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Abstract
To ensure the optimum performance of downstream processes in a petrochemical refinery, the operation of a vacuum distil-
lation unit (VDU) is critical. It needs to satisfy the yield and quality requirements of the downstream process. Otherwise, 
it will result in a loss of profitability in the refinery. Hence, it is important to optimise the operation of the VDU to ensure 
optimum performance. Traditionally, VDU is operated within the design envelope, and its operation condition is fine-tuned 
based on the operator’s experience. However, such action does not guarantee the optimum performance of the entire refinery 
as it only considers the operation of VDU without understanding the effects towards downstream processes. Therefore, this 
work presents a framework to optimise VDU operations with consideration of the downstream processes. The framework 
consists of process simulation, surrogate modelling, and multi-objective optimisation. The developed framework aims to 
determine trade-offs between high vacuum gas oil (HVGO) yield and total annualised cost (TAC) of a refinery that considers 
the needs of downstream operations. In this work, crude oil blending ratio, furnace outlet temperature, flash zone temperature, 
column top pressure, column bottom pressure, stripping steam flowrate, HVGO pump-around flowrate, and light vacuum 
gas oil (LVGO) pump-around flowrate of the VDU are to be optimised. Based on the optimised result, the heavy-light crude 
blend achieves higher HVGO yield and lower TAC, and the optimised results were validated with the simulation results via 
Aspen HYSYS. The proposed methodology was proven to have accurate estimations of the VDU operation in the process 
simulation environment. Moreover, the optimised results can provide insight into the optimal process conditions of VDU 
for the refiners. With this insight, effective operating strategies can be developed to overcome the limitations present in real 
VDU operations.

Keywords Vacuum distillation unit (VDU) · Surrogate modelling · Process simulation · Heavy vacuum gas oil · Process 
optimisation

Introduction

Crude oil is a petroleum product composed of hundreds of 
hydrocarbons with water, nitrogen, sulphur, salts, nitrogen-
containing compounds, and some metal complexes (Mittal 
et al. 2011). In the petroleum refining industries, the crude 
distillation unit is the first processing unit in all petroleum 
refineries. Such unit is the most important unit to break and 
separate crude oil into simpler and useful mixtures. How-
ever, the crude distillation unit is energy-intensive as it uses 
up the fuel at the equivalent of 1–2% of the processed crude 
oil in a refinery. Thus, such unit has the highest operating 
costs in a refinery (Gu et al. 2014). Therefore, the retrofit and 
optimisation of crude distillation units received considerable 
research interest to improve the economic performance of 
a refinery.
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Figure 1 shows a typical process flow diagram of a typi-
cal crude distillation unit, processing crude oil. Such unit 
consists of a pre-flash unit, an atmospheric distillation unit, 
and a vacuum distillation unit (VDU). VDU is part of a 
typical refinery process that helps to further recover the 
higher boiling gas oil from the atmospheric residue of an 
atmospheric distillation unit. As its name implies, VDU 
operates under vacuum conditions (i.e. below atmospheric 
pressure). At such low pressure, the boiling point of the feed 
of VDU is low enough to break down the products without 
cracking or degrading the crude oil (Treese et al. 2020). The 
major products of the VDU include light vacuum gas oil 
(LVGO) and heavy vacuum gas oil (HVGO). In VDU, sepa-
rating atmospheric residue into products involves complex 
relationships between input and output variables. The input 
variables refer to the feedstock properties and the operating 
conditions of the VDU. Meanwhile, the output variables 
of VDU are product flowrate, product quality, and plant 
profit. However, it is challenging to define and maintain an 
optimal operating condition owing to the complex relation-
ships between the input and output variables of VDU (Liau 
et al. 2004).

In the last decade, the diversification of crude slate and 
fluctuations in crude oil prices have pushed refiners to seek 
opportunities to produce mixtures of crude oils (Huang et al. 
2017). To accommodate such variation in crude oil proper-
ties, the operating conditions of VDU need to be adjusted 
from time to time to ensure product quality and reduce the 
disruption to the downstream processes. Note that such 

adjustments will consequently impact the product yield and 
quality. This is critical because the products of VDU serve 
as the feedstock to the downstream process units, such as 
hydrocrackers, fluid catalytic crackers, or lube oil facilities 
(Martin and Nigg 2001). If the product yield or product qual-
ity specifications cannot meet downstream requirements, 
the refinery will experience output disruptions. Such inci-
dents may also cause an unplanned shutdown of the units 
and eventually incur a financial loss in the refinery. Hence, 
these consequences raise the need to develop a systematic 
optimisation method for determining the blending ratio of 
different kinds of crude oil and the optimal operating condi-
tions of the VDU. With such method, the operation of VDU 
can maintain high production throughput and satisfactory 
product quality and sustain the economic performance of 
the refinery. In the past, several studies have been performed 
to optimise distillation systems. The following sub-sections 
discuss the methods used in these studies, highlight the gaps 
in research, and present the novelty of this work.

Literature Review

Mathematical Programming in Distillation Systems

Mathematical programming has been widely applied to opti-
mise crude distillation units (Pintarič and Kravanja 2006; 
Seo et al. 2000; Basak et al. 2002; Gu et al. 2015; Inamdar 
et al. 2004; Al-mayyahi et al. 2011; Foo et al. 2017; More 

(VDU)

Fig. 1  Process flow diagram of a typical crude distillation unit
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et al. 2010). Past studies have used mathematical program-
ming to determine the optimal solutions for distillation sys-
tems expressed and modelled as mathematical Eqs. 7. For 
instance, Seo et al. (2000) developed mixed-integer nonlin-
ear programming model to determine crude distillation unit’s 
optimal feed location and operating conditions. With that, 
the proposed framework reduced the operating and capital 
costs of the existing crude distillation unit by 86%. Next, a 
nonlinear, steady-state crude distillation unit was developed 
by Basak et al. (2002) to maximise the net profit while sat-
isfying the product properties. Gu et al. (2015) combined 
exergy analysis and mathematical programming for the 
energy optimisation of the multi-stage crude oil distillation 
units, which were able to reduce 2.79% in energy consump-
tion. However, distillation units have multiple criteria and 
requirements that need to be addressed simultaneously.

In response to this, multi-objective models were devel-
oped. For example, Inamdar et al. (2004) introduced elit-
ist nondominated sorting genetic algorithms to address 
the multi-objective optimisation of the crude distillation 
systems. Besides, Huang et al. (2017) employed a multi-
objective optimisation model to investigate the trade-off 
between economic benefit, furnace energy consumption, 
and carbon dioxide  (CO2) emissions of the crude distilla-
tion unit. Meanwhile, the effect of binary feed composition 
on the crude distillation unit has also been investigated. The 
proposed model provided a set of Pareto-optimal solutions 
that can resolve the limitations of the refinery. Similarly, a 
multiple-objective optimisation approach was developed by 
Al-Mayyahi et al. (2011) to determine the trade-off between 
the  CO2 emissions and operating revenue for different crude 
blends in the crude distillation systems.

Process Simulation in Distillation Systems

On the other hand, several studies have implemented the 
use of established process simulation packages to simulate 
distillation systems. Process simulation packages are soft-
ware capable of designing an operational model for a given 
process and that model is used to predict how that process 
will behave under certain operating conditions (Foo et al. 
2017). Examples of these packages may include (but are not 
limited to) Aspen HYSYS, Aspen Plus, Unisim, and PRO II. 
More et al. (2010) developed a simulation model for a crude 
distillation unit via Aspen Plus to investigate the impact of 
feed composition with the objective function of maximis-
ing the net profit. As reported in More et al. (2010), process 
simulation via Aspen Plus is not a correct approach to opti-
mise the continuous and binary variables, including feed 
location and side stream location, in the crude distillation 
unit. Meanwhile, Ibrahim et al. (2017a) applied a simulation-
optimisation approach simultaneously to design a single-
stage crude distillation system and heat recovery network. 

This approach overcame the complex interactions between 
the units in the crude distillation system. Based on the 
abovementioned literature, some researchers have applied 
mathematical programming techniques to optimise crude 
distillation units. Nevertheless, the complexity and nonlin-
earities associated with the distillation units may restrict the 
use of the mathematical optimisation model. To overcome 
the above limitation, researchers explored surrogate model-
ling techniques in distillation optimisation, particularly for 
the crude distillation units in a refinery.

Surrogate Modelling in Distillation Systems

A surrogate model is a sophisticated analytic model that 
mimics the complex behaviour of the simulation environ-
ment based on the regression of statistical input variables 
and output responses (Loper 2015; Denimal et al. 2016). 
This allows surrogate models to mimic distillation systems 
in a simple and fairly accurate manner. Surrogate modelling 
techniques are employed to capture the relationship between 
the independent X variables and dependent Y variables of 
the distillation system. The independent X variables refer to 
the variables that can be controlled (i.e. crude oil blending 
ratio and operational variables), whereas dependent Y vari-
ables are the variables that are measured and dependent on 
the independent variables (i.e. HVGO yield, pump-around 
cooler flowrate, column diameter). A surrogate model is 
constructed by regressing against a set of statistical data. 
The data is later converted to a fairly representative equation 
that can describe the operation of the distillation system.

López et al. (2009) proposed a nonlinear programming 
algorithm optimisation model with the surrogate model-
ling technique to optimise the crude distillation unit. The 
proposed model maximised the crude distillation system 
profits and determined the optimal operating conditions for 
each atmospheric column. It is worth noting that López et al. 
(2013) then implemented surrogate models in a nonlinear 
programming model to investigate the effect of crude com-
position and operating conditions of the crude distillation 
unit. With the optimisation objective function as maximis-
ing the economic potential, an increase of 13% in profit was 
observed. Besides, Yao and Chu (2012) developed a surro-
gate model with support vector regression and improved the 
design of the experiment method to optimise the operating 
conditions of the atmospheric distillation unit. An increase 
in profitability was reported in the proposed approach. Apart 
from that, a cut-point temperature surrogate modelling tech-
nique was proposed by Gut et al. (2020) to determine the 
product yield and properties of the crude distillation units. 
Surrogate modelling has been applied in other areas, such 
as acid gas removal systems (Chew et al. 2022) and free 
fatty acid removal deodorizers (Tan et al. 2021). Surrogate 
models were proven to have accurate estimations.
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Metaheuristic Optimisation in Distillation Systems

Other than mathematical and surrogate modelling, various 
metaheuristic optimisation methods were also applied in 
optimising the performance of distillation systems. Liau 
et al. (2004) and Motlaghi et al. (2008) developed an arti-
ficial neural network (ANN) model to predict the crude 
oil distillation units’ operating conditions and product 
quality. Liau et al. (2004) used their ANN model to max-
imise the oil production rate. Motlaghi et al. (2008) did 
the same but extended that to minimise the model output 
error. Nevertheless, these approaches offered online opti-
misation results related to the crude oil properties of the 
refiners. Moreover, Ochoa-Estopier et al. (2013) introduced 
an ANN model to represent distillation columns. The pro-
posed model included heat exchanger networks into the 
optimisation framework to determine the optimal operat-
ing conditions that give maximum process economy. After 
that, Ochoa-Estopier and Jobson (2015) implemented the 
ANN to maximise the production throughput while simul-
taneously maximising the net profit of the heat-integrated 
crude oil distillation units. Additionally, Ochoa-Estopier 
et al. (2018) extended their work to determine the factors 
influencing product yields and energy consumption in the 
crude distillation unit. The results demonstrated a signifi-
cant profitability increase of $7.2 million annually. Moreo-
ver, a bootstrap aggregated neural network was employed 
by Osuolale and Zhang (2016) to enhance the reliability 
and accuracy of the ANNs model. This model was used 
to determine the optimal operating conditions of the dis-
tillation columns that maximise exergy efficiency while 
satisfying the product quality specifications. As reported 
in Osuolale and Zhang (2016), there is a 32.4% improve-
ment in exergy efficiency. Ibrahim et al. (2017b) introduced 
the combination of the ANN and support vector machine 
to optimise the crude distillation units’ column configura-
tions and operating conditions. Furthermore, Ibrahim et al. 
(2020) also implemented the ANN with the support vector 
machine technique to design heat-integrated crude oil dis-
tillation units. This proposed model could simultaneously 
process multiple crude feeds and maximise the economic 
potential.

Optimisation Studies on Vacuum Distillation Units 
(VDUs)

Past studies have implemented various methods to optimise 
distillation systems, with crude distillation systems and 
atmospheric distillation units being the central focus. As 
mentioned previously, the performance of VDU is signifi-
cant as it needs to satisfy the feedstock quality and rate target 
of the downstream process units. Therefore, a small num-
ber of researchers have focused on optimising VDUs. With 

the aid of Aspen HYSYS simulation, Mittal et al. (2011) 
developed an optimisation framework for crude oil blending 
and processing with the simultaneous considerations of the 
furnace energy consumption,  CO2 emissions, and economic 
potential of the VDU. Next, Gu et al. (2014) proposed a 
methodology to analyse and evaluate three crude oil vacuum 
distillation processes. The proposed methodology also con-
sidered recovery energy and exergy efficiencies, economic 
potential, and product yield. Consequently, the results pro-
vided insight for engineers to determine a suitable process 
and outlet temperature for the VDU. Interestingly, (Li et al. 
2017) introduced a dividing wall column in a lubricant-type 
VDU to enhance the product yield and quality. The proposed 
configuration showed that the lube cut’s boiling point range 
was reduced significantly, improving the product yield and 
quality.

Research Gaps 

Several critical observations can be noted from the literature 
review above:

• Firstly, previous studies that have considered optimisa-
tion, simulation, and surrogate modelling in distillation 
focus primarily on the crude distillation units (CDUs). 
The operation of VDUs is complex as its total annual-
ised cost (TAC) can be influenced by multiple operating 
parameters. In addition, many of the operating param-
eters affect TAC in a nonlinear manner. This makes it 
challenging to model VDU operations accurately, espe-
cially based on operating conditions, crude blending 
composition, and HVGO yield. Less attention was given 
to optimising the total annualised cost (TAC) in vacuum 
distillation units (VDUs) based on crude blending com-
position, operating conditions, and HVGO yield.

• Aside from this, the relationship between the product 
yield and TAC of VDU has not been studied for crude 
oil blending. When product yield is prioritised, the TAC 
of the VDU might be very high. On the other hand, if 
TAC is the main focus, the product yield will be com-
promised. Hence, a trade-off between product yield and 
TAC is required. Furthermore, refiners have been looking 
for the opportunity to process lower-cost heavy crude oil 
due to operational and feed availability constraints. By 
blending the crude oil, the diversity of crude oil process-
ing as feedstock has increased, which maximises refin-
ers’ profitability. Therefore, crude oil blending must be 
considered in the optimisation of VDUs.

• Another observation that can be drawn from the litera-
ture cited above is that no work has combined process 
simulation tools, surrogate modelling, and mathematical 
programming for VDU optimisation. Process simulation 
tools simulate and provide basic data on distillation sys-
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tems. Nevertheless, many challenges occur in the opti-
misation process using process simulation tools due to 
the high degree of freedom and nonlinearities associ-
ated with the distillation units. As mentioned, a trade-off 
between HVGO yield and TAC is required; however, the 
process simulation tool cannot perform multi-objective 
optimisation. This is because the simulation tool can-
not optimise several variables in one run and perform 
operational pathway selection. Furthermore, the process 
simulation tool does not reflect the optimal solution to 
run a system. It can only give the best possible solution 
based on the decision-makers’ pre-defined scenarios. 
(Lee 2017)

Contribution of This Work

To address the gaps described previously, this work pre-
sents a multi-objective optimisation methodology combin-
ing strengths from process simulation, surrogate model-
ling, and mathematical programming. The surrogate model 
is constructed by regressing against a set of statistical data 
generated from process simulation of a VDU. The data is 
later converted to a fairly representative equation that can 
describe the operation of the VDU. Mathematical program-
ming is then used to analyse and provide the optimal solution 
for the VDU. Therefore, combining the individual strengths 
of these three methods can reveal results that cannot be 
determined when these methods are used separately. Com-
bining these methods is essential for decreasing the overall 
process costs, predicting the process behaviour, improving 
the utilisation of resources, and providing detailed informa-
tion on how the system operates.

Moreover, the proposed methodology is used to investi-
gate the impact of crude blending composition and the oper-
ating conditions of the VDU on the HVGO yield. Besides, 
upon considering the economic profit of refineries, the 
TAC of VDU is further investigated. This study can provide 
economic and operational benefits to the refiners as it can 
overcome the fluctuation of crude oil prices and tighter sup-
ply–demand constraints in the refinery. The objectives of this 
research are as follows:

• To determine the optimal VDU operating performance 
and conditions with maximum HVGO

• To determine the optimal VDU operating performance 
and conditions with minimum TAC 

The remainder of this paper is organised as follows. The 
‘Methodology’ section presents the methodology for opti-
mising VDU based on process simulation, surrogate model-
ling, and mathematical programming. The ‘Case Study’ sec-
tion illustrates the application of the proposed methodology 
in a case study. In the case study, different crude blending 

ratios are compared and analysed to identify the optimal 
crude blending ratio with the corresponding operating condi-
tions that give maximum HVGO yield and minimum TAC. 
The ‘Results and Discussion’ section presents the optimised 
results with the corresponding crude blending ratio and 
operating conditions. The optimised results are then tested in 
the simulation model, and a comparison between these two 
sets of results is discussed. Finally, the conclusion and future 
work are given in the ‘Conclusion and Future Work’ section.

Methodology

Figure 2 shows the research methodology of this work. The 
work can be divided into three primary stages: process simu-
lation, surrogate modelling, and mathematical optimisation.

Referring to Fig. 2, after data collection, Stage 1 of the 
methodology includes crude oil characterisation, crude oil 
blending model, and modelling of rigorous vacuum distil-
lation. The process information of the VDU is generated 
after running the simulation model with different crude 
oil compositions and operating conditions. The gener-
ated process information is used in Stage 2 of the meth-
odology, where VDU surrogate models are constructed. 
The surrogate models are used to capture the relation-
ship between the selected input and output variables for 
the complex VDU operation. In this work, two input 
variables related to crude oil ratio and VDU operating 
conditions and four output variables (i.e. HVGO yield, 
column diameter, HVGO pump-around cooler flowrate, 
and LVGO pump-around cooler flowrate) are chosen for 
the development of surrogate models. These variables 
were chosen as they were identified as key elements that 
influence heavy vacuum gas oil (HVGO) yield and total 
annualised cost (TAC) of the VDU. By performing the 
validation via statistical analysis, the input variables that 
significantly impact the output variables are included 
in the development of surrogate models. In Stage 3, an 
optimisation model is developed to determine the opti-
mum operation conditions based on the objectives, as 
discussed in the ‘Contribution of This Work’ section. 
However, HVGO yield and TAC of VDU are conflicting 
targets. For instance, when HVGO yield is increased, the 
TAC will also increase. This is undesirable as low TAC 
would be preferred. Therefore, a trade-off between HVGO 
yield and TAC of the VDU is required. The implementa-
tion of the multi-objective optimisation model addresses 
this. To ensure the validity of the optimisation model, 
the optimal results (i.e. operating conditions) from the 
model are updated into the process simulation model. If 
the updated conditions in the simulation do not provide 
comparable results, the first step, i.e. data collection, will 
be revisited. Here, the data used as constraints for the 
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process simulation will be checked. If this step is con-
sidered satisfactory, the following steps will be revisited 
for further checking and updates. Finally, the Pareto-
optimal solutions are obtained from the optimisation 
model, which can be used to develop physical insight for 

the decision-makers in determining a preferred solution. 
The above description provides a conceptual framework 
of VDU optimisation, as illustrated in Fig. 3. The follow-
ing sub-sections will provide clear details of the three 
previously mentioned stages.

Fig. 2  Overview of methodology

Fig. 3  Conceptual framework for optimisation of the vacuum distillation unit (VDU)
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Stage 1: Process Simulation

Generally, two types of models can be used to design the 
crude distillation unit: the shortcut model and the rigor-
ous model. A rigorous model can simulate mass balance, 
energy balance, and equilibrium relations for every stage 
of the distillation unit. Therefore, the rigorous model is 
chosen in this research study as it provides more accurate 
predictions. Commercial process simulation software (i.e. 
Aspen HYSYS, Aspen Plus, PRO/II of SimSci-Esscor) is 
commonly used for modelling crude distillation units in 
the refinery. In this work, Aspen HYSYS version 10.0 is 
selected to develop the crude oil blending and rigorous 
distillation models of the VDU. This is because Aspen 
HYSYS contains existing routines specific to solving the 
distillation columns, unlike other software.

Crude Oil Characterisation and Blending

This work considers three crude assays as different 
choices of crude blends. Heavy crude is considered one 
of the crude assays. Meanwhile, higher API gravity crude 
assays, namely light and medium assays, are considered 
for the remaining crudes. As mentioned in the previ-
ous section, crude oil blending plays an important role 
in maximising the refinery’s profitability. Therefore, a 
crude oil blending model is considered to mix the heavy 
crude with other crudes to be processed as feedstock in 
the distillation operation. To do this, the assay data of 
the crude oil is first added to Aspen HYSYS to generate 
the working curves, such as internal true boiling point, 
molecular weight, density, and viscosity curves. Then, a 
set of hypothetical pseudo-components representing each 
crude oil is created from the working curves. By using 
the oil product cut option, different types of crude oil 
are blended in a designated ratio in the oil environment 
of Aspen HYSYS. Once the blending is completed, the 
crude oil is installed in the simulation environment, and 
the rigorous distillation model of the crude distillation 

unit is built and discussed in the ‘Simulation Develop-
ment’ section.

Simulation Development

The crude distillation unit is simulated based on the operat-
ing parameters and column specifications listed in Aspen 
HYSYS version 10, which has been validated (Aspen 2017). 
To perform a reliable simulation model, an appropriate 
thermodynamic fluid package is determined based on the 
composition of the selected crude oil. The simulation model 
of the crude distillation unit included preheating trains, an 
atmospheric distillation unit, and VDU, as shown in Fig. 4.

In this work, the atmospheric distillation unit consisted 
of 50 trays, one total condenser, three side strippers, and 
three pump-arounds. The products of the atmospheric dis-
tillation unit are naphtha, kerosene, diesel, atmospheric gas 
oil, and atmospheric residue. Meanwhile, the atmospheric 
distillation unit’s atmospheric residue is fed into VDU, con-
sisting of 14 trays and two pump-arounds. After that, VDU 
allowed fractionation of the atmospheric residue into off-gas, 
light vacuum gas oil, heavy vacuum gas oil, slop wax, and 
vacuum residue under vacuum pressure. The process infor-
mation of VDU is generated after running different types of 
crude blends in the constructed simulation model.

It is worth noting that the number of stages for the dis-
tillation columns was determined using a series of pro-
cedures. The procedures consist of various levels of sim-
ulation rigour. Firstly, a component splitter was used to 
determine the separation ratios and operating conditions 
required to achieve the required yield. With the removal 
ratios and operating conditions, a shortcut distillation simu-
lation was performed to determine the number of stages 
required to achieve the said yield. The number of stages 
here is then used as input data for the rigorous simulation 
model to establish the baseline performance of the dis-
tillation column. This baseline simulation model is later 
used to develop sampling points for the regression analysis. 
Thus, the number of stages in the column is assumed to 
be fixed. The goal is to evaluate how the operating condi-
tions and yield would impact the column cost (i.e. column 

Fig. 4  Aspen HYSYS simulation layout of the vacuum distillation unit
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diameter, column height, wall thickness, material construc-
tion, installation cost factor). Due to this assumption, the 
results of this presented work would not rely on the number 
of stages. It is also important to add that the scope of this 
study does not perform simulation verification with real 
plant data. This can be identified as a limitation of this 
study and serve as a basis for further improvement.

Stage 2: Surrogate Modelling

In the second stage, the surrogate modelling technique is 
employed to represent the simulation environment of the 
VDU. The surrogate model is built around the data generated 
from the simulation model developed in the ‘Stage 1: Process 
Simulation’ section with a random selection of input vari-
ables and their corresponding bound limits. The sampling 
points are generated by varying the operating parameters 
for the VDU simulation and subsequently noting down the 
outputs. For instance, the pressure is varied between a range 
of values, to determine the corresponding values for strip-
ping steam flowrate, HVGO pump-around flowrate, etc. The 
data is then regressed and converted into equations that can 
be used to represent the operation of the distillation system. 
One advantage of the surrogate model is that it allows a rapid 
calculation of the model output responses by applying equa-
tions to relate the input variables to the output responses. 
Two types of surrogate models have been reported in many 
publications: polynomial response surface equations and 
ANNs. Compared to the response surface method, an ANN 
in the distillation column is more complicated, consists of 
more intensive steps, and requires more investigation for the 
data regression (Ibrahim et al. 2017a). On the other hand, the 
major advantage of the polynomial response surface equa-
tion is that it requires a very short computational time to 
study the relationship between the factors. The behaviour 
between the output responses and the important influencing 
variables can be captured easily using regression analysis 
(Aydar 2018). Besides, the response surface method can pro-
duce a mathematical expression based on the data supplied, 
which can be used mathematically to represent the system’s 
performance. The aforementioned mathematical expression 
can be integrated into a mathematical optimisation model to 
enhance and optimise a process or a system. The integrated 
expression can be used in a mathematical model to obtain 
optimal responses with minimum variance and a small num-
ber of controlled parameters. Such integration allows the 
decision-makers to make more informed decisions about the 
system’s operation. Hence, the polynomial response surface 
equation is selected to be used in this work. A general first-
order polynomial function of a response surface equation is 
expressed in the following form:

where Y represents the dependent variables, X represents 
the independent variables, z is the intercept regression coef-
ficient, ꞵn is the linear term regression coefficient, and N is 
the number of factors.

Due to the complexity and nonlinearity of VDU opera-
tions, the surrogate modelling technique is applied in this 
work to represent the relationship between the input and out-
put responses. The surrogate models of VDU are built based 
on the aforementioned polynomial response surface equation. 
Before constructing VDU surrogate models, the dependent 
and independent variables are determined. In order to achieve 
the objectives of this research study, four dependent variables, 
such as HVGO yield, HVGO pump-around cooler utility flow-
rate, LVGO pump-around cooler utility flowrate, and column 
diameter, are considered. Meanwhile, the crude oil blending 
ratio and operating conditions of VDU are selected as the inde-
pendent variables for all the dependent variables.

Besides, a superstructure is built before the development of 
the surrogate model. A superstructure is a schematic diagram 
representing all of a system’s possible routes. With the aid of 
the superstructure, all the possible operating routes and their 
respective interconnections to obtain the output responses of 
the VDU are determined. In this work, the operating routes 
represented different crude oil blending ratios and operating 
conditions in the VDU, as illustrated in Fig. 5.

As shown, each crude oil stream, c(i.e. heavy, medium, 
light), with a different crude oil blending ratio, Xck , is intro-
duced into the crude oil blending model, k(i.e. heavy-medium, 
medium-light). Then, the crude oil blending model combines 
different crude oil streams in a designated ratio. After blend-
ing, each crude blend is fed into the VDU separately to per-
form fractionation. The VDU’s operating conditions vary 
according to the crude blend composition. As a result, dif-
ferent output variables values are obtained and used for the 
development of the surrogate model. In order to represent the 
crude oil blending model shown in Fig. 2, crude oil mass flow 
calculations are carried out as follows:

where Fav
c

 represents the availability of crude feed and Fc is 
the mass flow crude utilised. Note that Fc is bounded by the 
available amount of crude feed Fav

c
 . Fck indicates the mass 

flowrate of the crude oil with a certain blend ratio, Xck, that 

(1)Y = z +

N
∑

n=1

�nXn

(2)Fav
c

≥ Fc ∀c

(3)Fck = FcXck ∀c∀k

(4)
C
∑

c=1

Fck = FTot
k

∀k
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feeds into the crude oil blending model, while FTot
k

 is the 
total crude flowrate of particular blend (i.e. heavy-medium, 
medium-light).

After the development of the superstructure, the surro-
gate model is constructed to capture the relationship between 
the selected independent variables and dependent variables. 
Each model is a function of the independent variables of 
crude oil blending ratio and operating conditions with its 
respective dependent variable. The polynomial response sur-
face equations of each surrogate model are expressed below, 
which will use the same form as in Eq. (1):

where FHVGO
jk

 is HVGO yield, FHC
jk

 is HVGO pump-around 
cooler utility flowrate, FLC

jk
 is LVGO pump-around cooler 

utility flowrate, and Dcol
jk

 is the column diameter. Besides, Xck 
indicates the crude oil blending ratio, as evaluated in Eqs. 
(2–4). Qjik indicates a set of operating conditions, j , that vary 
based on the crude blend, k . Moreover, i represents each 
operating condition in the particular set of operating condi-
tions such as column temperature, column pressure, strip-
ping steam f lowrate, and pump-around f lowrate 

(5)FHVGO
jk

= bk�k +

C
∑

c=1

�ckXck +

I
∑

i=1

�jikQjik ∀j∀k

(6)FHC
jk

= bk�k +

C
∑

c=1

�ckXck +

I
∑

i=1

�jikQjik ∀j∀k

(7)FLC
jk

= bk�k +

C
∑

c=1

�ckXck +

I
∑

i=1

�jikQjik ∀j∀k

(8)Dcol
jk

= bk�k +
∑C

c=1
�ckXck +

∑I

i=1
�jikQjik ∀j∀k

bk ∈ {0, 1}

�ck, �ck, �ck, �ck are the linear term regression coefficients 
with respect to Xck , whereas �jik, �jik, �jik, �jik are the linear 
term regression coefficients with respect to Qjik . �k,�k, �k,�k 
are the intercept regression coefficients of each polynomial 
response surface equations. Furthermore, the binary variable 
bk is introduced in the equations where the values 0 and 1 
are used to signify the activation or deactivation of the 
parameters in the particular surrogate model. All the poly-
nomial response surface equations from Eqs. (5)–(8) are 
subjected to the bound limits as described below:

where L and U superscripts represent the lower and upper 
bounds of the independent variables, Xck and Qjik , respec-
tively. The bound limits of each independent variable are 
further discussed in the ‘Case Study’ section.

In order to determine the coefficient values that make 
up the response surface equations above, a large number 
of sample points are generated from the simulation model 
developed in the previous stage. The number of sample 
points is determined based on the amount of data available 
for the equipment considered, the amount of data available 
after data pre-processing, and the quality of the regressions 
generated using the available data. In this work, the sam-
ple points are generated by varying the crude oil blending 
ratio and operating conditions of VDU. Statistical analy-
sis software (i.e. JMP, Python) is typically used to regress 
the generated sample points in response surface equations 
(Loper 2015). In this work, JMP version 15.0 is selected to 
regress the response surface equations because it can easily 
assess the data from various sources, allowing users to build 
their model rapidly. Besides, JMP can link the statistical 
data to interactive graphics, which helps the user to explore 
and visualise their data better. After the regression analysis, 

(9)bkX
L
ck

≤ Xck ≤ bkX
U
ck
∀c∀k

(10)bkQ
L
jik

≤ Qjik ≤ bkQ
U
jik
∀j∀i∀k

c = 1

c = 2

c = C

k = 1

k = 2

k = K

j = 1

j = 2

j = J

p = 1

p = 2

p = P

Crude Feed, c Crude Blending Model, k Operating Condition, j Output Variable, p

Fig. 5  Generic superstructure of vacuum distillation unit in the surrogate model development
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validation analysis is carried out to evaluate the accuracy of 
surrogate models. An evaluation of R-square, P-value, and 
leverage plots is considered. The R-square of the equations 
must be greater than 0.90 to indicate a good fit of data, while 
the P-value of each variable must be smaller than 0.05 to 
show a significant impact on the dependent variable. The 
impacts of each independent variable on the dependent 
variables are further identified using the leverage plots. By 
performing the validation analysis, those independent vari-
ables that have a weak impact on the dependent variables 
are excluded from the development of the surrogate models. 
However, it is important to highlight that these models come 
with a certain confidence level. The confidence level of these 
models can be improved through enhancing data sample size 
and performing data cleaning. Finally, the surrogate models 
are built and implemented in the optimisation model, as dis-
cussed in the ‘Stage 3: Mathematical Optimisation’ section.

Stage 3: Mathematical Optimisation 

Many mathematical programming tools are available to 
develop the distillation optimisation model. In this work, 
a commercial optimisation software, LINGO version 18.0 
is used to develop an optimisation model to maximise the 
HVGO yield with the simultaneous consideration of mini-
mising the TAC of the VDU. However, these two objectives 
are contradicting in nature. Therefore, multi-objective opti-
misation is implemented in this work to trade off between 
two conflicting objectives simultaneously. The multi-objec-
tive optimisation model is developed based on the polyno-
mial response surface equations of the surrogate models and 
the superstructure, as discussed in the ‘Process Simulation 
in Distillation Systems’ section. The overall optimisation 
model includes an objective function, decision variables, and 
constraints. In this work, two optimisation objective func-
tions of maximising HVGO yield and minimising TAC are 
investigated simultaneously. The procedures for estimating 
these objectives are evaluated in the ‘Total Annualised Cost 
(TAC)’ section and ‘Heavy Vacuum Gas Oil (HVGO) Yield’ 
section, respectively. On the other hand, the model’s con-
straints are in the form of equality and inequality expressions. 
Meanwhile, the decision variables considered in this work are 
crude blending ratio, furnace outlet temperature, flash zone 
temperature, top column pressure, column bottom pressure, 
stripping steam flowrate, HVGO pump-around flowrate, and 
LVGO pump-around flowrate. These variables are varied to 
achieve an optimal value for the objective functions. With the 
aid of the multi-objective optimisation model, a set of Pareto-
optimal solutions with a different trade-off between HVGO 
yield and TAC is determined. A Pareto-optimal solution is 
a set of nondominated solutions which means an improve-
ment in one objective without losing in another objective is 
not possible (Andiappan 2017). With these Pareto-optimal 

solutions, a greater insight into the optimal process condition 
of the VDU can be provided to the refiners.

Total Annualised Cost (TAC)

The objective function of minimising TAC is shown below:

where

TAC of the vacuum distillation unit is the sum of the 
annualised capital cost (ACC) and operating cost (OC). The 
annualised capital cost is the summation of the installed cost 
of column shell ( SC ) and the installed cost of the trays within 
the distillation column ( TC ), with the multiplication of the 
annualised capital factor ( Crf ). The annualised capital cost 
is expressed as below:

where t is the technology life span and r is the interest rate 
of the return. In this work, the technology life span is set as 
20 years and the interest rate of return is assumed to be 10%.

The installed cost of column shell and installed cost of 
trays within the column are calculated using the following 
correlations, proposed by Towler and Sinnott (Andiappan 
2017):

where

where

In the above equations, as and bs and at and bt are the cost 
coefficients of column shell and tray, respectively; ns and nt are 
the exponent of column shell and tray, respectively; Dcol

jk
 is the 

column diameter; H is the column height; tw
jk

 is the wall thick-
ness; � is the density of material construction; N t is the total 

(11)MinimiseTAC

(12)TAC = ACC + OC

(13)ACC = (SC+TC) × Crf

(14)Crf=
r(1 + r)t

(1 + r)t − 1

(15)SC =

J
∑

j=1

K
∑

k=1

SC
jk

(16)
SC
jk

=
[

as+bs (� × Dcol
jk

× H × tw
jk
× �)n

s
]

× Fs ∀j∀k

(17)TC =

J
∑

j=1

K
∑

k=1

TC
jk

(18)TC
jk

=
[

at + bt(Dcol
jk
)n

t
]

× N t × Ft ∀j∀k
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number of trays of vacuum distillation unit; Fs is the column 
shell installation factor; and Ft is the tray material cost factor.

Dcol
jk

 is determined using the polynomial response surface 
equation of the surrogate model, as stated in Eq. (8). Mean-
while, tw

jk
 can be calculated using a lot of well-published meth-

ods, which is further discussed in the ‘Case Study’ section. 
The values of other fixed parameters are summarised in 
Tables 1 and 2.

Furthermore, the calculation of the operating costs only 
considered the utility cost of pump-around coolers and other 
stream costs that will affect the operating condition of VDU. 
Other operating costs such as crude oil prices, labour cost, 
and transportation cost are not included. The operating cost of 
VDU is calculated using the equation as shown below:

where FHC
jk

 and CHC
jk

 are the utility flowrate and utility cost of 
HVGO pump-around cooler, respectively; FLC

jk
 and CLC

jk
 are 

the utility flowrate and utility cost of LVGO pump-around 
cooler, respectively; QjikCjik are the cost of other important 
streams which are further determined in the ‘Optimisation 
Model Development’ section. FHC

jk
 and FLC

jk
  are determined 

from the polynomial response surface equations of the sur-
rogate model, as stated in Eqs. (6) and (7), respectively.

Heavy Vacuum Gas Oil (HVGO) Yield

The objective function of maximising HVGO yield is 
expressed as

(19)

OC =

J
∑

j=1

K
∑

k=1

FHC
jk

CHC
jk

+

J
∑

j=1

K
∑

k=1

FLC
jk
CLC
jk

+

J
∑

j=1

I
∑

i=1

K
∑

k=1

QjikCjik

(20)Maximise FHVGO,Tot =

J
∑

j=1

K
∑

k=1

FHVGO
jk

FHVGO
jk

 is determined using the polynomial response sur-
face equation of the surrogate model, as stated in Eq. (5). 
This objective function is also subjected to the constraints 
expressed in Eqs. (9)–(10). By solving the objective func-
tion, the maximum HVGO yield, FHVGO,Tot_max of VDU with 
the corresponding optimal crude blending ratio and operat-
ing conditions is determined. Besides, the TAC with respect 
to the maximum HVGO yield is calculated using Eqs. 
(12)–(19), as shown in the ‘Total Annualised Cost (TAC)’ 
section.

Pareto‑Optimal Solutions

As aforementioned, HVGO yield and TAC contradict. 
Hence, the trade-off between HVGO yield and TAC is 
required. This trade-off is determined by introducing the 
second objective function of TAC, as stated in Eq. (11), and 
subjected to the constraint of HVGO yield. The constraint 
of HVGO yield is expressed as below:

where � is the fraction (i.e. 0.90, 0.8, 0.7).
By varying the � in Eq. (21), a set of optimised HVGO 

yield and TAC results are obtained as the Pareto-optimal 
solutions. These Pareto-optimal solutions are used to ana-
lyse the relationship between HVGO yield and TAC which 
develop physical insight for the decision-makers to decide 
upon a preferred solution.

Case Study

In this section, a case study is presented to illustrate the 
methodology that is discussed in the ‘Methodology’ section. 
The case study aims to determine the optimal crude blending 
composition with their respective operating conditions that 
simultaneously give maximum HVGO yield and minimum 
TAC. Three different types of crude oil blending, such as 
heavy-light, heavy-medium, and heavy-medium-light, are 
compared and analysed in this case study. The application 
of the proposed methodology in the case study is explained 
in the following sub-sections.

Development of Simulation Model

The crude assays, namely light crude (33.99 API), medium 
crude (28.79 API), and heavy crude (28.21 API), are 
selected as the feedstock. The properties of each crude oil, 
including the true boiling point data and light end analysis, 
are analysed and presented in Tables 3 and 4, respectively.

(21)FHVGO,Tot
≤ FHVGO,Tot_max × �

Table 1  Fixed parameters used in installed cost calculation of column 
shell

Parameters Values Parameters Values

as 17,000 H (m) 40
bs 79 �(kg/m3) 8000
ns 0.85 Fs 4

Table 2  Fixed parameters used in installed cost calculation of trays

Parameters Values Parameters Values

at 130 N t 14
bt 440 Ft 1.3
nt 1.8
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Based on the generated working curves, a set of hypo-
thetical pseudo-components are created for each crude 
oil. With the aid of the oil product cut option, the selected 
crude oils are blended in different ratios for different types 
of crude blending in the oil environment of Aspen HYSYS. 
After blending, the crude oil is installed in the simulation 
environment. Next, the simulation model of the crude distil-
lation unit is developed based on the operating parameters 
and column specifications listed in Aspen HYSYS version 
10. The listed conditions of this rig column are given in 
Tables 5 and 6, respectively. After comparing with sev-
eral thermodynamic fluid packages, the Peng-Robinson 
equation-of-state is chosen to simulate the crude distilla-
tion model. This is because the Peng-Robinson equation of 
state is the most suitable thermodynamic fluid package to 
predict the selected crude oil’s phase behaviour and volu-
metric properties. The constructed simulation model is then 
used to generate the sampling points for developing sur-
rogate models.

Independent Variables and Process Constraints

The surrogate models are built to represent the relationship 
between VDU’s independent and dependent variables. The 
superstructure is constructed to develop surrogate models, 
as shown in Fig. 6.

This superstructure indicated all the possible operating 
routes and their respective connections in different types 
of crude blending. These operating routes represented the 
independent variables that have significant impacts on the 
dependent variables of VDU. As discussed in the ‘Meth-
odology’ section, HVGO yield, HVGO pump-around 
cooler utility flowrate, LVGO, pump-around cooler utility 

Table 3  Crude oil properties

Light crude Medium crude Heavy crude

Density (lb/ft3) 53.27 55.00 55.2
API gravity (°API) 33.99 28.79 28.21
Light end analysis (wt. %)

  Ethane 0.000 0.000 0.039
  Propane 0.146 0.030 0.284
  i-Butane 0.127 0.089 0.216
  n-Butane 0.702 0.216 0.637
  i-Pentane 0.654 0.403 0.696
  n-Pentane 1.297 0.876 1.245

Table 4  True boiling point data of the selected crude oil

Cumulative 
yield (wt. %)

Temperature (°F)

Light crude Medium crude Heavy crude

0 31 88 27
5 160 180 154
10 236 256 255
20 347 395 400
30 446 504 523
40 545 611 645
50 649 721 770
60 758 840 902
70 876 974 1044
80 1015 1131 1198
90 1205 1328 1381
95 1350 1461 1500

Table 5  Parameters and specifications of the atmospheric distillation 
column

Parameters and specifications Value

Total trays 50
Feed tray 40
Kerosene stripper withdraw, return tray 10, 6
Diesel stripper withdraw, return tray 20, 16
AGO stripper withdraw, return tray 30, 26
Kerosene pump-around withdraw, return tray 10, 7
Diesel pump-around withdraw, return tray 20, 17
AGO pump-around withdraw, return tray 30, 27
Condenser pressure (psig) 4
Top pressure (psig) 12
Bottom pressure (psig) 22
Furnace outlet pressure (psig) 25
Total condenser temperature (°F) 130
Top tray temperature (°F) 250
Bottom tray temperature (°F) 650
Furnace outlet temperature (°F) 635

Table 6  Parameters and specifications of the vacuum distillation col-
umn

Parameters and specifications Value

Total trays 14
Feed tray 12
LVGO withdraw tray 4
HVGO withdraw tray 8
Sop wax withdraw tray 11
LVGO pump-around withdraw, return tray 4, 1
HVGO pump-around withdraw, return tray 8, 5
Top pressure (psig)  − 13.73
Bottom pressure (psig)  − 13.50
Furnace outlet pressure (psig)  − 11.22
Top temperature (°F) 180
Furnace outlet temperature (°F) 760
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flowrate, and column diameter are chosen as the dependent 
variables of the surrogate models. Besides, the develop-
ment of the VDU surrogate model considered the crude 
oil blending ratio and operating conditions as the inde-
pendent variables. Three types of crude oil blending are 
conducted based on different crude blending ratios of light 
crude ( Xlight,k ), medium crude ( Xmedium,k ), and heavy crude 
( Xheavy,k ). The upper and lower bound limits (i.e. XU

jk
 and 

XL
jk

 ) of each crude oil ratio are given in Table 7. The oper-
ating conditions of the case study are varied based on the 

crude blending ratio. Seven input variables related to the 
operating conditions are selected. Those variables are fur-
nace outlet temperature ( TFO ), flash zone temperature 

Fig. 6  Superstructure that indicates all the possible operating routes and their respective connections in each type of crude blending

Table 7  Bounds of each crude ratio

Crude blending ratio, Xjk XL

jk
XU

jk

Light crude ratio 0.2 0.8
Medium crude ratio 0.2 0.8
Heavy crude ratio 0.2 0.8
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( TFZ ), column top pressure ( PT ), column bottom pressure 
( PB ), stripping steam flowrate ( FSS ), HVGO pump-around 
flowrate ( FHPA ), and LVGO pump-around flowrate ( FLPA ). 
Each variable with the respective lower and upper bound 
limits (i.e. QU

jik
 and QL

jik
 ) is summarised in Table 8.

The lower and upper limits of each operating condition 
are determined by performing a literature review. Note that 
the lower and upper limits of HVGO and LVGO pump-
around flowrate are not reported in the literature. Hence, 
case studies are conducted in the simulation model to fine-
tune the HVGO and LVGO pump-around flowrate limits. 
Besides, the process constraints are also determined, as 
given in Table 9. The total crude blending flowrate that is fed 
into the distillation model is held constant at the value speci-
fied in the Aspen HYSYS listed conditions. On the other 
hand, the pressure drop of VDU is fixed at the maximum 
value of 25 mmHg, suggested by  (Treese et al. 2020). In 
order to meet the composition specification of the products, 
ASTM D86 95% cut points for both HVGO and LVGO are 
set as constant. Consequently, the product flowrate of VDU 
is allowed to be varied. After determining the independent 
variables and process constraints, the surrogate models for 
each independent variable are constructed. The development 
of surrogate models is further discussed in the ‘Surrogate 
Model Development’ section.

Surrogate Model Development 

For the development of VDU surrogate models, 654 sets 
of sampling points are generated from the Aspen HYSYS 
simulation model developed in the previous section. For 
each crude oil blending, four polynomial response sur-
face equations are generated based on the abovementioned 
dependent variables. In the case of heavy-light crude, the 
sampling points are generated based on the different ratios of 
the heavy-light crude blends with their respective operating 
conditions. Then, JMP is used to regress the corresponding 
data in the polynomial response surface equations for the 
heavy-light crude blend. The following discussions use one 
of the dependent variables, HVGO yield, as an example.

The regression results of the HVGO yield in the heavy-
light crude blend surrogate model are demonstrated in 
Figs. 7 and 8 and Table 10. Figure 6 provides the regres-
sion coefficients of the crude blending ratio and seven oper-
ating variables calculated by JMP version 15. Log-worth 
value in Fig. 7b is defined as −log10(P - value) . The lower 
the P-value, the higher the log-worth value. The blue line 
in Fig. 7b shows the log-worth value of 2. As log-worth 
value is defined as −log10(P - value) , the blue line is drawn 
at P-value of 0.01, and it serves as the reference line for 
comparison of the significance of different parameters. As 
observed from Fig. 7b, the HVGO pump-around flowrate 
has influenced the HVGO yield the most, as HVGO pump-
around flowrate has the highest log-worth value. This is fol-
lowed by the light crude ratio, LVGO pump-around flowrate, 
etc. On the other hand, it can be observed that heavy crude 
ratio and flash zone temperature have the least but still sig-
nificant impacts on the HVGO yield. Apart from that, Fig. 8 
presents the leverage plots of each independent variable 
which can help to investigate further the effect of each inde-
pendent variable on HVGO yield. The effect is significant at 
the 5% level when the confidence curve (red-coloured line) 
crosses the hypothesis line (blue-coloured horizontal line). 
In contrast, the effect is considered insignificant if the confi-
dence curve does not cross the hypothesis line. As observed, 
the leverage plots suggest that each independent variable 
significantly impacts HVGO yield. Hence, all the selected 
independent variables are included in developing the sur-
rogate model. To further validate the model, the R-square 
of the model must be higher than 0.9. As observed from 
Table 10, the R-square of the HVGO yield surrogate model 
is 0.957, confirming that the model has high accuracy. The 
procedures of the surrogate model development are repeated 

Table 8  Bounds of each 
operating condition

Operating conditions, Qjik QL

jik
QU

jik
References

Furnace outlet temperature (℉) 720 780 (Treese et al. 2020)
Flash zone temperature (℉) 650 750 (Treese et al. 2020)
Top pressure (psig)  − 14.12  − 13.54 Lousdad 2020)
Bottom pressure (psig)  − 13.63  − 13.05 (Treese et al. 2020)
Stripping steam flowrate (lb/h) 15,000 30,000 More et al. 2010)
HVGO pump-around flowrate (barrel/day) 10,000 45,000 -
LVGO pump-around flowrate (barrel/day) 10,000 35,000 -

Table 9  Process constraints

Constraints Specifications

Feedstock (barrel/day) 99,000
Column pressure drop (psig)  − 0.49
LVGO ASTM D86 95% recovery (℉) 915
HVGO ASTM D86 95% recovery (℉) 1050
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for other dependent variables in the heavy-light crude blend, 
as well as the dependent variables for the heavy-medium 
crude blend and heavy-medium-light crude blend. The pol-
ynomial response surface equations with the R-square of 
each dependent variable for all three different types of crude 
blending are summarised in Table 11. The constructed surro-
gate models are then integrated into the optimisation model.

Optimisation Model Development

In this section, a multi-objective optimisation model of VDU 
is formulated using LINGO version 18.0 to determine the 
trade-off between HVGO yield and TAC. The optimisation 
work of the VDU has led to mixed-integer nonlinear pro-
gramming containing linear, nonlinear, and integer vari-
ables as well as constraints. The model had a total of 169 
variables, 12 nonlinear variables, 3 integer variables, 196 
constraints, and 12 nonlinear constraints. This mixed-integer 
nonlinear programming model aims to maximise the HVGO 
yield while simultaneously considering minimising the 
TAC. Based on the previous surrogate model development, 
four polynomial response surface equations of the surro-
gate model are generated for heavy-light crude blend, heavy 
medium crude blend, and heavy-medium-light crude blend, 
respectively. The HVGO yield surrogate model is integrated 
into the optimisation model to address the objective func-
tion of maximising HVGO yield. Meanwhile, the other 
three surrogate models are incorporated in the optimisation 

model to address the objective function of minimising 
TAC. To achieve the objective functions, all the surrogate 
model equations of the three types of crude blending are 
incorporated in the optimisation model. In this model, two 
stages of optimisation procedures are being considered. This 
includes (a) maximise HVGO yield under varying the crude 
oil blending ratio and operating conditions and (b) minimise 
TAC under varying the crude oil blending ratio and varying 
the operating conditions and constraints on the HVGO yield.

To maximise the HVGO yield of VDU, the objective 
function shown in Eq. (20) is used. For each type of crude 
blending, the FHVGO,Tot is represented by the HVGO yield 
surrogate model equation, as shown in Table 11. As dis-
cussed previously, the surrogate models’ crude oil blending 
ratio and operating variables are subjected to the bound lim-
its. The bound limits of each variable are discussed and 
given in Table 7 and 8, respectively. By solving the objective 
function of maximising HVGO yield, subjected to the con-
straints shown in Eqs. (9) and (10), the optimisation model 
decided the type of crude blending that gives the maximum 
HVGO yield, FHVGO,Tot_max . The corresponding TAC with 
respect to the maximum HVGO yield is calculated based on 
Eqs. (12)–(19). For the capital cost calculation, Dcol

jk
 is rep-

resented by the column diameter surrogate model equations, 
as shown in Table 11. The column wall thickness tw

jk
 is cal-

culated using the equation proposed by Towler and Sinnott 
(2012), as evaluated below:

Fig. 7  Regression results of 
HVGO yield for the heavy-light 
crude blend that is taken from 
JMP. a Parameter estimates of 
each selected independent vari-
able. b Log-worth value of each 
selected independent variable
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Assuming stainless steel is used as the construction mate-
rial of VDU, the maximum allowable stress is 89 N/mm2

. 
Besides, the weld joint efficiency is assumed as 1. The bottom 
pressure is obtained from the optimised results given by the 
model. Meanwhile, the operating cost is calculated based on 

(34)Wall thickness =
Bottom pressure × column diameter

2 × maximum allowable stress × weld joint ef f iciency − 1.2 × bottom pressure

Eq. (19). In this work, the operating cost calculation consid-
ered the cost of stripping steam entering the VDU as well 
as the cooling water cost of HVGO and LVGO pump-around 
coolers. The costs of stripping steam and cooling water are 
given in Table 12.

After obtaining the maximum HVGO yield, the next step 
is to minimise the TAC. The objective function in Eq. (11) 
is implemented in the optimisation model, subjected to 
the constraints shown in Eq. (21). By varying the fraction 
from 0.9 to 0.2, a set of Pareto-optimal solutions with the 

corresponding optimal crude blending ratio and operating 
conditions are obtained. The results of the optimisation 
model with respect to these two objective functions are fur-
ther discussed in the next section.

Fig. 8  Leverage plots of HVGO yield for the heavy-light crude blend that is taken from JMP

Table 10  Summary of fit of HVGO yield for the heavy-light crude 
that is taken from JMP

Summary of fit Value

R-squared 0.9573
Adjusted R-squared 0.9568
Root mean square error 636.5115
Mean of response 19,630.41
Observations 654
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Results and Discussion

This section presents a set of Pareto-optimal solutions with 
the corresponding crude blending ratio and operating con-
ditions. The Pareto-optimal solutions are then tested in the 
simulation model, and a comparison between these two 
sets of results is discussed. Finally, a sensitivity analysis 

is also performed to investigate the impact of the crude 
blending ratio on HVGO yield and TAC.

Pareto‑Optimal Solutions 

The optimised results of maximising HVGO yield are 
illustrated in Fig. 9. As shown, the crude blending has 
considered a light crude ratio of 0.8 and a heavy crude 
ratio of 0.2. Hence, it can be proven that heavy-light 
crude gives the maximum HVGO yield as compared to the 
other types of crude blending. The impacts of the selected 
crude blending ratio in giving the optimal operating con-
ditions of the VDU are illustrated in Fig. 9 as well. As 
shown, the furnace outlet temperature is 720 ℉, flash zone 

temperature is 750 ℉, top pressure is − 13.54 psig, bottom 
pressure is − 13.05 psig, stripping steam is 15,000 lb/h, 
HVGO pump-around cooler flowrate is 45,000 barrels/day, 
and LVGO pump-around cooler flowrate is 35,000 barrels/
day. By operating the VDU at these operating conditions 
with the designated heavy-light crude blending ratio, the 
VDU produces a maximum HVGO yield of 23,788 bar-
rels/day. The corresponding TAC for the maximum HVGO 
yield is calculated to be around $ 1.75 million.

Furthermore, a set of Pareto-optimal solutions is obtained 
by minimising the TAC, subjected to the constraints of 
HVGO yield. The Pareto-optimal solutions are illustrated 
in Fig. 10. All the possible optimal solutions with a different 
trade-off between HVGO and TAC of VDU are determined 
in the Pareto analysis. The Pareto-optimal solutions shown 
in Fig. 10 represented the maximum achievable amount of 
HVGO yield for a particular value of TAC. The results show 
that the maximum HVGO yield increased with increasing 
the TAC when the heavy-light crude blend was selected as 
feedstock. However, when the heavy-medium crude blend 
is chosen, the maximum amount of HVGO yield decreased 
with increasing the TAC. The Pareto-optimal solutions also 
indicated that the most optimal blending ratio of light crude 
and medium crude to obtain the minimum TAC is 0.8.

Meanwhile, the corresponding crude blending ratio and 
operating conditions for each optimised solution shown in 
the Pareto analysis are summarised in Table 13. As observed, 
by changing the fraction from 0.9 to 0.6, the model indi-
cated that heavy-light crude is the optimal crude blending 
to give the minimum TAC. The TAC decreased as the frac-
tion decreased. However, starting from fraction 0.5 to 0.2, 
it is worth noting that heavy-medium crude blending is the 
optimal crude blending. Besides, TAC increased when the 

Table 11  Polynomial response surface equations of surrogate models in crude blending types 1, 2, and 3

Crude blending type 1: heavy-light crude blend R2

F
HVGO,Tot = 56, 124.8176bk + 1562.0907X

L + 367.5626X
H − 58.3730T

FO + 31.5604T
FZ + 2001.3619P

T − 0.0589F
SS + 0.2460F

HPA + 0.0460F
LPA (22) 0.957

F
HU,Tot = −3, 033, 430.5267bk − 51, 194.6454X

L − 83, 221.2531X
H + 2786.0077

FO + 1747.5366T
FZ + 2.9022F

SS + 134.2356F
HPA − 2.3363F

LPA (23) 0.999
F
LU,Tot = −10, 795, 582.5281bk − 527, 200.2308X

L − 289, 120.2673X
H + 75, 304.2008

FO − 49, 585.7419T
FZ + 25.9577F

SS − 116.0152F
HPA + 9.5706F

LPA (24) 0.993
Dcol,Tot = −114.7533bk − 0.2073XL + 0.0413TFO − 0.0260TFZ − 42.5839PT + 35.0033PB + 0.0001FSS + 0.00001FLPA (25) 0.990
Crude blending type 2: heavy-medium crude blend R2

F
HVGO,Tot = 57, 685.9083b

k
− 1562.0907X

M − 1194.5281X
H − 58.3730T

FO + 31.5604T
FZ + 2001.3619P

T − 0.0589F
SS + 0.2460F

HPA + 0.0460F
LPA (26) 0.978

F
HU,Tot = −3, 084, 624.1721bk + 51, 194.6454X

M − 32, 026.6077X
H + 2786.0077

FO + 1747.5366T
FZ + 2.9022F

SS + 134.2356F
HPA − 2.3363F

LPA (27) 0.999
F
LU,Tot = −11, 322, 782.7589bk + 527, 200.2308X

M − 238, 079.9635X
H + 75, 304.2008

FO − 49, 585.7419T
FZ + 25.9577F

SS − 116.0152F
HPA + 9.5706F

LPA (28) 0.996
Dcol,Tot = −115.2065bk + 0.2130XM + 0.1919TFO − 0.0254TFZ − 42.5770PT + 34.9862PB + 0.0001FSS + 0.00001FLPA (29) 0.990
Crude blending type 3: heavy-medium-light crude blend R2

F
HVGO,Tot = 56, 124.8176b

k
+ 1562.0907X

L + 367.5626X
H − 58.3730T

FO + 31.5604T
FZ + 2001.3619P

T − 0.0589F
SS + 0.2460F

HPA + 0.0460F
LPA (30) 0.957

F
HU,Tot = −3, 033, 430.5267b

k
− 51, 194.6454X

L − 83, 221.2531X
H + 2786.0077

FO + 1747.5366T
FZ + 2.9022F

SS + 134.2356F
HPA − 2.3363F

LPA (31) 0.999
F
LU,Tot = −10, 795, 582.5281b

k
− 527, 200.2308X

L − 289, 120.2673X
H + 75, 304.2008

FO − 49, 585.7419T
FZ + 25.9577F

SS − 116.0152F
HPA + 9.5706F

LPA (32) 0.993
Dcol,Tot = −114.7533bk − 0.2073XL + 0.0413TFO − 0.0260TFZ − 42.5839PT + 35.0033PB + 0.0001FSS + 0.00001FLPA (33) 0.990

Table 12  Utility costs Utility Price ($/tonne)

Stripping 
steam (from 
direct-fired 
boilers)

12

Cooling water 
(from cooling 
towers)

0.01
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fraction is further decreased. Of the seven operating vari-
ables, only HVGO pump-around flowrate showed a signifi-
cant change when the fraction is changed from 0.9 to 0.6. 
However, when the fraction changed from 0.5 to 0.2, HVGO 
pump-around flowrate did not show any significant change 
and remained at the variable’s lowest bound limit. Similarly, 
LVGO pump-around flowrate showed no significant change 
in the Pareto-optimal solutions. Additionally, the furnace 
outlet temperature stayed at the highest bound limit, start-
ing from fraction 0.3. Further improvement on the HVGO 
pump-around flowrate, LVGO pump-around flowrate, and 

furnace outlet temperature can be achieved if the range of 
the bound limits is widened. However, it is important to note 
that the range of the limits has already been set by the VDU 
operational constraints. Therefore, other variables, such as 
stripping steam and flash zone temperature, are varied by 
the optimisation model to satisfy the objective functions.

Comparison Between Simulation and Optimisation 
Model

To validate the accuracy of the optimisation model, the 
Pareto-optimal solutions obtained from the optimisation 
model are tested in the simulation model. By using the 
same optimal crude blending ratio and operating varia-
bles given in Table 13, the deviations between two sets of 
Pareto-optimal solutions are illustrated in Fig. 11.

Based on Fig. 11, crude blending type 1 obtained from 
the optimisation and simulation models had a similar 
trend, and only a small deviation is observed between the 
two sets of results. On the other hand, a big deviation is 
observed between the two sets of results in crude blend-
ing type 2. The ASTM D86 95% cut points of HVGO and 
LVGO were the main reasons that caused the deviation in 
crude blending type 2. As mentioned in the ‘Independent 
Variables and Process Constraints’ section, ASTM D86 
95% cut points of HVGO and LVGO are held constant, so 
the product flowrate can vary. Hence, another comparison 
between the simulated and optimisation results is made 

Fig. 9  Optimised results of maximising HVGO yield

Fig. 10  Pareto-optimal solutions
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by varying the ASTM D86 95% cut points of HVGO. In 
this comparison, the HVGO flowrate is held constant at 
the value obtained from the Pareto-optimal solutions, as 
given in Table 13. The new comparison results are illus-
trated in Fig. 12.

As shown, the deviation between the two sets of results in 
crude blending type 2 is very small, and the trends are very 
similar. However, varying the cut point cannot be done for 
crude blending type 1. This is because the changes in crude 
blending type 1 are very limited as the ASTM D86 95% cut 
point of HVGO has reached the maximum value at the given 
HVGO flowrate. Thus, a small test is then performed further 
to validate the accuracy of crude blending type 1 results, as 
shown in Table 14. By manipulating the operating condi-
tions away from the optimal operating conditions shown in 
the Pareto analysis, the simulation results showed that the 
HVGO yield and TAC were not better than the values given 
in Pareto-optimal solutions. Hence, it can be concluded that 
the optimisation model still provided an optimised result 

even though the result has deviated compared to the results 
given by the simulation model.

Moreover, these optimised results can provide insights 
into the optimal operating conditions of VDU. The insight 
allows the integration of the surrogate-assisted mathemati-
cal optimisation model into large-scale applications in the 
refinery. Doing so can help the refiners develop effective 
strategic planning applications for the VDU operation (Geof-
frion 1976). The developed insight can also help overcome 
the current limitations such as tighter crude demand and 
fluctuation of crude oil prices in the refinery. Apart from 
that, the optimisation model can be used to perform compu-
tational experiments to help avoid costly mistakes in build-
ing pilot-scale plants. In terms of flexibility, the proposed 
surrogate-assisted mathematical optimisation model can be 
extended to other equipment or industries. This can be done 
by incorporating the proposed methodology to develop the 
surrogate models based on the statistical data of the equip-
ment or industry. Then, the next thing is to develop a new 

Table 13  Corresponding results for optimised values shown in Pareto analysis

θ 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

Type of crude blending 1 1 1 1 1 2 2 2 2
Light crude fraction 0.8 0.8 0.8 0.8 0.8 0 0 0 0
Medium crude fraction 0 0 0 0 0 0.8 0.8 0.8 0.8
Heavy crude fraction 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Furnace outlet temperature (℉) 720 720 720 720 720 722 763 780 780
Flash zone temperature (℉) 750 750 750 750 750 750 750 706 650
Top pressure (mmHg)  − 13.54  − 13.54  − 13.54  − 13.54  − 13.54  − 13.92  − 13.92  − 13.92  − 13.92
Bottom pressure (mmHg)  − 13.05  − 13.05  − 13.05  − 13.05  − 13.05  − 13.43  − 13.43  − 13.43  − 13.43
Stripping steam flowrate (lb/h) 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 25,216
HVGO pump-around flowrate (barrel/day) 45,000 40,004 30,335 20,666 10,997 10,000 10,000 10,000 10,000
LVGO pump-around flowrate (barrel/day) 35,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

Fig. 11  Comparison of Pareto-
optimal solutions between 
optimisation model and simula-
tion model
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optimisation model based on the surrogate models of the 
equipment or industry.

Sensitivity Analysis on Crude Oil Blending 

Sensitivity analysis is carried out to analyse the impact of the 
crude oil blending ratio on the HVGO yield and TAC. The 
outcomes of the sensitivity analysis by varying the light and 
medium crude ratio are shown in Figs. 13 and 14, respectively.

As observed, higher HVGO yield and lower TAC of VDU 
are provided by the crude blend containing a higher percent-
age of light crude. It can be concluded that light crude takes 
a dominant role in the crude oil blending process. This is 
because light crude contains more distillate and is easier 
to refine than medium crude. However, light crude tends to 
have a higher price than medium and heavy crude. Based on 
the discussions above, crude oil prices are not considered 
in the operating cost calculations. Thus, Table 15 summa-
rises the prices of the crude blending relevant to the Pareto-
optimal solutions. The prices of the crude blending can help 
to provide further insight for the refiners to decide upon an 
optimal crude oil blending recipe if they are considering the 

Fig. 12  Comparison of results 
between optimisation and simu-
lation models by varying the 
HVGO cut point

Table 14  Tested results to validate the accuracy of crude blending 
type 1 optimised results

θ 1.0

Light crude fraction 0.8
Medium crude fraction 0
Heavy crude fraction 0.2
Furnace outlet temperature (℉) 760
Flash zone temperature (℉) 723
Top pressure (mmHg)  − 13.92
Bottom pressure (mmHg)  − 13.43
Stripping steam flowrate (lb/h) 20,000
HVGO pump-around flowrate (barrel/day) 40,000
LVGO pump-around flowrate (barrel/day) 30,000

Fig. 13  Impact of light crude 
ratio on HVGO yield and the 
total annualised cost of the 
vacuum distillation unit
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prices of crude blending. Meanwhile, the price of each crude 
oil is given in Table 16.

Conclusion and Future Work

In this work, a surrogate-assisted methodology is devel-
oped to capture the relationship between input and output 
responses of the VDU and thus predicted the complex behav-
iour of the VDU. The constructed surrogate models are then 
integrated into the multi-objective mathematical optimisation 
model to determine the trade-off between HVGO yield and 
TAC of VDU. The proposed methodology is implemented 
in a case study where different crude oil blending ratios are 
compared and analysed. As a result, the heavy-light crude 
blend ratio of 0.8 provided the maximum HVGO yield as 
compared to other crude oil blending. The maximum HVGO 
yield was 23,788 barrels/day and its corresponding TAC was 
$1.75 million. A set of Pareto-optimal solutions obtained 
from the optimisation model illustrated the suitable crude 
blending capable of achieving minimum TAC at each tar-
geted HVGO yield. Besides, comparing the results between 
the optimisation and simulation models proved that the 
surrogate-assisted optimisation model can provide accurate 

estimations of the HVGO yield and TAC. Sensitivity analy-
sis on the crude blending composition is performed, and the 
results suggested that light crude is the dominant crude in 
the crude oil blending process. As concluded, the proposed 
model provided a set of Pareto-optimal solutions that can 
provide insight for the decision-makers upon deciding on a 
preferred solution. With this insight, the refiners can easily 
develop strategic planning procedures to tackle the issues 
present in the real VDU operation in the refinery.

In the future, the proposed surrogate-assisted methodology 
can be extended to predict the quality specifications of HVGO. 
Note that HVGO is the feedstock for the downstream process 
units in the refinery; thus, it must meet both the downstream 
units’ yield and quality specification requirements. Similarly, 
the quality specifications of HVGO can be affected by VDU’s 
crude oil composition and operational variables (such as 
overflash flowrate). Hence, the proposed methodology can be 
incorporated to maximise the HVGO yield while satisfying the 
HVGO quality specifications. Additionally, further studies can 
be carried out to analyse the impact of the number of stages for 
the distillation columns on the HVGO yield and TAC. Lastly, 
future work will also focus on using real-time data from the 
refinery to improve the accuracy of the proposed model.

Abbreviations

CDU: Crude distillation unit; HVGO: Heavy vacuum gas oil; 
LVGO: Light vacuum gas oil; TAC : Total annualised cost; 
VDU: Vacuum distillation unit

Indices

c: Index for crude feed; i: Index for the operating condition 
in a particular set of the operating conditions; j: Index for a 

Fig. 14  Impact of medium 
crude ratio on HVGO yield and 
the TAC of the vacuum distilla-
tion unit

Table 15  Crude blending cost 
relevant to the Pareto-optimal 
solutions

θ 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

Crude oil prices ($/barrel) 61.90 61.90 61.90 61.90 61.90 61.57 61.57 61.57 61.57

Table 16  Crude oil prices

Crude oil Price ($/barrel)

Light crude (33.99°API) 62.01
Medium crude (28.79°API) 61.60
Heavy crude (28.21°API) 61.45
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set of operating conditions; k: Index for crude oil blending 
model; p: Index for output variables

Parameters

as , bs: Cost coefficients of column shell; at , bt: Cost coef‑
ficients of tray; Crf: Annualised capital factor; Fs: Column 
shell installation factor; Ft: Tray material cost factor; 
H: Column height; ns: Exponent of column shell; nt: Expo‑
nent of tray; N: Number of factors; N t: Total number of 
trays; r: Interest rate of the return; t: Technology life span; 
z: Intercept regression coefficient; �: Density of material 
construction; �n: Linear term regression coefficient; �ck
: Linear term regression coefficient for Xck in HVGO yield 
surrogate model equation; �ck: Linear term regression 
coefficient for Xck in HVGO pump‑around cooler util‑
ity flowrate surrogate model equation; �ck: Linear term 
regression coefficient for Xck in LVGO pump‑around cooler 
utility flowrate surrogate model equation; �ck: Linear term 
regression coefficient for Xck in column diameter surrogate 
model equation; �jik: Linear term regression coefficients for 
Qjik in HVGO pump‑around cooler utility flowrate surrogate 
model equation; �jik: Linear term regression coefficients for 
Qjik in LVGO pump‑around cooler utility flowrate surrogate 
model equation; �jik: Linear term regression coefficients 
for Qjik in column diameter surrogate model equation; �k

: Intercept regression coefficients in HVGO yield surrogate 
model equation; �k: Intercept regression coefficients in 
HVGO pump‑around cooler utility flowrate surrogate 
model equation; �k: Intercept regression coefficients in 
LVGO pump‑around cooler utility flowrate surrogate model 
equation; �k: Intercept regression coefficients in column 
diameter surrogate model equation

Variables

ACC : Annualised capital cost; bk: Binary variable; Cjik

: Utility cost of operating parameters; CHC
jk

: Utility cost 

of HVGO pump‑around cooler; CLC
jk

: Utility cost of LVGO 

pump‑around cooler; Dcol
jk

: Column diameter; Fck: Flow 

of crude oil into crude oil blending model; Fav
c

: Avail‑
ability of crude feed; FTot

k
: Total crude blend flowrate; 

FHVGO
jk

: HVGO yield; FHVGO,Tot: Total HVGO yield; 

FHVGO,Tot_max: Maximum total HVGO yield; FHC
jk

: HVGO 

pump‑around cooler utility flowrate; FHC,Tot: Total 
HVGO pump‑around cooler utility flowrate; FLC

jk
: LVGO 

pump‑around cooler utility flowrate; FLC,Tot: Total HVGO 
pump‑around cooler utility flowrate; OC: Operating 
cost; Qjik: Operating conditions; SC: Installed cost of 
column shell; tw

jk
: Wall thickness; TC: Installed cost of 

tray; TAC : Total annualised cost; X : Independent 

variable; Xck: Crude oil blending ratio; Y : Dependent 
variable; �: Fraction
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