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Abstract
EmergencyMedical Services (EMS) are crucial in delivering timely and effectivemed-
ical care to patients in need. However, the complex and dynamic nature of operations
poses challenges for decision-making processes at strategic, tactical, and operational
levels. This paper proposes an action-driven strategy for EMSmanagement, employing
amulti-objective optimizer and a simulator to evaluate potential outcomes of decisions.
The approach combines historical data with dynamic simulations and multi-objective
optimization techniques to inform decision-makers and improve the overall perfor-
mance of the system. The research focuses on the Friuli Venezia Giulia region in
north-eastern Italy. The region encompasses various landscapes and demographic sit-
uations that challenge fairness and equity in service access. Similar challenges are
faced in other regions with comparable characteristics. The Decision Support System
developed in this work accurately models the real-world system and provides valu-
able feedback and suggestions to EMS professionals, enabling them to make informed
decisions and enhance the efficiency and fairness of the system.

Keywords EMS simulator · Multi-objective optimization · Real-world application ·
Decision support system · Fairness · Efficiency

1 Introduction

EmergencyMedical Services (EMS) are vital in providing timely and effectivemedical
care and transportation to patients who require immediate medical attention, with the
aim of reducing the risk of complications, disability, and death.
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The complex and dynamic nature of EMS operations presents challenges for
decision-making processes at different levels [7]. Indeed, from a strategic point of
view, the main decisions are related to the design of the emergency network, i.e., the
location of ambulance stations and the hospital emergency departments (EDs). Within
tactical planning, the main concerns regard fleet sizing and management strategies
(i.e., personnel rostering) and the allocation of ambulances to the stations. Eventually,
at an operational level, issues such as ambulance relocation, ambulance dispatching
(i.e., assigning the right ambulance at the right moment to an emergency call), and,
more broadly, emergency management must be addressed.

Furthermore, decision-makers are required to balance conflicting objectives such
as minimizing response times [25], maximizing patient survival rates, optimizing the
use of resources, and ensuring fair and equitable access to EMS [2, 9], especially in
the case of wide sparse areas with different demographic conditions.

Data-driven approaches are commonly used for the design of such a complex sys-
tem; they involve data analytics to inform decision-makers about how to design the
system.This includes collecting and analyzing a variety of data, i.e., historical response
times, patient outcomes, resource utilization, and demographic and epidemiological
information about the population being served.

The approach taken in this work shifts the focus towards an action-driven strategy,
which involves an optimizer for automatically suggesting decisions and a simulator to
determine their potential outcomes, in lieu of depending solely on static historical data.
In other words, the aim is to dynamically determine the consequences of decisions and
actions (e.g., the suitability of operations), rather than relying on static data and past
patterns or trends (e.g., are there zones where delays in the rescues are frequent?).

While historical data is still utilized to design and validate the decision support
tools, new ambulance location configurations are obtained through the optimizer, and
the evaluation of what-if scenarios is conducted through simulation. Moreover, the
simulator can be used also for supporting decisions at the tactical level, e.g., increasing
or decreasing the fleet size or its temporal availability, and at the operational level,
e.g., evaluating different dispatching policies.

The action-driven strategy alignswith the objectives of theEasyNet networkproject,
which is a collaborative effort among seven regions in Italy, partially supported by the
Italian Ministry of Health, meant to evaluate the effectiveness of Audit and Feedback
interventions in reducing practice variations and improving quality and health out-
comes. Audit and Feedback may be useful in improving the quality of healthcare, as it
involves evaluating the performance of individuals or teams against established stan-
dards, previous measurements, or other professionals, and then providing feedback to
help them improve [36]. Specifically, the project unit of Friuli Venezia Giulia (FVG)
Autonomous Region is responsible for a work package that focuses on enhancing
quality in emergency medicine.

This work presents a Decision Support System (DSS) specifically designed for
this project, which enables the analysis of the current EMS management situation, the
evaluation of alternative scenarios, and provides suggestions for possible decisions. By
measuring the impact of these decisions, the system can provide valuable feedback to
EMS professionals to improve the quality of the overall system and facilitate decision-
making across all levels (strategic, tactical, operational).
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As a case study, we focus on the aforementioned FVG region, which comprises a
complex landscape consisting of urban, rural, coastal, and mountain areas, with dif-
ferent demographic characteristics and we base our tool on the analysis of emergency
data collected in the years ranging from 2018 to 2020.

In particular, the DSS comprises a sophisticated simulator of EMS operations,
which takes into account factors such as elaborate dispatching rules and optional low-
priority service pre-emption, to improve response times and overall system efficiency.
Moreover, the system has been designed to tackle the challenges arising from the
wide and heterogeneous nature of the areas served by EMS, as well as the diverse
resources available, such as ambulance types and personnel shifts. The use of Pareto
multi-objective optimization allows for prioritizing both efficiency and fairness in the
decision-support process, keeping them separate (rather than aggregated or expressed
in a hierarchical form) so that the decision-maker canmake a responsible and informed
choice.

The system is built considering thedetails of real-world processes and is validatedon
real-world data. It features user-friendly dashboards bridging the gap between research
and practice so that the EMS management is provided with actionable feedback on
their decisions.

Our research offers the following main contributions:

(i) The decision support system is designed as an integrated suite of software tools,
comprising an analysis module, an EMS simulator functioning as a digital twin
of the system, and a multi-objective optimizer that supports automated decision
making. This system is implemented within an Audit and Feedback project,
aimed at identifying bottlenecks in the EMS and facilitating fair and efficient
decision-making processes driven by actionable insights.

(ii) Unlike previous studies, our research focuses on a vast and heterogeneous region
that encompasses urban, rural, coastal, and mountain areas, with particular
emphasis on the challenges faced in accessing services in the mountains.

(iii) Our study offers a comprehensive examination of a particular case study, serving
as a reference for the development of the decision support solution. Moreover,
we propose a collection of essential performance indicators, with a specific focus
on incorporating fairness-related metrics.

(iv) In order to encourage future research, we have made the EMS simulator, the
optimizer, and the emergency data used publicly accessible to the research com-
munity. The remaining modules will be available upon request.

The remainder of this paper is organized as follows.
Section2presents anoverviewof literaturework related to optimization, simulation,

and other issues in the EMS context. Section 3 describes the audit phase conducted
through an analysis of historical, geographic, and demographic data, later used for
the validation of the DSS. Section 4 reports a set of indicators that describe the EMS
performance considering both efficiency and fairness. Section 5 discusses the structure
of theDSS, detailing the dashboard interface, the simulator, and the optimizer. TheDSS
is validated through different experiments in Section 6. Section 7 concludes the work
by providing a discussion on current limitations and possible areas of improvement.
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2 RelatedWork

In this section, we overview the literature related to EMS. Specifically, we discuss the
optimal placement of emergency vehicle locations (see Section 2.1) and we list several
methodologies that have been proposed to account for fairness (see Section 2.2). Even-
tually, we present studies that leveraged multi-objective algorithms (see Section 2.3)
and simulation-based approaches (see Section 2.4).

2.1 The Emergency Vehicles Location Problem

Several contributions that discussed the (near-)optimal placement of EMS employ the
concept of coverage, which involves the optimal distribution of resources to maximize
the number of served locations [32, 54]. In the EMS context, service is represented
in terms of locations reachable within a specific time or distance, usually modeled
as a graph. The earliest study in this area is the Maximal Covering Location Prob-
lem (MCLP) [12], which aims at maximizing the demand coverage within a given
response time. Later, Schilling et al. [50] extended MCLP to consider different types
of vehicles, while [29] included the possibility for multiple ambulances and vehicles to
cover a single zone. Despite providing only sub-optimal coverage, thesemodels have a
deterministic approach and fail to account for uncertainty. For example, they overlook
scenarios where ambulances are already engaged in an emergency when a new call
arises and needs to be addressed. To overcome this limitation, probabilisticmodels that
incorporate uncertainty have emerged. One notable model is the Maximum Expected
Covering Location Problem (MEXCPL) [15], which introduces the concept of the
“busy fraction” to consider ambulance and vehicle availability in response to specific
calls. By integrating uncertainty into the models, MEXCPL offers a more accurate
representation of real-world emergency response systems. Additionally, MEXCPL
provides a versatile framework applicable to other domains characterized by uncer-
tainties, including disaster response and facility location.

Other authors optimize the deployment of vehicles byminimizing the response time.
In this setting, the problem has been formalized as a “p-median problem”, which aims
to locate p facilities to minimize the average distance between the demand points and
their assigned facility [25]. Similarly, Ruslim and Ghani [48] considered isochrones1

analysis to determine a relocation policy, while [22] consider the Dynamic Location-
Routing Problem (DLRP) to combine facility location and vehicle routing decisions
and constraints to optimize the deployment of vehicles.

Most of the works deal with urban contexts, in which the underlying graph is quite
dense because of the availability of an extended road network. The situation becomes
a bit more challenging in the case of rural areas, where the locations are more sparse
and the road network is not so extended. In this context [32] considered the location
problem in a large-scale urban-rural area and proposed hybrid approaches, using both
coverage and response time and considering an optimal trade-off between them.

Other complementary approaches aim to optimize the allocation of ambulances to
different zones based on their expected workload, which can be measured in many

1 An isochrone is the area reachable from an origin location within a given time limit.
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ways: number of calls, expected travel time, or a combination of both. Zhu and McK-
new [55], formalize the workload balancing problem by allocating ambulances to
different zones to achieve balance with respect to the expected workload among dif-
ferent zones. Other approaches combine the expected workload, time, and coverage
constraints [20, 21].

2.2 Modeling Fairness

In EMS decision-making, optimal response time is crucial but it is also essential to be
fair and equitable. Indeed, the fairness of ambulance location has become a prominent
area of research. The objective is to distribute ambulance resources equitably, consid-
ering historical context, demand uncertainty, and operational constraints. This creates
a fundamental challenge between efficiency and fairness, which has been ethically
debated, specifically in the field of justice theories [46]. This issue can be framed
as a conflict between utilitarianism, aiming to maximize the number of emergencies
served within a given time, and egalitarianism, seeking equal access to medical care
for all individuals. While an extensive analysis of these philosophical perspectives
is not covered in this paper, it is important to acknowledge the underlying tension
between these principles, which significantly impacts decision-making in practice
[5, 24]. Studies have tried to reconcile efficiency and fairness in ambulance loca-
tion models by adding objectives and constraints for equality. However, quantitatively
defining fairness remains challenging due to the lack of consensus, resulting in various
approaches with distinct perspectives.

To this end, it is crucial to consider two key points. Firstly, how to integrate a
fairness metric into the model, which can vary depending on the selected approach.
Secondly, it is equally important to determine which system performance indicators
the fairness metric is describing.

Several measures have been proposed to capture fairness in facility location prob-
lems, including the range of the analyzed interval (e.g., the distance between the
maximum and minimum response times), the deviation of the values from the cen-
ter (e.g., mean absolute deviation), the deviation between each pair of values, and
normalized measures (e.g., the Gini index).

Brotcorne et al. [9] and Akıncılar and Akıncılar [2] proposed robust ambulance
location models that consider both fairness and uncertainty. These models aim to
ensure that ambulance resources are distributed in a way that is both equitable and
resilient to changes in demand.

Barbati and Piccolo [6] investigated fairness measures in the location problem and
highlighted the use of the Gini index [23] as a promising approach. The Gini index,
traditionally used to measure income inequality, can be applied to assess the relative
imbalance among values in a distribution. In the context of the location problem,
the Gini index serves as a measure of the fairness of the facility access across the
population. A lower Gini index indicates a more equitable access, while a higher Gini
index signifies greater inequality. By incorporating the Gini index into the decision-
making process, decision-makers can effectively consider the consequences of their
choices from an equity point of view.
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Chanta et al. [11] proposed three bi-objective models that combine a utilitarian
approach to maximize the expected number of calls responded by the system with
fairness considerations. Themodels incorporate three different fairnessmeasures: total
number of uncovered demand in rural and urban zones, number of uncovered rural
demand zones, and distance between uncovered demand zones and their nearest open
stations. These fairness objectives are integrated into the optimization model using
the ε-constraint method. This method enables decision-makers to explicitly balance
the utilitarian and fairness objectives, resulting in a set of optimal solutions that align
with their preferences. By simultaneously considering both objectives, these models
facilitate more informed and equitable decision-making.

Grot et al. [24] focuses on urban areas and proposes a model that maximizes the
expected total coverage while incorporating two fairness criteria: the Gini coefficient
and the Rawlsian criterion. The authors use the ε method to integrate these measures.
The Rawlsian criterion evaluates the coverage of each demand sector by considering
the worst-case scenario where a site is lost, thus accounting for the least advantaged.
On the other hand, the Gini index measures the variation among different scenarios.
Thesemeasureswere chosen for their distinct emphasis on different aspects of fairness.

Finally, Jagtenberg and Mason [31] presents an example where the Bernoulli-Nash
function is examined in the context of survival probabilities. This function can take
two forms: the product of individual utilities and the geometric mean of all individuals.
The product of individual utilities represents fairness as the probabilities of survival
for each individual are multiplied together, prioritizing the most vulnerable members.
On the other hand, the geometric mean calculates fairness by multiplying the survival
probabilities and taking the reciprocal of the number of individuals. This method
considers the overall survival probability of the entire group, making it more sensitive
to changes in the survival probabilities of the entire group rather than focusing solely
on the most vulnerable members.

2.3 Multi-Objective Approaches

Since the aggregation of all the conflicting objectives into a single function prompts
the decision-maker to establish their relative importance beforehand, an alternative to
avoid premature commitments is to consider multi-objective methods. In this regard,
numerous recent studies have leveraged this kind of approaches to address the EMS
location problem.

Harewood [26] proposes a multi-objective version of the Maximum Availability
Location Problem that maximizes population coverage within a given distance stan-
dard and level of reliability while minimizing the cost of covering the population.
The method is tested using data from the Barbados Emergency Ambulance Service.
Karatas and Yakıcı [33] presents a method to solve multi-objective facility location
problems, focusing on public emergency service stations. The study integrates three
well-known problems, namely the p-median problem, the maximal coverage location
problem, and the p-center problem, to find a set of solutions for the three objectives
altogether. The authors develop an algorithm that sequentially solves each individual
objective problem using a combination of branch and bound and iterative program-
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ming techniques. Tsai et al. [51] proposes a method for ambulance allocation based on
forecasting the distribution of EMS requesters. The approach uses a multi-objective
ambulance allocation model solved by Particle Swarm Optimization. The method is
tested using recorded historical data for EMS requesters in New Taipei City, Taiwan.
Karatas andYakıcı [34] presents amulti-objective facility locationmodel for determin-
ing the number and locations of Temporary Emergency Service Centers for a natural
gas distribution company in Turkey. The model considers three objectives: p-median,
maximal coverage, and p-center to minimize transfer time. Olivos and Caceres [43]
presents a multi-objective framework for solving an ambulance location problem in
Antofagasta, Chile. The model considers mean response time, maximum response
time, and demand not covered. The approach generates a set of solutions using an
iterative ε-constraint method. Historical data from 2015 and 2016 were used to gen-
erate demand and emergency locations. Wang et al. [52] proposes a multi-objective
facility location problem to improve location reliability under facility uncertainty. The
approach includes two objectives on reliability and coverage. A dual-population-based
evolutionary algorithm is used to address the problem. The proposedmethod is applied
to a real-world facility location with uncertainty of express cabinets in Tianjin, China.

2.4 SimulationModels

Over the past decades, there has been a significant increase in the development of
simulation models and simulation packages aimed at improving DSSs for fair and
efficient EMS resource allocation [1]. These models are designed to provide a dynam-
ical evaluation of the allocation of emergencymedical resources such as ambulances by
leveraging simulations, historical data, and providing an integration with optimization
techniques.

The integration of simulation and optimization techniques is a crucial factor in the
development of DSSs for various applications, including EMS resource allocation.
Combining these two methodologies allows for a more comprehensive approach to
resource management, providing valuable insights into the performance of different
strategies and/or scenarios, and identifying areas for improvement [27].

Simulations play a crucial role in evaluating optimization techniques. In practical
terms, these models function as digital twins of the system, facilitating a realis-
tic evaluation of the decisions made although in a virtual environment, allowing
decision-makers to quickly assess the effectiveness and efficiency of the available
choices, possibly suggested by different optimization methods, across various sce-
narios. Through simulations, potential limitations or weaknesses in the solutions
can be identified and addressed, leading to the development of resource allocation
strategies that are both robust and reliable. Testing these strategies in simulated envi-
ronments enables informeddecision-makingbasedonobservedperformance, resulting
in improved resource management and system effectiveness. The utilization of his-
torical data in simulations adds realism, allowing decision-makers to analyze patterns
and trends over time, and providing valuable context for evaluating the optimization
techniques.
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Most EMS resource allocation simulation packages and frameworks primarily uti-
lize Discrete Event Simulation (DES), which models system operation as a sequence
of individual events occurring at defined time points. Each event triggers changes
in the system’s internal state, and the simulation analyzes how the state evolves
over time. DES is well-suited for complex systems like EMS resource allocation,
where resources are dispatched and utilized in response to specific incidents or service
requests. Although some frameworks adopt alternative simulation methodologies like
agent-based simulations, DES remains the dominant choice in EMS due to its capac-
ity to accurately represent the dynamic and stochastic nature of emergency medical
service operations.

Numerous simulation packages and frameworks exist [1, 41, 53], some of them
are open-source software whereas others are proprietary and developed for specific
institutions, and not publicly available for general use.

BartSim [28] focuses on modeling and analyzing patient transportation systems,
including ambulances and othermedical transportation resources. Siren [27] optimizes
the deployment and utilization of emergency medical resources, such as ambulances
and paramedics, to enhance response times and system efficiency. Ambsim [38] is
a DES framework that supports decision-making in ambulance service operations,
providing insights into resource allocation and response time management. SIMEDIS
[17] and its updated version, SIMEDIS2.0 [16], are simulation tools aimed atmodeling
and optimizing emergency medical dispatching and resource allocation during mass
casualty incidents. EMSSim [41] examines factors such as resource allocation, patient
prioritization, and response times to improve the effectiveness of EMS operations.
Lastly, JEMSS [47] is designed to support decision-making processes in emergency
medical resource allocation and evaluate the effectiveness of different strategies in
managing multi-agency EMS operations.

Among the optimization techniques that exploit simulation-basedmodels, we recall
Aringhieri et al. [3], who present a formulation for the ambulance location problem in
an urban area in Italy, specifically in Milan. Their approach involves the use of integer
linear programming models, whose results are further evaluated using an agent-based
simulation model. McCormack and Coates [39] optimizes both the location of the
stations and the vehicle fleet by employing a genetic algorithm and a simulation.
Their objective is tomaximize the expected survival probability across different patient
classes. Bélanger et al. [8] introduces a recursive simulation-optimization framework,
utilizing a DES in combination with a mathematical programming model to address
location and dispatching decisions simultaneously. In a preliminary study,DaRos et al.
[14] determine the location of emergency vehicles by applying amulti-objective biased
random-key genetic algorithm, which takes into account the results of simulations,
such as the mean and the 90th percentile of response time, as well as a basic coverage
measure.

3 The EmergencyMedical Service Context

The EMS faces many stochastic and interacting components, making designing robust
decision-making tools a challenging task. Additionally, the influence of national reg-
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ulations further compounds this complexity, making it difficult to separate the domain
(i.e., EMS) from the case study (i.e., the case of an Italian region). However, even
though this study focuses on Friuli Venezia Giulia, the concepts presented here can
be extended to other regions with similar characteristics, especially considering those
with a heterogeneous landscape.

This section presents the complex environment in which theDSS for EMS operates.
The characteristics of FVG, hence its heterogeneous, diverse, and dynamic geography
and demography are thoroughly analyzed (see Section 3.1). Resource limitations, such
as the fixed number of available emergency vehicles per type (see Section 3.2), strict
workinghours, and a limited number of emergency care professionals (seeSection 3.3),
highlight the need to optimize the allocation of resources to ensure an efficient and
fair service. Additionally, the hospital network’s configuration, organized into hubs
(main centers) and spokes (satellite centers) presents further challenges to the EMS
(see Section 3.4). Emergencies are inherently unpredictable and can vary significantly
regarding urgency, location, timing, and other factors (see Section 3.5). The EMS is
responsible for responding to emergency calls and providing care from the moment
the call is received until the emergency vehicle returns to its original depot. However,
response times can vary widely across different areas of the region, raising important
questions regarding the trade-off between fairness and efficiency (see Section 3.6).

The current state of the EMS in the FVG region was established in 2015 through
a data-driven approach. This involved dividing the region into zones and assigning
a specific number of ambulances to each zone to ensure sufficient coverage for the
population living in that area [44]. The regulation mandates that there should be one
ambulance available for every 60,000 inhabitants or every 350 Km2. While some
adjustments have been made to the basic model to consider scenarios involving multi-
ple emergencies or other factors, the analysis has paid limited attention to the specific
characteristics and requirements of individual zones and to the fairness aspects.

3.1 Geography and Demography

The case study is about the Italian FVG region, composed of 215 municipalities with
varying characteristics in terms of extension, environment, population, etc. Thus, in
the EMS perspective, the region can be divided into four different areas, namely a
limited number of cities (i.e., 5 municipalities with a population higher than 25,000
inhabitants), a vast rural area, an extensive and scarcely populated mountain area yet
interested by tourism, and a set of touristic towns at the seaside (see Table 1 for the
characteristics2 of the zones).

The number of inhabitants and spatial extension alone does not provide a complete
picture of the region since it attracts a significant number of tourists each year, with
the seaside towns experiencing a peak of roughly 200,000 tourists daily [45].

While rural and mountain areas share similarities in terms of their large size and
sparse populations, there are significant differences in their road connections, which

2 The dataset consists of data related to the single municipalities, the authors aggregated the data according
to the notion of zone (Cities, Rural, etc.) and computed the percentages and the density.

123



Journal of Healthcare Informatics Research

Table 1 FVG population and extension by area

Area Municipalities Population Surface Density
# # % km2 % #/km2

Cities 5 413,647 35 242 3 1,709.3

Rural 125 613,074 51 3,233 41 189.6

Mountain 83 155,930 13 4,322 54 36.1

Seaside 2 14,644 1 135 2 108.5

Total 215 1,197,295 100 7,932 100 150.9

Data on the population is retrieved and surfaces are calculated from the specific dataset by [30]

have important implications for EMS response times. As shown in Fig. 1, which
illustrates the points reachablewithin 18minutes3 fromacandidate ambulance location
for each municipality (i.e., isochrones), the limited and constrained road infrastructure
in the mountain area results in longer travel times with respect to the rural areas. In this
case, we intend candidate locations as possible locations for ambulance stations and
they correspond to the position of the town hall of each municipality and the hospitals.
As for the urban and coastal areas, the isochrones generally cover the entire surface
within the standard response time.

3.2 Vehicles

Medical vehicles can be of different types based on the service they offer, the way they
are equipped, the team of professionals operating on them, and, overall, the use cases
defined by national regulations. Namely, the Italian system comprehends Advanced
Life Support (ALS) and Basic Life Support (BLS) ambulances, medical cars (MC),
and medical helicopters (MH) (see Table 2). Medical cars are deployed in conjunction
with ALS or BLS ambulances for joint rescue operations, ensuring the presence of a
doctor or a highly specialized nurse during criticalmedical emergencies, particularly in
cases of high-priority ones regarding specific time-critical pathologies such as strokes
or heart attacks.

Vehicles can operate on different shifts. Generally speaking, they can work on a
day shift (i.e., 8 am–8 pm) and a night shift (i.e., 8 pm–8 am). Furthermore, some
vehicles are used in both the above-mentioned rosters (therefore, they are working on
a 24-hour shift). Table 3 reports the vehicles operating in FVG on different rosters
accounting for April 2022.

The current location of ambulance stations is shown in Fig. 2. Besides the stations
located at hospitals, each station hosts at most one ambulance.

3 The 18 minutes threshold is used as a reference time for the response to time-dependent pathologies such
as stroke and heart attack. This value is set as a threshold in the national guidelines issued by the Italian
Ministry of Health [49, see indicator D09Z, p. 18].
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Fig. 1 Isochrones at 18 minutes from a candidate ambulance location for each municipality

3.3 Personnel

The emergency care teams consist of a diverse group of professionals including emer-
gency doctors, nurses, drivers, and volunteers who have received training in rescue
operations and emergency medicine. These team members operate on various sched-
ules or rosters. This arrangement is driven by the specific regulations governing the
Italian EMS, which adhere to the “stay and play” system rather than the “scoop and
run” one.

Under the “stay and play” system, the emphasis is placed on managing the emer-
gency situation directly at the location where it occurs, rather than immediately
transporting the patient to the nearest hospital, as is the case with the “scoop and
run” system.

3.4 Hospitals

Hospitals can be of different types based on the services they offer. Specifically, hos-
pital distribution is related to a hub-and-spoke network organization [40]. Such a

Table 2 Description of the emergency vehicles are per Italian and regional regulations [18]

Type Equipment Team (minimum requirement) Patients’
Basic Advanced transportation

ALS Registered nurse, driver formed
to handle rescue operations

BLS Volunteer, driver formed to
handle rescue operations

MC Doctor or highly specialized
nurse

MH Anesthesiologist and/or highly
specialized nurse
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Table 3 Emergency vehicles
available in Friuli Venezia Giulia
considering their shifts

Type Day shift Night shift All-day shift
(8 am–8 pm) (8 pm–8 am)

ALS 17 5 26

BLS 6 1 3

MC 3 1 3

MH 0 0 1

Fig. 2 Current location of the ambulance stations in Friuli Venezia Giulia

Fig. 3 Location of healthcare facilities in Friuli Venezia Giulia, distinguishing among hospital types. The
region accommodates four hubs, nine spokes, and six points of primary care. One of the four hubs is
specialized in pediatric treatments
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Fig. 4 Number of emergency calls received in Friuli Venezia Giulia from January 2018 to December 2020
considering the urgency codes

network comprises a main campus (i.e., a hub), which provides intensive and special-
ized medical services (e.g., heart surgery, neurosurgery), complemented by satellite
sites (i.e., the spokes) [19], which supply only basic medical care. Additionally, a set
of so-called points of primary care, hosting limited first aid care in rural and remote
territories, is available (see Figure 3).

3.5 Emergencies

Auditing the FVGEMS accounts also for understanding the spatiotemporal patterns of
emergency occurrences. Thereof, we perform an analysis of emergency calls received
between January 2018 and December 2020 and stored in the EMS database.

The emergency calls are categorized into four levels, namely red, yellow, green,
and white, with red and yellow codes indicating the most urgent ones requiring prompt
and advanced care. Each emergency call is also associated with a set of characteristics
such as the location where it occurred, the number of people involved, the vehicle used
in the rescue (e.g., ambulance, medical car, etc.), and the pathology4.

Over the three-year period, a total of 323,968 emergency calls were received, with
a nearly constant number of calls each year and a nearly constant distribution among
urgency codes (see Fig. 4).

Analysis of call volumes by time of day reveals that pressure on the EMS system is
not evenly distributed over the 24-hour period, with higher call volumes in the middle
morning and early evening (see Fig. 5).

The spatial location of emergency calls is linked to population density, including
both permanent residents and tourists. Figure 6 depicts the number of emergency calls
against the number of inhabitants of the related municipality, with a clear relationship
between the two in larger towns and cities. Instead, the relationship between emergency
calls and population size is less clear in smaller villages.

Analysis of emergency calls per capita by season shows higher call volumes in the
mountain area during the winter months due to ski tourism, while summer months see
increased call volumes in both the mountain and seaside tourist areas (see Fig. 7).

4 The data on emergency calls is recorded in real-time during the service; however, some fields, particularly
the pathology, can be revised after hospitalization.
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Fig. 5 Mean number of emergency calls received in Friuli Venezia Giulia in the year 2019 analyzed by day
of the week and hour of the day

3.6 EmergencyMedical Service Processes

The EMS plays a crucial role in responding to emergencies, from when a call is
received to the return of the emergency vehicle to its station (see Fig. 8). According to
the stay-and-play service model, the response time is a significant metric in describing
the performance of the EMS processes. This is defined as the time elapsed between the
occurrence of an emergency call and themomentwhen a vehicle reaches the emergency
location (see Section 4.4). The response time is challenged in several ways, such as
how distant the closer ambulance is, whether the closest ambulance is timely available
or is serving another call, road connections and traffic status, weather conditions, etc.

Analyzing response times is particularly important for red and yellow urgency
codes, as these indicate pathologies and events in which timely response (i.e.,
a response time within the 18 minutes threshold) is crucial for patient survival.
Figure 9 reveals differences in these patterns among the four areas that compose FVG.

Fig. 6 Relation between the number of emergency calls in Friuli Venezia Giulia and the number of inhab-
itants of the related municipality for the year 2019. The different areas are highlighted in different colors.
The plot is in log-log scale
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Fig. 7 Number of emergency calls per capita received by eachmunicipality during the year 2019 considering
the four seasons

While cities typically have the shortest response times, with most calls being served
even within only 15 minutes for both red and yellow codes, the rural and mountain
areas have the longest response times, thus failing to provide fair and efficient service
to every patient.

Other possible time-related descriptors of the EMS include the time interval elapsed
from the moment at which a call is received to the moment at which the first vehi-
cle departs, the response time at the emergency location, etc. These indicators are
not described in this paper, however, they have been considered in the design of the
simulator.

4 EmergencyMedical Service Key Performance Indicators

When making decisions related to EMS, decision-makers must balance competing
objectives, with efficiency and fairness being the most prominent considerations. Effi-
ciency is achieved by ensuring that each person is served as quickly as possible, while
fairness ensures that each person has equal access to the service.
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Fig. 8 Emergency medical service decision process overview
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Fig. 9 Comparison of the frequency of the response times (in minutes) among Friuli Venezia Giulia areas
for the most urgent codes. The 18 minutes threshold is highlighted

The two above-mentioned perspectives are orthogonal. For instance, concentrat-
ing all ambulances in densely populated areas such as cities maximizes efficiency
since sparsely populated regions would have lower service demands. However, this
approach may result in longer response times for the people who are located far from
the centralized areas. Conversely, achieving maximum fairness would entail having
an emergency vehicle available in every municipality, but this is not feasible due to
limited resources.

As discussed in Section 3, serving the mountain area poses significant challenges
due to unique characteristics such as the road network, wide area, and low population
density. Therefore, we have developed specific Key Performance Indicators (KPIs) to
measure service access equality so not to discriminate the people living in that area.

In the following, we list a set of KPIs for assessing the level of service. Some of
these objectives are accounted for in the optimization process (distinguishing day and
night situation), while others are generated through simulation runs (see Sections 5.2
and 5.3 for details).

Specifically, we first introduce the KPI for ensuring fair coverage of the population
(see Section 4.1), then some indicators for taking into account variations of the service
levels (see Sections 4.2 and 4.3) and finally the efficiency measures (see Section 4.4).
The formal definition of the KPIs is provided in Appendix A.

4.1 Fair Coverage

We calculate the proportion of ambulances that can reach each resident within a spe-
cific municipality within the 18 minutes time threshold. This involves intersecting
the isochrone centered at each ambulance location with the finer demographic data
available (i.e., the census zones [30]) and dividing it by the total amount of popu-
lation potentially covered by the ambulance. Disparities between municipalities are
evaluated using the Gini index [23] (see Appendix A.1 for details).
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Given our aim to ensure fair coverage, the objective is to minimize this index (i.e., a
Gini index closer to zero indicates greater equality in the distribution of values among
various municipalities).

4.2 Population Coverage and Surface Coverage

We consider coverage in two ways, firstly in terms of population and secondly in
terms of geographical zones. Namely, the population coverage considers how many
inhabitants an ambulance serves, whereas the geographical coverage account for the
surface that an ambulance can serve. The concept of service regards the number of
inhabitants and the area that a given ambulance can reach within the aforementioned
18 minutes threshold (see Appendix A.2 for details).

The twofold point of view is due to the unpredictable nature of emergencies; in this
way, we can account for calls received in zones that might be extensive but not highly
populated (e.g., the mountain area). As BLS ambulances offer solely fundamental
medical care (refer to Table 2), and are exclusively employed for critical emergencies
when alternative vehicles are unavailable, we assess their coverage as a portion (70%)
of the corresponding ALS service.

4.3 Second Ambulance Distance

While the coverage measures introduced in the previous sections are effective in eval-
uating the quality of service in a given municipality, they assume that ambulances are
always available, disregarding the possibility that an ambulance may be busy since it
is responding to another emergency. In addition, the measures only consider a binary
distinction between covered and not covered zones, without accounting for potential
variations in service levels based on different response time thresholds. To overcome
these limitations and explicitly take into account these circumstances, we consider the
availability of the second closest ambulance for each zone in terms of road distance.
This allows us to consider a scenario where the main ambulance is unavailable when
a new call comes in.

The goal is to minimize the maximum of these values so that we can limit the effect
on the worst possible scenario (see Appendix A.3 for details).

4.4 EfficiencyMeasures

Finally, as one of the goals is to ensure the best possible level of service for each
emergency, we consider the response times. Particularly, for each emergency code,
we aim to minimize the elapsed time between the occurrence of an emergency call and
the moment when a vehicle reaches the emergency location (see Appendix A.4 for
details). Different urgency codes account for different levels of service (see Section 3.6
for details and Fig. 11b for an example).

123



Journal of Healthcare Informatics Research

5 Decision Support System Architecture

The DSS has been developed using a microservices architecture, with a focus on
deploying it on a Docker platform to simplify the deployment process. The sys-
tem’s structure is composed of three key microservices (see Fig. 10): a dashboard
(see Section 5.1), a message-passing component, and a distributed task queue to
manage long-running tasks, namely the EMS simulator (see Section 5.2) and the
multi-objective optimizer (see Section 5.3).

The user interacts with the dashboard microservice, which is the only one exposed
and is responsible for controlling theworkflowandvisualizing the result. Themessage-
passing component is responsible for linking user actions on the dashboard to the
third component, the distributed task queue, which runs the actual simulation and the
decision-making optimizer.

The primary motivation behind selecting a containerized architecture based on
microservices is to simplify the deployment process of the DSS software. This archi-
tecture enables convenient deployment, whether it is on-site or in a cloud environment.
Additionally, it facilitates the seamless integration of diverse programming languages
and technologies.

5.1 Dashboard

The proposed framework establishes a connection between the decision maker, the
simulator, and the optimization model through a dashboard, which serves as a

Fig. 10 DSS Architecture
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human-computer interface. The dashboardmain purpose is to provide a comprehensive
view of the results of the analyses, while also allowing the user to control and dis-
play the results of the EMS simulator and optimizer. This way, the dashboard enables
the decision-maker to build and evaluate alternative scenarios and make informed
decisions through the visual representation of KPIs.

The dashboard has been implemented in Python, using the Plotly Dash interaction
and visualization framework.

The interface reports the analyses for both the as is situation shown in Section 3 (i.e.,
the audit phase), and the outcomes of the to be scenarios through the execution of the
EMS simulator. Moreover, the scenario can also be determined by the optimizer. The
simulator and the optimizer are run asynchronously on a dedicated queue of potentially
long-running processes.

The interface is localized in the Italian language; we show here a few examples
of the core functionalities. Figure 11a reports an example of an analysis of the as is
situation. The picture shows the distribution of emergency calls grouped by pathology.
On the other hand, Fig. 11b reports an excerpt of the outcomes of a possible to be
situation evaluated through a simulator run.

In a multi-objective optimization context, the dashboard also acts as a central hub
that presents the Pareto front, enabling decision-makers to visualize and compare the
trade-offs between conflicting objectives and identify the most desirable solutions (see
Fig. 15 on page 22 for a visualization example).

Although the simulator and optimizer components are accessible to the decision-
maker through the dashboard and the comprehensive microservices architecture
discussed in Section 5, they can also be executed as individual offline modules (e.g.,
as for the validations performed in Sections 6.2 and 6.3).

Through the DSS dashboard, the decision-makers can edit the resource allocation
scenarios, thus allowing the evaluation of choices at the strategic and tactical decision
levels. For example, it is possible to relocate ambulances to different stations or extend
the shift availability directly from the interface.

Fig. 11 Examples of dashboard functionalities
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5.2 Simulator

The EMS simulator is a Discrete Event Simulator and acts as a digital twin of the
real-world system implementing the processes mapped and described in Section 3.6.

The simulator has been implemented in C++ using a customized version of the
simcpp20 framework5, which is a coroutine-based discrete-event simulation frame-
work forC++20. Initially, the system’s earlier prototypewas developed in Python using
the original SimPy framework, but due to unsatisfactory performances, we switched
to C++.

The simulator receives two main inputs: a collection of geolocalized emergencies
(e.g., in this study they are extracted fromhistorical data), and a newallocation scenario
comprising ambulance locations and personnel rosters. This way all the relevant deci-
sion points at the different decision levels are customizable. It then simulates the pro-
gression of the management of these emergencies, incorporating stochastic elements
such as the time required to stabilize a patient before transportation to the hospital.

The output of the simulator is a log of the process for serving each emergency. This
log is stored in a database and can be utilized to calculate time-based KPIs for the
EMS system.

Our simulation package offers a distinct approach compared to those proposed in
the literature, particularly in relation to JEMSS [47], which is the most similar to our
framework. More in detail, our simulation package differs from existing approaches
due to the following unique features: (i) we consider three types of emergency vehicles,
incorporating the possibility of using a medical car in a joint service with traditional
ambulance types; (ii) we account for different shift patterns for emergency vehicles,
enabling users to customize vehicle availability based on specific customizable shifts
(e.g., 00:00-24:00, 08:00-20:00, 7:30-19:30, etc.); (iii) we classify emergencies into
four distinct urgency categories, providing a more granular view of the types of inci-
dents requiring emergency medical services; and (iv) we categorize hospitals based on
the services they offer, rather than solely on their geographical location. The inclusion
of these features results in a simulation framework that is more flexible, comprehen-
sive, and accurate. As a result, users can effectively address awider variety of scenarios
related to allocating emergency medical service resources.

In the following, we discuss the simulator by depicting its components (see
Section 5.2.1), analyzing the fundamental procedures and decision protocols (see
Section 5.2.2), and addressing the model assumptions (see Section 5.2.3).

5.2.1 Entities

The emergency entity in our simulator represents a medical event that requires atten-
tion. Each emergency has a set of static features that are received as inputs and remain
constant throughout the simulation. These features include the arrival time of the
emergency call, the location of the emergency (specified by longitude and latitude
coordinates), the priority of the emergency (indicated by the color code according to
the specifications of Section 3.5), and the type of hospital required for the specificmed-

5 https://github.com/fschuetz04/simcpp20
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ical condition (see Section 3.4). An emergency may or may not require transportation
to a hospital.

During the simulation, other characteristics are collected, such as the time of var-
ious procedures related to the rescue and their durations (e.g., the time the service
starts, the time of arrival at the emergency site, and the duration of the treatment at the
location). The time for triage (i.e., the time taken by the operator to identify the situ-
ation’s urgency), treatment, patient drop-off, and ambulance cleaning are determined
by random sampling a set of exponential distributions parametrized with values that
are inferred from the analysis of historical data.

The state changes and multiple attributes of each emergency are logged during the
simulation to ensure that the decision-maker has access to comprehensive information
about the process for assessing the level of service.

The ambulance entity stands for a medical vehicle together with the linked
resources. Each ambulance is associatedwith a type (see Section 3.2), and an operating
shift (expressed as the time at which it starts working and the time at which it stops
working). Furthermore, each ambulance is located at a specific station, identified by its
longitude and latitude. During the simulation, as it happens for emergencies, a series
of information is collected (e.g., the position at any time) and stored for analysis.

The hospital entity is described by its location and type (see Section 3.4) and is the
target of the transportation according to the specific decision protocol.

The focus of the study is strictly on the service provided by emergency vehicles.
Consequently, the simulator tracks the patient’s path up to the moment when the
ambulance reaches the hospital, and the patient is taken care of by the Emergency
Department.

5.2.2 Procedures and Decision Protocols

The dispatcher block connects the above-mentioned entities, by generating the emer-
gency events and tracking ambulances availability. Broadly speaking, it acts as the
operational emergency center that coordinates and manages the emergency situation
of the region.

One of the crucial decisions that EMS must make is to determine the appropriate
vehicle to serve a given emergency. This decision has a significant impact on the
outcome of the rescue: timely and effective decision-making can determine whether
a patient survives the emergency event or not.

The simulator employs a hierarchical approach for the dispatching decisions. Pri-
marily, it takes into account the urgency of the emergency and matches it with suitable
vehicle types. Secondly, it considers the distance of the available vehicles from the
emergency location.

Furthermore, an ambulance may consider one or more vehicles, as each ambulance
may be coupled together with a medical car for the most urgent cases. For instance,
Fig. 12 reports an example of the dispatching process for an emergency of red code.

Regarding the choice of the nearest ambulance, to speed up the computation, an
initial filtering of potential vehicles is performed using the Haversine distance, con-
sidering ambulances within a given range from the emergency (the default is set to a
20km radius). In case of critical emergencies (i.e., red and yellow urgency code), if
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Fig. 12 Decision process for the dispatching of emergency vehicles to serve an emergency call of urgency
code red

no vehicle is available within the range, the search is extended to the entire region.
Subsequently, the dispatcher entity selects the vehicle or vehicles that are closest in
terms of the actual road network from the initially filtered options.

Furthermore, the consideration of the availability of nearby emergency vehicles has
led to the implementation of two distinct dispatching policies:

Policy without preemption: A vehicle is deemed available only if it is waiting at a
station.
Policywith preemption: A vehicle is considered available if it is waiting, or it can be
interrupted if currently engaged in a non-urgent service and is in close proximity,
or has just completed a service at a hospital and is returning to its station.
The inclusion of the second policy introduces additional complexity to the dispatch-

ing process, thereby making also the simulation more intricate. However, this policy
appears to align better with real-world practices, as outlined in the analysis reported
in Section 6.2. This also highlights the possibility of evaluating operational decisions,
which can be easily implemented in the simulator.

In situations where no ambulance is available to respond to an emergency call or
when a more critical emergency arises and interrupts an ongoing service, the emer-
gency is placed in a queue. As soon as a vehicle becomes available again, the queue
is sorted based on the urgency, the waiting time, and the location of the emergencies.
If a compatible emergency waiting in the queue is located nearby, it is selected to be
served immediately. The selection process ensures that emergencies are chosen based
on their priority, proximity to the available ambulance, and the amount of time they
have been waiting in the queue.
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In most cases, emergencies require transportation to a hospital for specific treat-
ments. Depending on the type of treatment required (i.e., provided by a hub or a spoke
hospital), the closest hospital of the suitable type is selected to provide the necessary
care.

5.2.3 Limitations and Assumptions

The simulator effectively captures the complexity of the system and serves as a suitable
digital-twin (see Section 6.2 for an evaluation of its accuracy). Nevertheless, it is
important to note that it is based on a set of underlying assumptions, including the
notion that each emergency is associated with precisely one code, and that follow-up
calls are not received for all emergencies. Additionally, the simulator does not account
for queues congestions at hospitals’ EDs and omits MHs, since the use of a helicopter
is determined on a case-by-case basis by medical personnel for special circumstances,
such as service to islands, mountain rescues, or situations where a timely response is
of the utmost importance. Moreover, it is worth noticing that the helicopter is always
used with other vehicles to provide support.

5.3 Multi-objective Optimizer

In the DSS we adopt a multi-objective optimization perspective instead of a
single-objective aggregated approach. This way, decision-makers can avoid making
premature commitments regarding the trade-offs between conflicting objectives.

Specifically, the multi-objective optimizer focuses on facilitating an automated
decision process designed to identify an optimal vehicle fleet location and determine
personnel rosters. both day and night shifts. It offers the flexibility to explore different
scenarios. For instance, it enables the optimization of existing vehicle utilization,
uncovering potential areas for enhancement.Additionally, it allows for the examination
of different combinations of vehicle numbers, shifts, or types, facilitating what-if
analysis at a mixed level, incorporating strategic and tactical aspects. For example, it
provides suggestions on where to relocate the vehicles if their number and temporal
availability are increasing or decreasing.

The following information should be provided as input to the optimizer:

Candidate locations: set of possible locations for the vehicles. Each location is
associated with a set of characteristics, i.e., isochrones at different time intervals
that are computed offline.
Vehicles information: vehicles that need to be allocated. One must indicate how
many vehicles of a given type can work in a given shift. It is assumed that the
personnel assigned to each vehicle is available during that shift.
Region description: the region we want to serve is divided into macro-portions,
i.e., municipalities. Each municipality is composed of a set of zones, further char-
acterized by a surface, a population, and therefore a density.

Similarly to the simulator, the optimizer is implemented using C++ for performance
reasons.
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The optimizer relies on Local Search, which is ametaheuristic optimizationmethod
that explores a solution space by iteratively making incremental improvements to an
initial solution. The search starts from an initial solution, and it iteratively searches for
neighboring solutions by applying local modifications. The search is guided by a cost
function and proceeds until a satisfactory solution is found or a termination criterion
is met.

In order to instantiateLocal Search for the optimization problemat handwedescribe
the search space and the initial solution 5.3.1), then we recall the structure of the cost
function (see Section 5.3.2), and we discuss the neighborhood relations (see Section
5.3.3). For the sake of completeness, since our approach is a multi-objective one, we
also describe the multi-objective local search algorithm employed, namely the Pareto
Late Acceptance Hill Climbing (PLAHC) (see Section 5.3.4). While this algorithm
is a general-purpose metaheuristic [13], it has been specifically devised for the multi-
objective optimization problem at hand.
5.3.1 Search Space and Initial Solutions Generation

The search space is represented by a vector for each ambulance type and shift contain-
ing the assigned location for the given vehicle. The vectors are ordered, so to break
symmetries.

The initial solutions are generated at random. However, one may provide the algo-
rithm with a set of known solutions as well (e.g., the current locations).

5.3.2 Cost Function

Asoutlined inSection 4, our approach adopts amulti-objectivemethodology to address
aspects related to both fairness and efficiency. The cost function components are the fair
coverage indicator (Section 4.1), the population and surface coverage (Section 4.2),
and the second ambulance distance (Section 4.3). The efficiency KPIs (namely the
response time, see Section 4.4) will be accounted for as a post-processing phase by
running the simulator on the solutions found by the optimizer.

The observation on the current situation of the vehicles and of the personnel (see
Sections 3.2 and 3.3) shows that the number of resources available during the day is
significantly greater than the number of resources available during the night. Therefore,
it is reasonable to consider the KPIs distinctively for the two situations. Namely, the
cost function components are partitioned in day and night indicators as follows: the
fair coverage indicators are calculated overall, whereas the population coverage, the
surface coverage, and the second ambulance distance are calculated and presented
distinclty for the two shifts.

5.3.3 Neighborhood Relations

Regarding the neighborhood operator, we consider the possibility of changing the
position of one vehicle. More formally, we define the following move:

ChangeAmbulance(CA): given an ambulance i , change its location to l. Thus, the
move CA(i, l) assigns to the ambulance i the new location l. Precondition: l is
different from its previous location.
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5.3.4 Metaheuristic Algorithm

As already mentioned, the search is driven using PLAHC [13], a multi-objective local
search optimization algorithm based on the Late Acceptance Hill Climbing (LAHC)
[10].

Algorithm 1 presents the PLAHC procedure. The parameters for this technique are
the history length Lh (like the original LAHC), and the maximum number of iterations
imax . Solutions are stored in a FIFO queue, which is managed as a circular array of
size Lh . The queue is initialized with Lh random solutions to ensure diversity. To
generate a new candidate solution, a move is applied (line 7) to a solution extracted
from the queue (lines 4 and 16). The candidate solution is firstly compared to the
reference solution (line 8) and secondly to the next solution in the history (line 11),
which allows for a second chance for the candidate solution. If the candidate solution
is not accepted, it is discarded (line 14). The comparison of two solutions is done
using the Pareto non-dominance relation, which is based on a multi-objective cost
function F = (F1, F2, . . . , Fn), where F(s1) ≺P F(s2) if ∃ j ∈ 1, . . . , n : Fj (s1) <

Fj (s2) ∧ Fi (s1) ≤ Fi (s2)∀i �= j .
To enhance the exploration of the search space, a second chance is given to the

candidate solution by comparing it with a possibly differently structured non-recent
solution, similar to the LAHC late acceptance criterion. In this case, the history index is
incremented to bypass an immediate check of the candidate solution, which is intended
to preserve diversity among solutions (line 13).

The stopping condition for the algorithm considers a maximum iteration limit of
1 million and a tolerance for idle iterations below 20% of the current iteration count,
similar to the original LAHC algorithm. Additionally, a timeout feature might be
included as an ultimate stopping criterion. When the search is terminated, the history
is scanned to provide only the set of non-dominated solutions.

Algorithm 1 Pseudocode of the PLAHC.
Input: history length Lh , imax

1 i := 0, iidle := 0
2 history := InitializeHistory (Lh )
3 index := 0
4 cur := history[index]
5 while (i < imax or not Stagnation(iidle)) and not timeout do
6 next := history[(index + 1) mod Lh ]
7 cand := Perturbate (cur )
8 if F(cand) ≺P F(cur) then
9 history[index] := cand

10 iidle := 0

11 else if F(cand) ≺P F(next) then
12 history[(index + 1) mod Lh ] := cand
13 index := (index + 1) mod Lh iidle := 0

14 else
15 iidle := iidle + 1

16 cur := next
17 index := (index + 1) mod Lh
18 i := i + 1

19 return ExtractParetoFront(history)
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5.3.5 Limitations and Assumptions

The optimizer operates on a set of underlying assumptions. The MHs are excluded
for the reasons previously detailed in Section 5.2.3. Additionally, the optimizer relies
on the relationship between population and the number of cases, thus it is recom-
mended that the results of the optimizer be validated through simulation to obtain a
comprehensive understanding of the system. During the optimization process, a small
perturbation is utilized as even a minor change to a single ambulance can have a
significant impact on the system.

Moreover, each station is assumed to have an infinite capacity, therefore more than
one ambulance can be located at a given place. This assumption holds for stations at
hospitals. However, for stations located in rural or mountain zones, the arrangement
of multiple ambulances at a single station is practically discouraged because of the
KPIs related to coverage and equity.

Because of organization requirements, the ambulance shifts are not modified by the
optimizer, but only the location of the vehicles as described above.

6 Validation of the system

In this section, we report a validation of the system to guarantee that the entire system
adheres to real-world scenarios and use cases.

One of the key objectives is to verify that the simulator accurately reflects real-world
procedures. This is important to ensure that the simulation results are reliable and can
be used to make informed decisions. Additionally, the simulation results should be
obtained in a reasonable amount of time. Another important objective is to ensure that
the optimizer can provide different high-quality solutions.

In addition to technical objectives, the validation phase also considers the usefulness
of the developed tools for the decision-maker, which has been evaluated during a
presentation of the system to the EMS executives and practitioners.

In the following, we first illustrate the setup of the experiments (see Section 6.1)
and then we present the results of the analysis of the simulator (see Section 6.2) and
of the optimizer (see Section 6.3). Finally, we briefly report on the presentation of the
system to the EMS stakeholders (see Section 6.4).

6.1 Experimental Setup

To assess the system’s performance, we employ the data concerning emergency calls
received from January 2018 to December 2021 (see Section 3.5 for more details on the
dataset). Because of privacy concerns and the presence of a confidentiality agreement,
the actual dataset from the real world cannot be shared. However, to ensure future
comparability and reproducibility of the research, a collection of anonymized instances
can be accessed at https://github.com/iolab-uniud/easynet.

Throughout all the tests conducted, the scenario maintains the same number of
resources without any changes in comparison to the current situation. Specifically,
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the number of ambulances and rosters are the same as reported in Table 3. As already
mentioned, this is not limitative and scenarioswith different resources can be evaluated
by changing the input files through the dashboard. Nevertheless, our purpose here is
to perform a comparison of the current resource allocation situation.

As for the simulator analysis, the location of the ambulances is also kept unchanged
whereas for the optimizer we assess the case of a user that employs the DSS to
automatically relocate the ambulances (i.e., the same number of vehicles and the
shift configuration). MCs are not considered in the optimization setup due to the
requirement for a doctor to operate them. Therefore, we assume that their location is
already fixed (usually at one of the hospitals or points of primary care). However, their
usage is considered in the simulations.

The other data are as follows: we consider the 215 FVG municipalities and the
census subdivision [30] as the zones. The ambulance candidate locations correspond
to the town halls of the municipalities. We consider two shifts: a day and a night one.
All-day shifts are accounted twice, both as a day and a night shift. The data is prepared
by a static preprocessing phase, therefore the system can be easily customized to other
regions.

The C++ code of the simulator and the optimizer are compiled with Clang 14 at
the O3 optimization level. The computational experiments are conducted on an Apple
MacBook Pro 14" 2021 with an Apple M1 Pro processor and 32GB of RAM. Each
experiment is run on a single core.

6.2 Simulator Analysis

The first purpose of this analysis is to check to what extent the simulator adheres
to reality. Thus, we compare the simulated times for serving the emergencies of the
whole dataset with their real response times. Both the standard dispatching and the
non-urgent preemption dispatching strategies are considered. Figure 13 reports, for
each urgency code, the curves of cumulative frequency of the response times. These
curves show on the y-axis the ratio of total emergencies that are served within the
number of minutes indicated in the x-axis. In the plots, the x value corresponding to
the 18 minutes threshold is highlighted by a vertical line.

The outcomes reveal a significant alignment between the curve of real values and the
simulation executed with the non-urgent preemption dispatching method, particularly
for urgency codes red, yellow, and white. While there is a minor deviation from real
values in the case of green urgency codes, it is insignificant for our purposes as the
decision-maker’s focus is on the realistic processing of higher-priority emergencies.

The second experiment aims at measuring the computational times needed for
running the simulation. Indeed, it is very important that the simulation will run as
quickly as possible to provide a fast response to the decision-maker.

We run the simulator on a set of random instances of different sizes (i.e., from
7 to 365 days) considering the two dispatching policies and repeating each test five
times with different random seeds. The total number of experiments is 5 [runs] × 11
[temporal horizons] × 2 [dispatching policies] = 110 tests.
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Fig. 13 Comparison of the frequency of the response times (in minutes) between real-world response times
and simulated ones considering the four urgency codes. Simulations are run in two dispatching modes (i.e.,
with or without preemption). The 18 minutes threshold is highlighted

The running times of the simulations are shown in Fig. 14 which reports the median
and the range of variation of the simulation running times (y-axis) for different time
horizons (x-axis).

The evidence shows that the times scale almost linearly and that one year of
emergencies can be simulated in less than 10 minutes. As might be expected, the
management of the non-urgent emergency preemption will require more time than the
simpler direct dispatching policy, but the overhead is not that high.

Summarizing the results of this experiment, the simulator provides decision-makers
with the opportunity to rapidly and accurately evaluate diverse alternative scenarios
under varying stress conditions within a quick simulation timeframe. This capability
enables efficient testing and analysis of different strategies in a longer-term simulation
horizon.

6.3 Optimizer

In this analysis, similarly to the previous setting, we use the optimizer for determining
new ambulance locations on the basis of the current resources.
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Fig. 14 Comparison of the running times (inminutes) of the simulations considering different time horizons
(in days) and differentiating between two dispatching modes (i.e., with or without preemption.)

We run the PLAHC algorithm starting from a pool of random initial solutions. The
history length is set at 20 solutions and we fix the maximum number of iterations at
1,000,000.

The results of the algorithm report a Pareto front that comprises 19 different con-
figurations. Each of them improves all the KPIs with respect to the current ambulance
location, leading to the conclusion that a better displacement of the ambulance is
possible.

Figure 15 reports an example of results retrieved from the optimizer as shown in
the dashboard. In particular, the radar chart shows the cost function components (on a
normalized scale). From the dashboard, it is possible to highlight the results of some
selected configurations just by clicking on them (e.g., in this case the user selected
configuration n. 7).

For instance, the example reported in the figure shows that the highlighted solution
enhances all the components compared to the current as is state6. The population and
surface coverage expands in this solution both for the day and the night shift. The
fair coverage also improves, as indicated by a value of the Gini index closer to 0.
Observing the second ambulance indicator, the KPI is highly improved for the day
shift and slightly improved for the night shift.

This tool supports the decision maker to quickly compute different solutions and
compare them in a meaningful way. These solutions can then be utilized as scenarios
for subsequent simulation analysis, allowing for validation and further evaluation.

6 We notice that the population and surface coverage components have to be maximized, whereas the
remaining ones have to be minimized.
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Second ambulance day

Second ambulance night
Fair coverage

Population coverage day

Population coverage night

Surface coverage day
Surface coverage night

0 0.2
0.4
0.6
0.8
1

Current configuration

Optimized configuration 7

Fig. 15 Example of results retrieved from the optimizer. The comparison is among the current configuration
and one improved configuration generated from the optimizer

The dashboard supports the seamless integration of the optimization and the sim-
ulation processes so that also the response times are provided to the decision maker
(see Fig. 11b for an example).

6.4 Validation with the Stakeholders

At the end of the development of the DSS, a crucial step involved presenting the tool
and the validated results presented in the previous sections to key stakeholders. The
individuals involved in this presentation included the Chief Medical Officer of the
FVG Regional Healthcare Agency, the Director of the EMS system, and the Manager
of the Central Dispatching Center of the EMS.

The stakeholders were provided with a comprehensive overview of the DSS, high-
lighting its functionalities and the successful validation process, as discussed earlier in
this paper. The presentation aimed to demonstrate the DSS’s capabilities in supporting
strategic and tactical decision-making processes.

The stakeholders expressed their appreciation for the work undertaken and eagerly
anticipated the deployment of the DSS. They recognized the significance of having a
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robust decision-making tool to aid in the planning and management of emergencies
and urgencies. With the need to formulate a new regional plan for emergency and
urgency management in the near future, the stakeholders acknowledged the DSS as a
valuable asset that would assist them in making informed decisions at both strategic
and tactical levels.

This positive reception from the stakeholders further emphasized the importance
and the practical relevance of the DSS, paving the way for supporting critical decision-
making processes in the EMS domain.

7 Conclusion

This study proposes a DSS, composed of a set of software tools, providing insights
for Audit and Feedback activities in the EMS context. Differently from existing work,
we focus on a large and heterogeneous region featuring various challenges related to
its landscape and demographic characteristics. These features led to an analysis of
the historical data for driving the design and development of the DSS. In particular,
the main challenges were related to providing a fair and efficient service to the whole
FVG population under the constraints of limited resources.

Through simulations and optimizations using historical data, the DSS has under-
gone validation, demonstrating its accuracy, speed, and effectiveness in generating and
assessing new allocation scenarios. The feedback received from stakeholders regard-
ing this aspect has been highly positive and encouraging.

One of the key strengths of the DSS presented in this paper is the adaptability of the
developed model and simulator. The developed system can be modified to evaluate
the impact of a range of scenarios, allowing decision-makers to explore and fine-
tune their strategies accordingly. This flexibility enables EMS professionals to better
understand the trade-offs between different options, ultimately helping them to make
more informed and effective decisions in the management of EMS resources.

The assumptions and the limitations of each component of the DSS are discussed
in the specific sections. As a general consideration, the DSS presented in this paper
is developed within the Italian context. Consequently, some aspects of the system
are specific to this framework, and its application to other case studies may require
adaptation to local regulations. Nevertheless, the underlying methodologies and tools
can still provide a solid foundation for the development of DSSs tailored to different
needs with a little adaptation effort.

Potential extensions of this work include the integration of modules for providing
more support for decisions at the operational level (e.g., implementation of different
dispatching policies and dynamic relocation).Moreover, the addition of new optimiza-
tion algorithms should be considered, and the optimization model can be enriched,
allowing for the modification of resources (e.g., changing the shifts and dynamically
changing the number of available ambulances). Finally, further KPIs as identified by
the decision makers can be added to the system either for the simulation and/or for
the optimization component.
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Appendix A Definition of the KPIs

A.1 Fair Coverage

We are given a fleet of ambulances located at positions J and operating on M munic-
ipalities. Each municipality m ∈ M is further subdivided into Km census zones. Each
census zone i ∈ Km has a surface ai and a population density di . We denote with K
the union of all zones, i.e., K = ⋃

m∈M Km .
Each candidate ambulance location j ∈ J has an isochrone iso j at w minutes (i.e.,

w =18 minutes as for the aforementioned threshold).
If an ambulance is placed at location j ∈ J , then zone i ∈ K is served by the

ambulance at j considering the intersection of ai and iso j . The population of zone i
covered by the ambulance at j is estimated as:

CoveredPopulationi j = |iso j ∩ ai | · di . (A1)

The amount of population that can be covered by an ambulance at location j ∈ J
is denoted by A j and defined as follows:

A j =
∑

i∈K
CoveredPopulationi j (A2)

Additionally, the share of population of a zone i ∈ K covered by an ambulance
located at j ∈ J can be defined as follows:

CoverageSharei j = CoveredPopulationi j
A j

(A3)

Considering the total population of the region (TotalPopulation = ∑
m∈M pm), in

the ideal situation each ambulance should serve the same amount of population �:

� = TotalPopulation
|J | . (A4)

This means that, in the ideal case, for a given municipality m ∈ M , an expected
number of ambulances γm = 
 pm

�
� would be available.

The coverage Xm of a municipality m ∈ M is measured as the share of service
provided to the population of its zones divided by the ideal share of ambulances that
would be expected according to its population, that is:

Xm =
∑

i∈Km

∑
j∈L CoverageSharei j
γm · pm , (A5)

In order to aggregate these values and measure the equality in their distribution, the
Gini Index assesses the variation of Xm across differentmunicipalities and is computed
as follows:

G =
∑

m1∈M
∑

m2∈M
∣
∣Xm1 − Xm2

∣
∣

2 · n2 X
(A6)
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A.2 Population Coverage and Surface Coverage

We partition the locations of the fleet of ambulances, into the two sets of JA of ALS
ambulances and JB of BLS ones, that is:

J = JA ∪ JB (A7)

The population coverage of an ambulance located at j ∈ J equals the previously
defined A j . The final population coverage indicator accounts distinctly for the services
of ALS and BLS ambulances as follows:

PopulationCoverage =
∑

j∈JA

A j + 0.7 ·
∑

j∈JB

A j (A8)

On the other hand, the surface coverage for an ambulance located in j ∈ J is
computed as follows:

S j =
∑

i∈K
|iso j ∩ ai | (A9)

As for the overall population coverage indicator, the overall surface coverage indicator
accounts distinctly for the two types of ambulances:

SurfaceCoverage =
∑

j∈JA

S j + 0.7 ·
∑

j∈JB

S j (A10)

A.3 Second Ambulance Distance

As for the second ambulance distance, for each zone i ∈ K and an ambulance location
j ∈ J , the road distance δi j between the geographic center of i and j is computed.
For each zone i ∈ K , we define the set �i = {δi j : j ∈ J }. The values in

�i = {di1, di2, . . . , di |J |} are sorted in increasing order and di2 is selected as second
ambulance for zone i .

The KPI refers to the maximum of these values, that is:

SecondAmbulance = max
i∈K di2 (A11)

A.4 Efficiency Measures

Finally, the response time is measured as the time difference between the occurrence
of the emergency call and the arrival at the target.

ResponseTimee = ArrivalAtTargetTimee − CallTimee (A12)

The cumulative distribution of the response times for different urgency codes is
shown to the user.
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32. Jánošíková L, Jankovič P, Kvet M et al (2021) Coverage versus response time objectives in ambulance
location. Int J Health Geographics 20(1):1–16. https://doi.org/10.1186/s12942-021-00285-x

123

https://doi.org/10.1016/j.ejor.2016.07.012
https://doi.org/10.1007/s10479-011-0972-6
https://doi.org/10.1007/s10479-011-0972-6
https://doi.org/10.1007/BF01942293
https://doi.org/10.1007/978-3-031-26504-4_32
https://doi.org/10.1007/978-3-031-26504-4_32
https://doi.org/10.1111/j.1540-5915.1982.tb00159.x
https://doi.org/10.1109/WSC.2018.8632369
https://doi.org/10.1007/s10916-016-0633-z
https://doi.org/10.1007/s10916-016-0633-z
https://doi.org/10.1186/s12913-017-2755-5
https://doi.org/10.1016/j.omega.2017.08.001
https://doi.org/10.1080/24725854.2018.1446105
https://doi.org/10.1080/24725854.2018.1446105
https://doi.org/10.1287/mnsc.40.10.1276
http://www.jstor.org/stable/2223319
http://www.jstor.org/stable/2223319
https://doi.org/10.1016/j.cie.2022.108664
https://doi.org/10.1057/palgrave.jors.2601250
https://doi.org/10.1007/1-4020-8066-2_4
https://doi.org/10.1287/mnsc.32.11.1434
https://www.istat.it/it/archivio/222527
https://doi.org/10.2139/ssrn.3536707
https://doi.org/10.1186/s12942-021-00285-x


Journal of Healthcare Informatics Research

33. Karatas M, Yakıcı E, (2018) An iterative solution approach to a multi-objective facility location prob-
lem. Appl Soft Comput 62:272–287. https://doi.org/10.1016/j.asoc.2017.10.035

34. Karatas M, Yakıcı E, (2021) A multi-objective location analytics model for temporary emergency
service center location decisions in disasters. Decis Analytics J 1. https://doi.org/10.1016/j.dajour.
2021.100004

35. Li X, Zhao Z, ZhuX et al (2011) Coveringmodels and optimization techniques for emergency response
facility location and planning: a review. Math Methods Op Res 74:281–310. https://doi.org/10.1007/
s00186-011-0363-4

36. Licata S, Tullio A, Valent F (2020) Audit and feedback in emergency: a systematic review and an
italian project to investigate and improve quality of care. Emerg Care J 16(3). https://doi.org/10.4081/
ecj.2020.9201

37. Liu Y, Yuan Y, Shen J et al (2021) Emergency response facility location in transportation networks: a
literature review. J Traffic and Transp Eng 8:153–169. https://doi.org/10.1016/j.jtte.2021.03.001

38. Ltd. O (2013) New south wales ambulance: supplying service planning tools. https://www.orhltd.com/
sector/emergency-medical-services/

39. McCormack R, Coates G (2015) A simulation model to enable the optimization of ambulance fleet
allocation and base station location for increased patient survival. Eur J Oper Res 247(1):294–309.
https://doi.org/10.1016/j.ejor.2015.05.040

40. Ministero della Salute (2015) Regolamento recante definizione degli standard qualitativi, strutturali,
tecnologici e quantitativi relativi all’assistenza ospedaliera, 2 aprile 2015, n.70

41. Moon IC, Bae JW, Lee J, et al (2015) EMSSim: emergency medical service simulator with geographic
and medical details. In: Proceedings of the 2015 winter simulation conference, huntington beach, CA,
USA. IEEE Press, pp 1272–1284, https://doi.org/10.1109/WSC.2015.7408252

42. Neira-Rodado D, Escobar-Velasquez J, McClean S (2022) Ambulances deployment problems: cate-
gorization, evolution and dynamic problems review. ISPRS Int J Geo-Inf 11:1–37. https://doi.org/10.
3390/ijgi11020109

43. Olivos C, Caceres H (2022) Multi-objective optimization of ambulance location in Antofagasta. Chile.
Transport 37(3):177–189. https://doi.org/10.3846/transport.2022.17073

44. Regione Autonoma Friuli Venezia Giulia (2015) Piano dell’emergenza urgenza della regione
Friuli Venezia Giulia. Allegato alla Delibera della Giunta Regionale n. 2039 del 16 ottobre
2015. https://www.regione.fvg.it/rafvg/export/sites/default/RAFVG/salute-sociale/sistema-sociale-
sanitario/FOGLIA135/allegati/28122015_Allegato_1DGR_2039-2015.pdf

45. Regione Autonoma Friuli Venezia Giulia (2022) Regione in Cifre 2022. https://www.regione.fvg.
it/rafvg/export/sites/default/RAFVG/GEN/statistica/FOGLIA3/FOGLIA83/allegati/Regione_in_
cifre_2022.pdf

46. Rhodes R (2012) Justice pluralism: resource allocation in medicine and public health. In: Medicine
and social justice: essays on the distribution of health care. Oxford University Press. https://doi.org/
10.1093/acprof:osobl/9780199744206.003.0005

47. Ridler S, Mason AJ, Raith A (2022) A simulation and optimisation package for emergency medical
services. Eur J Oper Res 298(3):1101–1113. https://doi.org/10.1016/j.ejor.2021.07.038

48. Ruslim NM, Ghani NA (2006) An application of the p-median problem with uncertainty in demand in
emergency medical services. In: Proceedings of the 2nd IMT-GT regional conference on mathematics,
statistics and applications. http://math.usm.my/research/OnlineProc/OR06.pdf

49. della Salute M (2023) Monitoraggio dei LEA attraverso il Nuovo Sistema di Garanzia. Tech. Rep.
Relazione NSG 2021. https://www.salute.gov.it/imgs/C_17_pubblicazioni_3329_allegato.pdf

50. Schilling D, Elzinga DJ, Cohon J et al (1979) The team/fleet models for simultaneous facility and
equipment siting. Transp Sci 13(2):163–175

51. Tsai Y, Chang KW, Yiang GT, et al (2018) Demand forecast and multi-objective ambulance allocation.
Int J Pattern Recognit Artif Intell 32(07). https://doi.org/10.1142/S0218001418590115

52. Wang C, Wang Z, Tian Y et al (2022) A dual-population based evolutionary algorithm for multi-
objective location problem under uncertainty of facilities. IEEE Trans Intell Transp Syst 23(7):7692–
7707. https://doi.org/10.1109/TITS.2021.3071786

53. WangL,DemeulemeesterE (2022)Simulation optimization in healthcare resource planning: a literature
review. IISE Trans. https://doi.org/10.1080/24725854.2022.2147606

54. Zaffar MA, Rajagopalan HK, Saydam C et al (2016) Coverage, survivability or response time: a com-
parative study of performance statistics used in ambulance locationmodels via simulation-optimization.
Oper Res Health Care 11:1–12. https://doi.org/10.1016/j.orhc.2016.08.001

123

https://doi.org/10.1016/j.asoc.2017.10.035
https://doi.org/10.1016/j.dajour.2021.100004
https://doi.org/10.1016/j.dajour.2021.100004
https://doi.org/10.1007/s00186-011-0363-4
https://doi.org/10.1007/s00186-011-0363-4
https://doi.org/10.4081/ecj.2020.9201
https://doi.org/10.4081/ecj.2020.9201
https://doi.org/10.1016/j.jtte.2021.03.001
https://www.orhltd.com/sector/emergency-medical-services/
https://www.orhltd.com/sector/emergency-medical-services/
https://doi.org/10.1016/j.ejor.2015.05.040
https://doi.org/10.1109/WSC.2015.7408252
https://doi.org/10.3390/ijgi11020109
https://doi.org/10.3390/ijgi11020109
https://doi.org/10.3846/transport.2022.17073
https://www.regione.fvg.it/rafvg/export/sites/default/RAFVG/salute-sociale/sistema-sociale-sanitario/FOGLIA135/allegati/28122015_Allegato_1DGR_2039-2015.pdf
https://www.regione.fvg.it/rafvg/export/sites/default/RAFVG/salute-sociale/sistema-sociale-sanitario/FOGLIA135/allegati/28122015_Allegato_1DGR_2039-2015.pdf
https://www.regione.fvg.it/rafvg/export/sites/default/RAFVG/GEN/statistica/FOGLIA3/FOGLIA83/allegati/Regione_in_cifre_2022.pdf
https://www.regione.fvg.it/rafvg/export/sites/default/RAFVG/GEN/statistica/FOGLIA3/FOGLIA83/allegati/Regione_in_cifre_2022.pdf
https://www.regione.fvg.it/rafvg/export/sites/default/RAFVG/GEN/statistica/FOGLIA3/FOGLIA83/allegati/Regione_in_cifre_2022.pdf
https://doi.org/10.1093/acprof:osobl/9780199744206.003.0005
https://doi.org/10.1093/acprof:osobl/9780199744206.003.0005
https://doi.org/10.1016/j.ejor.2021.07.038
http://math.usm.my/research/OnlineProc/OR06.pdf
https://www.salute.gov.it/imgs/C_17_pubblicazioni_3329_allegato.pdf
https://doi.org/10.1142/S0218001418590115
https://doi.org/10.1109/TITS.2021.3071786
https://doi.org/10.1080/24725854.2022.2147606
https://doi.org/10.1016/j.orhc.2016.08.001


Journal of Healthcare Informatics Research

55. Zhu Z, McKnew MA (1993) A goal programming workload balancing optimization model for ambu-
lance allocation: an application to Shanghai, P.R. China. Socioecon Plann Sci 27(2):137–148. https://
doi.org/10.1016/0038-0121(93)90014-A

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Francesca Da Ros1,2 · Luca Di Gaspero1,3 · Kevin Roitero2 · David La
Barbera2 · Stefano Mizzaro2 · Vincenzo Della Mea2 ·
Francesca Valent4 · Laura Deroma4

Luca Di Gaspero
luca.digaspero@uniud.it

Kevin Roitero
kevin.roitero@uniud.it

David La Barbera
david.labarbera@uniud.it

Stefano Mizzaro
stefano.mizzaro@uniud.it

Vincenzo Della Mea
vincenzo.dellamea@uniud.it

Francesca Valent
francesca.valent@asufc.sanita.fvg.it

Laura Deroma
laura.deroma@asufc.sanita.fvg.it

1 Intelligent Optimization Laboratory, Universitá degli Studi di Udine, Udine, Italy

2 DMIF, Universitá degli Studi di Udine, via delle Scienze 206, Udine I-33100, Italy

3 DPIA, Universitá degli Studi di Udine, via delle Scienze 206, Udine I-33100, Italy

4 Public Health and Hygiene, Azienda Ospedaliera Universitaria del Friuli Centrale, via
Chiusaforte 2, Udine I-33100, Italy

123

https://doi.org/10.1016/0038-0121(93)90014-A
https://doi.org/10.1016/0038-0121(93)90014-A
http://orcid.org/0000-0001-7026-4165
http://orcid.org/0000-0003-0299-6086
http://orcid.org/0000-0002-9191-3280
http://orcid.org/0000-0002-8215-5502
http://orcid.org/0000-0002-2852-168X
http://orcid.org/0000-0002-0144-3802
http://orcid.org/0000-0002-4071-0897
http://orcid.org/0000-0003-1483-7533

	Supporting Fair and Efficient Emergency Medical Services  in a Large Heterogeneous Region
	Abstract
	1 Introduction
	2 Related Work
	2.1 The Emergency Vehicles Location Problem
	2.2 Modeling Fairness
	2.3 Multi-Objective Approaches
	2.4 Simulation Models

	3 The Emergency Medical Service Context
	3.1 Geography and Demography
	3.2 Vehicles
	3.3 Personnel
	3.4 Hospitals
	3.5 Emergencies
	3.6 Emergency Medical Service Processes

	4 Emergency Medical Service Key Performance Indicators
	4.1 Fair Coverage
	4.2 Population Coverage and Surface Coverage
	4.3 Second Ambulance Distance
	4.4 Efficiency Measures

	5 Decision Support System Architecture
	5.1 Dashboard
	5.2 Simulator
	5.2.1 Entities
	5.2.2 Procedures and Decision Protocols
	5.2.3 Limitations and Assumptions

	5.3 Multi-objective Optimizer
	5.3.1 Search Space and Initial Solutions Generation
	5.3.2 Cost Function
	5.3.3 Neighborhood Relations
	5.3.4 Metaheuristic Algorithm
	5.3.5 Limitations and Assumptions


	6 Validation of the system
	6.1 Experimental Setup
	6.2 Simulator Analysis
	6.3 Optimizer
	6.4 Validation with the Stakeholders

	7 Conclusion
	Appendix A Definition of the KPIs
	A.1 Fair Coverage
	A.2 Population Coverage and Surface Coverage
	A.3 Second Ambulance Distance
	A.4 Efficiency Measures

	Acknowledgments
	References


