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Abstract
Background Current generation large language models (LLMs) such as Generative Pre-Trained Transformer 4 (GPT-4) have 
achieved human-level performance on many tasks including the generation of computer code based on textual input. This 
study aimed to assess whether GPT-4 could be used to automatically programme two published health economic analyses.
Methods The two analyses were partitioned survival models evaluating interventions in non-small cell lung cancer (NSCLC) 
and renal cell carcinoma (RCC). We developed prompts which instructed GPT-4 to programme the NSCLC and RCC mod-
els in R, and which provided descriptions of each model’s methods, assumptions and parameter values. The results of the 
generated scripts were compared to the published values from the original, human-programmed models. The models were 
replicated 15 times to capture variability in GPT-4’s output.
Results GPT-4 fully replicated the NSCLC model with high accuracy: 100% (15/15) of the artificial intelligence (AI)-generated 
NSCLC models were error-free or contained a single minor error, and 93% (14/15) were completely error-free. GPT-4 closely rep-
licated the RCC model, although human intervention was required to simplify an element of the model design (one of the model’s 
fifteen input calculations) because it used too many sequential steps to be implemented in a single prompt. With this simplification, 
87% (13/15) of the AI-generated RCC models were error-free or contained a single minor error, and 60% (9/15) were completely 
error-free. Error-free model scripts replicated the published incremental cost-effectiveness ratios to within 1%.
Conclusion This study provides a promising indication that GPT-4 can have practical applications in the automation of health eco-
nomic model construction. Potential benefits include accelerated model development timelines and reduced costs of development. 
Further research is necessary to explore the generalisability of LLM-based automation across a larger sample of models.

Key Points for Decision Makers 

GPT-4, a current generation large language model 
(LLM), automatically replicated two published health 
economic models with high accuracy, based on instruc-
tions about how the models should be designed and what 
input values should be used.

This is a promising early indication that LLMs could 
be used to automate building health economic models, 
which could reduce the costs of health economic analy-
sis, accelerate model development timelines and reduce 
the risk of error in modelling.
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1 Introduction

We are living through a golden age of innovations and the 
development of new treatments for many diseases. How-
ever, this is occurring at a time of increasing demand, 
primarily due to an ageing population with complex health 
needs, together with constrained healthcare resources and 
budgets. Health economic models, which provide evidence 
of the relative costs and benefits of new health technolo-
gies compared with existing technologies [1], are vital 
tools for informing health decision making, particularly 
health technology assessments that inform national deci-
sions for market access and reimbursement [2].
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To ensure prompt market access to medicines, there is 
a demand for timely and reliable health economic analy-
sis. However, existing methods for model development 
are expensive, time-consuming and prone to human-error 
[3]. There is therefore a need for research to enhance the 
efficiency and quality of health economic modelling. Auto-
mation of some aspects of economic modelling using arti-
ficial intelligence (AI) could accelerate development time-
lines, reduce costs and reduce the risk of technical errors, 
which are present in virtually all human-built models [4], 
ultimately improving access to medicines and outcomes 
for patients.

The development of a health economic model typically 
involves four phases: conceptualisation of the model, estimat-
ing parameter values, constructing the model and validating the 
model, as shown in Fig. 1 [2]. During the model construction 
phase, a health economist programmes the model in a software 
such as R or Excel [5], based on a previously specified design. 

Large language models (LLMs), such as Generative Pre-
Trained Transformer 4 (GPT-4), are mathematical models that 
work by repeatedly predicting the next word [7, 8]. LLMs enable 
automated generation of text content, including computer code, 
based on input (prompts) [8]. Therefore, LLMs offer a potential 
route to automating health economic model construction. Theo-
retically, we could provide an LLM with a series of text-based 
prompts describing a models’ design, and ask it to generate code 
to programme the model in a software such as R. However, the 
potential of LLMs in automating model construction has not 
yet been explored.

LLM-based model construction is a promising idea for 
several reasons. Firstly, health economists usually produce 
a text-based summary of a model’s design prior to model 
construction (a specification document). Secondly, several 
aspects of model construction are suited to automation: 
model construction involves programming a large number 
of simple formulae, which is time consuming, repetitive 
and prone to human error; health economic models are 
typically based on a limited set of well-established meth-
odologies, and there are objectively correct and incorrect 
ways of programming a model provided the model is con-
ceptualised (designed) in sufficient detail [3].

In this paper, we report a case study that aimed to assess 
whether an LLM, GPT-4, could be used to automatically 
construct and replicate the results of two published health 
economic analyses based on text prompts describing the 
model’s assumptions, methods and parameter values.

Fig. 1  The four phases of devel-
oping a health economic model

2  Methods

2.1  Economic Models used in the Case Study

The two published health economic analyses were cho-
sen because we had access to complete information on the 
methodology used, and both models were three-state par-
titioned survival models, which is a very commonly used 
model type in oncology modelling. Both published models 
were built in Microsoft Excel. One model assessed the cost-
effectiveness of nivolumab versus docetaxel in patients with 
non-small cell lung cancer (NSCLC) previously treated with 
platinum-based chemotherapy from a US payer perspective 
(the NSCLC model), and the other assessed the cost effec-
tiveness of nivolumab plus ipilimumab versus both sunitinib 
and pazopanib for the first-line treatment of unresectable 
advanced renal cell carcinoma (RCC) in Switzerland (the 
RCC model) [10, 11]. Key characteristics of each model are 
presented in Table 1.

For this study, we did not have access to individual 
patient data that were used in the published models to fit 
overall survival, progression-free survival and time-to-dis-
continuation curves. Therefore, these extrapolated curves 
were used directly as parameters in the AI-generated models. 
To constrain the scope of our case study, we generated only 
the base case analyses, and sensitivity and scenario analyses 
were not included.

2.2  Overview of the LLM‑Based Automation 
of Model Construction

An overview of the LLM-based automation of model con-
struction, including the prompt development process, is 
shown in Fig. 2.

2.2.1  Prompt Development Process

LLMs generate text content based on inputs known as 
‘prompts’. Text-based prompts can use any text-based form, 
including questions or instructions in natural language, and 
should convey the nature of the output that the user wishes to 
elicit from the LLM. An example of a prompt is, ‘write me 
an essay on Hamlet’. The output of an LLM can vary signifi-
cantly depending on the style and quality of a prompt [11]. 
Numerous studies have investigated ‘effective’ prompting, 
where ‘effective’ prompts are those most likely to produce 
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Table 1  Models replicated in the case study

NSCLC non-small cell lung cancer, PSM partitioned survival model, RCC  renal cell carcinoma

Specification Model

NSCLC RCC 

Model type Three-state PSM Three-state PSM
Treatments Nivolumab, docetaxel Nivolumab + ipilimumab, pazopanib, sunitinib
Health states Progression-free, progressed disease, death Progression-free, progressed disease, death
Time horizon and 

cycle length
20 years/1 week 40 years/1 week

Cost categories Drug acquisition Drug acquisition
Drug administration Drug administration
Drug monitoring Treatment initiation (upon starting treatment)
Subsequent therapy drug acquisition, drug administration and drug 

monitoring (upon death or progression for nivolumab, upon finishing 
first-line treatment for docetaxel)

Disease management
Subsequent therapy drug acquisition, drug 

administration (upon finishing first-line 
treatment)

End-of-life care (upon death)
Disease management
Adverse events (upon starting treatment)
End-of-life care (upon death)

Utility categories Adverse events utility decrement Treatment-specific health-state utilities
Health-state utilities

Fig. 2  Diagram showing (a) the top-level process used to construct health economic models using an LLM and (b) the iterative prompt develop-
ment process used in this study. API application programming interface, GPT-4 generative pre-trained transformer 4, LLM large language model
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an output of the desired form and quality, and this is a highly 
active area of research that is rapidly progressing [13–16]. 
A scientific process is required for best outcomes. Numer-
ous strategies such as ‘chain of thought’ prompting and the 
inclusion of key phrases (e.g. ‘let’s think step by step’) have 
been assessed on benchmark problem sets and have been 
demonstrated to significantly improve performance [16, 17]. 
Iterative optimisation methods have also been shown to pro-
duce improvements in outcomes for given task sets [18].

Given the impact of prompting strategies on perfor-
mance, it was important that we developed effective 
prompts for our case study to fairly assess GPT-4’s capa-
bilities in model construction. As no existing studies had 
investigated how to effectively prompt LLMs to construct 
health economic models, we opted to use an iterative 
method to develop the prompts. It should be noted that 
an alternative prompting strategy may yield superior out-
comes; however, the iterative method provided satisfactory 
outcomes for this study. This functioned as follows (Fig 
2b): for each model initial prompts were developed; these 
were submitted to GPT-4 and the generated models were 
evaluated and based on these insights the prompts were 
adjusted. The adjusted prompts were then submitted back 
into GPT-4 for further testing and evaluation; the process 
continued until no further improvements could be made 
through reasonable adjustments to the content and style 
of the prompts, and final prompts were reached for each 
model.

The prompts we developed instructed GPT-4 to code the 
NSCLC and RCC models in R, and provided descriptions of 
each model’s methods, assumptions and parameter values as 
supporting information.

2.2.2  LLM Interaction

There are a variety of methods to submit prompts to an 
LLM and receive an output. ChatGPT is a web application 
that allows prompts to be submitted to an LLM online, in 
a dialogue format [19], a method that is readily accessible 
and popular. However, it is not suited to automation, as it 
requires manual entry of prompts into the web application, 
and manual extraction of the response.

For this study, we used application programming inter-
face (API) calls to submit prompts to GPT-4 and receive 
output. API calls transmit a request to a server (in this case, 
transmitting a prompt to the GPT-4 servers) and return a 
response (in this case, returning the text output from GPT-4). 
Importantly, API calls can be embedded into code, such as a 
Python script. This enables automation of complex, multi-
step interactions with LLMs. For example, a computer pro-
gramme can be written to automate a series of prompt–out-
put interactions with an LLM, and subsequently manipulate 
the LLM’s outputs.

2.3  Prompting Methods and Key Learnings

Several key insights were uncovered through iterative 
prompt development, which shaped the form of the final 
prompts, as described below.

2.3.1  Using Multiple Prompts

A token is a unit of text that can be processed and gener-
ated by an LLM. GPT-4 had a token limit of 8192 at the 
time of the study. This restricted the quantity of text in a 
prompt–response pair to roughly 4000 words. The base case 
analyses of the models were found to require more than 
15,000 tokens to specify in R. Therefore, the models could 
not be generated using a single prompt. In addition, GPT-4 
was observed to have significantly better performance when 
instructed to build a single element of the models (such as a 
particular input calculation, or survival analysis) than when 
instructed to build a full model in one go.

Therefore, we developed multiple prompts for each 
model, each instructing GPT-4 to generate a separate section 
of the R script. We split the scripts into sections as follows:

• Parameter definition sections—each of these sections 
defined a set of model parameters.

• Input calculation sections—each of these sections calcu-
lated a cost or utility from the model parameters, which 
was later applied in the model trace.

• Model trace sections—each of these sections defined a 
part of the model trace, using functions from the Heemod 
R package [20].

• Other sections—these sections contained routine code, 
such as code to run the model or load R packages.

Generating the scripts in sections posed challenges. When 
generating a section of the R script, GPT-4 only had access 
to information contained in the prompt for that section. 
However, the separate script sections had to work together 
when combined. In particular, later sections needed to use 
variables defined in earlier sections. Therefore, we devel-
oped a fully automated process in Python to pass informa-
tion on earlier sections of the model script into prompts used 
for later sections [21]. This worked as follows (Fig. 3):

1. The prompts were loaded into Python as strings. A sepa-
rate prompt was developed for each model section.

2. Alongside each prompt, a ‘section tag’ was added which 
indicated what part of the model the prompt referred to. 
For example, there were six section tags available for 
prompts for input calculation sections, which covered 
general categories of input calculation. These were: drug 
acquisition cost calculation, transition cost calculation, 
health state cost calculation, other cost calculation, util-
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ity decrement calculation and health state utility calcula-
tion. These options were sufficient to construct both the 
RCC and NSCLC models.

3. For each prompt, the user could provide a further ‘data 
tag’. These tags linked the prompt to one or more of the 
parameter definition prompts.

4. When the process was initiated, the prompts were passed 
automatically to GPT-4 using API calls. The order was 
determined by the section tags.

5. The parameter definition sections of the scripts were 
automatically appended to the prompts for calculation 
sections based on the data tags. This ensured that GPT-4 
had information on the variable names of model param-
eters required for the calculation sections.

6. Once all prompts had been passed to GPT-4 and all the 
script sections had been generated, these were automati-
cally combined into a complete model script through 
concatenation. Again, the order was determined by the 
section tags. The final output could be copied into R and 
run without any human edits.

As well as passing the variable names of model param-
eters into prompts, it was also necessary to pass some 

intermediate variable names. An intermediate variable stores 
the result of a calculation for use in a later section of the 
model script. For example, models commonly calculate per 
cycle costs which are applied later in the trace calculations.

This posed a separate problem as the user cannot know 
in advance what intermediate variables will be generated by 
GPT-4 and how these variables will be named. Therefore, a 
solution analogous to the tagging approach was not feasible. 
Instead, we developed automated ‘summary calls’ that were 
API calls prompting GPT-4 to list the intermediate variables 
defined in a section of the model script. Summary calls were 
added into specific stages of the automated process to pass 
intermediate variable names from earlier script sections into 
the prompts used to generate later script sections (Fig. 3). 
The automated process was able to handle both model cases 
and was not changed between constructing the NSCLC and 
RCC models.

2.3.2  Contextual Information

We observed that GPT-4 made far more errors when using 
functions from health economic modelling packages than 
when implementing base functions in R. GPT-4 also 

Fig. 3  Diagram showing the structure of the automated process used to construct each replica model in Python. API application programming 
interface, GPT-4 generative pre-trained transformer 4
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incorrectly implemented certain common health economic 
assumptions, such as vial wastage, when prompted. Fur-
ther, intermediate variables were stored in an inconsistent 
manner (scalars, vectors and arrays) which caused errors 
when these variables were used in later script sections. It 
therefore became clear that we needed to provide GPT-4 
with contextual information on top of information specify-
ing the model assumptions, methods and parameter values. 
This information needed to describe how to use functions 
from health economic modelling packages, explain common 
health economics assumptions, and provide instructions on 
the desired structure of the model code (for example, speci-
fying how to store intermediate variables). To this end, we 
drafted contextual information relevant to each model sec-
tion, and integrated this into the Python process. The infor-
mation was automatically prepended to the calculation and 
data prompts, based on the section tags, as shown in Fig. 3.

An example of contextual information is provided in 
Fig. 4. We included worked examples, as this has been 
shown to improve the performance of LLMs in multi-step 
reasoning tasks [16]. The contextual information was devel-
oped iteratively in the same manner as the prompts. The final 

set of contextual information was generic and applicable 
to both models. It formed part of the back-end structure of 
the Python process and was not changed when we used the 
process to construct the RCC and NSCLC models.

2.3.3  Prompt content

Through the process of iterative development, we reached a 
final prompt set of 33 prompts to specify the NSCLC model. 
A total of 17 of these prompts contained only parameter val-
ues (‘data prompts’), with the remaining 16 prompts describ-
ing methodology and assumptions (‘method prompts’). The 
final prompt set for the RCC model used 21 data prompts 
and 16 method prompts. All final prompts are provided in 
the Online Resource.

The method prompts differed in length depending on the 
complexity of the methods described. Figure 5a provides 
an example of a simple method prompt for the RCC model 
and the data prompts to which it was linked, and Fig. 5b 
provides an example of a complex method prompt for the 
NSCLC model.

Fig. 4  Example of contextual information. This contextual information was automatically appended to prompts tagged as ‘discounting’ prompts. 
GPT-4 generative pre-trained transformer 4
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For sections of the models that required multi-step meth-
odology, performance was generally improved by explicitly 
setting out the methodological steps in order. We noted that 
on occasion, the performance of prompts could depend on 
phrasing and word choice.

To avoid submitting sensitive data to GPT-4, dummy 
values were used in data prompts, which required human 
intervention to replace dummy values with the correct 
values in the output scripts. However, this step could be 
avoided through the use of a private LLM that ensures the 
confidentiality of sensitive information (see Discussion).

2.4  Output Generation and Assessment

The final set of prompts for each model were loaded into 
Python and the automated process was initiated. This pro-
duced a text string with AI-generated R code for each model. 
The string was copied into R and run without human edits. 
No change was made to the automated process (including 
the contextual information) between generating the NSCLC 
and RCC models. The results of the generated scripts were 
compared with the published values and a health economist 
performed line-by-line technical quality assurance to iden-
tify any errors.

Metrics collected were the base case incremental cost-
effectiveness ratio (ICER) result as well as the number and 
category of errors in the generated models. Errors were cat-
egorised into minor, intermediate and major errors. Classi-
fication was based on the time it took for a health economist 
to correct the errors once they had been identified. Minor 
errors took less than 2 min to rectify, intermediate errors 
took less than 10 min, and major errors took more than 10 
min. As this measure could vary from health economist to 
health economist, a description of all errors is provided in 
the appendices.

Despite setting the temperature of GPT-4 to 0, (‘tempera-
ture’ controls the randomness of the text generated by GPT-
4) outputs were observed to vary when the same prompt set 
was used on multiple occasions. Therefore, we generated 15 
scripts for each model to capture variation in performance.

3  Results

Example AI-generated scripts for each model are provided 
in the Online Resource. The accuracy of the NSCLC and 
RCC models is shown in Fig. 6. The NSCLC model was 
fully replicated with high accuracy. Overall, 100% (15/15) 
of the AI-generated NSCLC models were error free or 
contained only a single minor error, and 93% (14/15) of 
the AI-generated NSCLC models were completely error 

free. Only one minor error was observed across the 15 
test runs.

The RCC model was also closely replicated. However, 
human intervention was required to simplify one element 
of the model design (one of the model’s fifteen input cal-
culations). This is because it used too many sequential 
steps to be implemented in a single prompt. This had only 
a minor impact on model results. The original calcula-
tion used an elaborate approach to calculate weight-based 
drug dosing. A simplification was applied by providing 
the proportion of patients in each weight category and the 
midpoint weights directly, as well as limiting the set of 
available vial sizes.

This was performed manually at the prompting stage, 
so that GPT-4 was instructed to build the simplified ver-
sion of the model. With the simplification, 87% (13/15) 
of the AI-generated RCC models were error free or con-
tained only a single minor error, while 60% (9/15) of the 
AI-generated RCC models were completely error free. In 
total, six minor errors and one intermediate error were 
observed across the 15 test runs.

All error-free scripts for both models replicated the pub-
lished ICERs to within 1%. For the NSCLC model, the error-
free AI-generated ICERs all evaluated to USD$117,600/
quality per quality-adjusted life-year (QALY), compared 
with the published value of USD$117,739/QALY. For the 
RCC model, the error-free AI-generated ICERs all evaluated 
to CHF107,284/QALY versus sunitinib and CHF105,965/
QALY versuss pazopanib, compared with the published val-
ues of CHF108,326/QALY and CHF106,996/QALY. Devia-
tion was explained by minor differences in the calculation 
engine of the Heemod R package versus the Excel models. 
For example, the AI-generated models applied discounting 
on a per-cycle basis, whilst the Excel models applied this 
on a year-by-year basis. Similarly, the R models assumed 
progression-free survival state occupancy was 100% in the 
first model cycle, whereas half-cycle correction was applied 
in the first model cycle for one of the Excel models.

Of the 30 AI-generated models, none required more 
than 10 min of edits to rectify errors following human 
quality assurance. The average time taken by GPT-4 to 
generate the NSCLC model was 715 s (standard deviation 
29 s) and the average time taken by GPT-4 to generate the 
RCC model was 956 s (standard deviation 52 s).

4  Discussion

In this case study we aimed to assess whether GPT-4 could be 
used to automatically construct two health economic analyses 
based on descriptions of the model’s assumptions, methods 
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should be distinguished from model conceptualisation, estima-
tion of parameter values and model validation (technical and 
external) that were not automated during this study.

Fig. 5  A Example of a specification prompt for a simple model com-
ponent. Dummy values are underlined. 1We found that including 
a definition of the cost category in snake case would lead to shorter 
and more precise variable names in the resulting R script. This is why 
“the cost category is ‘drug_aq’” was included in the method prompt. 
CHF Swiss franc, RDI relative dose intensity. B Example of a speci-

fication prompt for a more complex model component. Dummy val-
ues are underlined. 1We found that including a definition of the cost 
category in snake case would lead to shorter and more precise vari-
able names in the resulting R script. This is why “the cost category is 
‘sub_therapy_drug_admin’” was included in the method prompt

and parameter values. Model construction is the third phase of 
model development, in which the model is programmed in a 
software such as R or Excel on the basis of a prior design, and 
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In response to this question and through iterative prompt 
development we reached a novel process for automating health 
economic model construction in R using an LLM. In addition 
to prompts describing the model’s methods, assumptions and 
parameter values, the process required contextual information. 
However, this information was generalisable across the two 
models we generated and described how to use health econom-
ics R packages, how to interpret common health economic 
assumptions and how to structure code.

Using this novel process, we automatically constructed ver-
sions of the two published models. No human intervention was 
required between writing the prompts describing the model 
designs and receiving back the fully programmed model R 
scripts. Across 15 runs for each model, most of the runs were 
error free or contained only a single minor error. These results 
are promising given that these are health technology assess-
ment (HTA)-ready models and that virtually all human built 
health economic models contain technical errors prior to qual-
ity assurance [4]. None of the AI-generated models required 
more than 10 min of human edits to correct errors following 
full technical quality control, which demonstrates the minor 
nature of errors observed in our study.

It should be noted that one calculation in the published 
RCC model had to be simplified for the AI-generated model, 
as it used too many sequential steps for a single prompt. To 
fully replicate the published RCC model this section of the 
AI-generated script would require human editing, indicating 
that with current generation LLMs human intervention may 
be required for atypical and complex model sections. How-
ever, simplification was required for only one section of the 
28 calculation sections across the two models. The need for 
occasional human intervention does not greatly undermine the 
potential benefits achievable through LLM-based automation 
of model construction.

4.1  Study Limitations

There were a number of limitations in our case study. 
Firstly, sensitive data in the prompts we developed had to be 
redacted using dummy values and manually added back in to 
the AI-generated models. This is because prompts submitted 
to LLMs may be retained by the LLM provider and become 
vulnerable to data breaches. Also, LLMs may be trained on 
submitted prompts, which could result in data leaks. Data 
security is of great importance in HEOR and should not 

Fig. 6  Accuracy of the AI-gen-
erated replica models. NSCLC 
non-small cell lung cancer, RCC  
renal cell carcinoma
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be jeopardised as we take advantage of the opportunities 
offered by LLMs. Since this research was performed, several 
options for the secure use of LLMs have emerged, such as 
dedicated hosting of private instances of LLMs, downloada-
ble instances of open-source models and API services where 
prompts are not stored or used to train models. This would 
enable inclusion of sensitive data in model design prompts.

Secondly, to constrain the scope of our study, we repli-
cated only the base case analyses of the published models. 
The ability of LLMs to programme sensitivity analyses, 
which are important components of health economic analy-
ses, was not evaluated and is an area for future research. 
Additionally, the AI-generated models were both three-
state partitioned survival models (PSMs) in late-stage anti-
cancer treatment. It remains to be demonstrated whether 
LLMs can accurately programme a range of model types 
with varying levels of sophistication, such as decision-tree 
analysis, Markov models and individual patient simulation 
approaches, and whether this can be achieved across a wider 
range of disease areas.

Thirdly, following technical quality control of the AI-
generated scripts, errors were corrected by the same health 
economist who had developed the prompts. Due to the nature 
of the iterative development process, the health economist 
had some familiarity with the type of errors likely to be 
made, which may have reduced the time taken to correct 
them. More time may be required to correct errors without 
the prior knowledge gained through developing prompts 
using an iterative process.

4.2  Implications for Future Policy and Research

The implications of our research are many fold. We rep-
licated published models in this study to demonstrate the 
accuracy of the LLM-generated models by comparing 
results against established values. However, the same pro-
cesses could be used to automatically construct a de novo 
model, where model conceptualisation, estimation of param-
eter values and model validation (technical and external) 
are performed manually as for human-built models. When 
developing a de novo model, it is common practice to spec-
ify the model in detail prior to starting any programming (for 
example, in a model specification document). This informa-
tion could be used to develop model design prompts and 
perform LLM-based model construction for de novo models.

With this in mind, there are numerous potential appli-
cations for LLM-based model construction. As a first use 
case, AI-generated models could be used to rapidly perform 
double-programming technical validation of human-built 
models. This is a method in which the same model is built 
independently by two health economists, and differences 
in the results are investigated to reveal technical errors. In 
this use case, the LLM could take on the role of one of the 

two health economists to save time and potentially increase 
accuracy. Secondly, LLM-based model construction could 
enable rapid production of additional models to perform 
assessments of structural uncertainty. For example, rapidly 
constructing a PSM in parallel to a Markov model, which 
may otherwise not be possible due to time and resource 
constraints. Thirdly, it may be possible to quickly adapt 
LLM-generated models through editing of the model design 
prompts (for example, adding a new comparator) which 
would be of particular use at an early modelling stage.

In addition to this, many countries have HTA agencies 
to robustly assess the costs and effectiveness of new tech-
nologies [22, 23]. However, the process can be lengthy and 
thereby delay patients’ access to medicines [24–26], which 
in turn can affect patient outcomes [27, 28]. In the longer 
term, using LLMs to automate model construction could 
result in a reduction in the person hours required for model 
development, which could accelerate timelines for HTA pro-
cesses and reduce costs. As AI is implemented into other 
aspects of clinical development and health economics and 
outcomes research (HEOR) it may increase the complexity 
as well as demand for HTAs [29, 30]. Therefore, it may be 
necessary to automate some aspects of the economic model-
ling to free up time for tasks that cannot be automated. AI 
is also being assessed in other processes that are relevant to 
HTAs and HEOR such as conducting systematic literature 
reviews [36, 37] and the use of large amounts of clinical data 
(real-world and “big data”) [38].

Finally, LLM-based model construction could open the 
door to deploying economic modelling more widely in 
healthcare decision making, if significant reductions in costs 
and resource requirements can be achieved.

The above applications primarily derive from the poten-
tial of LLM-based model construction to reduce the time 
and resource required to construct models, and therefore to 
accelerate timelines for model construction. As our study 
was the first (to the authors’ knowledge) to investigate using 
LLMs to produce health economic models, a high upfront 
time investment was required to experiment with and iden-
tify successful prompting strategies through iterative prompt 
development. However, prompting strategies may prove gen-
eralisable across different decision problems, and this asser-
tion is supported by the similarity between the successful 
prompt sets we developed for the NSCLC and RCC models 
(particularly the contextual information, which was reused 
without edits). If this is the case, the process of developing 
prompts would shift from experimental, iterative develop-
ment to adapting prompts from published exemplars based 
on the specifics of the decision problem in question. Such 
a streamlined process could enable significant reductions in 
the time and cost required to programme health economic 
models. Therefore, a key next research step will be to inves-
tigate the generalisability of prompting strategies across a 
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wider pool of models. In particular, further research should 
be conducted to assess the accuracy that can be achieved 
through using prompts transferred from one decision prob-
lem to another without iterative optimisation.

There are a number of challenges that must be overcome 
to integrate LLM-based automation into existing model 
development workflows. Our case study suggests that AI-
generated scripts may contain errors. It is important that 
these errors are placed in the context of human performance 
in model construction, which is the relevant comparison, and 
are not used to discount AI-generated models out of hand 
[4]. It should also be emphasised that full technical quality 
assurance should be performed for AI-generated scripts as 
it is for human-built models.

Additionally, an expanded skillset is required to perform 
LLM-based model construction in comparison with manu-
ally developing health economic models. Firstly, knowl-
edge of how to programme health economic models in R 
is required, both to perform technical quality control of AI-
generated scripts, and to perform manual edits of atypical or 
complex sections. These skills are not ubiquitous amongst 
health economists. Although, it is worth noting that LLMs 
can be used to edit Microsoft Excel files (and therefore 
Excel-based models), which may become an important use-
case in the future. Secondly, basic working knowledge of 
Python is an advantage (although, if prompting strategies 
prove generalisable the Python components may not require 
editing in many cases). Finally, users must understand how 
to develop effective prompts to specify a model. Educating 
health economists in these areas is likely to require dedicated 
training. However, if LLM-based model construction is sig-
nificantly time saving this should not be a barrier to use.

Furthermore, HTA agencies and evidence assessment 
groups (EAGs) may be reluctant to accept the use of LLM-
based processes in generating evidence. This is because the 
technologies involved are not yet widely understood, and 
there is not currently a gold standard for applying LLM-
based methods in the field of HEOR. However, it should 
be noted that the output produced by LLM-based model 
construction (an R script) is scrutable in the same way as a 
human generated output, since all working is provided in the 
code. Therefore, an LLM-generated model could be robustly 
checked, which is a prerequisite of HEOR methods in an 
HTA document.

Whilst it is important to consider the above challenges, 
the results of our study should also be placed in the context 
of the rapid improvements that have recently been made 
in the field of generative AI. It is highly likely that next-
generation LLMs will allow for the methods described in 
our case study to be adapted and improved. For example, 
next-generation LLMs may enhance the accuracy of gener-
ated code. Furthermore, models with improved token limits 
have been released since this study was conducted (GPT-4 

turbo with a limit of 128,000 tokens, and Claude 2.1 with a 
limit of 200,000 tokens. The version of GPT-4 used in this 
study had a token limit of 8192). Increases to token-limits 
(which restrict the quantity of text that can be included in 
prompts and outputs) can simplify the processes described 
in this paper.

5  Conclusion

Using a novel LLM-based process, we constructed the base 
case analyses of published three-state partitioned survival 
analyses in R to a high degree of accuracy, demonstrating 
the feasibility of using GPT-4 to automate health economic 
model construction. Potential benefits of automating health 
economic model construction include accelerated time-
lines and reduced costs for model development, reduction 
in human error and novel methods for model validation 
and exploring structural uncertainty. Potential challenges 
include managing the perception of AI-generated models, 
the requirement for an expanded skillset in comparison with 
manual model construction, and barriers to acceptance of 
LLM-based methods by HTA bodies. Further research 
should be conducted to explore the generalisability of LLM-
based model construction across a wider range of model 
types and disease areas, the accuracy that could be achieved 
through prompts that are reusable across multiple decision 
problems and the potential to construct Excel-based health 
economic models using LLMs.
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