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Abstract
Background The emergence of artificial intelligence, capable of human-level performance on some tasks, presents an 
opportunity to revolutionise development of systematic reviews and network meta-analyses (NMAs). In this pilot study, we 
aim to assess use of a large-language model (LLM, Generative Pre-trained Transformer 4 [GPT-4]) to automatically extract 
data from publications, write an R script to conduct an NMA and interpret the results.
Methods We considered four case studies involving binary and time-to-event outcomes in two disease areas, for which an 
NMA had previously been conducted manually. For each case study, a Python script was developed that communicated with 
the LLM via application programming interface (API) calls. The LLM was prompted to extract relevant data from publica-
tions, to create an R script to be used to run the NMA and then to produce a small report describing the analysis.
Results The LLM had a > 99% success rate of accurately extracting data across 20 runs for each case study and could gener-
ate R scripts that could be run end-to-end without human input. It also produced good quality reports describing the disease 
area, analysis conducted, results obtained and a correct interpretation of the results.
Conclusions This study provides a promising indication of the feasibility of using current generation LLMs to automate data 
extraction, code generation and NMA result interpretation, which could result in significant time savings and reduce human 
error. This is provided that routine technical checks are performed, as recommend for human-conducted analyses. Whilst 
not currently 100% consistent, LLMs are likely to improve with time.

1 Introduction

Many countries have health technology assessment (HTA) 
agencies to systematically evaluate the efficacy, safety and 
value of new interventions to inform price negotiations and 
reimbursement decisions [1, 2]. Pharmaceutical companies 
are very often required to submit robust evidence of the 
cost-effectiveness of the new intervention compared with 
the currently available treatments (comparators) using data 
that have been acquired in a systematic, non-biased and 
transparent way. Systematic literature reviews (SLRs) and 
meta-analyses are considered the most rigorous methods 
for gathering and synthesising such evidence [3]. In addi-
tion to HTAs, SLRs and meta-analysis are also integral for 
other evidence-based practices including informing clinical 
decision making, clinical guidelines, medical education and 
policy [4].

Extended author information available on the last page of the article
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This is a promising first assessment of the feasibility 
of using LLMs to automate data extraction, analysis 
and result interpretation, which could result in signifi-
cant time savings and reduce human error in the NMA 
process.

This study has shown that GPT-4 can successfully rep-
licate the results of four NMAs in two disease areas for 
two outcome types (binary and time-to-event).

There is a need for further research to develop and test 
LLM-based processes.
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The HTA process generally involves several key steps 
[5], and an overview is shown in Fig. 1. Firstly, SLRs are 
conducted to identify relevant clinical studies of the inter-
vention and comparators, preferably head-to-head evidence 
from randomized controlled trials (RCTs). Secondly, data 
from the studies identified in the SLR are extracted and 
then synthesized using statistical techniques to determine 
the relative effectiveness. Typically, due to an absence of 
direct head-to-head evidence for all the different compara-
tors, indirect or mixed treatment comparisons using methods 
such as network meta-analyses (NMA) are employed at this 
stage, which compare multiple treatments simultaneously 
using direct and indirect evidence across a “network” of 
RCTs [6]. These methods require the assessment of clinical 
and methodological heterogeneity and transitivity of the tri-
als included [7]. Finally, economic models are developed to 
determine the cost-effectiveness of the intervention versus 
the comparators, populated using the clinical data obtained, 
and statistical data generated in the above steps.

The HTA process is very labour and resource intensive, 
requiring a large team of experts in the field of health eco-
nomic outcomes research (HEOR), including SLR analysts, 
statisticians and economic modellers [5, 8]. For example, 
to reduce errors, there is a requirement for at least three 
analysts to be involved in the SLR and data extraction: two 
analysts to perform dual independent screening and dupli-
cated data extraction or data checking and a third analyst to 
resolve any issues [9]. Despite these quality-control meas-
ures, the processes can still be prone to error [10]. In addi-
tion, the HTA process is time-consuming, generally taking 
over a year to complete, with the SLR and NMA part of this 
process taking several months each [8, 11]. A faster HTA 
process would ultimately mean faster access to new treat-
ments and, therefore, better outcomes for patients.

Artificial intelligence (AI) tools, especially generative AI 
with large language models (LLMs), have the potential to 
optimise many steps of the HTA workflow, making the pro-
cess quicker, less costly, more efficient and less error-prone 
[12, 13]. The latest LLMs, including GPT-4 [14], have been 
trained using vast quantities of publicly available text data 
to understand, generate and manipulate human language 
by recognising patterns and relationships in language [15]. 

They are capable of human-level performance on some pro-
gramming and analytics tasks [16]; however, the practical 
use of these AI models remains untested in HEOR.

The aim of this study is to perform a feasibility assess-
ment of LLM-based automated NMA, using previous manu-
ally conducted NMAs as case studies. The scope of the work 
was to develop LLM-based processes for automated data 
extraction, software programming to perform the NMA and 
interpretation of the results from the NMA (highlighted with 
red in Fig. 1). Manual assessments of study heterogeneity 
and suitability of studies for inclusion in an NMA were con-
ducted prior to automation.

2  Methods

2.1  Case Studies

The ability of the LLM to replicate the results of manu-
ally conducted NMAs was tested using four case studies. 
For each of these case studies, a literature review had been 
conducted to identify relevant trials, followed by a feasibil-
ity analysis to determine which trials were appropriate to 
include in the NMA, i.e. involving a review of the study 
design, patient characteristics and outcomes to determine 
whether the trials were sufficiently similar to include in 
the NMA [17]. The four case studies spanned two disease 
areas (hidradenitis suppurativa [HS], which is a chronic, 
inflammatory skin disorder, and non-small cell lung can-
cer [NSCLC]) and two types of outcome (binary and time-
to-event [survival]). These outcomes were chosen because 
if a prototype could be shown to work for binary or time-
to-event outcomes, then it should be generalisable to other 
outcome types.

We have implicitly assumed that all studies included in 
the analyses were sufficiently homogeneous to be combined 
based on a previous publication [18] (NSCLC) and from 
a topline manual check of study design and characteristics 
(HS).

Case study 1 involved an indirect comparison of the 
efficacy of treatments for patients with moderate-to-severe 
hidradenitis suppurativa (unpublished literature review and 
analysis). The literature review had identified six relevant 
trials evaluating the clinical response to different treat-
ments (adalimumab, secukinumab and bimekizumab) in this 
patient population, and the feasibility analysis determined 
that all six trials were suitable to include in the NMA. The 
network diagram for the analysis is shown in Fig. S1 and the 
trials and clinical response data are summarised in Table S1 
(Online Resource).

Case studies 2, 3 and 4 concerned the efficacy of second-
line treatments for patients with NSCLC. The SLR was 

Fig. 1  Overview of HTA process including NMA. Use of LLMs to 
automate the process have been applied within this study to those 
steps in the process highlighted with a red box. HTA health technol-
ogy assessment, LLM large language model, NMA network meta-
analysis
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originally conducted in 2018 and updated in 2021 [18]. 
Case study 2 involved treatments and outcome data (over-
all survival [OS]), which were used in the primary analysis 
(base case) of an economic model. The feasibility analysis 
identified five trials reporting on OS across relevant treat-
ments (nivolumab, pembrolizumab and atezolizumab, with 
docetaxel as the common comparator treatment) that were 
appropriate for inclusion in the NMA (Fig. S2 and Table S2 
[Online Resource]). Case study 3 involved an extra seven tri-
als reporting OS for three additional treatments (nintedanib 
+ docetaxel, pemetrexed and ramucirumab + docetaxel) 
that had been used in a sensitivity analysis of an economic 
model (Fig. S3 and Table S3 [Online Resource]). Case study 
4 concerned the efficacy outcome of progression-free sur-
vival (PFS), and the feasibility analysis determined that the 
same five trials used in Case study 2 were appropriate for 
the NMA for this outcome (Fig. S4 and Table S4 [Online 
Resource]).

2.2  Overview of the LLM‑Based Process 
for Automating the NMA

GPT-4 (Generative Pre-trained Transformer 4, developed 
by OpenAI [14]) was selected as the LLM engine for this 
study, as it was considered superior to other publicly avail-
able LLMs at the time of study. However, the method devel-
oped for interacting with GPT-4 in this study can, in theory, 
use different LLMs.

To allow the LLM to generate text to specify an NMA, it 
was decided to choose a programming language whereby the 
analysis and the data could be contained within one script. 
R was chosen as the software in which the AI-generated 
analysis would be built, as it is freeware and platform (oper-
ating system) independent. To implement an NMA in R, the 
‘multinma’ package was used, which implements network 
meta-analysis, network meta-regression and multilevel net-
work meta-regression models [19]. Models were estimated 
in a Bayesian framework using Stan [20].

LLMs require the user to provide ‘prompts’, i.e. instruc-
tions stating what the user wants the LLM to do and the out-
put required. Interaction with the LLM was achieved through 
application programming interface (API) calls (a way for 
two or more computer programs to communicate with each 
other) written in a Python script. The outline of the process, 
as shown in Fig. 2a, is as follows:

• For data extraction from the publications, a prompt 
including text from the publication and requesting extrac-
tion of all relevant data from the supplied publication text 
was sent via an API call to the LLM for each publication 
needed for the NMA.

• To produce an R script with code to run the NMA, a 
prompt requesting generation of an R script was passed 
to the LLM via an API call, along with the data from all 
publications and an example R script (sourced from the 
Vignettes for the ‘multinma’ package) [19].

• To produce a small report containing a description of 
the disease, a description of the analysis conducted, the 
results of the analysis and an interpretation of the results, 
the LLM-generated R script was called from the Python 
script and the results of the NMA, along with a prompt 
requesting generation of a small report, were sent via an 
API call to the LLM.

Example prompts are provided in the Online Resource.

Fig. 2  a LLM-based process for automating the NMA. b Chunking 
approach to data extraction. API application programming interface, 
LLM large language model, NMA network meta-analysis
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2.3  Prompts Used to Instruct the LLM 
and Hyperparameters

Prompts were developed that were used to instruct the LLM 
to:

• Extract the required data for the analysis from the 
abstracts of the publications.

• Determine if all data required was contained in the 
abstract and, if not, extract any missing data from the 
full publication.

• Infer missing data from other information, e.g. the num-
ber of patients affected from the proportion of patients 
affected and the number at risk as well as the number of 
patients at risk from total trial size and randomisation 
ratio.

• Transform extracted data to the correct format for inclu-
sion into the model for analysis (number affected for 
binary outcomes and log scale for time-to-event out-
comes).

• Generate an R script for NMA using generic script from 
the R ‘multinma’ package.

• Interpret the results of the analysis and write a small 
NMA report.

The Python script was used to pass the output of each 
prompt to the next, with the prompts loaded into Python 
as strings. Almost identical prompts were used for the four 
analyses conducted, with the following differences: use of 
relevant disease name (HS and NSCLC) and relevant out-
come name (clinical response, OS and PFS); different R 
script examples were provided for binary and time-to-event 
outcomes [19], and additional contextual information was 
required for R script production for time-to-event outcomes 
(see Methods Sect. 2.4.3 below).

In addition to developing prompts, there was also a 
requirement to adjust some of the LLM’s hyperparameters, 
including role and temperature.

2.4  Prompt Development and Key Learnings

The prompts used have a significant impact on the output 
quality of the LLM. To evaluate the LLM’s capability to per-
form the required tasks, it was essential to create prompts of 
sufficient quality to obtain the required responses. Therefore, 
the following prompt creation process was followed: for each 
outcome type, initial prompts were generated and given to 
the LLM. The returned output was evaluated and, based on 
the contents, adjustments were made to the prompts. The 
adjusted prompts were then sent back to the LLM for further 
testing and evaluation. This process of output evaluation and 
prompt adjustment continued until no further improvements 
could be made and final prompts were reached. An example 

of the development of the OS data extraction prompt is given 
in Fig. S5 (Online Resource).

Several key learnings were uncovered through the prompt 
development process, which shaped the form of the final 
prompts. These were: using an iterative approach to data 
extraction, using multiple prompts and providing contextual 
information, as discussed in more detail below.

2.4.1  Chunking Approach to Data Extraction

A token is a chunk of text that an LLM reads or generates. 
At the time of the study, GPT-4 had a token limit of 8192 
(approximately 6000 words), which restricted the amount 
of text that could be passed to, and be generated from, a 
single prompt. Since all the publications used for this study 
exceeded this limit, there was a need to cut publications into 
chunks before passing them to the LLM for data extraction. 
As shown in Fig. 2b, we asked the LLM to screen overlap-
ping chunks of text from the main publication (e.g. pages 
1–3, 3–5, 5–7, 7–9, etc.) to ensure that all text reviewed was 
in context and then asked the LLM to assess whether it had 
obtained all data required, before providing additional text 
for screening. It was possible for the LLM to get to the end 
of the publication without extracting all required data if it 
failed to identify that data.

2.4.2  Multiple Prompts

The first approach for creating an R script was to ask the 
LLM to write an initial R script using data from the first 
study, and then to ask it to add data from more trials. This 
approach worked well for the binary outcome, where the 
data required for the analysis in R is number at risk and 
number of patients affected in each arm. However, for the 
time-to-event outcomes (OS and PFS), the input is a hazard 
ratio and standard error for each treatment comparison, and 
the initial approach used did not produce the right format for 
this input, leading to incorrect results. Thus, for the time-to-
event outcomes, we asked the LLM to gather the required 
data (hazard ratios, error measures, etc.) from all trials 
before writing the R script. For consistency, this approach 
was also used for the binary outcome. For the analysis input, 
different treatments were given numbers in the R script (Fig. 
S7 [Online Resource]) but the LLM did not always use the 
same numbering for the same treatment. Therefore, it was 
necessary to prompt the LLM to fix this in the initial script, 
to match the numbers with the names and doses of the treat-
ments. Thus, multiple prompts were used to generate the 
required R script:

• Collate all data.
• Use this and the example R script to write an initial 

script.
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• Tidy the initial script to ensure correct treatment number-
ing is used.

2.4.3  Contextual Information

For some tasks, the LLM was frequently observed to make 
general errors, such as not understanding statistical signifi-
cance. These were not related to the content (disease and 
treatment) or language used in the included studies. Address-
ing these errors required the provision of contextual infor-
mation in addition to the instructions. The contextual infor-
mation was developed iteratively in the same manner as the 
prompts.

The LLM was initially not very successful at writing an 
executable R script or choosing the correct model to use 
for the analysis, for either outcome type. For example, the 
LLM sometimes invented R packages and functions that it 
included in the script. Including worked examples has previ-
ously been shown to improve the performance of LLMs in 
multi-step reasoning tasks [21]. Therefore, we provided an 
example script appropriate for the type of analysis needed, 
as contextual information for the LLM. The example scripts 
used were sourced from the online vignette of the ‘multi-
nma’ package [19] (Fig. S6 [Online Resource]).

Similarly, when asked to write the R script for the time-
to-event outcomes, the LLM did not always construct the 
input for the analysis in the correct way nor maintain the 
order of the treatment comparison. For instance, the LLM 
would try to construct a dataframe for the input data that had 
a row per treatment arm in the treatment names and number-
at-risk columns but then would only include one row per 
study for the hazard ratios. It was therefore necessary to 
provide context to the LLM, which was achieved by includ-
ing contextual statements within the code-writing prompt. 
For example, including the text “The order of the treatment 
comparison is important” ensured that the LLM maintained 
the treatment comparison order for each hazard ratio. Some 
of the trials included in the analyses treated patients with a 
combination of treatment plus placebo, e.g. treatment X plus 
placebo. Usually, when conducting an NMA, we would con-
sider the treatment effects for these patients to be equivalent 
to patients treated only with treatment X. For the LLM to 
consistently make this assumption, and to therefore number 
the treatments correctly, we needed to provide contextual 
information, such as adding the statement, “We consider 
patients treated with ‘treatment X plus placebo’ to be treated 
with ‘treatment X’”, to the prompt asking the LLM to tidy 
the R script.

The LLM also required context for interpretation of the 
NMA results. The LLM reliably identified when a treatment 
outperformed the comparator, for both the binary and the 
time-to-event outcomes. However, we noticed that the LLM 
sometimes claimed that either all or none of the comparisons 

reached statistical significance, when in fact some did and 
some did not. Therefore, contextual statements, such as “A 
result is statistically significant if the lower and upper bound 
for the credible interval are either both greater than 1 or both 
less than 1”, were included.

To summarise, the following contextual information was 
provided to the LLM: example R scripts for the analysis, the 
importance of the order of the treatment comparison when 
considering a hazard ratio, the assumptions generally made 
when considering equivalence of treatments and the defini-
tion of statistical significance.

2.5  Non‑text‑Based Publications

For all case studies considered, some of the publications 
needed for the case study were text-based, whilst some were 
photographs of presentations, or posters, or contained data 
within figures. Whilst it is now possible to ask an LLM to 
receive images as input (e.g. with GPT-4 Vision, Gemini), at 
the time of the study, GPT-4 was not able to receive images 
as input and thus was not able to extract any data for these 
publications. The trials that had image-based publications 
and the approach taken to obtain data are listed in Table 1.

2.6  LLM Hyperparameters

‘Role’ and ‘temperature’ are some of the hyperparameters 
that can be used to control the behaviour of GPT-4. Assign-
ing a role to the LLM is a simple way to add context to 
a prompt, for example if you assign it a role of ‘a poet’, 
the style, and possibly the content, of the response will be 
different from that obtained if the role assigned is ‘a surly 
teenager’ [22]. Thus, there was a need to assign an appropri-
ate role to GPT-4. We found that by telling GPT that it is a 
statistician and a medical researcher, we obtained the type 
and quality of responses that we needed.

The temperature parameter of GPT-4 is a number 
between 0 and 2 that determines the randomness of the 
generated output. A lower value for the temperature 
parameter will lead to a less random response, whilst a 
higher value will produce a more creative and/or surpris-
ing output. We wanted the responses to be as deterministic 
as possible, so we set the temperature to be 0.

Default values were used for all other hyperparameters.

2.7  Output Generation and Assessment

For each case study, a single Python script included the 
final set of prompts for interaction with the LLM and com-
mands for the generated R script to run and to obtain the 
results of the analysis (Fig. 2a). Each Python script was 
run end to end, without human intervention, and produced 
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an R script and a short report describing the disease area 
and method of analysis, presenting the NMA results and 
providing an interpretation of the results.

Reproducing results with LLMs can be difficult because 
of random elements at play that vary outputs over time 
[23], i.e. LLMs do not produce deterministic results. As 
previously mentioned (Sect. 2.6), temperature is one of 
several hyperparameters that control the behaviour of 
GPT-4. Despite setting the temperature of GPT-4 to 0 
(least random), outputs were observed to vary when the 
same prompt set was used on multiple occasions. There-
fore, we ran the Python script end to end 20 times for 
each analysis (80 runs in total) to capture variation in 
performance.

The performance of the LLM was assessed in three 
stages:

• Assessment of data extraction: for each run, did the 
LLM correctly extract all required data from each 
trial? This was evaluated by comparing outputs from 
the LLM with data extracted/checked by two of the 
investigators (SLR and NMA experts).

• Assessment of R script (evaluated by one of the inves-
tigators, an NMA expert familiar with R and who wrote 
the R script for the manually conducted NMAs):

o Did the LLM produce an R script that contained all 
relevant extracted data and the correct functions to 
conduct an NMA?

o Could the script be run without human interven-
tion? If not, was minor (less than 2 minutes of work) 
or major (more than 2 minutes of work) editing 
required to enable this?

o Did the script produce results that matched the same 
NMA conducted by a human?

• Assessment of the NMA report (qualitatively assessed by 
one of the investigators, familiar with the disease area):

o Was a reasonable description of the disease area pro-
vided?

o Was the methodological description of the analysis 
correct?

o Were correct results presented?
o Was the interpretation of the results correct and 

informative?

3  Results

A summary of the LLM’s success in data extraction across 
each case study is shown in Fig. 3a, and the quality of the 
generated R script produced is shown in Fig. 3b.

Four case studies were considered, and Fig.  S1–S4 
(Online Resource) display the network for each case study.

1. Case study 1 (indirect comparison of the efficacy of 
treatments for patients with moderate-to-severe HS): 
three publications reporting clinical response data for 
six trials (two trials per publication).

2. Case study 2 (indirect comparison of the efficacy of sec-
ond-line treatment for patients with NSCLC: base case 
analysis of OS): four publications reported OS across 
five trials.

3. Case study 3 (indirect comparison of the efficacy of sec-
ond-line treatment for patients with NSCLC: sensitivity 
analysis of OS): 11 publications reported OS data from 
12 trials.

4. Case study 4 (indirect comparison of the efficacy of 
second-line treatment in patients with NSCLC: PFS): 
four publications reporting PFS across five trials.

3.1  Data Extraction

A summary of the LLM’s overall performance for data 
extraction is presented in Fig. 3a.

Table 1  Non-text-based publications and approach to data extraction

HS hidradenitis suppurativa, NSCLC non-small cell lung cancer, OS overall survival, PFS progression-free survival

Case study Trials Approach taken

Case study 1 (HS) BE HEARD I and II [31]
Photographs of a presentation

Data provided to GPT-4 within Python script (hard-coded into script), 
before R script generation

Case studies 2, 3 and 4 (NSCLC OS, 
OS sensitivity, PFS)

KEYNOTE-010 [32]
Photograph of poster

GPT-4 was asked to extract all data from an older publication [33]     
and then was provided with the updated hazard ratio (hard-coded 
into the Python script), before R script generation

Case study 3 (NSCLC OS sensitivity) GFPC 05-06 [34]
Hazard ratio provided in a figure

GPT-4 was asked to extract all data from the text in the publication 
and then was provided with the hazard ratio (hard-coded into the 
Python script), before R script generation
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Fig. 3  a Summary of the data 
extraction performance. b 
Summary of R script quality. 
HS hidradenitis suppurativa, 
NSCLC non-small cell lung 
cancer, OS overall survival, PFS 
progression-free survival



212 T. Reason et al.

For case study 1, the LLM accurately and consistently 
extracted the correct data from the text-based publications 
for each of the 20 runs. For the text-based publications avail-
able for case study 2 (Sect. 2.5), the LLM accurately and 
consistently extracted the correct data most times but failed 
to extract number at risk data for the KEYNOTE-010 trial 
(three items of data) in two of the 20 runs. Since the LLM 
needed to extract 35 separate pieces of data for each run, 
this equates to a very high overall extraction success rate 
of 99.1%. Similarly, for the text-based documents avail-
able for case study 3, the LLM accurately and consistently 
extracted the correct data for all but one run, where it did 
not manage to extract the number of patients at risk (three 
items of data) for the KEYNOTE-010 trial. Since the LLM 
needed to extract 77 separate pieces of data for each run, 
this equates to a very high overall extraction success rate 
of 99.8%. For the text-based publications available for case 
study 4, the LLM accurately and consistently extracted the 
correct data, except for one run, where it failed to extract the 
number at risk data for the CheckMate017 trial (two data 
items; Fig. 3a). Since the LLM needed to extract 35 separate 
pieces of data for each run, this equates to an overall extrac-
tion success rate of 99.7%.

It is not clear why the LLM failed to extract number of 
patients at risk from the KEYNOTE-010 publication in two 
runs for case study 2 and one run for case study 3 and why 
it failed to extract the number of patients at risk from the 
CheckMate017 trial for one run of case study 4, and there 
did not appear to be a systematic pattern for this failure. 
However, it may be due to the language used to describe 
patient assignment in these publications, and it may be 
possible to enhance performance further using improved 
prompting, or by running the data extraction multiple times, 
and using the responses where the LLM has found the data 
required.

Thus, the LLM achieved a data extraction success rate 
of over 99% for each case study. The LLM did not report 
incorrect data on any occasion, it only intermittently failed 
to extract data from two trials. This level of performance 
exceeds the performance seen for human data extraction, 
where between 8 and 42% of data extraction errors have 
been observed [10].

3.2  R Script Generation

All R scripts generated with the LLM were well commented 
and the script was easy to read and interpret (Fig. S7 and 
Fig. S8 [Online Resource]). The LLM-generated R scripts 
ran with no or very minor amendments (Tables 2, 3, 4, 5) 
in each of the 20 runs of case study 1 and case study 2, 15 
runs of case study 3 and 19 runs of case study 4 (Fig. 3b). 
In these cases, once any required amendments had been 

implemented, the scripts ran and produced correct results 
(Sect. 3.3).

For case study 1, the R script failed to run (producing 
an error message) on five occasions. Four scripts contained 
very minor errors that took less than 2 min to fix (Table 2). 
For the fifth script, the LLM had included data directly from 
a publication that reported non-integer values for number of 
events [24]. On all other occasions, it followed instructions 
in the prompt to only use integer values and thus calculated 
the number of events from the percentage given. Again, this 
was a minor error, requiring a quick and very simple fix 
(Table 2).

For case study 2, the R script failed to run on eight occa-
sions and required human input. For each of these occasions, 
the script contained very minor errors that took less than 2 
min to fix (Table 3).

Case study 3 was the most complicated of all analyses 
conducted: the number of trials and treatments included in 
the network for the sensitivity analysis of OS were greater 
than for the base case analysis of OS (12 trials and eight 
treatments versus 5 trials and five treatments [Fig. S3, 
Online Resource]), and, whilst all trials included an arm 
where patients were treated with docetaxel, not all hazard 
ratios were reported with docetaxel as the reference treat-
ment. Four of the generated R scripts ran without requiring 
human input, whilst 16 failed to run (producing an error 
message). Of these, 11 scripts contained very minor errors 
that took less than 2 min to fix (Table 4). For the remain-
ing five scripts, the LLM had incorrectly constructed the 
dataframe, used as input to the R set_agd_contrast func-
tion: the column containing (log) hazard ratios should have 
one entry per treatment in each trial, with ‘NA’ provided 
for the reference treatment, but the LLM only included one 
‘NA’ in the whole column, so, without prior knowledge of 
the network and the data, it was not possible to update the 

Table 2  Summary of intervention required for HS analysis R script

HS hidradenitis suppurativa

Number of runs Description of intervention required

4 (20%) Conversion of output of R nma function to a 
dataframe produced a dataframe with slightly 
different column headings than were expected. 
So, the formula to convert mean log odds ratio 
and lower and upper credible limits to natural 
scale failed. This was easily fixed by either 
changing the way that the dataframe was 
produced or by changing the column headings 
within the conversion formula

1 (5%) The SUNSHINE and SUNRISE publication 
reported non-whole numbers for the patients 
achieving clinical response. GPT-4 had tried 
to include these non-integers in the analysis. 
This error was easily fixed by converting these 
values to whole numbers
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script to enable it to run and produce correct results. It may 
be possible to avoid this error by feeding the LLM with more 
domain knowledge, along with the prompt.

For case study 4, two of the generated R scripts failed to 
run, with one requiring only a minor correction to the format 
of treatment numbers for one trial. For the remaining run, 
the dataframe used within R’s set_agd_contrast function did 
not have the correct format for an analysis of trial-level data 
(e.g. hazard ratios; Table 5).

Thus, in many cases, the LLM generated an R script that 
ran without human input, and in the majority of cases, a 
script was generated that ran following minor human input 
(< 2 min of effort). All errors caused the R script to fail 
and produce an error message, no script ran and generated 
erroneous results.

3.3  NMA Results

Where the R scripts ran, the NMA results calculated very 
closely matched those of the human-conducted NMA.

The mean odds ratios for treatments versus placebo, cal-
culated using the LLM-generated R scripts for case study 1, 
were very close to those calculated by the manual (human) 
NMA for all 20 runs (Table 6). All differences observed 
were within the range of expected variability (< 1%), since 
results can vary slightly when running an NMA multiple 
times using the same R code, due to Monte Carlo error 
occurring when the random seed is not set within the anal-
ysis (these differences are also observed when running a 
human-written script several times) [25].

For case studies 2, 3 and 4, the mean hazard ratios for 
treatments versus docetaxel, produced by the LLM-gen-
erated R scripts, were identical to those calculated by the 
manual NMA, whilst the limits of the credible interval 
varied slightly but only within the realms of the variability 
obtained if a human ran the NMA, using the same R code 
multiple times (due to Monte Carlo error; Tables 7, 8 and 
9, respectively).

3.4  Report Writing and Interpretation of Results

Using the results from the R scripts, the NMA reports gener-
ated with the LLM were clearly written and included a good 
summary of the disease area (hidradenitis suppurativa for 
case study 1 [Fig. S9 (Online Resource)] and NSCLC for case 
studies 2–4 [Fig. S10 (Online Resource)]). The methods of 
analysis were summarized clearly and at an appropriate level 
of detail, as we asked the LLM to create a concise report (i.e. 
we did not request the methods to be as elaborate as they might 

Table 3  Summary of intervention required for base case OS analysis R script

OS overall survival

Number of runs Description of intervention required

8 (40%) Some of the publications reported confidence intervals for the hazard ratio that were not 95%. GPT-4 had constructed a 
dataframe that included all treatments, hazard ratios and confidence interval limits and had included a column in this to 
record the confidence levels. Whilst the hazard ratio and confidence interval limit columns included a row per treatment in 
each trial, the confidence level column only contained one value per hazard ratio:

This was easily fixed by editing the values in this column to include the correct number of rows

Table 4  Summary of intervention required for sensitivity analysis of 
OS R script

OS overall survival

Number of runs Description of minor intervention required

4 (20%) GPT-4 had constructed a dataframe that 
included all treatments, hazard ratios and 
confidence interval limits and a column for 
the trials. Whilst the other columns included 
a row per treatment in each trial, GPT-4 had 
only included one row per trial in the studies 
column. This was easily fixed by editing the 
values in this column to include the correct 
number of rows

7 (35%) When tidying the script, GPT-4 did not update 
the treatment numbering correctly, leading to 
a disconnected network in some cases. This 
was easily fixed by editing the treatment num-
bers in the script



214 T. Reason et al.

need to be for an HTA submission). The interpretation of the 
results was correct in all 20 runs for each case study, with the 
correct treatment identified as the best treatment in the net-
work. Whether treatment effects were statistically significant 
was also correctly stated. Variation was seen in the amount of 
detail generated by the LLM in different runs. Examples of the 
interpretation summary are shown in Fig. 4.

4  Discussion

We present a novel LLM-based process for automating the 
data extraction, software script construction and results 
interpretation for an NMA, which required only trial publi-
cations as the input. Using four previously conducted NMAs 
as case studies, we demonstrated that an LLM (GPT-4) was 
capable of extracting data to a high standard and could pro-
duce quality R script, which included all required data, and 
could be run end to end with little or no human interven-
tion. We also demonstrated that the LLM could successfully 

Table 5  Summary of intervention required for PFS R script

PFS progression-free survival

Number of runs Description of minor intervention required

1 (5%) When tidying the script, GPT-4 did not update the treatment numbering correctly. This was easily fixed by editing the 
treatment numbers in the script

1 (5%) GPT-4 did not construct the dataframe used within R’s set_agd_contrast function to have the correct format for an analy-
sis of trial-level data:

How the dataframe should have looked:

Table 6  Results of the manual 
NMA and example results 
of LLM generated NMA for 
clinical response in patients 
with moderate-to-severe 
hidradenitis suppurativa

For each case study, the set of results produced by the first R script generated by GPT-4 were used for the 
examples given here. These results were then compared to the remaining 19 sets of results and assessed by 
one of the investigators (NMA expert)
CrI credible interval, LLM large language model, NMA network meta-analysis

Treatment versus placebo Odds ratio [95% CrI] obtained from 
manual NMA

Odds ratio [95% CrI] 
obtained from GPT-4 
NMA

Adalimumab 2.84 [2.06, 3.97] 2.84 [2.06, 3.90]
Bimekizumab every 2 weeks 2.26 [1.52, 3.36] 2.24 [1.52, 3.30]
Bimekizumab every 4 weeks 2.21 [1.44, 3.37] 2.20 [1.44, 3.38]
Secukinumab every 2 weeks 1.61 [1.18, 2.20] 1.61 [1.20, 2.16]
Secukinumab every 4 weeks 1.65 [1.22, 2.27] 1.65 [1.22, 2.19]
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produce good quality text that summarised the disease 
area, summarised the analysis method used, presented the 
results in an informative manner and interpreted the results 
correctly.

Whilst some studies have considered use of automation 
or AI within HEOR [12, 13, 16], we believe that this is the 
first study to consider the use of an LLM to automate data 
extraction and NMA end to end. As an early feasibility 

Table 7  Results of the manual 
NMA and example results of 
LLM-generated NMA for base 
case analysis of overall survival 
in patients receiving second-line 
treatment for NSCLC

For each case study, the set of results produced by the first R script generated by GPT-4 were used for the 
examples given here. These results were then compared to the remaining 19 sets of results and assessed by 
one of the investigators (NMA expert)
CrI credible interval, LLM large language model, NMA network meta-analysis, NSCLC non-small cell lung 
cancer

Treatment versus docetaxel Hazard ratio [95% CrI] obtained from 
manual NMA

Hazard ratio [95% CrI] 
obtained from GPT-4 
NMA

Atezolizumab 0.78 [0.69, 0.88] 0.78 [0.69, 0.88]
Nivolumab 0.68 [0.58, 0.80] 0.68 [0.58, 0.80]
Pembrolizumab 10 mg/kg 0.59 [0.49, 0.70] 0.59 [0.49, 0.71]
Pembrolizumab 2 mg/kg 0.73 [0.62, 0.86] 0.73 [0.62, 0.86]

Table 8  Results of the manual 
NMA and example results 
of LLM-generated NMA for 
sensitivity analysis of overall 
survival in patients receiving 
second-line treatment for 
NSCLC

For each case study, the set of results produced by the first R script generated by GPT-4 were used for the 
examples given here. These results were then compared to the remaining 19 sets of results and assessed by 
one of the investigators (NMA expert)
CrI credible interval, LLM large language model, NMA network meta-analysis, NSCLC non-small cell lung 
cancer

Treatment versus docetaxel Hazard ratio [95% CrI] obtained from 
manual NMA

Hazard ratio [95% CrI] 
obtained from GPT-4 
NMA

Atezolizumab 0.78 [0.68, 0.87] 0.78 [0.69, 0.88]
Nintedanib + docetaxel 0.94 [0.83, 1.06] 0.94 [0.83, 1.06]
Nivolumab 0.68 [0.59, 0.79] 0.68 [0.59, 0.78]
Pembrolizumab 10 mg/kg 0.59 [0.49, 0.71] 0.59 [0.49, 0.71]
Pembrolizumab 2 mg/kg 0.73 [0.62, 0.86] 0.73 [0.62, 0.86]
Pemetrexed 0.97 [0.87, 1.10] 0.97 [0.86, 1.09]
Ramucirumab + docetaxel 0.86 [0.76, 0.97] 0.86 [0.75, 0.98]

Table 9  Results of the manual 
NMA and example results 
of LLM-generated NMA for 
progression-free survival in 
patients receiving second-line 
treatment for NSCLC

For each case study, the set of results produced by the first R script generated by GPT-4 were used for the 
examples given here. These results were then compared to the remaining 19 sets of results and assessed by 
one of the investigators (NMA expert)
CrI credible interval, LLM large language model, NMA network meta-analysis, NSCLC non-small cell lung 
cancer

Treatment versus docetaxel Hazard ratio [95% CrI] obtained from 
manual NMA

Hazard ratio [95% CrI] 
obtained from GPT-4 
NMA

Atezolizumab 0.93 [0.82, 1.05] 0.93 [0.81, 1.06]
Nivolumab 0.81 [0.70, 0.95] 0.81 [0.69, 0.95]
Pembrolizumab 10 mg/kg 0.79 [0.67, 0.94] 0.79 [0.66, 0.95]
Pembrolizumab 2 mg/kg 0.88 [0.74, 1.04] 0.88 [0.74, 1.05]
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assessment, this study points to several potential benefits of 
automated data extraction and NMA. The primary poten-
tial benefit is in time savings in the data extraction process, 
which could enable quicker and less costly decision making 
in healthcare, which may ultimately speed up patient access 

to medicines. Specifying the user prompts and data required 
for the process should take no longer than 1–2 h. This time 
includes the time required to update the prompts and run 
the Python script but does not include checking of data 
extraction, assessment of study or population heterogeneity 

Fig. 4  Report writing: examples 
of the LLM’s (GPT-4) interpre-
tations of the results. CrI cred-
ible interval, HR hazard ratio, 
HS hidradenitis suppurativa, 
NSCLC non-small cell cancer



217AI to Automate NMAs: Potential of LLMs

and feasibility analysis. The time taken will depend on the 
complexity of the treatment network and the run time of 
the process (which runs without human attention); the run 
time for the four case studies considered was approximately 
10 min for the three smaller NMAs (including 5 or 6 treat-
ments and trials) and approximately 15 min for the larger 
NMA (8 treatments, 12 trials). The time taken by the LLM is 
substantially lower than the time it took to manually extract 
data, write the R script and run it (approximately half a day 
per outcome).

4.1  Limitations

The novel approach developed has been tested on a single 
LLM (GPT-4) and on a limited number of case studies. The 
treatment networks were relatively simple; all trials included 
a common treatment and the LLM was not asked to check 
whether the proportional hazards assumption held for the 
three analyses of time-to-event (survival) data.

Further research is needed to determine the level of addi-
tional work required to use our approach with LLMs other 
than GPT-4 and whether improved accuracy and/or process-
ing speed can be achieved with other LLMs or alternative 
prompting strategies and context.

The responses given by LLMs are not always consist-
ent when asking the same question multiple times, and the 
responses may change over time, as the LLM learns from the 
questions it is being asked. This means that it could be dif-
ficult to reproduce results. However, if using general access 
LLMs, this uncertainty could be reduced by ensuring that 
LLM parameters are set to reduce the level of randomness 
in responses by asking the LLM to repeat all tasks and then 
identifying (and discarding) outliers in the responses and by 
using a specific version of an LLM, e.g. GPT-4 at 1 January 
2024. Alternatively, using open-source LLMs, for example 
through the ‘Ollama’ package [26, 27], would allow tighter 
LLM version control and allow better reproducibility of 
responses. Many open-source LLMs can be downloaded and 
used locally [26], which would enable the same LLM model 
version to be used.

We believe that the prompts developed within this study 
are generalisable to NMAs in different disease areas, and 
similar prompts can be used for continuous outcomes; how-
ever, there is a need to demonstrate that this is the case. 
We would also want to demonstrate the methodology and 
developed prompts with NMAs with larger and more com-
plicated networks. Additionally, there is a need to investigate 
using LLMs to support further NMA tasks, such as choosing 
statistical models; choosing fixed effects or random effects 
models; determining whether the models have converged 
(Gelman–Rubin diagnostic); testing the proportional hazards 
assumption (very important when considering time-to-event 

outcomes); and deciding the approach to analysis, use of 
fractional polynomials, conducting feasibility analyses, etc.

Whilst the LLM used in this study (GPT-4) showed great 
promise for extracting data, it was not 100% perfect on every 
single run. Future studies should investigate the practical-
ity of and effect on performance when collating data from 
repeated extractions on each publication and taking the 
mode of results. Due to the token limit of GPT-4, it was 
necessary to pass the publication text in chunks to the LLM, 
which may have affected data extraction performance. Thus, 
consideration should also be given to improvements in per-
formance and effect on speed when using LLMs capable 
of processing whole documents at a time (e.g. GPT-4 32k 
context model [32,768 tokens] or GPT-4 Turbo [128,000 
tokens]).

Since the study was conducted, image capabilities have 
been rolled out for GPT-4 [28], and multi-modal functional-
ity has been developed for other LLMs (e.g. Google’s Gem-
ini) [29]. Thus, there is now a need to determine whether this 
allows for data extraction from the image-based publications 
that we encountered.

In the materials used for this study, the extracted data 
were reported within the main text of the documents, not 
within tables. This meant that we could use a Python pack-
age (PyPDF2) to convert the PDF documents to text and then 
pass this text to the LLM for data extraction. Investigating 
data extraction from tables was out of scope for the current 
study, but it may be possible to use the same Python package 
to parse table text from the PDF and for this to be provided 
in the correct order, to use other Python packages, such as 
OpenCV, or to pass the table as an image to a multi-modal 
LLM, which may then be able to extract the relevant data.

Overall, the LLM produced R scripts of high quality; 
however, there were a few occasions when a useable script 
was not produced. Whilst the errors in these scripts were 
very easy to spot and fix and would be identified when 
conducting quality assurance checks of all input data and 
software (as is currently applied to human-generated soft-
ware), there is a need to investigate the effect of enhanced 
prompt engineering and/or fine tuning on the quality of the R 
script generated. Fine tuning allows users to train the model, 
making it follow instructions better, and consistently for-
mat responses, a crucial aspect for applications demanding 
a specific response format, such as code completion [30], a 
preview version of which was made available at the end of 
2023 for GPT-4 [30].

The summary report generated with the LLM was always 
informative and accurate, but, whilst the overall sentiment of 
the writing was preserved, the level of detail provided and 
the exact text used varied each time this was requested. The 
report produced was not sufficiently detailed to be used for 
an HTA appraisal but did provide an easy-to-read high-level 
review of the analysis and could be useful in settings such 
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as early HTA planning and scientific advice. Whether fine 
tuning can be used to improve the consistency of the report 
should be investigated, along with the LLM’s ability to gen-
erate sections of text for a full technical report.

The approach developed herein is not yet of sufficient 
robustness to meet the methodological rigour required by 
HTA bodies, and it does not include some important steps 
of NMA, e.g. heterogeneity assessment. However, there 
is likely to be rapid advancement in the use of LLMs to 
a point where they could be used for the majority of the 
process. Heterogeneity assessment and more detailed report-
ing would need to be further explored to implement fully 
automated NMAs for HTA purposes. Furthermore, once 
complete automation is achieved, there will still be a need 
for human involvement due to the requirement for human 
accountability in the process.

4.2  Recommendations and Future Research

Whilst we found that the LLM is currently not 100% consist-
ent, it is one of the first types of general purpose LLMs, and 
thus, there is scope for LLMs to improve with time and addi-
tional training. The ability to use fine tuning and the intro-
duction of better models and larger word limits are likely 
to improve the success rate seen in this study. The novel 
approach developed in this study has potential to be devel-
oped further but could already be applied to data extraction, 
software script generation and to aid result interpretation 
within the NMA process. This would reduce the time taken 
to conduct an NMA and reduce the level of human error.

We would recommend that the same level of (human) 
checking be applied to LLM extracted data and LLM gener-
ated software, as would be applied during a manual NMA 
process, i.e. that data extraction is checked, input data and 
software used are subjected to quality assurance and any text 
and outputs produced by the LLM is sense-checked and, if 
necessary, corrected and improved by a human.

Given the level of accuracy that we have observed, we 
believe that elements of AI should start to be incorporated 
into the SLR and NMA workflow now. We firmly believe 
that the accuracy issues we have encountered in this study 
are very likely to improve, and even disappear completely, 
with time.

Further research could also investigate the use of LLMs 
to extract data from published tables, to add generation of 
graphical outputs normally used to interpret NMA to the R 
script (e.g. forest plots and network diagrams) and to provide 
additional standard outputs (e.g. surface under the cumula-
tive ranking curve SUCRA). Additionally, further research 
could investigate the use of LLMs to support further 
upstream tasks, such as choosing an appropriate statistical 
model, using deviance information criteria (DIC) to deter-
mine fixed or random effects, node splitting to determine 

heterogeneity, determining effect modification due to covari-
ates, deciding the approach to analysis and conducting feasi-
bility assessments, as well as scaling the methods developed 
in this study to conduct larger NMAs. Whether an LLM 
is capable of producing a more detailed report or generat-
ing sections of text for a full technical report could also be 
investigated.

5  Conclusions

This study offers evidence for the use of LLMs like GPT-4 
in automating data extraction and NMA. The use of genera-
tive AI to automate NMAs offers great potential to enable 
quicker and less costly decision making in healthcare, and 
this potential should be further developed, so that it might 
be harnessed and used to deliver faster patient access to 
medicines.
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