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Abstract
Background Durable remission has been observed in patients with relapsed or refractory (R/R) large B-cell lymphoma 
(LBCL) treated with chimeric antigen receptor (CAR) T-cell therapy. Consequently, hazard functions for overall survival 
(OS) are often complex, requiring the use of flexible methods for extrapolations.
Objectives We aimed to retrospectively compare the predictive accuracy of different survival extrapolation methods and 
evaluate the validity of goodness-of-fit (GOF) criteria-based model selection for CAR T-cell therapies in R/R LBCL.
Methods OS data were sourced from JULIET, ZUMA-1, and TRANSCEND NHL 001. Standard parametric, mixture cure, 
cubic spline, and mixture models were fit to multiple database locks (DBLs), with varying follow-up durations. GOF was 
assessed using the Akaike information criterion and Bayesian information criterion. Predictive accuracy was calculated as 
the mean absolute error (MAE) relative to OS observed in the most mature DBL.
Results For all studies, mixture cure and cubic spline models provided the best predictive accuracy for the least mature DBL 
(MAE 0.013‒0.085 and 0.014‒0.128, respectively). The predictive accuracy of the standard parametric and mixture models 
showed larger variation (MAE 0.024‒0.162 and 0.013‒0.176, respectively). With increasing data maturity, the predictive 
accuracy of standard parametric models remained poor. Correlation between GOF criteria and predictive accuracy was low, 
particularly for the least mature DBL.
Conclusions Our analyses demonstrated that mixture cure and cubic spline models provide the most accurate survival 
extrapolations of CAR T-cell therapies in LBCL. Furthermore, GOF should not be the only criteria used when selecting the 
optimal survival model.

1 Introduction

Clinical trials assessing the efficacy of new oncology treat-
ments often have limited follow-up at the time of submis-
sion to health technology assessment (HTA) agencies. An 
understanding of patient outcomes beyond the maximum 
follow-up can have salient implications for future treat-
ment options, as well as a profound impact on cost of care. 
Survival modeling can be a useful tool in extrapolating 
future outcomes based on available data, and has been used 
to inform cost-effectiveness analyses [1]. To determine 
the full clinical and economic value of a new treatment, 

extrapolation of observed survival is routinely required, and 
different extrapolation methods may lead to substantive vari-
ation in total survival gain and consequent value estimation. 
To effectively compare the cost effectiveness of available 
treatment options, it is critical to determine the predictive 
accuracy of the statistical models used to measure and com-
pare survival. The most common extrapolation approach is 
to use standard parametric survival models (e.g., exponen-
tial, Weibull, gamma) [2]; however, these models might be 
unsuitable to capture survival after chimeric antigen recep-
tor (CAR) T-cell therapy, given the potential for durable 
remission (e.g., 5-year survival) [3–5]. Durable remission 
has been observed in patients with relapsed or refractory 
(R/R) large B-cell lymphoma (LBCL), after treatment with 
salvage chemotherapy followed by high-dose chemotherapy 
and autologous stem cell transplantation [6] or CAR T-cell 
therapies [7–9]. Durable remission can be observed in the 
Kaplan–Meier (KM) curve, where a plateau indicates that 
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Key Points for Decision Makers 

Standard parametric survival models may not be suit-
able for survival extrapolation in cases of complex 
hazard functions, such as those seen in patients treated 
with CAR T-cell therapies. Several alternative survival 
extrapolation methods have been developed, but cur-
rent guidance on which alternative method to use under 
which circumstances is limited.

Our analyses demonstrated that mixture cure and cubic 
spline models generate more accurate survival predic-
tions than standard parametric and mixture models for 
CAR T-cell therapies in large B-cell lymphoma, even 
with limited follow-up data.

Goodness-of-fit criteria demonstrated a low correlation 
with predictive accuracy, suggesting that limited weight 
should be assigned to these criteria when selecting the 
optimal survival model.

the hazard converges towards the hazard in the general popu-
lation [10].

Three autologous CAR T-cell therapies have received 
regulatory approval for R/R LBCL: axicabtagene ciloleucel 
(axi-cel; 2-year survival rate of 51%) [11], tisagenlecleucel 
(2-year survival probability of 40%) [12], and lisocabtagene 
maraleucel (liso-cel; 2-year survival probability of 51%) 
[13]. To capture the plateau observed in the KM curve for 
overall survival (OS), a hybrid survival model using a 1-knot 
spline model with a cure point was used in HTA submis-
sions of tisagenlecleucel, whereas a mixture cure model was 
used in HTA submissions of axi-cel [14, 15]. Although the 
National Institute for Health and Care Excellence technical 
support document (NICE TSD) 21 provides a clear descrip-
tion of these flexible methods [16], it does not provide suf-
ficient guidance on which method to use under what circum-
stances [17]. Goodness-of-fit (GOF) criteria are frequently 
used for model selection [2]. These criteria assess how well 
a model captures the observed survival, but a good statistical 
fit to the data does not necessarily yield an accurate, or even 
plausible, estimate of long-term survival, especially if data 
are immature [18]. This problem is exacerbated when mod-
eling more complex hazard functions, as seen in R/R LBCL 
[19]. Therefore, our study aimed to retrospectively compare 
the predictive accuracy of different survival extrapolation 
methods (i.e., standard parametric distributions, mixture 
cure, cubic spline, and mixture models) and evaluate the 
validity of GOF criteria-based model selection using data 

from various follow-up time points from CAR T-cell thera-
pies in R/R LBCL.

2  Methods

The JULIET (tisagenlecleucel, NCT02445248), ZUMA-1 
(axi-cel, NCT02348216), and TRANSCEND NHL 001 
(TRANSCEND; liso-cel, NCT02631044) trials evaluated 
the efficacy of CAR T-cell therapies in patients with R/R 
LBCL who had received two or more prior lines of systemic 
treatment. Various survival extrapolation approaches were 
applied to the three least mature database locks (DBLs) of 
JULIET and ZUMA-1 and the two least mature DBLs of 
TRANSCEND (Table 1), in which GOF criteria were evalu-
ated to represent the anticipated data available at the time of 
HTA filing. Subsequently, predictive accuracy was assessed 
by comparing survival predictions based on the least mature 
DBLs to observed survival from the most mature DBLs 
(internal model validation) and by comparing the extrapo-
lated survival curves to external data (external model valida-
tion). Lastly, mean lifetime survival (evaluated as survival 
until 100 years of age) was quantified for all models.

2.1  Data

Details of the JULIET, ZUMA-1, and TRANSCEND trials 
have been described elsewhere [7–9]. An overview of these 
trials and the included DBLs are provided in Table 1. For 
JULIET [8, 12, 19, 20] and ZUMA-1 [9, 11, 21, 22], DBLs 
were based on publicly available data. KM curves from the 
different DBLs were digitized using WebPlotDigitizer [23]. 
The widely accepted and validated algorithm developed by 
Guyot et al. [24] was used to reconstruct patient-level data. 
It is an iterative numerical method solving the inverted KM 
equations, using the digitized KM curve coordinates, the 
numbers at risk, and total number of events. Potential reli-
ability issues of the algorithm, related to low resolution of 
KM curves and a lack of reported numbers of events and 
numbers at risk, did not apply to either trial. The associ-
ated KM curves were visually compared with the original 
KM curves. Furthermore, summary statistics such as sur-
vival probabilities and median survival were compared with 
the original KM data to ensure accuracy of this process. 
For TRANSCEND, the DBLs used in this study matched 
the DBLs used (internally) by Bristol Myers Squibb, and 
patient-level data of these DBLs were available.

2.2  Survival Extrapolation Methods

Four different extrapolation methods were used: stand-
ard parametric distributions, mixture cure models, cubic 
spline models, and mixture models. Standard parametric 
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distributions were originally introduced for extrapolat-
ing survival data. Cubic spline models were introduced 
to overcome the inability of standard parametric models 
to adequately capture more complicated hazard functions 
seen in applied studies [15]. Mixture models allow for two 
or more latent clusters of patients with different survival 
profiles. Cure models are used in a situation where some 
individuals will never experience cause-specific death (i.e., 
their disease-related hazard rate will be zero and the OS 
curve plateaus at a non-zero value). The evaluated stand-
ard parametric distributions were exponential, Gompertz, 
Weibull, log-normal, log-logistic, gamma, and generalized 
gamma. Cubic spline models can accommodate more com-
plex hazard patterns, with two or more turning points that 
can capture multiple important changes in the slope. Evalu-
ated splines had one or two intermediate knots, equally dis-
tributed over uncensored log times, using a hazard, odds, or 
probit model for the transformed survival function [25]. The 
mixture cure and the mixture models used each represent the 
population as a mixture of two subpopulations. In the mix-
ture cure models, those cured of the disease were assumed 
to have survival equal to that of the general population, and 
survival for those not cured was modeled using one of the 
standard parametric distributions, resulting in seven different 
mixture cure models [16]. In the mixture models, survival of 
both subpopulations was modeled using one of the standard 
parametric distributions, resulting in a total of 28 different 
mixture models. Mixture cure, cubic spline, and mixture 
models were included as per the NICE TSD 21 [26] and the 
OPTIOM guideline [17]. Standard parametric models were 
included for reference, as they are the most commonly used 
extrapolation method [2]. Piecewise models and response-
based landmark models were also considered, but these were 
excluded because of the lack of a clinical basis for selecting 

a cut-off point and incomplete response-stratified survival 
data, respectively. Analyses were conducted in R [27], using 
the flexsurv and muhaz packages [26, 28]. All nonconverg-
ing models and models with a nonpositive Hessian matrix 
were excluded. For the application of background mortality, 
a relative survival framework was used for all models in line 
with NICE TSD 21 [16], based on United States 2018 lifeta-
bles [29] adjusted to the corresponding trial for age and sex.

2.3  Internal Model Validation

GOF criteria (Akaike information criterion [AIC] [30] and 
Bayesian information criterion [BIC] [31]) were assessed 
for all models. Subsequently, the most mature DBLs of the 
three trials were used for internal validation of the survival 
extrapolations of all fitted models, using the mean absolute 
error (MAE) and root mean squared error (RMSE). MAE 
and RMSE were evaluated per observed event from the date 
of CAR T-cell infusion (t = 0) to the last event of the most 
mature DBL.

2.4  External Model Validation

External validation of the survival extrapolations was per-
formed by comparing the extrapolated survival curves to 
external data from SCHOLAR-1, a retrospective study eval-
uating outcomes in patients with refractory diffuse LBCL 
treated with salvage chemotherapy [6]. It was assumed that 
survival and cure rates with CAR T-cell therapy would be 
higher than with salvage chemotherapy. Therefore, two vali-
dation checks were performed based on SCHOLAR-1 data. 
First, models with a 5-year survival estimate lower than that 
observed in SCHOLAR-1 (5-year survival estimate of 16%), 
were deemed implausible. Second, mixture cure models with 

Table 1  Studies and DBLs included in the study

Axi-cel axicabtagene ciloleucel, CAR T chimeric antigen receptor T-cell therapy, DBLs database locks, liso-cel lisocabtagene maraleucel, min. 
FU minimum follow-up
a At the 2017 JULIET DBL, 111 patients had received tisagenlecleucel. This differs from the 2018 data-cut and onward, wherein 115 patients had 
received tisagenlecleucel
b In the 2017 ZUMA-1 DBL, data were presented on 108 patients who received axi-cel across phase I (7 patients) and phase II (101 patients). 
From the 2018 data-cut and onward, data were available from 101 patients. Phase II ran from November 2015 to September 2016

Study Intervention Patients 
receiving 
CAR T, n

Recruitment 
period

First DBL, date 
(min. FU)

Second DBL, 
date (min. FU)

Third DBL, date 
(min. FU)

Most mature DBL, 
date (min. FU)

JULIET Tisagenlecleucel 115a Jul 2015–Dec 
 2017a

8 Dec  2017a (0 
months)

21 May 2018 (5 
months)

1 Jul 2019 (19 
months)

20 Feb 2020 (26 
months)

ZUMA-1 Axi-cel 108b May 2015–Sep 
2016

11 Aug  2017b 
(11 months)

11 Aug 2018 (23 
months)

11 Aug 2019 (35 
months)

11 Aug 2020 (47 
months)

TRAN-
SCEND 
NHL 001

Liso-cel 256 Jan 2016–Jul 2019 12 Aug 2019 (1 
month)

19 Jun 2020 (11 
months)

– 4 Jan 2021 (18 
months)



944 E. F. P. Peterse et al.

an estimated cure fraction <16% were also deemed implau-
sible. In addition to the validation using the SCHOLAR-1 
data, the extrapolations were validated by checking whether 
the disease-specific hazard converged to 0 after 5 years.

3  Results

The most mature survival data and the survival data used to 
fit survival models are visualized in electronic supplemen-
tary material (ESM) Figs. S1 and S2 and Fig. 1 for JULIET, 
ZUMA-1, and TRANSCEND, respectively. The importance 
of selecting an appropriate survival model was demonstrated 
by the large variation seen in the 5-year survival estimates of 
the different extrapolation models, ranging from 0 to 45%, 
10 to 55%, and 0 to 47% over all DBLs of JULIET, ZUMA-
1, and TRANSCEND, respectively (Table 2 and ESM Tables 
S1‒S7). Survival and hazard plots of all models fitted to 
the different DBLs of the different trials are reported in the 
Appendix (ESM Figs. S3‒S34). All models converged, 
except for 36% of the mixture models. The nonconvergence 
of some mixture models was not limited to specific distri-
butions, trials, or DBLs, although nonconvergence was the 
highest in the earliest DBL (39%).

3.1  Performance of Standard Parametric Models

Standard parametric models had poor predictive accuracy, 
as measured using the MAE. Among these, the generalized 
gamma distribution performed best and the exponential 

distribution performed worst in all trials and most DBLs. 
Notably, the generalized gamma distribution is the most 
flexible model due to its three parameters and resulting 
ability to capture turning points in the hazard in contrast 
to the exponential distribution, which only has one param-
eter and assumes a constant hazard. The MAE results from 
the JULIET trial showed poor performance of the stand-
ard parametric models compared with the other extrapola-
tion methods (Fig. 2). MAE results from the ZUMA-1 and 
TRANSCEND trials are shown in ESM Figs. S35 and S36, 
respectively. With increasing data maturity, the improve-
ment in performance of the standard parametric models was 
relatively minor compared with the more flexible models. 
For example, in JULIET, the MAE of standard paramet-
ric models was between 0.027 and 0.132 for the first DBL 
and between 0.023 and 0.114 for the third DBL (Fig. 2, 
ESM Tables S1 and S3). A similar pattern was observed 
in ZUMA-1 and TRANSCEND (ESM Figs. S35 and S36). 
The external validation showed that 48%, 24%, and 7% of 
all standard parametric models fitted to the first, second, and 
third DBL, respectively, across all trials, projected a 5-year 
survival rate lower than that observed in SCHOLAR-1, indi-
cating that these models did not pass the external validation 
checks (Table 2 and ESM Tables S1‒S7). In particular, the 
exponential, Weibull, and gamma distributions performed 
poorly in the external validation. For example, in the first, 
second, and third DBLs of the JULIET trial, the exponential 
distribution estimated a 5-year survival rate of 3%, 4%, and 
12%, respectively, all of which fall below the 16% 5-year 

Fig. 1  Kaplan–Meier curves of 
the different DBLs of TRAN-
SCEND NHL 001. Shading 
indicates 95% confidence 
intervals, and the table below 
the Kaplan–Meier curves 
indicates the number of patients 
at risk for each time point. DBL 
database lock
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Table 2  Characteristics of models fitted to the first database lock of TRANSCEND NHL 001

AIC Akaike information criterion, BIC Bayesian information criterion, MAE mean absolute error, RMSE root mean squared error
a Models that did not pass the validation checks are indicated in bold (no bold indicates all models passed validation checks). Two validation 
checks were performed based on SCHOLAR-1 data. First, extrapolated 5-year survival for the chimeric antigen receptor T-cell therapies could 
not be lower than 16.15%. Second, for the mixture cure model, the estimated cure fraction could not be lower than 16.15%

Distribution Group 1, % Group 2, %a AIC BIC MAE RMSE 5-year sur-
vival, %a

Mean 
survival, 
years

Parametric
 Exponential 986.6 990.2 0.091 0.110 11.3 2.25
 Gompertz 973.6 980.7 0.024 0.027 38.7 15.57
 Weibull 985.3 992.4 0.067 0.083 16.4 2.67
 Log-normal 972.3 979.3 0.043 0.055 25.3 5.01
 Log-logistic 976.8 983.9 0.055 0.069 22.9 4.81
 Gamma 986.8 993.9 0.074 0.092 14.4 2.47
 Generalized gamma 972.6 983.2 0.030 0.037 30.0 7.08

Mixture cure
 Weibull/cure 53.8 46.2 969.8 980.4 0.019 0.032 46.2 18.70
 Exponential/cure 58.3 41.7 972.2 979.2 0.022 0.027 41.9 17.03
 Log-logistic/cure 61.2 38.8 969.0 979.6 0.015 0.024 41.6 16.23
 Gompertz/cure 54.1 45.9 972.7 983.3 0.021 0.033 45.9 18.57
 Gamma/cure 54.2 45.8 969.1 979.8 0.018 0.031 45.9 18.56
 Generalized gamma/cure 55.9 44.1 970.7 984.9 0.016 0.028 44.3 17.93
 Log-normal/cure 65.9 34.1 970.3 981.0 0.019 0.023 38.4 14.56

Cubic spline
 Spline hazard 1 972.0 982.6 0.023 0.029 30.3 5.72
 Spline hazard 2 971.1 985.3 0.014 0.018 35.5 8.33
 Spline probit 1 972.8 983.5 0.030 0.038 29.1 6.23
 Spline probit 2 970.9 985.1 0.015 0.019 35.6 9.20
 Spline odds 1 971.6 982.3 0.025 0.031 31.3 7.48
 Spline odds 2 971.3 985.4 0.015 0.019 35.9 9.64

Mixture
 Gompertz/Weibull 75.1 24.9 973.2 990.9 0.013 0.020 39.8 15.48
 Gompertz/log-normal 56.0 44.0 973.8 991.6 0.016 0.024 41.9 16.70
 Gompertz/log-logistic 39.1 60.9 973.0 990.7 0.015 0.024 41.7 16.26
 Gompertz/exponential 43.3 56.7 976.2 990.3 0.022 0.027 41.9 17.03
 Generalized gamma/Weibull 55.9 44.1 974.7 996.0 0.016 0.028 44.3 17.92
 Generalized gamma/log-logistic 84.7 15.3 973.5 994.7 0.013 0.019 38.0 11.19
 Generalized gamma/exponential 55.8 44.2 972.7 990.5 0.016 0.028 44.2 17.81
 Generalized gamma/gamma 87.2 12.8 973.3 994.6 0.013 0.018 37.3 10.67
 Log-logistic/Weibull 61.2 38.8 973.0 990.7 0.015 0.024 41.6 15.85
 Log-logistic/log-normal 34.0 66.0 974.3 992.1 0.019 0.023 38.4 14.54
 Log-logistic/gamma 50.2 49.8 973.1 990.9 0.015 0.025 42.0 11.50
 Gamma/Weibull 53.0 47.0 973.1 990.9 0.017 0.029 44.6 14.71
 Gamma/log-normal 37.5 62.5 973.0 990.7 0.014 0.021 39.1 10.83
 Gamma/exponential 53.6 46.4 971.1 985.3 0.018 0.030 45.4 17.21
 Exponential/Weibull 58.0 42.0 976.2 990.4 0.022 0.027 41.5 15.81
 Exponential/log-normal 34.1 65.9 972.3 986.5 0.019 0.023 38.4 14.49
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survival observed in SCHOLAR-1 and making their use 
clinically and scientifically implausible.

3.2  Performance of Mixture Cure, Cubic Spline, 
and Mixture Models

The mixture cure models had MAEs across all DBLs of 
0.010‒0.050, 0.013‒0.085, and 0.015‒0.024 for JULIET, 
ZUMA-1, and TRANSCEND, respectively. The cubic 
spline models had lower MAEs compared with the stand-
ard parametric models, including ranges across all DBLs of 
0.013‒0.035, 0.023‒0.128, and 0.014‒0.030 for JULIET, 
ZUMA-1, and TRANSCEND, respectively. Among the 
mixture models that converged, there was a large variation 
in the MAE in the first DBLs of JULIET and ZUMA-1. 
Even with this variation, especially in the more mature 
data, mixture models performed better than the standard 
parametric models. The MAE of the mixture models was 
0.100‒0.123, 0.014‒0.176, and 0.012‒0.022 for JULIET, 
ZUMA-1, and TRANSCEND, respectively (Table 2 and 
ESM Tables S1‒S7).

With increasing data maturity, mixture cure and cubic 
spline models continued to have high predictive accuracy 
(ESM Tables S1‒S8). Mixture models showed an increase 
in predictive accuracy with increasing length of follow-up. 
For example, the mixture models resulted in an MAE of 
0.025‒0.176 in the first ZUMA-1 DBL, which decreased 

(i.e., improved) to 0.014‒0.050 and 0.029‒0.044 in the 
second and third DBLs, respectively (ESM Fig. S35 and 
ESM Tables S4‒S6). All mixture cure and cubic spline 
models generated 5-year survival estimates that exceeded 
SCHOLAR-1. For the mixture models, 24%, 2%, and 6% 
of the models did not meet this requirement for JULIET, 
ZUMA-1, and TRANSCEND, respectively.

Spline models fitted to the earliest DBLs estimated 
lower 5-year survival than mixture cure models (ESM 
Figs. S37‒S39). However, the slope in the tail of the 
spline models became very shallow, particularly with more 
mature data, nearly converging to mixture cure models 
for the period for which data were available (Fig. 3 and 
ESM Figs. S37‒S39). This trend was also observed in 
the minimum clinical validation threshold 5-year survival 
estimates of the mixture cure and cubic spline models. 
The mixture cure models showed little change in mean 
5-year survival estimates with increasing data maturity, 
but the differences between the 5-year survival estimates 
of the different mixture cure models decreased (Table 2 
and ESM Tables S1‒S7). In contrast, the 5-year survival 
estimates of the cubic spline models gradually increased as 
data maturity increased. For example, in ZUMA-1, 5-year 
survival estimates for the first, second, and third DBL were 
25‒55%, 47‒51%, and 47‒51%, respectively, for mix-
ture cure models, and 16‒34%, 34‒45%, and 43‒47%, 
respectively, for cubic spline models (ESM Tables S4‒
S6). Despite this convergence, the mean lifetime survival 
estimated by mixture cure and cubic spline models dif-
fered substantially. For example, for models fitted to the 
third DBL of ZUMA-1 (Fig. 3), mean lifetime survival 
estimates ranged from 19.7 to 21.3 years for mixture cure 
models and from 12.0 to 18.2 years for cubic spline models 
(ESM Table S6).

3.3  Correlation Between Goodness of Fit 
and Predictive Accuracy

Model selection using GOF criteria did not maximize pre-
dictive accuracy, especially for early DBLs. This was dem-
onstrated by the limited correlation observed between AIC/
BIC and MAE (Fig. 4 and ESM Figs. S40‒S47). Similar 
results were obtained when comparing AIC/BIC values with 
RMSE (Table 2 and ESM Tables S1‒S7). For example, for 
the first DBL of TRANSCEND, the three models with the 
lowest BIC that passed external validation checks were the 
exponential distribution, exponential mixture cure model, 
and log-logistic mixture cure model. In contrast, the mod-
els with the lowest MAE were the generalized gamma/log-
logistic, generalized gamma/gamma, and Gompertz/Weibull 
mixture models (Table 2). Among the models that passed 

0.00

0.05

0.10

0.15

SPM Spline Mixture cure Mixture

Models

M
A

E

DBL First Second Third

Fig. 2  MAE of the different models fitted to the first, second, or third 
DBL of JULIET. Lower MAE scores indicate better predictive accu-
racy. DBL database lock, MAE mean absolute error, SPM standard 
parametric models
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external validation checks, mean lifetime survival estimates 
for the models with the lowest BIC were 7.6, 4.2, and 17.0 
years, and 8.7, 16.7, and 15.5 years for the models with the 
lowest MAE, for the first DBLs of JULIET, ZUMA-1, and 
TRANSCEND, respectively (ESM Tables S1 and S4, and 
Table 2). This demonstrates that GOF criteria-based model 

selection can result in selecting models that substantially 
overestimate or underestimate mean lifetime survival.

4  Discussion

Our analyses demonstrated that mixture cure and cubic 
spline models can achieve a higher predictive accuracy for 
OS of CAR T-cell therapies in R/R LBCL compared with 
standard parametric and mixture models, even when data 
are relatively less mature. Furthermore, GOF criteria dem-
onstrated a low correlation with predictive accuracy, sug-
gesting that other criteria should be prioritized for model 
selection. Approximately one-third of the mixture models 
did not converge, and among the models that did converge, 
there was much variation in predictive accuracy for early 
DBLs. Both the nonconvergence and the variance in predic-
tive accuracy are likely a result of the low number of patients 
and the low number of events, suggesting that mixture mod-
els may not be suitable for survival extrapolations of early 
DBLs. Cubic spline models, especially when fitted to more 
mature data, had a hazard almost identical to that of the 
general population for the period beyond the trial follow-up, 
behavior typically seen in cure models. One limitation of 
cubic spline models may be the subjectivity of the number 
and placement of the knots. In this study, we evaluated cubic 
spline models with one or two intermediate knots, where the 
knots were equally distributed over uncensored log time. As 
durable remission can be achieved in R/R LBCL, using mix-
ture cure models is clinically justified, and therefore may be 
a more appropriate survival extrapolation method for CAR 
T-cell therapies in R/R LBCL. It has been suggested that 
long-term survivors in LBCL have minor excess mortality 
[32]. In the NICE submissions of tisagenlecleucel, a stand-
ardized mortality ratio of 1.09 was applied to background 
mortality to model survival after the cure point to reflect 
this [15, 20]. Although a relative survival framework was 
adopted, our model estimations did not account for excess 
mortality for long-term survivors, which is in line with the 
updated submission of axi-cel [14]. Incorporating a stand-
ardized mortality ratio of 1.09 would only have a minor 
impact on the overall lifetime survival estimates and it would 
not affect relative model performance, as the adjustments 
would apply equally to all models.

One major strength of our study is that we compared sev-
eral extrapolation methods for multiple DBLs from three dif-
ferent trials of CAR T-cell therapies in R/R LBCL, allowing 
us to study to what extent the optimal extrapolation method 
differs between trials and DBLs in a similar clinical set-
ting (i.e., cellular therapies in the same indication). How-
ever, there are two limitations of note in our study. First, we 
did not consider progression-free survival (PFS). Survival 
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extrapolations on OS may underestimate the cure fraction 
owing to the lack of maturity of the OS data. In practice, 
a plateau in PFS is reached earlier than for OS, which can 
provide information about the cure fraction. However, in 
JULIET and TRANSCEND, disease progression was 
determined by an independent review committee, whereas 
in ZUMA-1, disease progression was determined by inves-
tigator assessment. This difference in disease progression 
assessment creates bias when analyzing PFS data across the 
three trials, which is why we did not consider PFS in this 
study. Second, even though we used the most mature data 
available at the time these analyses were conducted, data 
maturity was still limited, with minimum follow-up times of 
26, 47, and 18 months for JULIET, ZUMA-1, and TRAN-
SCEND, respectively. Since the time of these data analyses, 
longer follow-up data for ZUMA-1 have been presented [33]. 
When more mature data for all three trials become avail-
able, stronger conclusions about predictive accuracy may be 
drawn than were drawn based on the current study.

In a recent study, Vadgama et al. [34] compared the perfor-
mance of standard parametric models, mixture cure models, 
cubic spline models, and nonmixture cure models fitted to 
the first, second, and third DBLs of ZUMA-1. Our study is 
more comprehensive, as it uses data from JULIET, ZUMA-1, 
and TRANSCEND and also includes mixture models. Fur-
thermore, Vadgama et al. [34] used a different measure to 
evaluate the performance of the survival extrapolation meth-
ods, as they compared predicted survival at 48 months with 
48-month survival observed in the most mature data. This 
method can be used to evaluate the difference between the 
predicted and observed survival at one specific time point, 
whereas the MAE and RMSE used in this study account for 
the difference in the predicted and observed survival over 
the entire period for which data are available (e.g., from 
receiving CAR T-cell therapy to the date of the last event 
in the most mature data). Despite the differences between 
this study and the study by Vadgama et al. [34], both studies 
concluded that cure-based models provided the most accurate 
extrapolations of long-term survival for patients with R/R 
LBCL treated with CAR T-cell therapies, which is also in 
line with studies of other immuno-oncology therapies [35, 
36]. Additionally, in the final NICE appraisal of axi-cel, the 
independent academic reviewer group agreed that mixture 
cure models estimated on the 60-month OS data of ZUMA-1 
provided good fits and were rightfully selected to model OS.

5  Conclusions

Standard parametric models are inappropriate for extrapo-
lation of survival data for CAR T-cell therapies in LBCL. 
Mixture cure and spline models provided the best predictive 

accuracy, but mixture cure models may be more appropri-
ate given the clinical relevance of their underlying assump-
tions to LBCL. Furthermore, due to the reduced correlation 
between GOF criteria and predictive accuracy observed 
in our analysis, limited weight should be assigned to GOF 
criteria when selecting the optimal survival model for end-
points with complex hazard functions, particularly when this 
is due to a subset of patients achieving long-term remission 
and data are immature. Although this study focused on CAR 
T-cell therapies in patients with R/R LBCL who received 
two or more prior systemic treatments, we postulate that the 
results of the current study may also be applicable to ear-
lier treatment lines and other oncology indications in which 
lasting remission is observed, as the hazard functions are 
expected to be similar.
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