrative example they use is the need for a 
path planner to avoid a path that goes near glass walls that 
could be hard to detect with sensors. They use the semantic 
information in the BIM to detect the material a wall is made 
of. This information usage considers the full potential of 
BIM instead of only considering the geometry as with the 
previous approaches. However, that work does not consider 
the time relevance of obstacles. The maps generated from 
their approach would be useful if the construction of the 
building is completed and will not be as useful for applica-
tions deployed during construction.

Pauwels et al. (2023) focus on the data transfer between 
IFC and other formats, such as JSON, that are easier to 
understand for robotic systems. They recognize the need to 
supplement ARS navigation with data from the BIM, and 
one of their proposed outputs is a color-coded 2D obstacle 
map. This map and other forms of output data are generated 
from a live digital twin of the building based on its BIM. The 
digital twin is implemented by extracting the data from the 
BIM and converting it to more general formats. Overall, this 
methodology successfully leverages BIM to improve ARS 
navigation, but does not consider that scheduling informa-
tion can be used to give an extra dimension to the generated 
navigation maps. Their study also mentions that the maps 
can only be implemented in 2D.
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Lin et al. (2013) generate 2D and 3D maps in their work 
that utilizes semantic information for sophisticated path 
planning that considers attributes such as the status of doors. 
However, they also do not consider the construction sched-
ule in their approach.

A summary of these studies highlighting their considera-
tion for the automatic waypoint or path generation, use of 
semantic information, and consideration of different con-
struction phases (e.g., scheduling component) are summa-
rized in Table 1. Overall, the approaches always seem to 
lack at least one component that would make it a complete 
methodology that properly leverages all the semantic and 
schedule information in the BIM. As such, there is a need 
for an approach that combines all the useful aspects of each 
of the previous works.

2.2 � Simulation environments

This section presents previous works that focus on generat-
ing semantic robotic simulation environments using BIMs. 
These simulation environments can be useful in the testing 
phase before ARS deployment.

Meschini et al. (2016) highlight the potential of robotic 
tools such as ROS in the AEC industry. While their work 
mainly focused on representing robotic apparatus, such as 
assistive robotic technologies in buildings, it showcases 
methods closely integrating BIM with robotics. By consid-
ering formats such as URDF, building modeling can be more 
intricate and dynamic (Kim and Peavy 2022), which justifies 
the need for an interface between standard BIM and those 
formats.

Follini et al. (2020a) also discuss combining BIM infor-
mation with ROS, but this time in a more navigation-ori-
ented context. Their developed autonomous platform (i.e., a 
collaborative robot) aims to leverage the semantic informa-
tion present in BIM for improved navigation. The informa-
tion is extracted from the BIM and passed to the ROS archi-
tecture as a schedule-aware obstacle map. While lacking 

detailed semantic information, this approach demonstrates 
how BIM can be integrated into robotic tools such as ROS.

Kim et al. (2021) introduce the concept of using URDF or 
SDF robotic simulation files to represent buildings in simu-
lation environments. The approach focuses on converting 
BIM files to SDF files to be more easily integrated into the 
simulation. Their work consisted of extracting the coordinate 
information of objects from IFC files and writing them to an 
SDF file. They used the coordinate information to build a 
box in the SDF file with the same dimensions as the object 
in the IFC. Because of this, this approach was limited to 
walls with planar surfaces that can be represented by a sim-
ple box. This approach produced a static file with no more 
semantic information than a regular mesh file. Overall, this 
work acts as a proof of concept for converting BIM files to 
more simulation-friendly formats, but does not add any extra 
semantic information on top.

Chen et al. (2023) look into the use of BIM for robotic 
task planning in facility management tasks. Part of their 
work is dedicated to extracting a simulation environment 
from the BIM, which can be used to extensively test their 
robotic platforms in preparation for potential real-world 
deployment.

Overall, the work on simulation environments is quite 
varied, with different levels of detail considered depend-
ing on the application. While the environments are being 
used for testing purposes, their generation can be automated, 
especially with the retention of more semantic information.

3 � Methodology

The methodology goes through the steps that parse an IFC 
file to obtain information used to generate semantic obstacle 
maps that can improve ARS autonomy. Two main results 
can be obtained from the IFC file: (1) a color-coded 2D 
obstacle map and (2) a Gazebo simulated environment. Both 
results leverage the schedule to make them time relevant. 
Providing information in those formats aims to make the 
semantic information easily accessible for ARSs. The text-
based information in IFC—which is hard to parse and under-
stand in real-time for an ARS—is filtered and summarized 
into either the 2D map or the 3D simulation environment. 
A JSON file is generated to contain other useful naviga-
tion information, such as door operation types. The level of 
detail of the generated maps will match that of the IFC. To 
make useful obstacle maps, the IFC file needs to be complete 
and contain relevant information. Relevant information in 
the navigation context would be properly defined obstacles, 
space boundaries, schedule information and the connection 
types between spaces (doors, windows, stairs, etc.). The 
methodology is divided into three parts: (1) IFC parsing, (2) 
obstacle map generation, and (3) ARS deployment. Figure 2 

Table 1   Comparison of the most relevant previous works on generat-
ing navigation maps from BIM

Author Automatic 
waypoint/path 
generation

Semantic 
informa-
tion

Schedule 
awareness

Ibrahim et al. (2019) No No Yes
Follini et al. (2020a, b) Yes No Yes
Song et al. (2020) Yes No No
Karimi et al. (2021) Yes Yes No
Pauwels et al. (2023) No Yes No
Lin et al. (2013) Yes Yes No
This study Yes Yes Yes
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shows the overall methodology, from the input of the IFC 
file to the final result, including the generation of a 3D model 
for the simulation environment and all the associated seman-
tic information to be used in the navigation.

3.1 � Part 1: IFC parsing

3.1.1 � Extract geometry

IFC files contain many different object types, and within 
the same object types, their geometric representations differ. 
Having so many different representations makes it difficult to 
create a custom and reliable parser, especially for geometry. 
While some studies create their own custom IFC parser (e.g., 
Dimyadi et al. (2008)), the approach in this study considers 
the IfcOpenShell library. IfcOpenShell is an open-source 

project with the goal of being a general-purpose IFC parser. 
It is up to date and can handle different IFC schema ver-
sions (such as IFC2 × 3 and IFC4). The geometry extrac-
tor in IfcOpenShell is particularly useful. It is robust to 
the many different representations present in IFC and can 
create standard shape objects to represent the geometries. 
This robust geometry extractor feature is leveraged in this 
study. To obtain the geometries of all possible obstacles, the 
geometry extractor is iterated through every element present 
in the IFC. The geometry can be generated using the world 
coordinate system in the library, which essentially gives 
information about the placement of objects in the IFC file. 
This removes the need to look into the placement attributes 
of each element, which could be misleading because they 
are given relative to other container elements rather than the 
absolute placement in the building.

IFC

Part 1: IFC Parsing

Part 2: Obstacle Map 
Generation

Generate 
Schedule-Aware 
Obstacle Mesh

Generate 2D 
Obstacle 

Maps

Obstacle 
maps

Extract 
Geometry

Add 
Semantic 

Information

Calculate 
Space 

Centroids

JSON

Generate the 
Waypoints

Perform the 
task

Simulation 
Environment

Part 3: ARS Deployment

Extract 
Schedule 

Information 

Generate 
Simulation 

Environment

Fig. 2   Overview of the main steps and components of the proposed methodology
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3.1.2 � Add semantic information

Semantic information can be included with the geometry 
extraction from the IFC. IFC objects usually have an exten-
sive list of attributes, some of which may not be relevant 
to navigation. However, certain attributes can help improve 
navigation autonomy in building environments. Table 2 
shows an example of attributes that may be useful for 
navigation.

Since doors would be the main method of navigating 
between spaces in a building, it is useful to have some prior 
information on them. If the ARS would need to interact with 
a door, knowing the operation mode of the door beforehand 
would remove uncertainty in autonomously determining it. 
For stairs, knowing the properties of the steps and treads 
can allow the ARS to determine how to navigate based on 
its mode of locomotion.

Once this information is parsed, it can be stored in a more 
compatible and structured file type, such as JSON, which is 
easily readable and reliable to parse. While extracting infor-
mation from an IFC for an ARS may not be straightforward, 
querying from a universal format such as JSON is already 
standardized and robust enough. Given that this querying 
may happen in real-time during deployment, the JSON file 
should be kept lightweight and not be swamped with extra 
irrelevant information. To focus on navigation, only crucial 
information, such as the door operation type, should be con-
sidered. The parsed information, stored in Python dictionar-
ies, is then exported to a JSON file. The dictionary structure 
also helps with information queries. The IfcGlobalId attrib-
ute, which uniquely identifies each element, is used as the 
key in the dictionary. Values stored for each element are (1) 
geometry in the form of vertices, faces, and edges, (2) the 
element type (i.e., IfcWall, IfcDoor, etc.), and (3) attributes 
for navigation such as IfcDoorTypes.

3.1.3 � Extract schedule information

An important factor to consider for generating obstacle maps 
is the scheduling element. For applications where construction 
is in progress, there is a need for obstacle maps that match the 
current state of the construction instead of the completed state 

of the building. The IFC format allows for the scheduling of 
construction activities to be stored in a standardized way, facil-
itating the generation of obstacle maps that accurately reflect 
the real-time status of the construction site. By leveraging the 
scheduling information stored in IFC, such as task durations, 
start and end dates, and dependencies, obstacle maps can be 
dynamically generated to account for the evolving nature of the 
construction process. For example, IfcTask entities can be used 
to represent construction activities, and their properties can be 
used to calculate the spatial and temporal extent of potential 
obstacles. This allows for obstacle maps to be updated and 
refined as construction progresses. The scheduling element in 
IFC adds a crucial layer of temporal information to obstacle 
mapping.

Schedule information added to BIMs during authoring 
can be exported to IFC in many ways. The standard IFC 
elements, such as IfcWorkSchedule that represent a certain 
construction schedule, or the related IfcTask elements that 
represent specific construction tasks, can be used to fully 
represent and define the temporal properties of obstacles in 
the model during the construction phase of a project.

For the workflow of this research, BIMs authored in Revit 
were considered. To simplify the authoring and scheduling 
process, the schedule information was added in the form of 
the expected construction finish date for relevant elements 
such as doors and walls using Revit schedules, in addition 
to dependencies between the tasks and some other minor 
intermediary tasks that could keep the space locked out from 
the ARS working environment. The BIM was then exported 
as IFC with the option to have the Revit schedules exported 
as an IFC Property Set. Figure 3 shows an example of a 
scheduled model with three different construction phases.

Using IfcOpenShell, the property sets for each element 
can be parsed to extract the expected construction date. The 
maps are then generated based on which elements have been 
constructed already at a given date. Furthermore, the rooms 
in the Revit model can also be assigned completion dates to 
give the ARS an indication of what spaces it is allowed to 
navigate through.

This can be useful for projects where certain spaces might 
not be accessible to the ARS due to privacy or other con-
cerns. Construction tasks occurring in a certain space will 
also define whether said space will be accessible to the ARS. 
Figure 4 shows the different spaces in the example model, 
and Table 3 shows how the space accessibility changes based 
on the construction activities taking place.

3.2 � Part 2: obstacle map generation

3.2.1 � Generate schedule‑aware obstacle mesh

To build an obstacle map, the geometry of the elements must 
be standardized. This is done by leveraging the geometry 

Table 2   Attributes that could be leveraged for ARS navigation

IFCElement Attributes

IfcDoor Operation type
Overall height
Overall width

IfcStairFlight Number of risers
Number of treads
Riser height
Tread length
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extractor of IfcOpenShell, as mentioned previously. The 
output of the extractor is in the form of vertices, faces, and 
edges. To visualize this information, it can be converted 
into a mesh object. Python mesh processing libraries, such 
as Trimesh (Dawson-Haggerty 2022), are commonly used, 
making it easier to modify the geometry. To add semantic 

information to the meshes, they can be color coded based 
on the object type. This study focuses on objects relevant to 
navigation, so stairs, doors, and solid obstacles such as walls 
are considered for the color coding. Once the meshes for 
the individual elements are generated, using their absolute 
world coordinates, they are concatenated to build a mesh of 
the entire building. The mesh of the entire building contains 
semantic information in the form of the colors of the ele-
ments. An example of the color-coded concatenated mesh 
for a simple house IFC model is shown in Fig. 5. The solid 
obstacles are represented in a gray color, whereas the stairs 
are represented in yellow and the doors in green. To facili-
tate the visualization, transparency has been added to some 
elements.

3.2.2 � Generate 2D obstacle maps

Slices can be taken at each floor to generate 2D color-coded 
maps from the building mesh. At a certain floor level, the 
mesh can be sliced from the floor height to the height of 
the target ARS (this parameter can be changed) so that only 
obstacles relevant to the ARS are considered. A 2D projec-
tion of the sliced mesh can then be calculated to obtain a 2D 
obstacle map. The 2D obstacle maps also retain the semantic 
information in the form of the color-coding elements by fill-
ing in the bounding polygons of obstacles with color based 
on the obstacle type. Those 2D obstacle maps generated are 
useful as a replacement for the preliminary mapping that 
occurs before ARS deployment. Access to certain spaces 
in the model at a particular point in time can also be rep-
resented in the form of color coding. For example, spaces 
through which the ARS can navigate are color coded in blue, 
while spaces that are out of bounds are coded in red. This 
representation can be adapted to the requirements of the spe-
cific navigation algorithms used for the application (e.g., a 
grayscale representation for an occupancy grid) since the 
semantic information is already present in the map.

Fig. 3   Example of three construction phases of a simple house BIM obtained from IFC Wiki (2020)

Fig. 4   Floor plan identifying spaces in the simple house model

Table 3   Space availability based on construction tasks

Phase Construction task Accessible spaces

1 Structural wall framing Corridor
Structural wall installation

2 Partition wall installation Corridor, office, bath
3 Door installation Corridor, office, bath, 

bedroom, kitchen, living 
room
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The space availability, as defined for this particular 
model in Table 3, depends on the ongoing construction 
tasks. Figure 6 shows three 2D obstacle maps correspond-
ing to the three scheduled phases in Fig. 3. Blue spaces 
represent areas that are traversable by the ARS, whereas 
red spaces represent areas blocked from the ARS due to 
work being scheduled for that particular space, which 
would make it difficult for both the tasks to be performed 
by the workers and the ARS if the ARS were to be work-
ing around the blocked area. For example, the red areas 

in Fig. 6a correspond to areas with limited access due to 
ongoing work related to the structural wall framing and 
installation, as defined in Table 3. Although by looking 
at Fig. 3, the area appears to be available, there would 
necessarily be temporary formwork and crew utilization 
that are not shown in the BIM but are reflected through 
the scheduled activities. As such, the color-coded maps 
ensure that space availability information is represented 
better than in standard BIM by leveraging the schedule 
information.

Fig. 5   Color-coded mesh of the used simple house model

Fig. 6   Semantic 2D obstacle maps generated for the first scheduling stage (a), second stage (b) and third stage (c) of the simple house model
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3.2.3 � Calculate space centroids

Another type of information useful for ARS navigation is the 
location of the centroid of the spaces in the building. Spaces 
in IFC are represented by the IfcSpace element. To obtain 
information about their centroids, a mesh can be generated 
for each space, and the centroid can be found using simple 
mesh processing. The centroids can be used in path-planning 
algorithms to make the ARS go to the center of each space. 
This can be useful for applications such as 3D scanning, 
where being in the center of the room would allow for a 
complete 3D scan of the entire space. A full semantic 2D 
obstacle map of the completed simple house model previ-
ously used, without the scheduling information, is shown in 
Fig. 7, including the space centroids markings. The centroids 
can also be exported as a list of coordinates to be later used 
for path planning. The centroid coordinates may be exported 
with the x- and y-coordinate to be used in the 2D maps or 
may also be exported, including the z-coordinate, for appli-
cations such as drones where navigation is in 3D space. The 
previously mentioned color coding is still maintained, with 
the doors represented in green and the stairs in yellow.

3.2.4 � Generate simulation environment

Given the work done to extract geometry and semantic 
information from the IFC, they can be used to generate a 
simulation environment that can be used in common robot-
ics simulation software such as Gazebo. Performing simu-
lations before the actual deployment of the platform is a 
reliable and economical way to identify and study challenges 
that the ARS might encounter when it gets deployed in real 
environments. Furthermore, applications that require 3D 

information, such as aerial drones, may benefit from the 
simulation environment. A Gazebo world file that links to 
the mesh is created to create the environment. Typically, 
importing geometry in Gazebo involves a world or SDF file 
that points to a collision mesh and a visual mesh, in addition 
to all the other parameters required for the physics simula-
tion (e.g., gravity, inertia, etc.). The collision mesh in our 
approach can be adjusted based on the capabilities of the 
ARS. For example, for an ARS that can open doors, the door 
elements can be excluded from collision mesh. For the visual 
mesh, the color-coded mesh generated from the methodol-
ogy can be used to carry over the semantic information into 
Gazebo.

3.2.4.1  Static elements  To obtain the static SDF that repre-
sents the walls, the geometry of the walls is obtained using 
IfcOpenShell as previously described. Using the generated 
geometry, meshes are generated for the walls using Trimesh. 
Finally, a static SDF file that points to the mesh files is auto-
matically created. Since SDF files also maintain a nested 
structure, they are easily generated with the information 
already parsed to the JSON file. This file can then be loaded 
in simulation software such as Gazebo for testing before 
deployment.

3.2.4.2  Dynamic elements  Dynamic elements are essen-
tially defined as robotic links in the SDF file, allowing the 
simulation platform to treat them as movable objects to inter-
act with. Dynamic elements, such as doors, are assigned to 
a link that has visual and collision properties of the mesh of 
the door, which is extracted similarly to the static elements. 
The movement type of the joint is determined based on the 
door operation type, information already present in the gen-
erated JSON file. Adding this information to the simulation 

Fig. 7   Semantic 2D obstacle map of a completed simple house model
Fig. 8   Simulation environment from a simple house model with a 
dynamic door loaded in the model
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makes the process more robust and closer to the real envi-
ronment, allowing for more complete and thorough testing.

Figure 8 shows a simulation environment loaded into 
Gazebo obtained from the simple house model. The walls 
are modeled as static obstacles, but one of the doors is 
loaded as a dynamic movable obstacle that an ARS can 
interact with. It is worth mentioning that this process hap-
pens autonomously, with the only input being the IFC model 
with all the necessary information.

3.3 � Part 3: ARS deployment

3.3.1 � Generate the waypoints

Typically, as we have seen in the literature review section, 
waypoints are input manually by a human operator into 
autonomous systems before deployment. This can be tedious 
for large and complex sites and can be made more efficient 
with the information available in BIM. The waypoints for 
applications such as 3D scanning can be generated autono-
mously from the space centroid coordinates extracted in 
the previous section. Given that the obstacles can also be 
exported as a set of polygons, complex and effective path-
planning algorithms can be employed to generate the most 
optimal path. Generating those optimal paths is out of the 
scope of this research, but the tools to do so are effectively 
generated from a source IFC file. For the case study section 
in this paper, a simple linear ordering of the waypoints is 
used, with the path generation performed by existing plan-
ning algorithms. Generated waypoints for the simple house 
model are shown in Table 4. These waypoints are for the 
completed building and are expressed in relative coordinates 
with respect to the origin of the generated map. For the con-
struction phases, the waypoints generated would only be for 
the spaces to which the ARS has access.

3.3.2 � Perform the task

Initially, the task to be performed can be tested in the gener-
ated simulation environment. To set up a simulation environ-
ment, meshes can be generated and exported for a particu-
lar construction phase. The setup in the Gazebo simulation 
environment requires a collision and a visual model. To gen-
erate a collision mesh from the IFC, the doors can be ignored 
since the ARS is expected to be able to travel through doors. 

Table 4   Scan waypoints for the 
completed simple house model

Space name Waypoints (m)

Bedroom (9.67, 6.97)
Bath (5.72, 7.84)
Office (2.05, 7.85)
Living room (8.20, 2.16)
Kitchen (2.50, 2.16)
Corridor (3.92, 4.93)

Fig. 9   Simple house environment loaded into Gazebo

Fig. 10   Occupancy maps for phases 1(a), 2(b) and 3(c) of the simple house model
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In the visual mesh, all the obstacles and their color coding 
are maintained to show an accurate representation of the 
building. The environment is then loaded into Gazebo using 
an SDF file that points to both the collision and visual mesh. 
Figure 9 shows the environment resulting from phase 3 of 
the simple house model loaded into Gazebo, with the ARS 
in the environment.

Similarly, the 2D maps need to be loaded as black-and-
white occupancy maps (as shown in Fig. 10) that can be 
understood by the ARS path-planning algorithm. Anything 
that is either an obstacle or inaccessible to the ARS is set to 
black, forbidding the path-planning algorithm to use those 
cells to plan a feasible path, while free space is set to white. 
This does not remove the semantic information of the map 
but rather converts it from one form to another.

Fig. 11   ARS moving to different waypoints in different phases (1–3, top to bottom) of the simple house model. a Representation of the robot 
view during the navigation process and b the simulated environment
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The task to be performed will vary depending on the spe-
cific application. It can range from basic ones, like simple 
reality capture (e.g., 3D data collection/scanning, taking 
images/videos), to more sophisticated ones where the data 
gets treated and processed, such as progress monitoring and 
quality assessment. It is out of the scope of this study to 
go into detail about each one of the possible applications 
and rather keep it general with a methodology applicable 
to a wide range of different tasks. Figure 11 shows the ARS 
autonomously moving between the different waypoints in the 
simulation environments for each phase using the generated 
2D maps as costmaps.

4 � Implementation

This section shows the implementation of the proposed 
methodology to determine whether the ARS can success-
fully navigate the space using the IFC-generated map and 
no user interaction. The BIM of a laboratory space in a 
university campus setting has been used to implement this 
research. The space is around 600 m2 and comprises mul-
tiple research labs separated by walls, nets, and doors. The 
spaces are all rectangular, which is typical for buildings of 
this type. Figure 12 shows the 3D view of the model, and 
Fig. 13 shows the floor plan, both obtained from Revit. The 
space had a Revit file and schedule information exported to 
IFC (i.e., IFC Parsing). The IFC was run through the entire 
methodology to automatically generate 2D obstacle maps, 
3D simulation environments and waypoints at the center of 
each space. The output files are then tested in simulation and 
the real laboratory environment using a Robotnik SUMMIT-
XL ARS platform.

4.1 � Obstacle map generation

Since the model is scheduled with three construction phases, 
three separate sets of 2D maps and simulation environ-
ments were generated. The maps and environment for the 
three phases are parsed from the IFC following the process 
described in the Methodology section. They are shown in 
Fig. 14. As described before, the waypoints were generated 

Fig. 12   3D view of laboratory space in Revit

Fig. 13   Floor plan of laboratory space from Revit
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from the centroids of each space and are shown in Table 5, 
which are for the completed construction. For the subse-
quent phases, the waypoints will not include the spaces color 

coded in red. It can be noted that Lab 3 is not made available 
at any time due to privacy considerations.

Fig. 14   Color-coded 2D obstacle map (left) and 3D representation (right) extracted from the IFC used in the case study. a First stage in the 
schedule. b Second stage in the schedule. c Third stage in the schedule
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4.2 � ARS deployment

The ARS used for the experimentation is a Robotnik SUM-
MIT-XL mounted on holonomic wheels and rigged with a 
LiDAR for navigation. The LiDAR used for navigation is 
an Ouster OS1, with a maximum range of 150 m and a 45º 
vertical field of view. The setup is shown in Fig. 15.

For deployment, the 2D map was loaded as a black-
and-white occupancy map, with obstacles and inaccessi-
ble spaces in black and everything else in white, shown in 
Fig. 16. This does not eliminate the semantic information but 
converts it into information that the ARS can interpret. The 
waypoints for each accessible space were also generated and 
fed to the ARS. For the experimentation, the ARS was made 
to perform stop-and-go motion at those waypoints, repre-
senting a generic activity being performed at each waypoint.

Since the laboratory space was already built, to emulate 
the inaccessibility due to construction, clutter was added to 
some of the spaces and then removed to signify moving to 
the next construction stage, as shown in Fig. 17.

The ARS was deployed in all three phases and was made 
to stop at each of the generated waypoints. Figure 18 shows 

a series of snapshots of the navigation visualization as the 
ARS goes through the waypoints in each phase.

5 � Results and limitations

Overall, the implementation shows the successful integration 
of IFC data into an ARS to improve autonomous navigation. 
The automatic generation of the 2D semantic obstacle maps 
for the different phases of the construction process was a good 
proof of concept in demonstrating a more autonomous BIM 
to ARS workflow. The waypoint generation for each avail-
able space at a given time also successfully removes the need 
for the manual input of waypoints in the mission planning 
interface, which is still very present in the literature review.

The experimentation was also useful in identifying 
potential issues in the IFC to ARS workflow. The main 
step in the automated process that required some manual 
input was loading the 2D obstacle map to the navigation 
systems of the ARS. The ARS uses SLAM to generate a 
navigation map in real-time to account for obstacles not 
necessarily included in the IFC file. Therefore, the map 
resulting from the SLAM algorithm and the map from the 
IFC needs to be initially aligned so that the static elements 
match their position. Another issue that made this align-
ment difficult is that sometimes the BIM does not properly 
represent the as-built information. While this limitation 
can be overcome from the source by ensuring accurate as-
built BIMs, it is also worthwhile to consider approaches 
where two-way communication exists between the BIM 
and the ARS. This would allow the leverage of the sensor 
data from the ARS to update the BIM and make it more 
accurate corresponding to the as-built environment.

Another challenge is when the waypoint generated is 
blocked by an obstacle. Currently, the waypoint is generated 
based on centroids. This can also be an issue for spaces with 
more complex shapes (such as an L shape) where one way-
point is not enough to provide full coverage of that space.

This approach also has inherent limitations, such as 
the accuracy and completeness of the IFC file limiting the 
accuracy of the generated map. As such, the input IFC file 
must first be checked before using it in the algorithm. For 
large and complex sites, the algorithm may take a long time 
before generating the map as it iterates through each ele-
ment of the file. However, with our testing, we have found 
the generation time to range from a couple of seconds to a 
couple of minutes, which is acceptable given that the maps 
are generated before deployment. The generation time for 
the file used in the case study was around 3 s for each map.

Table 5   Waypoints for 
laboratory space

Spacen name Waypoints

Lab 1 (7.95, 8.43)
Corridor (17.02, 1.73)
Storage (16.04, 17.13)
Lab 2 (16.03, 8.39)

Fig. 15   SUMMIT-XL ARS platform with customized payload
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Fig. 16   Occupancy maps for Phase 1 (a), Phase 2 (b), and Phase 3 (c)

Fig. 17   Cluttered space in Phase 1 (a), and uncluttered space in Phases 2 and 3 (b)
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6 � Conclusions and future work

The rich semantic information in BIM files can be lever-
aged to improve autonomous robotic navigation. While 
efforts are being made to integrate that information, 
most approaches do not simultaneously consider geom-
etry, semantics, and schedule data. This study investi-
gates methods that could exploit BIM data to make ARS 
deployment as autonomous as possible. With the auto-
matic generation of waypoints that are schedule-aware, 
this work successfully increases the autonomy of ARS in 
applications that occur both before and after construction 

completion. The main contribution of this study relies on 
the extraction of all the semantic information present in 
the IFC file that could be used to aid and facilitate the 
autonomous navigation process of an ARS.

In terms of future work, as discussed in the limitations 
section, there needs to be a method where the 2D map can 
be automatically aligned with the onboard SLAM navi-
gation maps of the ARS. This could potentially be done 
in real-time using 2D feature matching methods, such as 
SIFT or SURF, commonly used in computer vision. The 
waypoint generation could also be more robust to consider 
oddly shaped spaces and cases where the space centroids 

Fig. 18   Snapshots of the a robot autonomously moving toward the 
centroid of each one of the spaces, b the combination of both the 
semantic map obtained from the IFC and the real-time SLAM-gener-

ated map, and c the standalone real-time SLAM-generated map used 
for localization purposes
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might be blocked. This approach might be more application 
specific, as some tasks like 3D scanning, for example, need 
full coverage of a given space.

Given that a lot of the BIM information is already parsed, 
an extension and application of the methodology could be 
developed such that the as-is state of the construction can 
be compared to the BIM information for validation pur-
poses through data collection methods that can leverage the 
improved autonomous navigation capabilities.
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