Skip to main content
Log in

Cu2+-Assisted Synthesis of Au@AgI Core/Shell Nanorods via In Situ Oxidation of Iodide: A Strategy for Colorimetric Iodide Sensing

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Colorimetric nanoprobes are frequently employed to construct sensitive sensors via various strategies. In this work, a novel strategy for simple and ultrasensitive sensing of iodide (I) was constructed based on Cu2+-assisted generation of Au@AgI core/shell nanorods (NRs), by etching silver-coated gold nanorods (Ag@Au NRs). Ag@Au NRs were first prepared and characterized with UV–visible spectroscopy, transmission electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy before and after iodide treatment. The mechanism of detection was based on the generation of AgI shells via etching Ag shells by I2, which was produced from the oxidation of I with Cu2+, resulting in the peak shift of localized surface plasmon resonance (LSPR) while the color changed from green, blue to light-violet. The red-shift of the longitudinal LSPR peak had a linear relationship with I concentration in the range of 0–50 μmol/L with a correlation coefficient of 0.982. Furthermore, the proposed method was used for the quantitative detection of I in real samples and outstanding recoveries in the range of 91–106% with relative standard deviations lower than 2.5% were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Zimmermann MB. The role of iodine in human growth and development. Semin Cell Dev Biol. 2011;22:645–52.

    Article  CAS  PubMed  Google Scholar 

  2. Gilfedder BS, Althoff F, Petri M, Biester H. A thermo extraction–UV/Vis spectrophotometric method for total iodine quantification in soils and sediments. Anal Bioanal Chem. 2007;389:2323–9.

    Article  CAS  PubMed  Google Scholar 

  3. Yang H, Liu W, Li B, Zhang H, Liu X, Chen D. Speciation analysis for iodine in groundwater using high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). Geostand Geoanal Res. 2007;31:345–51.

    Article  CAS  Google Scholar 

  4. Laurberg P, Pedersen IB, Knudsen N, Ovesen L, Andersen S. Environmental iodine intake affects the type of nonmalignant thyroid disease. Thyroid. 2001;11:457–69.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao H, Tian Y, Liu Z, Li X, Feng M, Huang T. correlation between iodine intake and thyroid disorders: a cross-sectional study from the South of China. Biol Trace Elem Res. 2014;162:87–94.

    Article  CAS  PubMed  Google Scholar 

  6. Eastman CJ. Screening for thyroid disease and iodine deficiency. Pathology. 2012;44:153–9.

    Article  CAS  PubMed  Google Scholar 

  7. Trumbo PR. FDA regulations regarding iodine addition to foods and labeling of foods containing added iodine. Am J Clin Nutr. 2016;104:864S-S867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ibupoto ZH, Khun K, Willander M. A selective iodide ion sensor electrode based on functionalized ZnO nanotubes. Sensors. 2013;13:1984–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ito K, Ichihara T, Zhuo H, Kumamoto K, Timerbaev AR, Hirokawa T. Determination of trace iodide in seawater by capillary electrophoresis following transient isotachophoretic preconcentration: Comparison with ion chromatography. Anal Chim Acta. 2003;497:67–74.

    Article  CAS  Google Scholar 

  10. Pienpinijtham P, Han XX, Ekgasit S, Ozaki Y. Highly sensitive and selective determination of iodide and thiocyanate concentrations using surface-enhanced Raman scattering of starch-reduced gold nanoparticles. Anal Chem. 2011;83:3655–62.

    Article  CAS  PubMed  Google Scholar 

  11. Santamaria-Fernandez R, Evans P, Wolff-Briche CSJ, Hearn R. A high accuracy primary ratio method for the determination of iodine in complex matrices by double isotope dilution using MC-ICPMS and 129I spike. J Anal Atom Spectrom. 2006;21:413–21.

    Article  CAS  Google Scholar 

  12. Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev. 2012;112:2739–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qin L, Zeng G, Lai C, Huang D, Xu P, Zhang C, Cheng M, Liu X, Liu S, Li B, Yi H. “Gold rush” in modern science: fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coordin Chem Rev. 2018;359:1–31.

    Article  CAS  Google Scholar 

  14. Peng H, Tang H, Jiang J. Recent progress in gold nanoparticle-based biosensing and cellular imaging. Sci China Chem. 2016;59:783–93.

    Article  CAS  Google Scholar 

  15. Liu J, Jiao L, Cui M, Lin L, Wang X, Zheng Z, Zhang L, Jiang S. A highly sensitive non-aggregation colorimetric sensor for the determination of I based on its catalytic effect on Fe3+ etching gold nanorods. Sensor Actuat B. 2013;188:644–50.

    Article  CAS  Google Scholar 

  16. Liu M, Guyot-Sionnest P. Mechanism of Silver(I)-assisted growth of gold nanorods and bipyramids. J Phys Chem B. 2005;109:22192–200.

    Article  CAS  PubMed  Google Scholar 

  17. Zheng X, Chen Y, Chen Y, Bi N, Qi H, Qin M, Song D, Zhang H, Tian Y. High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering. J Raman Spectrosc. 2012;43(10):1374–80.

    Article  CAS  Google Scholar 

  18. Liz-Marzán LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir. 2006;22:32–41.

    Article  PubMed  Google Scholar 

  19. Li Y, Wang Q, Zhou X, Wen C-Y, Yu J, Han X, Li X, Yan Z, Zeng J. A convenient colorimetric method for sensitive and specific detection of cyanide using Ag@Au core–shell nanoparticles. Sens Actuators B. 2016;228:366–72.

    Article  CAS  Google Scholar 

  20. Chuntonov L, Bar-Sadan M, Houben L, Haran G. Correlating electron tomography and plasmon spectroscopy of single noble metal core–shell nanoparticles. Nano Lett. 2012;12:145–50.

    Article  CAS  PubMed  Google Scholar 

  21. Ma Y, Li W, Cho EC, Li Z, Yu T, Zeng J, Xie Z, Xia Y. Au@Ag core−shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS Nano. 2010;4:6725–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeng J, Cao Y, Lu C, Wang X, Wang Q, Wen C, Qu J, Yuan C, Yan Z, Chen X. A colorimetric assay for measuring iodide using Au@Ag core–shell nanoparticles coupled with Cu2+. Anal Chim Acta. 2015;891:269–76.

    Article  CAS  PubMed  Google Scholar 

  23. Sau TK, Murphy CJ. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc. 2004;126:8648–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (21876206 and 21904055) and the Nature Science Foundation of Fujian Province (2021H6033, 2020J05164).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mao-Sheng Zhang or Jing-Bin Zeng.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, ZX., Chen, YZ., Meteku, B.E. et al. Cu2+-Assisted Synthesis of Au@AgI Core/Shell Nanorods via In Situ Oxidation of Iodide: A Strategy for Colorimetric Iodide Sensing. J. Anal. Test. 6, 374–381 (2022). https://doi.org/10.1007/s41664-022-00221-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-022-00221-3

Keywords

Navigation