Skip to main content
Log in

A Simple Colorimetric Procedure for the Determination of Iodine Value of Vegetable Oils Using a Smartphone Camera

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

A smartphone camera-based colorimetric method is developed for the determination of iodine value of vegetable oils. The small amount of Wijs reagent is employed for halogenation of the unsaturated sites of the sample. The rest of unreacted reagent is transformed into iodine, which further reacts with the starch solution to form the blue color complex. The free download smartphone application is used for measuring the blue color intensity. More than one sample can be measured by taking only one photo shot. Under the controlled illuminance, the calibration graph for measuring the iodine values of various vegetable oils is constructed from the dissolved triiodide. The detection and quantitation limits are less than 0.02 and 0.032 mM I2, respectively. This method provides a better determination result of the iodine value compared with the standard titrimetric method. This method is convenient, simple, rapid, inexpensive, and easy operation with few chemical waste products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moonrungsee N, Pencharee S, Jakmunee J. Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil. Talanta. 2015;136(1):204–9. https://doi.org/10.1016/j.talanta.2015.01.024.

    Article  CAS  PubMed  Google Scholar 

  2. Liu W, Zhang D, Tang Y, Wang Y, Yan F, Li Z, Wang J, Zhou HS. Highly sensitive and selective colorimetric detection of cartap residue in agricultural products. Talanta. 2012;101:382–7. https://doi.org/10.1016/j.talanta.2012.09.045.

    Article  CAS  PubMed  Google Scholar 

  3. Li X, Yang F, Wang JXH, Yu HZ. Integrated smartphone-app-chip system for on-site parts-per-billion-level colorimetric quantitation of aflatoxins. Anal Chem. 2017;89(17):8908–16. https://doi.org/10.1021/acs.analchem.7b01379.

    Article  CAS  PubMed  Google Scholar 

  4. Sheng E, Lua Y, Tan Y, Xiao Y, Lia Z, Dai Z. Oxidase-mimicking activity of ultrathin MnO2 nanosheets in a colorimetric assay of chlorothalonil in food samples. Food Chem. 2020;331:127090. https://doi.org/10.1016/j.foodchem.2020.127090.

    Article  CAS  PubMed  Google Scholar 

  5. Salcedo ARM, Sevilla FB III. Colorimetric determination of mercury vapor using smartphone camera-based imaging. Instrum Sci Technol. 2016;46(4):450–62. https://doi.org/10.1080/10739149.2017.1395745.

    Article  CAS  Google Scholar 

  6. Jarujamrus P, Meelapsom R, Pencharee S, Obma A, Amatatongchai M, Ditcharoen N, Chairam S, Tamuang S. Use of a smartphone as a colorimetric analyzer in paper-based devices for sensitive and selective determination of mercury in water samples. Anal Sci. 2018;34(1):75–81. https://doi.org/10.2116/analsci.34.75.

    Article  CAS  PubMed  Google Scholar 

  7. Ren R, Cai G, Yu Z, Zeng Y, Tang D. Metal-polydopamine framework: an innovative signal-generation tag for colorimetric immunoassay. Anal Chem. 2018;90(18):11099–105. https://doi.org/10.1021/acs.analchem.8b03538.

    Article  CAS  PubMed  Google Scholar 

  8. Gao Z, Xu M, Hou L, Chen G, Tang D. Magnetic bead-based reverse colorimetric immunoassay strategy for sensing biomolecules. Anal Chem. 2013;85(14):6945–52. https://doi.org/10.1021/ac401433p.

    Article  CAS  PubMed  Google Scholar 

  9. Ren R, Cai G, Yu Z, Tang D. Glucose-loaded liposomes for amplified colorimetric immunoassay ofstreptomycin based on enzyme-induced iron(II) chelation reactionwith phenanthroline. Sens Actuators B. 2018;265:174–81. https://doi.org/10.1016/j.snb.2018.03.049.

    Article  CAS  Google Scholar 

  10. Chen W, Yao Y, Chen T, Shen W, Tang S, Lee HK. Application of smartphone-based spectroscopy to biosample analysis: a review. Biosens Bioelectron. 2021;172:112788. https://doi.org/10.1016/j.bios.2020.112788.

    Article  CAS  PubMed  Google Scholar 

  11. Fan Y, Zhang L, Jia J, Chen H, Fu H, She Y. Development of a triple channel colorimetric paper sensor array based on quantum dots: A robust tool for process monitoring and quality control of basic liquors of Baijiu. Sens Actuators B Chem. 2020;319:128260. https://doi.org/10.1016/j.snb.2020.128260.

    Article  CAS  Google Scholar 

  12. Oliveira BP, Moriyama LT, Bagnato VS. Colorimetric analysis of cotton textile bleaching through H2O2 activated by UV light. J Braz Chem Soc. 2018;29:1360–5. https://doi.org/10.21577/0103-5053.20170235.

    Article  CAS  Google Scholar 

  13. Lertvachirapaiboon C, Kiyokawa I, Baba A, Shinbo K, Kato K. Colorimetric determination of hydrogen peroxide based on localized surface plasmon resonance of silver nanoprisms using a microchannel chip. Anal Lett. 2019;52(12):1939–50. https://doi.org/10.1080/00032719.2019.1586913.

    Article  CAS  Google Scholar 

  14. Hussain I, Ahamad KU, Nath P. Low-cost, robust and field portable smartphone platform photometric sensor for fluoride level detection in drinking water. Anal Chem. 2017;89(1):767–75. https://doi.org/10.1021/acs.analchem.6b03424.

    Article  CAS  PubMed  Google Scholar 

  15. Lv S, Zhang K, Tang D. A new visual immunoassay for prostate-specific antigen using near-infrared excited CuxS nanocrystals and imaging on a smartphone. Analyst. 2019;144:3716–20. https://doi.org/10.1039/c9an00724e.

    Article  CAS  PubMed  Google Scholar 

  16. Shu J, Qiu Z, Tang D. Self-referenced smartphone imaging for visual screening of H2S using CuxO-polypyrrole conductive aerogel doped with graphene oxide framework. Anal Chem. 2018;90(16):9691–4. https://doi.org/10.1021/acs.analchem.8b03011.

    Article  CAS  PubMed  Google Scholar 

  17. You M, Lin M, Gong Y, Wang S, Li A, Ji L, Zhao H, Ling K, Wen T, Huan Y, Gao D, Ma Q, Wang T, Ma A, Li X, Xu F. Household fluorescent lateral flow strip platform for sensitive and quantitative prognosis of heart failure using dual-color upconversion nanoparticles. ACS Nano. 2017;11(6):6261–70. https://doi.org/10.1021/acsnano.7b02466.

    Article  CAS  PubMed  Google Scholar 

  18. Gong Y, Zheng Y, Jin B, You M, Wang J, Li X, Lin M, Xu F, Li F. A portable and universal upconversion nanoparticle-based lateral flow assay platform for point-of-care testing. Talanta. 2019;201:126–33. https://doi.org/10.1016/j.talanta.2019.03.105.

    Article  CAS  PubMed  Google Scholar 

  19. Moonrungsee N, Pencharee S, Junsomboon J, Jakmunee J, Peamaroon N. A simple colorimetric procedure using a smartphone camera for determination of copper in copper supported silica catalysts. J Anal Chem. 2020;75(2):200–7. https://doi.org/10.1134/S1061934820020136.

    Article  Google Scholar 

  20. Moonrungsee N, Pencharee S, Peamaroon N. Determination of iron in zeolite catalysts by a smartphone camera-based colorimetric analyzer. Instrum Sci Technol. 2016;44(4):401–9. https://doi.org/10.1080/10739149.2015.1137587.

    Article  CAS  Google Scholar 

  21. Moonrungsee N, Peamaroon N, Boonmee A, Suwancharoen S, Jakmunee J. Evaluation of tyrosinase inhibitory activity in Salak (Salacca zalacca) extracts using the digital image-based colorimetric method. Chem Pap. 2018;72:2729–36. https://doi.org/10.1007/s11696-018-0528-1.

    Article  CAS  Google Scholar 

  22. Shimamoto GG, Aricetti JA, Tubino M. A simple, fast, and green titrimetric method for the determination of the iodine value of vegetable oils without Wijs solution (ICl). Food Anal Methods. 2016;9:2479–83. https://doi.org/10.1007/s12161-016-0401-1.

    Article  Google Scholar 

  23. Knothe G. Structure indices in FA chemistry. How relevant is the iodine value? J Am Oil Chem Soc. 2002;79:847–54. https://doi.org/10.1007/s11746-002-0569-4.

    Article  CAS  Google Scholar 

  24. Soars S, Rocha FRP. Fast spectrophotometric determination of iodine value in biodiesel and vegetable oils. J Braz Chem Soc. 2018;29(8):1701–6. https://doi.org/10.21577/0103-5053.20180044.

    Article  CAS  Google Scholar 

  25. Adewale P, Mba O, Dumont MJ, Ngadi M, Cocciardi R. Determination of the iodine value and the free fatty acid content of waste animal fat blends using FT-NIR. Vib Spectrosc. 2014;72:72–8. https://doi.org/10.1016/j.vibspec.2014.02.016.

    Article  CAS  Google Scholar 

  26. Kotoski SP, Srigley CT. Determination of iodine value in hydrogenated oils: comparison of titration and gas chromatography with flame-ionization detection methodologies. Lipids. 2018;53(7):755–63. https://doi.org/10.1002/lipd.12079.

    Article  CAS  PubMed  Google Scholar 

  27. Haryati T, Cheman YB, Ghazali HM, Asbi BA, Buana L. Determination of iodine value of palm oil based on triglyceride composition. J Am Oil Chem Soc. 1998;75(7):789–92. https://doi.org/10.1007/s11746-998-0227-0.

    Article  CAS  Google Scholar 

  28. Sarpal AS, Silva SR, Silva PRM, Monteiro TV, Itacolomy J, Cunha VS, Daroda RJ. Direct method for the determination of the iodine value of biodiesel by quantitative nuclear magnetic resonance (q1H NMR) spectroscopy. Energy Fuel. 2015;29(12):7956–68. https://doi.org/10.1021/acs.energyfuels.5b01462.

    Article  CAS  Google Scholar 

  29. Tubino M, Aricetti JA. A green potentiometric method for the determination of the iodine number of biodiesel. Fuel. 2013;103:1158–63. https://doi.org/10.1016/j.fuel.2012.10.011.

    Article  CAS  Google Scholar 

  30. Soares S, Lima MJA, Rocha FRP. A spot test for iodine value determination in biodiesel based on digital images exploiting a smartphone. Microchem J. 2017;133:195–9. https://doi.org/10.1016/j.microc.2017.03.029.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the research fund of Rambhai Barni Rajabhat University. The authors would like to thank the Faculty of Science and Technology, Rambhai Barni Rajabhat University for partial supported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuntaporn Moonrungsee.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peamaroon, N., Jakmunee, J. & Moonrungsee, N. A Simple Colorimetric Procedure for the Determination of Iodine Value of Vegetable Oils Using a Smartphone Camera. J. Anal. Test. 5, 379–386 (2021). https://doi.org/10.1007/s41664-021-00168-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-021-00168-x

Keywords

Navigation