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Abstract
Background The aim of this study was to pool multiple data sets to build a patient-centric, data-informed, natural history 
model (NHM) for Duchenne muscular dystrophy (DMD) to estimate disease trajectory across patient lifetime under current 
standard of care in future economic evaluations. The study was conducted as part of Project HERCULES, a multi-stakeholder 
collaboration to develop tools to support health technology assessments of new treatments for DMD.
Methods Health states were informed by a review of NHMs for DMD and input from clinicians, patients and caregivers, 
and defined using common outcomes in clinical trials and real-world practice. The primary source informing the NHM was 
the Critical Path Institute Duchenne Regulatory Science Consortium (D-RSC) database. This was supplemented with expert 
input obtained via an elicitation exercise, and a systematic literature review and meta-analysis of mortality data.
Results The NHM includes ambulatory, transfer and non-ambulatory phases, which capture loss of ambulation, ability to 
weight bear and upper body and respiratory function, respectively. The NHM estimates patients spend approximately 9.5 years 
in ambulatory states, 1.5 years in the transfer state and the remainder of their lives in non-ambulatory states. Median predicted 
survival is 34.8 years (95% CI 34.1–35.8).
Conclusion The model includes a detailed disease pathway for DMD, including the clinically and economically important 
transfer state. The NHM may be used to estimate the current trajectory of DMD in economic evaluations of new treatments, 
facilitating inclusion of a lifetime time horizon, and will help identify areas for further research.

Key Points for Decision Makers 

The study identified the transfer state as being important 
to patients and caregivers.

The natural history model provides data to inform 
disease progression under standard of care for economic 
evaluations of new therapies in Duchenne muscular 
dystrophy.

1 Introduction

Duchenne muscular dystrophy (DMD) is a recessive, 
X-linked inherited neuromuscular disorder that affects 
1 in 3500–5000 newborn males worldwide [1–4] and <1 
in 1,000,000 newborn females [5]. It is characterised by 
a severe deficiency or complete absence of the protein 
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dystrophin, leading to progressive muscle weakness and 
degeneration [6]. Over the course of the disease, individu-
als with DMD experience loss of ambulation (LoA; often 
accompanied by the onset of scoliosis), loss of upper limb 
and respiratory function and cardiomyopathy.

There are currently no curative treatment options for 
DMD. Standard-of-care (SoC) therapy for most patients 
comprises oral corticosteroids (OCS; e.g. prednisolone), 
which reduce inflammation, slow the progression of muscle 
weakness, reduce the development of scoliosis and delay 
respiratory and cardiovascular problems [7].

The therapeutic landscape for DMD is rapidly evolving, 
with a strong pipeline of emerging treatments including gene 
therapies, treatments that induce exon skipping and treat-
ments that target molecular pathways [8]. In many coun-
tries (such as the UK), manufacturers must demonstrate the 
cost effectiveness of new treatments to gain reimbursement. 
Commonly, a cost-utility analysis (CUA) is required, and 
for a lifelong disease, this involves the estimation of lifetime 
quality-adjusted life-years (QALYs). To do this, the natural 
history (NH) of the disease must be modelled over the life-
time of patients.

However, a literature review undertaken by the authors 
found that there was a paucity of NH data in DMD that cap-
tures the full patient pathway (see Supplementary Materials 
2 in the electronic supplementary material [ESM]). This lim-
its the ability of cost-effectiveness models to fully capture 
the potential benefit of new treatments.

This study set out to build a de novo natural history model 
(NHM) for DMD to inform the trajectory of disease under 
SoC in current clinical practice across the lifetime of patients 
to support future economic evaluations of new therapies.

This study included the following six objectives: (1) to 
identify and define health states; (2) to map available data to 
the health states; (3) to determine the transition intensities 
between health states for current SoC; (4) to evaluate the 
impact of patient characteristics on transition intensities; (5) 
to predict the proportion of patients in each health state at 
different points in time; and (6) to quantify the mean time 
spent in each health state.

The study was conducted as part of Project HERCULES, 
a multi-stakeholder collaboration to develop tools and evi-
dence to support health technology assessments (HTA) of 
new treatments for DMD.

2  Methods

Guidance has been published on NH modelling for rare dis-
eases [9–12]. This details the requirement to construct a sta-
tistical analysis plan, pool data from multiple sources, make 
use of specific patient registry databases where available 

and have patient and clinical involvement in defining health 
states and mapping clinical outcomes to these states. This 
study followed the published guidance and any assumptions 
made in the construction of the NHM are explained and 
justified.

2.1  Health States

Health states were based on previously identified health 
states; health states which make sense to clinicians, patients 
and caregivers; and health states which can be defined using 
outcomes commonly collected in clinical trials and real-
world practice.

2.1.1  Determining Previously Identified Health States 
and Outcomes Captured in Previous Clinical Trials

A targeted literature review (TLR) of previous NH studies 
and functional scales used in DMD was performed in MED-
LINE. In the interest of expediency, and as there was no plan 
to undertake formal quantitative analysis from the findings, 
a TLR was considered a sufficient and pragmatic solution to 
providing an overview of published NH data.

The TLR identified existing health state definitions, key 
milestones in disease progression and the outcomes captured 
in clinical trials. The results of this review are presented 
in Supplementary Material 2 (see ESM). Following the 
review, a set of preliminary health states was determined 
which could be defined using outcomes commonly collected 
in clinical trials and real-world practice. These health states 
depicted the common ‘ambulatory’ model first described 
by Bushby et al. in the 2010 DMD Guidelines (early/late 
ambulatory/non-ambulatory) [13].

2.1.2  Expert Input

Health states were presented for stakeholder input to deter-
mine whether they reflected clinical experience, and step-
changes in patient care and health-related quality of life. 
Stakeholder input included an advisory board meeting, 
follow-up questions with two neuromuscular specialists 
and validation of final health states with a group of clinical 
experts. The advisory board comprised the two neuromus-
cular specialists who provided follow-up input, one nurse, 
one patient advocate and three mothers of individuals with 
DMD, all from the UK. The advisory board also included 
three representatives from Duchenne UK and Project HER-
CULES contributors (including the University of Leicester 
and Source Health Economics). The final set of health states, 
developed with stakeholder input, were shared with 20 UK-
based clinicians for validation; 14 clinicians did not provide 
a response, whilst six provided feedback confirming face 
validity of the states presented.
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2.1.3  Final Health State Definitions

Figure 1 presents the final health states, which includes three 
phases: ambulatory, transfer and non-ambulatory; and per-
mitted transitions.

Health states capture the progression of disease within 
each phase. This includes the loss of ambulatory function, 
the loss of the ability to stand and weight bear, and the pro-
gressive loss of upper body and respiratory function in non-
ambulatory patients.

These health states reflect states that clinicians, patients 
and caregivers felt captured the natural history of DMD, and 
were defined using measures used in clinical practice.

The key addition to this model, compared with NHMs 
previously described in the literature, is the inclusion of 
the transfer state. This state was identified by patients and 

caregivers as a key stage in the progression of DMD due 
to its impact on quality of life, care support requirements 
and cost. Patients in the transfer state are no longer able to 
walk but can support their own weight to facilitate trans-
fers, for example between wheelchair and toilet. Once this 
ability is lost, additional resources are required to transfer 
patients and the burden on caregivers increases.

Table 1 presents the health state definitions, which were 
informed by expert clinical input. A degree of pragmatism 
was required to define the identified health states using 
available clinical data. In particular, clinical opinion was 
required to estimate the forced vital capacity percent pre-
dicted (FVC%) associated with night-time and full-time 
ventilation. The rationale for each stage and the defini-
tions used are presented in Supplementary Material 3 (see 
ESM).

Fig. 1  Model structure. HTMF hand-to-mouth function, vent. ventilation

Table 1  Health state definitions

FVC% forced vital capacity percent predicted, NSAA North Star Ambulatory Assessment
a Above a Brooke score of 4 (a score of 5 or 6), patients cannot raise their hands to their mouth

Health state Definition

1 Early ambulatory The patient can stand from supine and can walk/run 10 m
2 Late ambulatory The patient can no longer stand from supine but can still walk/run 10 m
3 Transfers The patient can no longer walk/run 10 m but can still (remain) standing for 3 s (NSAA 

item 1—stand: score of 1 or 2)
4 Hand-to-mouth function

No ventilator
The patient can no longer (remain) standing for 3 s (NSAA item 1—stand: score of 0)
The patient has hand-to-mouth function (Brooke score ≤  4a)
The patient is not on a ventilator (FVC% ≥ 50%)

5 No hand-to-mouth function
No ventilator

The patient has no hand-to-mouth function (Brooke score > 4)
The patient is not on a ventilator (FVC% ≥ 50%)

6 Hand-to-mouth function
Night-time ventilation

The patient has hand-to-mouth function (Brooke score ≤ 4)
The patient is on night-time ventilation (30% ≤ FVC% < 50%)

7 No hand-to-mouth function
Night-time ventilator

The patient has no hand-to-mouth function (Brooke score > 4)
The patient is on night-time ventilation (30% ≤ FVC% < 50%)

8 No hand-to-mouth function
Full-time ventilator

The patient has no hand-to-mouth function (Brooke score > 4)
The patient is on full-time ventilation (FVC% < 30%)

Death
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The model splits after state 4, where patients start ventila-
tion and lose hand-to-mouth function (HTMF), as there is no 
consistent order in which these events occur.

The inclusion of states for, or state definitions including, 
scoliosis and cardiomyopathy was considered. However, the 
reporting of data for these diagnoses in the primary data 
source, the Critical Path Institute (C-Path) Duchenne Regu-
latory Science Consortium (D-RSC), was poor. In addition, 
these sequelae do not represent discrete heath states, but 
are present in patients within several of the health states 
defined. The onset of scoliosis often occurs at the onset of 
loss of ambulation [14]. Most patients develop cardiomyo-
pathic features between the ages of 10 and 15 years [15]. As 
such, future estimation of costs and utilities for economic 
evaluation using the health states in the NHM should cap-
ture these morbidities, for example, by assuming the propor-
tion of patients in each state that may experience them and 
adjusting quality of life and resource use accordingly.

2.2  Data

2.2.1  Critical Path Institute Duchenne Regulatory Science 
Consortium

The primary data source informing the NHM is the C-Path 
D-RSC database. The D-RSC database comprises patient-
level multinational clinical data for DMD shared with 
D-RSC by the original data custodians. The dataset used 
includes anonymised individual patient data (IPD) from 11 
international data sources, including NH studies, placebo 
arms of clinical trials and registry data (further details are 
provided in Supplementary Material 4, see ESM). The data-
set included the following variables (among others): type of 
functional test performed, age when the test was performed, 
test score, race, mutation status and steroid use. Of note, 
there was not a standard set of common variables collected 
in clinical studies and registries in DMD; as such, the vari-
ables available varied between data sources.

Table 2 presents the number (%) of transitions observed 
from one state to another in the D-RSC dataset; that is, 
how many patients were observed in state X at one point 
in their follow-up and then state Y at the next. Transitions 
from health state 1 represented the largest percentage of 
transitions observed (3164 [70.8%]); observations in health 
states 1 and 2 (early and late ambulatory patients) comprised 
81.3% of observed transitions. The greatest number of ‘tran-
sitions’ observed was in patients remaining in state 1 (the 
early ambulatory state; 67.4% of observed transitions).

Of the 4467 observed transitions in the dataset, there were 
54 (1.2%) backwards transitions, suggesting an improvement 
in function. Based on the small number of backwards transi-
tions observed and clinical advice, it was deemed reasonable 
to assume a progressive NHM in which no backwards transi-
tions can occur. As such, where backwards transitions were 
observed for an individual in the D-RSC dataset, their health 
state was assumed to remain unchanged.

There were very few transitions observed into or out of 
state 3 (the new ‘transfer’ state). There were no data per-
taining to transitions into state 4 (the first non-ambulatory 
state) or out of state 4 into states 5 and 6, as no patients 
were observed in state 4 in the D-RSC dataset. This could 
be because in order to be assigned to states 3 or 4, a NSAA 
score (of 1 or 0, respectively) must be recorded, but if the 
patients are classed by clinicians as non-ambulatory, then 
the NSAA is unlikely to have been conducted.

2.2.2  Elicitation Exercise

Due to the paucity of data pertaining to health states 3, 4, 
5 and 6 in the dataset, an elicitation approach was used to 
inform transition intensities. This included an initial pilot, in 
which information was elicited from four clinicians and four 
caregivers involved in the Project HERCULES collabora-
tion. This was followed by an online survey of Duchenne UK 
stakeholders, with 20 responses from DMD parents, caregiv-
ers and practitioners (separate to the 20 UK-based clinicians 
who validated the final set of health states).

Table 2  Transitions observed in 
the D-RSC dataset (%)

D-RSC Duchenne Regulatory Science Consortium

From To > 1 2 3 4 5 6 7 8 Total

1 2991 (67.0) 158 (3.5) 4 (0.1) – 3 (0.1) 6 (0.1) 1 (< 0.1) 1 (< 0.1) 3164 (70.8)
2 21 (0.5) 404 (0.9) 4 (0.1) – 15 (0.3) 20 (0.5) 3 (0.1) 3 (0.1) 470 (10.5)
3 – 1 (< 0.1) 8 (0.2) – – – – – 9 (0.2)
4 – – – – – – – – –
5 – – – – 79 (1.8) 5 (0.1) 34 (0.8) 5 (0.1) 123 (2.8)
6 – 2 (< 0.1) – – 5 (0.1) 108 (2.4) 24 (0.5) 16 (0.4) 155 (3.5)
7 – – – – 7 (0.2) 10 (0.2) 118 (2.6) 47 (1.1) 182 (4.1)
8 – – – – 1 (< 0.1) 1 (< 0.1) 6 (0.1) 356 (8.0) 364 (8.2)
Total 3012 (67.4) 565 (12.7) 16 (0.4) – 110 (2.5) 150 (3.4) 186 (4.2) 428 (9.6) 4467



83Developing a Natural History Model for DMD

Using a questionnaire, respondents were asked to 
describe the average age at which patients enter and exit 
health states. From the responses received, the mean age and 
standard deviation (SD) for entering and exiting the states 
was estimated. These data were then used to simulate IPD 
from which transition intensities could be estimated [16]. 
Where some transitions were observed in the D-RSC dataset, 
the simulated IPD were used to augment rather than replace 
these data.

Using the elicitation approach, the estimated mean (SD) 
age at which patients transition into states 3, 4, 5 and 6 was 
estimated to be 11.8 (4.2), 14.3 (4.5), 19.5 (5.6) and 19.3 
(6.4) years, respectively. Please see Supplementary Material 
5 for more information and a copy of the survey used.

2.2.3  Mortality

No mortality data were available from the D-RSC dataset. 
A systematic literature review (SLR) and meta-analysis 
was therefore performed to identify published mortality 
data in DMD [17]. Kaplan Meier (KM) curves from 14 
studies were digitised and IPD reconstructed via a fre-
quently used algorithm, details of which are presented 
by Guyot et al. [18]. This is a commonly used technique 
for obtaining IPD from published studies that makes use 
of the fact that event times can be determined from the 
step-function of a KM curve. The digitised mortality 
data contained 2283 patients and 1050 deaths across the 
14 studies. The total follow-up time was 40,274 patient 
years; the oldest patient in the dataset was aged 44 years. 
Mortality rates were determined from a parametric sur-
vival model assuming a piecewise constant hazard func-
tion. This included all 14 studies, and controlled for birth 
cohort (before 1970, 1970–1990 and after 1990).

Previous studies have observed improvements in survival 
since 1990 among individuals with DMD who are ventilated 
[17, 19, 20]. The authors observed this trend in the studies 
identified, with lower rates of mortality by age estimated 
in studies published since 1990. Therefore, mortality rates 
from the birth cohort after 1990 were used in the base-case 
analysis. The sub-set of patients born after 1990 included 
943 patients, of whom 251 had died. Estimated median sur-
vival and reported statistics were consistent with the original 
studies. This validated the IPD reconstruction and estima-
tion of mortality rates which were used in the NHM. Full 
methods and results of the meta-analysis are reported in 
Broomfield et al. [17].

2.3  Estimating Transition Intensities

Once the structure of the NHM (health states) had been 
agreed and data identified, transition intensities were 
estimated via the following six steps: (1) the mean age 

of patients observed in each state in the D-RSC data-
set was estimated. (2) To estimate the mortality rate for 
each state, a piecewise constant hazard function was fit-
ted to the mortality data, with cut points determined by 
the mean age in each state. (3) The initial values of a 
transition intensity matrix were specified using the esti-
mated mortality rates and setting transition intensities 
for all transient states to 0.1 (initial transition intensi-
ties of 0.01 and 1 were also considered). (4) A multistate 
model was fitted in R using the msm package using the 
specified transition intensity matrix and fixing mortality 
rates at their initial values. (5) A new transition intensity 
matrix was then defined using the transition intensities 
estimated in Step 4 and mortality rates estimated in Step 
2. (6) Steps 4 and 5 were then repeated using the newly 
defined transition intensity matrix until the model con-
verged. Convergence was defined as transition rates being 
equal to 4 decimal places. An exponential distribution 
(i.e. constant transition intensities) was used to fit the 
multistate model for transitions up to health states defined 
by the requirement for full-time ventilation. A piecewise 
exponential distribution was assumed for transitions from 
full-time ventilation states to death. Initial consideration 
of the exponential distribution for all transitions led to an 
implausibly long length of stay in the full-time ventilation 
states. This was due to the long tails associated with the 
exponential distribution and a fixed mortality rate. Use 
of the piecewise exponential facilitated implementation 
of an increased rate of mortality after age 30 years in the 
full-time ventilation states. Age 30 years was selected as a 
mid-point in the follow up, approximately corresponding 
to the median survival of patients in the mortality dataset 
and in the published literature [17, 20].

2.4  Sensitivity Analysis

To explore areas of uncertainty, a set of scenario analyses 
were performed (Table 3). The NHM was generated with 
the transfer state (NHM A) and without (NHM B) in a 
scenario analysis to assess uncertainty associated with 
transitions into and out of the newly identified trans-
fer state, where data were informed by the elicitation 
exercise.

3  Results

3.1  Base Case Results

NHM A (transfer state included) converged after two itera-
tions. The model was insensitive to the initial transition 
rates estimated; using starting values of 0.01 or 1 for all 
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transitions led to the same results in the same number of 
iterations. Transition intensity matrices are presented in Sup-
plementary Material 6 (see ESM).

Figure 2 presents state membership over time, assuming 
patients enter the model in state 1 aged 5 years. Histori-
cally, studies had reported an average age of diagnosis of 
approximately 5 years [21, 22] and at the time of this study 

there were limited data in the D-RSC data set for children 
younger than 5 years of age. The NHM therefore assumes 
that patients younger than 5 years have yet to transition from 
the early ambulatory state, which clinical opinion suggested 
was a reasonable assumption.

Table 4 presents the predicted mean time spent in each 
health state and median survival. It was estimated that, 
on average, patients spent approximately 9.5 years in the 
ambulatory states, 1.5 years in the transfer state and the 
remainder of their lives in the non-ambulatory states. Pre-
dicted median survival was 34.8 years.

Table 5 shows the mean age of patients in each health 
state predicted by the NHM.

Table 6 shows the mean time in state and median sur-
vival for subpopulations including steroid users, and two 
subgroups of patients defined according to mutation. 
Patient subgroups defined according to mutation com-
prised patients with mutations Dup, Skip 51, Skip 53, 
Small mutation, Stop, any other deletion (mutation = 1) 
and patients with mutations Del 3-7, Skip 44, Skip 45 
(mutation = 2). These populations have previously been 
identified and used by C-Path [23]; mutations Del 3-7, 
Skip 44 and Skip 45 have been reported to be associated 
with a milder phenotype/disease course compared with 
mutations skippable by exon 51 and 53 [24–26]. Mutations 

Table 3  Scenario analyses

NHM natural history model, SLR systematic literature review

Parameters investigated Base-case assumption Scenario analyses performed

Included health states State 3 (transfer state) included (NHM A) State 3 (transfer state) excluded (NHM B)
Mortality rates Use of published estimates of mortality in the cohort born after 

1990
Using rates from all studies identified in the SLR

Transitions informed by 
elicitation data

50 hypothetical patients 20/100 hypothetical patients
Estimated mean age in each state Changing the mean age in each state by ± 1 year
Estimated standard deviation of the mean age in each state Assuming a smaller standard deviation

Other model assumptions Assuming constant hazards from state 1 to state 8A/8B
Assuming a piecewise exponential distribution for transitions from 

state 8A/8B to death

Use of piecewise exponential for all transitions
Use of piecewise exponential for all transitions 

all mortality transitions
Exclusion of baseline covariates Exploring steroid use and genetic mutation

Fig. 2  State membership over time (Model A). Amb ambulatory, 
HTMF hand-to-mouth function, vent ventilation

Table 4  Mean time in state and median survival—whole population (years)

a Assuming patients enter the model at 5 years of age

State 1a 2 3 4 5 7A 8A 6 7B 8B Median survival

Mean 6.1 3.4 1.5 1.7 4.7 2.3 12.7 4.7 1.9 12.9 34.8
95% CI 5.3–7.0 2.8–4.2 1.1–2.1 1.3–2.3 3.4–6.5 1.7–3.2 – 3.5–6.3 1.3–2.5 – –

Table 5  Mean age by state—
whole population

State 1 2 3 4 5 7A 8A 6 7B 8B

Whole population 5.5 7.8 10.3 11.9 15.2 18.7 26.1 15.1 18.4 25.7
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considered in the analysis were based on available data and 
are not exhaustive.

Confidence intervals are available in Supplementary 
Material 7 (see ESM).

Median survival in steroid users was very similar to 
median survival in the total population, and the mean time 
in states was similar. This was an expected result as approxi-
mately 80% of patients in the D-RSC dataset were steroid 
users (760/954). We attempted to fit the model to all non-
steroid users, and also to fit the model to the whole dataset 
with steroid use (ever/never) as a covariate, but neither of 
these models converged.

Median survival for patients coded as Mutation = 1 was 
the same as the total population, and mean time in states was 
similar as this population comprised over 90% of patients in 
the D-RSC dataset (891/954).

Estimates for patients coded as Mutation = 2 were based 
on relatively few observations (63/954) and so should be 
interpreted with caution. Estimates of median survival and 
mean time in states differ to the total population estimates, 
with the higher median survival based on the long length of 
stay of a few patients in health state 5.

3.2  Sensitivity Analyses

Median survival and mean time in each health state for 
scenario analyses are shown in Table 7; confidence inter-
vals for the mean time in state can be found in Supplemen-
tary Material 7 (see ESM).

Scenario analyses predicted a median survival of 
between 29.6 and 30.6 years. Predicted median survival 
for NHM  A and B were similar (29.8 vs 29.7 years, 

Table 6  Mean time in state 
and median survival—
subpopulations (years)

Assuming patients enter the model at age 5
a Dup, Skip 51, Skip 53, small mutation, stop, any other deletion
b Del 3-7, Skip 44, Skip 45

State 1 2 3 4 5 7A 8A 6 7B 8B Median survival

Steroid users 5.7 3.5 1.6 1.7 5.6 2.1 12.7 5.5 1.9 12.9 34.9
Mutation =  1a 5.8 3.4 1.7 1.9 4.6 2.2 12.7 4.9 2.0 12.9 34.8
Mutation =  2b 5.0 1.7 3.2 2.5 26.1 6.0 12.7 10.7 0.6 12.9 40.4

Table 7  Mean time in state 
and median survival—scenario 
analyses (years)

Patients are assumed to enter the model at 5 years of age
IPD individual patient data, NA not applicable, NHM natural history model, SD standard deviation
a Varying the number of patients in the simulated IPD, where n = 50 in the base-case analysis
b Varying the proportion of patients that move from state 4–5 (50% in the base-case analysis), where the 
remainder of patients are assumed to move from state 4–6
c Varying the mean age in each state by ± 1 year

State 1e 2 3 4 5 7A 8A 6 7B 8B Median 
survival

Base case (NHM A) 6.1 3.4 1.5 1.7 4.7 2.3 12.7 4.7 1.8 12.9 34.8
Scenario excluding the transfer state
 NHM B 6.4 4.2 NA 2.3 4.5 2.3 12.9 4.7 1.9 12.9 34.7

Scenarios using alternative mortality data
 All mortality rates 6.1 3.4 1.5 1.7 4.4 2.2 8.4 4.2 1.8 8.7 30.8

Scenarios evaluating data derived from the elicitation exercise
 Na = 20 6.6 4.0 0.9 1.1 2.8 2.3 12.7 4.5 1.9 12.9 29.3
 Na = 100 5.6 3.0 2.1 2.2 6.9 2.3 12.7 6.5 1.8 12.9 30.6
 25% pts state 4 >  5b 6.1 3.4 1.5 1.7 2.9 2.3 12.7 6.2 1.8 12.9 29.6
 75% pts state 4 >  5b 6.1 3.4 1.5 1.7 5.4 2.3 12.7 4.1 1.9 12.9 30.0
 Lower SD 6.0 3.4 1.5 1.8 4.7 2.3 12.7 4.7 1.9 12.9 29.8
 Mean age per state − 1  yearc 6.0 3.3 1.4 1.8 4.7 2.3 12.7 4.7 1.9 12.9 29.6
 Mean age per state + 1  yearc 6.2 3.6 1.6 1.7 4.7 2.3 12.7 4.7 1.9 12.9 30.1
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respectively). However, it was estimated that patients spent 
approximately 1 year longer in the ambulatory states in 
NHM B than in NHM A (10.6 vs 9.5 years, respectively).

Use of all mortality rates (i.e. including mortality 
estimates published before 1990) decreased median sur-
vival by approximately 4 years. Directionally, this was as 
expected as previous studies have observed improvements 
in survival since 1990 (31–33).

Of the scenarios evaluating variations in the data and use 
of data from the elicitation exercise, changing the number 
of patients generated in the simulated IPD had the great-
est impact on median survival. This is because the elicita-
tion exercise predicted slightly higher mean age in states 5 
and 6 than the observed data. As a result, the more patients 
simulated based on the results of the elicitation exercise 
(n = 100), the higher the median survival, and the fewer 
patients simulated (n = 20), the lower the median survival.

It was not possible to implement a piecewise exponential 
distribution for all transitions or for all mortality transitions 
as the models did not converge.

4  Discussion

This study provides a set of transition intensities to inform the 
natural history of DMD in future economic evaluations of new 
treatments, where previously there has been a paucity of data 
to inform health state transitions over the lifetime of patients. 
These data can be used to estimate transition probabilities for 
cost-effectiveness models with different cycle lengths.

The NHM has been developed with input from patients, 
caregivers and clinicians, which means that the health states 
reflect clinically important changes in patient care and 
health-related quality of life. Notably, it includes the trans-
fer state, which has not been included in previous NHMs.

The definitions of included health states required an ele-
ment of pragmatism; night-time ventilation was defined 
based on an FVC 30–50%; whilst in clinical practice not 
all patients with FVC 30–50% are night-time ventilated. 
Similarly, not all patients with FVC < 30% are full-time 
ventilated. Assumptions around ventilation status have also 
been made in previous studies in DMD. In Iff et al., the 
late ambulatory stage (defined using clinical tests) included 
the assumption of FVC ≤ 50%, with patients in this state 
described as losing pulmonary capabilities and requiring 
regular assisted ventilation [27]. The model described here 
makes similar assumptions around ventilation status but pro-
vides additional granularity, which will facilitate the appli-
cation of utilities and costs to differing levels of ventilatory 
support in a cost-effectiveness analysis. In Landfeldt et al., a 
cost-effectiveness model based on ventilation status assumed 
that patients would require night-time and day- and night-
time ventilation support at a mean age of 21 and 28 years, 

respectively [28]. The advantage of our approach in this case 
is that the requirement for ventilatory support is based on 
data for FVC rather than an assumption.

The NHM highlights current data gaps and data collec-
tion requirements for future clinical studies and disease reg-
istries. A key weakness of the NHM results from the paucity 
of data currently available to inform some transitions. In 
some cases, it was not possible to include data from regis-
tries where the data owners had yet to complete their own 
analyses. In other cases, there was simply a paucity of data 
in the D-RSC dataset.

Historically, clinical trials have not included endpoints 
which identify patients moving into and out of the newly 
identified transfer state. In order to observe patients in state 
4, for example, a score of zero on the North Star Ambula-
tory Assessment (NSAA item 1: stand) is required. However, 
non-ambulatory patients are unlikely to be assessed on this 
scale and therefore no score is recorded.

Studies have tended to focus on younger patients in earlier 
health states, since this is where treatments have been targeted. 
A previous study suggests several possible reasons for this 
[29]. Firstly, younger patients have more functional abilities 
to preserve and therefore may be better subjects to demonstrate 
the success of new treatments in clinical trials. Secondly, if 
patients on OCS are included in clinical trials, the positive 
effect of OCS might mask the effect of the treatment being 
tested. As the studies available for this analysis focused on 
younger patients, this meant there were fewer observations to 
inform transition intensities in later health states. In addition, 
short study follow-up meant there were no mortality data.

Steps taken to overcome the paucity of data in this NHM 
have their limitations. The use of the elicitation exercise to 
inform transitions into and out of the transfer state is associ-
ated with uncertainty. Mortality rates, based on the current 
mean age of patients in each state obtained via the SLR and 
meta-analysis, may overestimate future health state mortality 
as new treatments slow progression. As such, data pertaining 
to transitions into and out of the transfer state, and mortality 
data, could be improved in future iterations of the NHM.

The recently developed Transition Assessment North Star 
(TANS) has been designed with a focus on transfer ability 
and trunk function, providing a score for the NSAA based 
on the easier items [24]. The John Walton Muscular Dys-
trophy Research Centre at Newcastle University is currently 
collecting data internationally using this instrument. The 
TANS may therefore prove useful for future data collection 
to inform transitions into and out of the transfer state. In 
terms of mortality data, a study is currently underway by 
the authors of this study to analyse mortality data from the 
Clinical Practice Research Datalink (CPRD) in the UK.

Sparse data also meant that the exponential distribution 
was used to fit the multistate model from states 1 to 8A/8B, 
as other models, for example the Weibull, were less likely to 
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converge. Whilst the exponential distribution is easily inter-
preted, its use results in long tails in the extrapolations of 
health state occupancy, which can lead to implausibly long 
time periods being estimated in later health states. Initial 
analysis assuming an exponential distribution for all transi-
tions led to a clinically implausible mean length of stay in 
state 8A/8B, with nearly 25% of patients estimated to sur-
vive beyond the age of 50. Therefore, a piecewise exponen-
tial was assumed for transitions out of state 8A/8B to death, 
which resulted in more clinically plausible predictions of the 
mean length of stay in state 8A/8B. In future iterations of 
the NHM, it would be valuable to also consider relaxation of 
the use of an exponential distribution for earlier transitions.

Given the limitations associated with data availability, 
it is useful to consider the validity of the NHM with refer-
ence to its congruence with the source data and previously 
published studies.

With the exception of states 8A and 8B, the predicted 
mean ages are lower in the NHM than the ages obtained 
when combining the D-RSC and elicitation exercise data-
sets. This is due to the presence of mortality in the NHM, 
that is, patients can leave states in the NHM in two ways, 
either by moving to the next state or dying, whereas D-RSC 
does not contain mortality data. This means patients spend 
less time in each state and the mean age in each state is 
lower. Mean ages in states 8A/8B are still slightly older in 
the NHM than the D-RSC dataset. This is because there is a 
slight pooling of patients in this state as a result of using the 
exponential distributions prior to state 8A/8B.

This study predicts a mean time of approximately 9.5 
years in ambulatory states and 1.5 years in the transfer state; 
a total of approximately 11 years prior to moving into non-
ambulatory health states. In 2017, McDonald et al., reported 
median age at loss of ambulation of 11.62 years (95% CI 
11.09–12.28) in a prospective cohort study of patients with 
at least 1 year of OCS use at death or last known visit [30]. 
The 1.5 years spent in the transfer state was consistent with 
clinical/expert opinion derived from the elicitation exercise; 
however, this result would benefit from external validation.

The predicted median survival in this study (34.8 years) 
falls within the confidence interval for median survival esti-
mated by Landfeldt et al. (2020), in which median survival 
with ventilatory support was 31.8 years (95% CI 29.3–36.2) 
[20] and slightly exceeds the confidence interval by Broom-
field et al. (28.1 years; 95% CI 25.1–30.3) [17]. The higher 
estimate of survival is likely due to the fact that the C-Path 
patients used to populate the NHM are largely US-based and 
represent a more recent population than the global popula-
tion in the study by Broomfield et al. [17].

A recent publication by Iff et al. [27] estimated the 
mean age of patients with DMD in different health 
states using claims and electronic medical records in the 
United States. Patients were stratified into the common 

ambulatory stages: early/late ambulatory/non-ambulatory. 
Health state definitions had some similarities with the defi-
nitions in the NHM presented here. Definitions for early 
and late ambulatory states were similar to states 1 and 2 
in the NHM, respectively. The early non-ambulatory state 
overlaps with states 4 and 5 in the NHM, with health state 
definitions including FVC > 50%. Finally, the late ambu-
latory state overlaps with states 6, 7A/7B and 8A/8B in 
the NHM, with health state definitions including FVC% 
< 50% and ≤ 50% in the NHM and Iff et al., respectively. 
However, there were also some differences, with Iff et al. 
not including a transfer state and including (for example) 
age criteria for earlier states and scoliosis for later states.

Estimated mean age in state was lower in the NHM than 
was estimated by Iff et al. for states 1–5 and early ambula-
tory to early non-ambulatory, respectively. The estimated 
mean ages were 5.5 versus 7.4 years in state 1/the early 
ambulatory state, 7.8 versus 13.1 years in state 2/late ambu-
latory state and 11.9 to 15.2 years in states 4 and 5 ver-
sus 18.1 years in the early non-ambulatory state. There is 
overlap, however, in the late non-ambulatory states, with a 
mean age of 23.2 years in the late ambulatory state reported 
by Iff et al. versus 18.4–26.1 years in states 6 to 8A/8B in 
the NHM. The slight discrepancies may be due to the dif-
fering state definitions, with the NHM in this study offering 
a more granular disease progression structure.

Further validation of the NHM is certainly warranted 
as are further iterations as new data become available, for 
example, as diagnosis of DMD is made earlier than the start-
ing age of 5 years assumed in this model.

Another key next step is to describe the methods for imple-
menting the NHM within a future cost-effectiveness model, 
including the estimation of transition probabilities for differ-
ent model cycle lengths, implementing a treatment effect and 
methods for explicitly including the sequelae not included 
in the NHM (i.e. scoliosis and cardiomyopathy) if required. 
The implementation of the NHM within a cost-effectiveness 
model will be the subject of a future publication.

Ultimately, if future clinical trials capture endpoints 
based on the definitions of each health state in the NHM, 
treatment effects for all observed transitions can be applied 
to the NHM within a cost-effectiveness model. In the mean-
time, an intervention might be assumed to impact only tran-
sitions for which trial data are available, and in the absence 
of data to inform other transitions, the value of collecting 
information might be estimated.

5  Conclusion

The NHM developed includes a detailed disease pathway for 
DMD, which has only been possible due to the integration 
of multiple data sources augmented by an unprecedented 
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level of stakeholder input. The model provides quantitative 
insights into the lifetime trajectory of DMD under SoC and 
will support the development of future economic evalua-
tions, with the potential to capture broader disease effects 
and adopting a lifetime time horizon. The identification of 
the transfer state also highlights a priority area for further 
data collection.
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