
Vol.:(0123456789)1 3

Construction Robotics (2023) 7:235–251
https://doi.org/10.1007/s41693-023-00112-8

ORIGINAL PAPER

Improving autonomous robotic navigation using IFC files

Muhammad A. Gopee1 · Samuel A. Prieto1  · Borja García de Soto1 

Received: 31 May 2023 / Accepted: 8 August 2023 / Published online: 5 September 2023
© The Author(s) 2023

Abstract
The navigation of robotic systems in construction sites often relies on sensor data from the robot. While mapping and navi-
gation protocols such as simultaneous localization and mapping (SLAM) are quite useful for navigation, they often require
a preliminary mapping of the site, which is usually done manually. Waypoint generation for certain tasks, such as 3D scan-
ning, cannot be done before obtaining said preliminary map, which can be tedious. Building information model (BIM) files
contain rich semantic information about buildings; therefore, it is worth considering an approach where the information in
BIM is leveraged to minimize the need for manual preliminary mapping of sites. This study proposes a methodology to get
information from BIM—in the form of IFC files—to an autonomous robotic system (ARS) in the form of navigation maps,
simulation environments, JSON files with useful semantic information, and proposed waypoints for stop-and-go missions.
The schedule element present in IFC is used to generate obstacle maps relevant to the level of construction progress at the
time the ARS is deployed. The results are validated with a case study of the entire process from the IFC file input to the
waypoint generation for an ARS to complete a 3D reconstruction of an indoor space.

Keywords  3D scanning · Autonomous robots · BIM · Construction robots · Reality capture

1  Introduction

An autonomous robotic system (ARS) is a framework com-
bining robotic hardware, advanced algorithms, and sensor
systems to enable self-governing operation and intelligent
decision-making capabilities during deployment. Applica-
tions of autonomous robotic systems (arss) in construction
often use multiple sensors to navigate their environment.
While sensor technology such as LiDAR can be quite sophis-
ticated, and mapping algorithms based on SLAM (P. Kim
et al. 2018) are robust and accurate, ARS navigation requires
prior knowledge of a site before tasks such as 3D digitization
can occur. This prior knowledge is often obtained on-site

before deployment, usually as a preliminary site map. This
preliminary map is typically obtained by a human opera-
tor manually piloting the ARS on the site. Despite being a
one-time task, it can be tedious for large and dynamic con-
struction environments. The generated maps may also con-
tain temporary items, such as people or equipment, which
are not part of the building and hence often require manual
processing (e.g., filtering and cleaning). The main point of
an ARS is to perform tasks with minimal human interven-
tion, and the preliminary manual mapping stage prevents
full autonomy. In the age of BIM, rich semantic information
about sites is already available digitally. Spatial informa-
tion, geometry, and different properties of building elements
are examples of information in BIM that could be lever-
aged to improve ARS navigation. Instead of only relying
on the sensors and manual piloting to create a preliminary
map, prior site information could be obtained from BIM
files before ARS deployment. This information can also be
used as ground truth in other applications, such as evaluating
exploration algorithms in ARSs.

Building information modeling (BIM) is a collaborative
process that involves creating and managing digital models
of a building’s characteristics. BIM encompasses 3D models
and associated data, including geometry, materials, spatial

 *	 Borja García de Soto
	 garcia.de.soto@nyu.edu

	 Muhammad A. Gopee
	 amg1289@nyu.edu

	 Samuel A. Prieto
	 samuel.prieto@nyu.edu

1	 S.M.A.R.T. Construction Research Group, Division
of Engineering, Experimental Research Building, New York
University Abu Dhabi (NYUAD), Saadiyat Island, P.O.
Box 129188, Abu Dhabi, United Arab Emirates

http://crossmark.crossref.org/dialog/?doi=10.1007/s41693-023-00112-8&domain=pdf
http://orcid.org/0000-0001-8341-2630
http://orcid.org/0000-0002-9613-8105

236	 Construction Robotics (2023) 7:235–251

1 3

relationships, and performance attributes. This information-
rich approach enables the visualization and simulations
of designs, improving coordination, reducing errors, and
enhancing project efficiency. The main research question
that this work tackles is how can the rich information present
in BIM be made more accessible and compatible with ARSs.

The Industry Foundation Classes (IFC) format (build-
ingSMART, n.d.) is a standardized file format used in BIM
that stores data about building elements, such as walls,
floors, doors, and windows, along with their properties and
relationships. It was introduced to improve interoperabil-
ity between various BIM platforms. It is non-proprietary
and can be used in most BIM applications. IFC files are,
therefore, a good candidate for parsing semantic information
due to their standard formatting and object-oriented struc-
ture. IFC files are structured hierarchically, and each object
has attributes that can be identified using tags or labels and
nested within each other. This makes them easy to under-
stand and extract information from. Figure 1 shows how an
IFC file is structured.

IFC files generally contain an object with the IfcProject
tag that is decomposed into IfcBuildingStorey elements
and broken down into IfcSpace elements. This study lever-
ages the structure and content of IFC files to make seman-
tic BIM information available to ARS. ARS cannot read
directly from IFC files, so an interface is needed. This
paper presents possible interfaces in the form of color-
coded 2D obstacle maps, JSON files, and Gazebo simula-
tion environments. For an ARS to perform a particular
task, such as 3D scanning the environment, waypoint gen-
eration is required to give the ARS a predefined path that
covers the entire building. For certain applications, such
as progress monitoring, the ARS may be deployed on-site

before construction is completed, which can decrease the
usefulness of an obstacle map generated based on the com-
pleted IFC model (i.e., one that is “schedule agnostic”).
To address this, the IfcWorkSchedule element can be lev-
eraged to determine which building elements have been
constructed at a particular time or which spaces should
be blocked from the ARS working environment due to
construction work in progress that could interfere with the
ARS performance. With this knowledge, the obstacle maps
can be schedule aware in the sense that they are generated
to match the current progress state of the building. Finally,
this study presents a case study that showcases an entire
pipeline with an IFC file as input and an autonomously
generated 3D building scan as output, using the generated
obstacle maps from the IFC file. This paper does not aim
to replace traditional mapping protocols such as SLAM
but to instead augment them with additional information
so that the autonomy of ARS can be increased. This work
is an extension of Gopee et al. (2022), which dealt with
generating color-coded 2D maps and JSON files from IFC
that lack the schedule-awareness component and simula-
tion environments present in this work.

The rest of this article is organized as follows. Section 2
provides an overview of relevant literature on generating
navigation maps and their use in simulated environments.
Section 3 presents the proposed methodology and explains
the main steps. Section 4 gives an example of applying
the methodology in a real case to automatically generate
2D obstacle maps, 3D simulation environments and way-
points. Section 5 summarizes the results and indicates the
limitations of the study. Finally, Sect. 6 shows the conclu-
sion and outlook for future work.

Fig. 1   Part of the structure of an IFC file for a simple model

237Construction Robotics (2023) 7:235–251	

1 3

2 � Literature review

This section discusses the state-of-the-art information
extraction from IFC files or BIM in general and its use in
ARS deployment. It is not about the details of navigation
itself but how information from the IFC/BIM can be lever-
aged to increase the autonomy of integrating the robotic
system in construction environments.

2.1 � Navigation maps

This section includes previous research on generating BIM
navigation maps. Certain approaches, such as those by Xu
et al. (2017), have focused on human navigation and activi-
ties rather than ARS navigation, but the general idea is
to parse the semantic information available in BIM and
present it in a navigation map. Parsing of this informa-
tion can be done by either the development of a custom
parser (Dimyadi et al. 2008; Kim et al. 2013; Wang and
Tang 2021) that leverages the ordered structure of IFC
files or by the use of existing parsing libraries such as
IfcOpenShell (Follini et al. 2020a, b; Hamieh et al. 2020;
Krijnen 2011).

Ibrahim et al. (2019) propose a solution for the autono-
mous mapping of indoor sites using a ground rover. While
mainly focused on the autonomous navigation of the rover
and the automatic data collection method, their work also
describes a planning phase that leverages 4D BIM. They
used a 4D BIM to extract a 2D floor plan, on which the
user manually defines the locations and orientations of the
navigation waypoints in the middle of each room/space.
While this approach works well, it does not automate
the information retrieval process from the BIM. In their
approach, user interaction is still required to select way-
points. They also indicate using a color-coding scheme to
identify the progress state of building elements, but it is
unclear whether this is done automatically or not. Since
BIM contains rich semantic information about each ele-
ment and the geometry of the spaces, these steps can also
be automated to reduce the need for user interaction.

Follini et al. (2020a, b) recognize the need to automate
the setup part of ARS deployment. They mention how the
rich information in 4D BIM can be leveraged to facili-
tate the deployment of ARSs. Their approach parses the
geometry in the IFC file using the IfcOpenShell (Krijnen
2011) Python library and renders the 3D objects in Open-
CASCADE (Open Cascade 2023.). The main processing
is done in OpenCASCADE, and they filter out elements
based on whether they pose a risk of collision with the
mobile platform. A second round of time-dependent fil-
tering is done on the obstacles to determine if they have

been built when the BIM-ARS interface is requested. Their
approach pays great attention to detail and ensures that
the resulting navigation map is accurate and relevant to
the ARS. However, given that they provide a black-and-
white 2D map, they only get information about obstacle
geometry (as well as their time relevance). This is fine for
applications that only require obstacle avoidance, but do
not leverage all the semantic information in the IFC file.
While geometry is considered, other information, such as
element types, is not. As a result, their map cannot be used
for more sophisticated path planning that could, for exam-
ple, consider obstacle types (e.g., doors, stairs, permanent
furniture, etc.) to generate a path that accounts for differ-
ent safety distances from obstacles. This could be useful
for sites with sensitive items such as fragile materials like
glass. Furthermore, information could have been included
in their obstacle maps, such as color coding to differentiate
the obstacles, distinguishing those permanent ones from
those that can be interacted with (e.g., doors).

Song et al. (2020) have a section dedicated to map gen-
eration for UAVs from BIM, but they do not leverage the
present semantic information. Instead, they convert the BIM
geometry into a point cloud that can only be used for basic
obstacle avoidance.

Karimi et al. (2021) propose a solution that leverages the
semantic information in BIM for more sophisticated path
planning. Attributes, such as the obstacle type, are used to
determine the weight of an obstacle in the path-planning
algorithm. An illustrative example they use is the need for a
path planner to avoid a path that goes near glass walls that
could be hard to detect with sensors. They use the semantic
information in the BIM to detect the material a wall is made
of. This information usage considers the full potential of
BIM instead of only considering the geometry as with the
previous approaches. However, that work does not consider
the time relevance of obstacles. The maps generated from
their approach would be useful if the construction of the
building is completed and will not be as useful for applica-
tions deployed during construction.

Pauwels et al. (2023) focus on the data transfer between
IFC and other formats, such as JSON, that are easier to
understand for robotic systems. They recognize the need to
supplement ARS navigation with data from the BIM, and
one of their proposed outputs is a color-coded 2D obstacle
map. This map and other forms of output data are generated
from a live digital twin of the building based on its BIM. The
digital twin is implemented by extracting the data from the
BIM and converting it to more general formats. Overall, this
methodology successfully leverages BIM to improve ARS
navigation, but does not consider that scheduling informa-
tion can be used to give an extra dimension to the generated
navigation maps. Their study also mentions that the maps
can only be implemented in 2D.

238	 Construction Robotics (2023) 7:235–251

1 3

Lin et al. (2013) generate 2D and 3D maps in their work
that utilizes semantic information for sophisticated path
planning that considers attributes such as the status of doors.
However, they also do not consider the construction sched-
ule in their approach.

A summary of these studies highlighting their considera-
tion for the automatic waypoint or path generation, use of
semantic information, and consideration of different con-
struction phases (e.g., scheduling component) are summa-
rized in Table 1. Overall, the approaches always seem to
lack at least one component that would make it a complete
methodology that properly leverages all the semantic and
schedule information in the BIM. As such, there is a need
for an approach that combines all the useful aspects of each
of the previous works.

2.2 � Simulation environments

This section presents previous works that focus on generat-
ing semantic robotic simulation environments using BIMs.
These simulation environments can be useful in the testing
phase before ARS deployment.

Meschini et al. (2016) highlight the potential of robotic
tools such as ROS in the AEC industry. While their work
mainly focused on representing robotic apparatus, such as
assistive robotic technologies in buildings, it showcases
methods closely integrating BIM with robotics. By consid-
ering formats such as URDF, building modeling can be more
intricate and dynamic (Kim and Peavy 2022), which justifies
the need for an interface between standard BIM and those
formats.

Follini et al. (2020a) also discuss combining BIM infor-
mation with ROS, but this time in a more navigation-ori-
ented context. Their developed autonomous platform (i.e., a
collaborative robot) aims to leverage the semantic informa-
tion present in BIM for improved navigation. The informa-
tion is extracted from the BIM and passed to the ROS archi-
tecture as a schedule-aware obstacle map. While lacking

detailed semantic information, this approach demonstrates
how BIM can be integrated into robotic tools such as ROS.

Kim et al. (2021) introduce the concept of using URDF or
SDF robotic simulation files to represent buildings in simu-
lation environments. The approach focuses on converting
BIM files to SDF files to be more easily integrated into the
simulation. Their work consisted of extracting the coordinate
information of objects from IFC files and writing them to an
SDF file. They used the coordinate information to build a
box in the SDF file with the same dimensions as the object
in the IFC. Because of this, this approach was limited to
walls with planar surfaces that can be represented by a sim-
ple box. This approach produced a static file with no more
semantic information than a regular mesh file. Overall, this
work acts as a proof of concept for converting BIM files to
more simulation-friendly formats, but does not add any extra
semantic information on top.

Chen et al. (2023) look into the use of BIM for robotic
task planning in facility management tasks. Part of their
work is dedicated to extracting a simulation environment
from the BIM, which can be used to extensively test their
robotic platforms in preparation for potential real-world
deployment.

Overall, the work on simulation environments is quite
varied, with different levels of detail considered depend-
ing on the application. While the environments are being
used for testing purposes, their generation can be automated,
especially with the retention of more semantic information.

3 � Methodology

The methodology goes through the steps that parse an IFC
file to obtain information used to generate semantic obstacle
maps that can improve ARS autonomy. Two main results
can be obtained from the IFC file: (1) a color-coded 2D
obstacle map and (2) a Gazebo simulated environment. Both
results leverage the schedule to make them time relevant.
Providing information in those formats aims to make the
semantic information easily accessible for ARSs. The text-
based information in IFC—which is hard to parse and under-
stand in real-time for an ARS—is filtered and summarized
into either the 2D map or the 3D simulation environment.
A JSON file is generated to contain other useful naviga-
tion information, such as door operation types. The level of
detail of the generated maps will match that of the IFC. To
make useful obstacle maps, the IFC file needs to be complete
and contain relevant information. Relevant information in
the navigation context would be properly defined obstacles,
space boundaries, schedule information and the connection
types between spaces (doors, windows, stairs, etc.). The
methodology is divided into three parts: (1) IFC parsing, (2)
obstacle map generation, and (3) ARS deployment. Figure 2

Table 1   Comparison of the most relevant previous works on generat-
ing navigation maps from BIM

Author Automatic
waypoint/path
generation

Semantic
informa-
tion

Schedule
awareness

Ibrahim et al. (2019) No No Yes
Follini et al. (2020a, b) Yes No Yes
Song et al. (2020) Yes No No
Karimi et al. (2021) Yes Yes No
Pauwels et al. (2023) No Yes No
Lin et al. (2013) Yes Yes No
This study Yes Yes Yes

239Construction Robotics (2023) 7:235–251	

1 3

shows the overall methodology, from the input of the IFC
file to the final result, including the generation of a 3D model
for the simulation environment and all the associated seman-
tic information to be used in the navigation.

3.1 � Part 1: IFC parsing

3.1.1 � Extract geometry

IFC files contain many different object types, and within
the same object types, their geometric representations differ.
Having so many different representations makes it difficult to
create a custom and reliable parser, especially for geometry.
While some studies create their own custom IFC parser (e.g.,
Dimyadi et al. (2008)), the approach in this study considers
the IfcOpenShell library. IfcOpenShell is an open-source

project with the goal of being a general-purpose IFC parser.
It is up to date and can handle different IFC schema ver-
sions (such as IFC2 × 3 and IFC4). The geometry extrac-
tor in IfcOpenShell is particularly useful. It is robust to
the many different representations present in IFC and can
create standard shape objects to represent the geometries.
This robust geometry extractor feature is leveraged in this
study. To obtain the geometries of all possible obstacles, the
geometry extractor is iterated through every element present
in the IFC. The geometry can be generated using the world
coordinate system in the library, which essentially gives
information about the placement of objects in the IFC file.
This removes the need to look into the placement attributes
of each element, which could be misleading because they
are given relative to other container elements rather than the
absolute placement in the building.

IFC

Part 1: IFC Parsing

Part 2: Obstacle Map
Generation

Generate
Schedule-Aware
Obstacle Mesh

Generate 2D
Obstacle

Maps

Obstacle
maps

Extract
Geometry

Add
Semantic

Information

Calculate
Space

Centroids

JSON

Generate the
Waypoints

Perform the
task

Simulation
Environment

Part 3: ARS Deployment

Extract
Schedule

Information

Generate
Simulation

Environment

Fig. 2   Overview of the main steps and components of the proposed methodology

240	 Construction Robotics (2023) 7:235–251

1 3

3.1.2 � Add semantic information

Semantic information can be included with the geometry
extraction from the IFC. IFC objects usually have an exten-
sive list of attributes, some of which may not be relevant
to navigation. However, certain attributes can help improve
navigation autonomy in building environments. Table 2
shows an example of attributes that may be useful for
navigation.

Since doors would be the main method of navigating
between spaces in a building, it is useful to have some prior
information on them. If the ARS would need to interact with
a door, knowing the operation mode of the door beforehand
would remove uncertainty in autonomously determining it.
For stairs, knowing the properties of the steps and treads
can allow the ARS to determine how to navigate based on
its mode of locomotion.

Once this information is parsed, it can be stored in a more
compatible and structured file type, such as JSON, which is
easily readable and reliable to parse. While extracting infor-
mation from an IFC for an ARS may not be straightforward,
querying from a universal format such as JSON is already
standardized and robust enough. Given that this querying
may happen in real-time during deployment, the JSON file
should be kept lightweight and not be swamped with extra
irrelevant information. To focus on navigation, only crucial
information, such as the door operation type, should be con-
sidered. The parsed information, stored in Python dictionar-
ies, is then exported to a JSON file. The dictionary structure
also helps with information queries. The IfcGlobalId attrib-
ute, which uniquely identifies each element, is used as the
key in the dictionary. Values stored for each element are (1)
geometry in the form of vertices, faces, and edges, (2) the
element type (i.e., IfcWall, IfcDoor, etc.), and (3) attributes
for navigation such as IfcDoorTypes.

3.1.3 � Extract schedule information

An important factor to consider for generating obstacle maps
is the scheduling element. For applications where construction
is in progress, there is a need for obstacle maps that match the
current state of the construction instead of the completed state

of the building. The IFC format allows for the scheduling of
construction activities to be stored in a standardized way, facil-
itating the generation of obstacle maps that accurately reflect
the real-time status of the construction site. By leveraging the
scheduling information stored in IFC, such as task durations,
start and end dates, and dependencies, obstacle maps can be
dynamically generated to account for the evolving nature of the
construction process. For example, IfcTask entities can be used
to represent construction activities, and their properties can be
used to calculate the spatial and temporal extent of potential
obstacles. This allows for obstacle maps to be updated and
refined as construction progresses. The scheduling element in
IFC adds a crucial layer of temporal information to obstacle
mapping.

Schedule information added to BIMs during authoring
can be exported to IFC in many ways. The standard IFC
elements, such as IfcWorkSchedule that represent a certain
construction schedule, or the related IfcTask elements that
represent specific construction tasks, can be used to fully
represent and define the temporal properties of obstacles in
the model during the construction phase of a project.

For the workflow of this research, BIMs authored in Revit
were considered. To simplify the authoring and scheduling
process, the schedule information was added in the form of
the expected construction finish date for relevant elements
such as doors and walls using Revit schedules, in addition
to dependencies between the tasks and some other minor
intermediary tasks that could keep the space locked out from
the ARS working environment. The BIM was then exported
as IFC with the option to have the Revit schedules exported
as an IFC Property Set. Figure 3 shows an example of a
scheduled model with three different construction phases.

Using IfcOpenShell, the property sets for each element
can be parsed to extract the expected construction date. The
maps are then generated based on which elements have been
constructed already at a given date. Furthermore, the rooms
in the Revit model can also be assigned completion dates to
give the ARS an indication of what spaces it is allowed to
navigate through.

This can be useful for projects where certain spaces might
not be accessible to the ARS due to privacy or other con-
cerns. Construction tasks occurring in a certain space will
also define whether said space will be accessible to the ARS.
Figure 4 shows the different spaces in the example model,
and Table 3 shows how the space accessibility changes based
on the construction activities taking place.

3.2 � Part 2: obstacle map generation

3.2.1 � Generate schedule‑aware obstacle mesh

To build an obstacle map, the geometry of the elements must
be standardized. This is done by leveraging the geometry

Table 2   Attributes that could be leveraged for ARS navigation

IFCElement Attributes

IfcDoor Operation type
Overall height
Overall width

IfcStairFlight Number of risers
Number of treads
Riser height
Tread length

241Construction Robotics (2023) 7:235–251	

1 3

extractor of IfcOpenShell, as mentioned previously. The
output of the extractor is in the form of vertices, faces, and
edges. To visualize this information, it can be converted
into a mesh object. Python mesh processing libraries, such
as Trimesh (Dawson-Haggerty 2022), are commonly used,
making it easier to modify the geometry. To add semantic

information to the meshes, they can be color coded based
on the object type. This study focuses on objects relevant to
navigation, so stairs, doors, and solid obstacles such as walls
are considered for the color coding. Once the meshes for
the individual elements are generated, using their absolute
world coordinates, they are concatenated to build a mesh of
the entire building. The mesh of the entire building contains
semantic information in the form of the colors of the ele-
ments. An example of the color-coded concatenated mesh
for a simple house IFC model is shown in Fig. 5. The solid
obstacles are represented in a gray color, whereas the stairs
are represented in yellow and the doors in green. To facili-
tate the visualization, transparency has been added to some
elements.

3.2.2 � Generate 2D obstacle maps

Slices can be taken at each floor to generate 2D color-coded
maps from the building mesh. At a certain floor level, the
mesh can be sliced from the floor height to the height of
the target ARS (this parameter can be changed) so that only
obstacles relevant to the ARS are considered. A 2D projec-
tion of the sliced mesh can then be calculated to obtain a 2D
obstacle map. The 2D obstacle maps also retain the semantic
information in the form of the color-coding elements by fill-
ing in the bounding polygons of obstacles with color based
on the obstacle type. Those 2D obstacle maps generated are
useful as a replacement for the preliminary mapping that
occurs before ARS deployment. Access to certain spaces
in the model at a particular point in time can also be rep-
resented in the form of color coding. For example, spaces
through which the ARS can navigate are color coded in blue,
while spaces that are out of bounds are coded in red. This
representation can be adapted to the requirements of the spe-
cific navigation algorithms used for the application (e.g., a
grayscale representation for an occupancy grid) since the
semantic information is already present in the map.

Fig. 3   Example of three construction phases of a simple house BIM obtained from IFC Wiki (2020)

Fig. 4   Floor plan identifying spaces in the simple house model

Table 3   Space availability based on construction tasks

Phase Construction task Accessible spaces

1 Structural wall framing Corridor
Structural wall installation

2 Partition wall installation Corridor, office, bath
3 Door installation Corridor, office, bath,

bedroom, kitchen, living
room

242	 Construction Robotics (2023) 7:235–251

1 3

The space availability, as defined for this particular
model in Table 3, depends on the ongoing construction
tasks. Figure 6 shows three 2D obstacle maps correspond-
ing to the three scheduled phases in Fig. 3. Blue spaces
represent areas that are traversable by the ARS, whereas
red spaces represent areas blocked from the ARS due to
work being scheduled for that particular space, which
would make it difficult for both the tasks to be performed
by the workers and the ARS if the ARS were to be work-
ing around the blocked area. For example, the red areas

in Fig. 6a correspond to areas with limited access due to
ongoing work related to the structural wall framing and
installation, as defined in Table 3. Although by looking
at Fig. 3, the area appears to be available, there would
necessarily be temporary formwork and crew utilization
that are not shown in the BIM but are reflected through
the scheduled activities. As such, the color-coded maps
ensure that space availability information is represented
better than in standard BIM by leveraging the schedule
information.

Fig. 5   Color-coded mesh of the used simple house model

Fig. 6   Semantic 2D obstacle maps generated for the first scheduling stage (a), second stage (b) and third stage (c) of the simple house model

243Construction Robotics (2023) 7:235–251	

1 3

3.2.3 � Calculate space centroids

Another type of information useful for ARS navigation is the
location of the centroid of the spaces in the building. Spaces
in IFC are represented by the IfcSpace element. To obtain
information about their centroids, a mesh can be generated
for each space, and the centroid can be found using simple
mesh processing. The centroids can be used in path-planning
algorithms to make the ARS go to the center of each space.
This can be useful for applications such as 3D scanning,
where being in the center of the room would allow for a
complete 3D scan of the entire space. A full semantic 2D
obstacle map of the completed simple house model previ-
ously used, without the scheduling information, is shown in
Fig. 7, including the space centroids markings. The centroids
can also be exported as a list of coordinates to be later used
for path planning. The centroid coordinates may be exported
with the x- and y-coordinate to be used in the 2D maps or
may also be exported, including the z-coordinate, for appli-
cations such as drones where navigation is in 3D space. The
previously mentioned color coding is still maintained, with
the doors represented in green and the stairs in yellow.

3.2.4 � Generate simulation environment

Given the work done to extract geometry and semantic
information from the IFC, they can be used to generate a
simulation environment that can be used in common robot-
ics simulation software such as Gazebo. Performing simu-
lations before the actual deployment of the platform is a
reliable and economical way to identify and study challenges
that the ARS might encounter when it gets deployed in real
environments. Furthermore, applications that require 3D

information, such as aerial drones, may benefit from the
simulation environment. A Gazebo world file that links to
the mesh is created to create the environment. Typically,
importing geometry in Gazebo involves a world or SDF file
that points to a collision mesh and a visual mesh, in addition
to all the other parameters required for the physics simula-
tion (e.g., gravity, inertia, etc.). The collision mesh in our
approach can be adjusted based on the capabilities of the
ARS. For example, for an ARS that can open doors, the door
elements can be excluded from collision mesh. For the visual
mesh, the color-coded mesh generated from the methodol-
ogy can be used to carry over the semantic information into
Gazebo.

3.2.4.1  Static elements  To obtain the static SDF that repre-
sents the walls, the geometry of the walls is obtained using
IfcOpenShell as previously described. Using the generated
geometry, meshes are generated for the walls using Trimesh.
Finally, a static SDF file that points to the mesh files is auto-
matically created. Since SDF files also maintain a nested
structure, they are easily generated with the information
already parsed to the JSON file. This file can then be loaded
in simulation software such as Gazebo for testing before
deployment.

3.2.4.2  Dynamic elements  Dynamic elements are essen-
tially defined as robotic links in the SDF file, allowing the
simulation platform to treat them as movable objects to inter-
act with. Dynamic elements, such as doors, are assigned to
a link that has visual and collision properties of the mesh of
the door, which is extracted similarly to the static elements.
The movement type of the joint is determined based on the
door operation type, information already present in the gen-
erated JSON file. Adding this information to the simulation

Fig. 7   Semantic 2D obstacle map of a completed simple house model
Fig. 8   Simulation environment from a simple house model with a
dynamic door loaded in the model

244	 Construction Robotics (2023) 7:235–251

1 3

makes the process more robust and closer to the real envi-
ronment, allowing for more complete and thorough testing.

Figure 8 shows a simulation environment loaded into
Gazebo obtained from the simple house model. The walls
are modeled as static obstacles, but one of the doors is
loaded as a dynamic movable obstacle that an ARS can
interact with. It is worth mentioning that this process hap-
pens autonomously, with the only input being the IFC model
with all the necessary information.

3.3 � Part 3: ARS deployment

3.3.1 � Generate the waypoints

Typically, as we have seen in the literature review section,
waypoints are input manually by a human operator into
autonomous systems before deployment. This can be tedious
for large and complex sites and can be made more efficient
with the information available in BIM. The waypoints for
applications such as 3D scanning can be generated autono-
mously from the space centroid coordinates extracted in
the previous section. Given that the obstacles can also be
exported as a set of polygons, complex and effective path-
planning algorithms can be employed to generate the most
optimal path. Generating those optimal paths is out of the
scope of this research, but the tools to do so are effectively
generated from a source IFC file. For the case study section
in this paper, a simple linear ordering of the waypoints is
used, with the path generation performed by existing plan-
ning algorithms. Generated waypoints for the simple house
model are shown in Table 4. These waypoints are for the
completed building and are expressed in relative coordinates
with respect to the origin of the generated map. For the con-
struction phases, the waypoints generated would only be for
the spaces to which the ARS has access.

3.3.2 � Perform the task

Initially, the task to be performed can be tested in the gener-
ated simulation environment. To set up a simulation environ-
ment, meshes can be generated and exported for a particu-
lar construction phase. The setup in the Gazebo simulation
environment requires a collision and a visual model. To gen-
erate a collision mesh from the IFC, the doors can be ignored
since the ARS is expected to be able to travel through doors.

Table 4   Scan waypoints for the
completed simple house model

Space name Waypoints (m)

Bedroom (9.67, 6.97)
Bath (5.72, 7.84)
Office (2.05, 7.85)
Living room (8.20, 2.16)
Kitchen (2.50, 2.16)
Corridor (3.92, 4.93)

Fig. 9   Simple house environment loaded into Gazebo

Fig. 10   Occupancy maps for phases 1(a), 2(b) and 3(c) of the simple house model

245Construction Robotics (2023) 7:235–251	

1 3

In the visual mesh, all the obstacles and their color coding
are maintained to show an accurate representation of the
building. The environment is then loaded into Gazebo using
an SDF file that points to both the collision and visual mesh.
Figure 9 shows the environment resulting from phase 3 of
the simple house model loaded into Gazebo, with the ARS
in the environment.

Similarly, the 2D maps need to be loaded as black-and-
white occupancy maps (as shown in Fig. 10) that can be
understood by the ARS path-planning algorithm. Anything
that is either an obstacle or inaccessible to the ARS is set to
black, forbidding the path-planning algorithm to use those
cells to plan a feasible path, while free space is set to white.
This does not remove the semantic information of the map
but rather converts it from one form to another.

Fig. 11   ARS moving to different waypoints in different phases (1–3, top to bottom) of the simple house model. a Representation of the robot
view during the navigation process and b the simulated environment

246	 Construction Robotics (2023) 7:235–251

1 3

The task to be performed will vary depending on the spe-
cific application. It can range from basic ones, like simple
reality capture (e.g., 3D data collection/scanning, taking
images/videos), to more sophisticated ones where the data
gets treated and processed, such as progress monitoring and
quality assessment. It is out of the scope of this study to
go into detail about each one of the possible applications
and rather keep it general with a methodology applicable
to a wide range of different tasks. Figure 11 shows the ARS
autonomously moving between the different waypoints in the
simulation environments for each phase using the generated
2D maps as costmaps.

4 � Implementation

This section shows the implementation of the proposed
methodology to determine whether the ARS can success-
fully navigate the space using the IFC-generated map and
no user interaction. The BIM of a laboratory space in a
university campus setting has been used to implement this
research. The space is around 600 m2 and comprises mul-
tiple research labs separated by walls, nets, and doors. The
spaces are all rectangular, which is typical for buildings of
this type. Figure 12 shows the 3D view of the model, and
Fig. 13 shows the floor plan, both obtained from Revit. The
space had a Revit file and schedule information exported to
IFC (i.e., IFC Parsing). The IFC was run through the entire
methodology to automatically generate 2D obstacle maps,
3D simulation environments and waypoints at the center of
each space. The output files are then tested in simulation and
the real laboratory environment using a Robotnik SUMMIT-
XL ARS platform.

4.1 � Obstacle map generation

Since the model is scheduled with three construction phases,
three separate sets of 2D maps and simulation environ-
ments were generated. The maps and environment for the
three phases are parsed from the IFC following the process
described in the Methodology section. They are shown in
Fig. 14. As described before, the waypoints were generated

Fig. 12   3D view of laboratory space in Revit

Fig. 13   Floor plan of laboratory space from Revit

247Construction Robotics (2023) 7:235–251	

1 3

from the centroids of each space and are shown in Table 5,
which are for the completed construction. For the subse-
quent phases, the waypoints will not include the spaces color

coded in red. It can be noted that Lab 3 is not made available
at any time due to privacy considerations.

Fig. 14   Color-coded 2D obstacle map (left) and 3D representation (right) extracted from the IFC used in the case study. a First stage in the
schedule. b Second stage in the schedule. c Third stage in the schedule

248	 Construction Robotics (2023) 7:235–251

1 3

4.2 � ARS deployment

The ARS used for the experimentation is a Robotnik SUM-
MIT-XL mounted on holonomic wheels and rigged with a
LiDAR for navigation. The LiDAR used for navigation is
an Ouster OS1, with a maximum range of 150 m and a 45º
vertical field of view. The setup is shown in Fig. 15.

For deployment, the 2D map was loaded as a black-
and-white occupancy map, with obstacles and inaccessi-
ble spaces in black and everything else in white, shown in
Fig. 16. This does not eliminate the semantic information but
converts it into information that the ARS can interpret. The
waypoints for each accessible space were also generated and
fed to the ARS. For the experimentation, the ARS was made
to perform stop-and-go motion at those waypoints, repre-
senting a generic activity being performed at each waypoint.

Since the laboratory space was already built, to emulate
the inaccessibility due to construction, clutter was added to
some of the spaces and then removed to signify moving to
the next construction stage, as shown in Fig. 17.

The ARS was deployed in all three phases and was made
to stop at each of the generated waypoints. Figure 18 shows

a series of snapshots of the navigation visualization as the
ARS goes through the waypoints in each phase.

5 � Results and limitations

Overall, the implementation shows the successful integration
of IFC data into an ARS to improve autonomous navigation.
The automatic generation of the 2D semantic obstacle maps
for the different phases of the construction process was a good
proof of concept in demonstrating a more autonomous BIM
to ARS workflow. The waypoint generation for each avail-
able space at a given time also successfully removes the need
for the manual input of waypoints in the mission planning
interface, which is still very present in the literature review.

The experimentation was also useful in identifying
potential issues in the IFC to ARS workflow. The main
step in the automated process that required some manual
input was loading the 2D obstacle map to the navigation
systems of the ARS. The ARS uses SLAM to generate a
navigation map in real-time to account for obstacles not
necessarily included in the IFC file. Therefore, the map
resulting from the SLAM algorithm and the map from the
IFC needs to be initially aligned so that the static elements
match their position. Another issue that made this align-
ment difficult is that sometimes the BIM does not properly
represent the as-built information. While this limitation
can be overcome from the source by ensuring accurate as-
built BIMs, it is also worthwhile to consider approaches
where two-way communication exists between the BIM
and the ARS. This would allow the leverage of the sensor
data from the ARS to update the BIM and make it more
accurate corresponding to the as-built environment.

Another challenge is when the waypoint generated is
blocked by an obstacle. Currently, the waypoint is generated
based on centroids. This can also be an issue for spaces with
more complex shapes (such as an L shape) where one way-
point is not enough to provide full coverage of that space.

This approach also has inherent limitations, such as
the accuracy and completeness of the IFC file limiting the
accuracy of the generated map. As such, the input IFC file
must first be checked before using it in the algorithm. For
large and complex sites, the algorithm may take a long time
before generating the map as it iterates through each ele-
ment of the file. However, with our testing, we have found
the generation time to range from a couple of seconds to a
couple of minutes, which is acceptable given that the maps
are generated before deployment. The generation time for
the file used in the case study was around 3 s for each map.

Table 5   Waypoints for
laboratory space

Spacen name Waypoints

Lab 1 (7.95, 8.43)
Corridor (17.02, 1.73)
Storage (16.04, 17.13)
Lab 2 (16.03, 8.39)

Fig. 15   SUMMIT-XL ARS platform with customized payload

249Construction Robotics (2023) 7:235–251	

1 3

Fig. 16   Occupancy maps for Phase 1 (a), Phase 2 (b), and Phase 3 (c)

Fig. 17   Cluttered space in Phase 1 (a), and uncluttered space in Phases 2 and 3 (b)

250	 Construction Robotics (2023) 7:235–251

1 3

6 � Conclusions and future work

The rich semantic information in BIM files can be lever-
aged to improve autonomous robotic navigation. While
efforts are being made to integrate that information,
most approaches do not simultaneously consider geom-
etry, semantics, and schedule data. This study investi-
gates methods that could exploit BIM data to make ARS
deployment as autonomous as possible. With the auto-
matic generation of waypoints that are schedule-aware,
this work successfully increases the autonomy of ARS in
applications that occur both before and after construction

completion. The main contribution of this study relies on
the extraction of all the semantic information present in
the IFC file that could be used to aid and facilitate the
autonomous navigation process of an ARS.

In terms of future work, as discussed in the limitations
section, there needs to be a method where the 2D map can
be automatically aligned with the onboard SLAM navi-
gation maps of the ARS. This could potentially be done
in real-time using 2D feature matching methods, such as
SIFT or SURF, commonly used in computer vision. The
waypoint generation could also be more robust to consider
oddly shaped spaces and cases where the space centroids

Fig. 18   Snapshots of the a robot autonomously moving toward the
centroid of each one of the spaces, b the combination of both the
semantic map obtained from the IFC and the real-time SLAM-gener-

ated map, and c the standalone real-time SLAM-generated map used
for localization purposes

251Construction Robotics (2023) 7:235–251	

1 3

might be blocked. This approach might be more application
specific, as some tasks like 3D scanning, for example, need
full coverage of a given space.

Given that a lot of the BIM information is already parsed,
an extension and application of the methodology could be
developed such that the as-is state of the construction can
be compared to the BIM information for validation pur-
poses through data collection methods that can leverage the
improved autonomous navigation capabilities.

Acknowledgements  This work has benefited from the collaboration
with the NYUAD Center for Interacting Urban Networks (CITIES),
funded by Tamkeen under the NYUAD Research Institute Award
CG001. The authors want to thank Mr. William Fulton from the Cam-
pus Planning and Projects Office at New York University Abu Dhabi
(NYUAD) for his support and Mr. Eyob Mengiste for his assistance
with the BIM model used in Sect. 4 of this study.

Data availability  The code written by the authors has been made avail-
able in a repository under the SMART-NYUAD Github. All related
code and files can be found at https://​github.​com/​SMART-​NYUAD/​
ifc-​simul​ation.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

buildingSMART. (n.d.). Industry Foundation Classes (IFC). Build-
ingSMART International. Retrieved May 29, 2023, from https://​
www.​build​ingsm​art.​org/​stand​ards/​bsi-​stand​ards/​indus​try-​found​
ation-​class​es/

Chen J, Lu W, Fu Y, Dong Z (2023) Automated facility inspection
using robotics and BIM: A knowledge-driven approach. Adv Eng
Inform 55:101838. https://​doi.​org/​10.​1016/j.​aei.​2022.​101838

Dawson-Haggerty, M. (2022). trimesh 3.21.7 documentation—Basic
Installation. Trimesh. https://​trimsh.​org/

Dimyadi J, Spearpoint M, Amor R (2008) Sharing building information
using the IFC data model for FDS fire simulation. Fire Saf Sci.
https://​doi.​org/​10.​3801/​IAFSS.​FSS.9-​1329

Follini C, Magnago V, Freitag K, Terzer M, Marcher C, Riedl M, Giusti
A, Matt DT (2020a) BIM-integrated collaborative robotics for
application in building construction and maintenance. Robotics
10(1):2. https://​doi.​org/​10.​3390/​robot​ics10​010002

Follini C, Terzer M, Marcher C, Giusti A, Matt D (2020b) Combining
the robot operating system with building information modeling
for robotic applications in construction logistics. In: Arevalo JSS

(ed) Advances in service and industrial robotics results of RAAD.
Springer International Publishing, NY, pp 245–253

Gopee M, Prieto S, García de Soto B (2022) IFC-based generation
of semantic obstacle maps for autonomous robotic systems. In:
2022 European conference on computing in construction, pp
176–183. https://​doi.​org/​10.​35490/​EC3.​2022.​161

Hamieh A, Makhlouf AB, Louhichi B, Deneux D (2020) A BIM-
based method to plan indoor paths. Autom Constr. https://​doi.​
org/​10.​1016/j.​autcon.​2020.​103120

Ibrahim A, Sabet A, Golparvar-Fard M (2019) BIM-driven mis-
sion planning and navigation for automatic indoor construction
progress detection using robotic ground platform. Proceed Eur
Conf Comput Constr 1:182–189. https://​doi.​org/​10.​35490/​ec3.​
2019.​195

Karimi S, Braga RG., Iordanova I, St-Onge D. (2021). Semantic Navi-
gation Using Building Information on Construction Sites (arXiv:​
2104.​10296). arXiv. http://​arxiv.​org/​abs/​2104.​10296

Kim K, Peavy M (2022) BIM-based semantic building world mod-
eling for robot task planning and execution in built environments.
Autom Constr 138:104247. https://​doi.​org/​10.​1016/j.​autcon.​2022.​
104247

Kim H, Anderson K, Lee S, Hildreth J (2013) Generating construc-
tion schedules through automatic data extraction using open
BIM (building information modeling) technology. Autom Constr
35:285–295. https://​doi.​org/​10.​1016/j.​autcon.​2013.​05.​020

Kim P, Chen J, Kim J, Cho YK (2018) SLAM-driven intelligent
autonomous mobile robot navigation for construction applica-
tions. In: Smith IFC, Domer B (eds) Advanced computing strate-
gies for engineering. Springer International Publishing, Cham,
pp 254–269

Kim S, Peavy M, Huang P-C, Kim K (2021) Development of BIM-
integrated construction robot task planning and simulation system.
Autom Constr 127:103720. https://​doi.​org/​10.​1016/j.​autcon.​2021.​
103720

Krijnen T. (2011). IfcOpenShell—The open source IFC toolkit and
geometry engine. http://​ifcop​enshe​ll.​org/

Lin Y-H, Liu Y-S, Gao G, Han X-G, Lai C-Y, Gu M (2013) The IFC-
based path planning for 3D indoor spaces. Adv Eng Inform
27(2):189–205. https://​doi.​org/​10.​1016/j.​aei.​2012.​10.​001

Meschini S., Iturralde K., Linner T, Bock T. (2016, June 17). Novel
applications offered by integration of robotic tools in BIM-based
design workflow for automation in construction processes.

Open Cascade. (2023). Open Cascade. Opencascade.Com. Retrieved
May 29, 2023, from https://​www.​openc​ascade.​com/

Pauwels P, de Koning R, Hendrikx B, Torta E (2023) Live semantic
data from building digital twins for robot navigation: overview of
data transfer methods. Adv Eng Inform 56:101959. https://​doi.​
org/​10.​1016/j.​aei.​2023.​101959

Song C, Wang K, Cheng JCP (2020) BIM-aided scanning path plan-
ning for autonomous surveillance UAVs with LiDAR. Proceed Int
Symp Autom Robot Constr (ISARC) 4(2W4):1195–1202. https://​
doi.​org/​10.​22260/​ISARC​2020/​0164

Wang R, Tang Y (2021) Research on Parsing and Storage of BIM Infor-
mation Based on IFC Standard. IOP Conf Ser Earth Environ Sci
643(1):012172. https://​doi.​org/​10.​1088/​1755-​1315/​643/1/​012172

IFC Wiki. (2020, July 22). IFC - Industry Foundation Classes. https://​
www.​ifcwi​ki.​org/​index.​php?​title=​IFC_​Wiki

Xu M, Wei S, Zlatanova S, Zhang R (2017) BIM-based indoor path
planning considering obstacles. ISPRS Ann Photogramm Remote
Sens Spatial Inf Sci IV-2/W4:417–423. https://​doi.​org/​10.​5194/​
isprs-​annals-​IV-2-​W4-​417-​2017

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://github.com/SMART-NYUAD/ifc-simulation
https://github.com/SMART-NYUAD/ifc-simulation
http://creativecommons.org/licenses/by/4.0/
https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/
https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/
https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/
https://doi.org/10.1016/j.aei.2022.101838
https://trimsh.org/
https://doi.org/10.3801/IAFSS.FSS.9-1329
https://doi.org/10.3390/robotics10010002
https://doi.org/10.35490/EC3.2022.161
https://doi.org/10.1016/j.autcon.2020.103120
https://doi.org/10.1016/j.autcon.2020.103120
https://doi.org/10.35490/ec3.2019.195
https://doi.org/10.35490/ec3.2019.195
http://arxiv.org/abs/2104.10296
http://arxiv.org/abs/2104.10296
http://arxiv.org/abs/2104.10296
https://doi.org/10.1016/j.autcon.2022.104247
https://doi.org/10.1016/j.autcon.2022.104247
https://doi.org/10.1016/j.autcon.2013.05.020
https://doi.org/10.1016/j.autcon.2021.103720
https://doi.org/10.1016/j.autcon.2021.103720
http://ifcopenshell.org/
https://doi.org/10.1016/j.aei.2012.10.001
https://www.opencascade.com/
https://doi.org/10.1016/j.aei.2023.101959
https://doi.org/10.1016/j.aei.2023.101959
https://doi.org/10.22260/ISARC2020/0164
https://doi.org/10.22260/ISARC2020/0164
https://doi.org/10.1088/1755-1315/643/1/012172
https://www.ifcwiki.org/index.php?title=IFC_Wiki
https://www.ifcwiki.org/index.php?title=IFC_Wiki
https://doi.org/10.5194/isprs-annals-IV-2-W4-417-2017
https://doi.org/10.5194/isprs-annals-IV-2-W4-417-2017

	Improving autonomous robotic navigation using IFC files
	Abstract
	1 Introduction
	2 Literature review
	2.1 Navigation maps
	2.2 Simulation environments

	3 Methodology
	3.1 Part 1: IFC parsing
	3.1.1 Extract geometry
	3.1.2 Add semantic information
	3.1.3 Extract schedule information

	3.2 Part 2: obstacle map generation
	3.2.1 Generate schedule-aware obstacle mesh
	3.2.2 Generate 2D obstacle maps
	3.2.3 Calculate space centroids
	3.2.4 Generate simulation environment
	3.2.4.1 Static elements
	3.2.4.2 Dynamic elements

	3.3 Part 3: ARS deployment
	3.3.1 Generate the waypoints
	3.3.2 Perform the task

	4 Implementation
	4.1 Obstacle map generation
	4.2 ARS deployment

	5 Results and limitations
	6 Conclusions and future work
	Acknowledgements
	References

