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Abstract
Two important decisions in supply chains and logistics systems design are the supplier selection and order allocation (SS&OA) 
problem and the vehicle routing problem (VRP). Supply disruption may reduce the capacity of suppliers, and the transportation 
network disruption may decrease the number of vehicles in the fleet and disrupt some routes. Also, increasing environmental regula-
tions and environmental awareness makes companies pay more attention to green supply chain management (GSCM). In this paper, 
we integrate green and resilient supplier selection and order allocation decisions with vehicle routing decisions under disruption. 
We present a multiproduct two-stage risk-averse mixed-integer stochastic linear programming for the green and resilient supplier 
selection and order allocation integrated with vehicle routing (G&RSS&OA-V) problem. We consider resilient strategies before 
disruption, including multiple sourcing, supplier fortification, prepositioned inventory at the protected supplier, and contract with 
third-party logistics providers (3PLs). The objective function is to minimize the total mean-risk cost and the cost of greenhouse 
emissions. We use conditional value at risk (CVaR) as a risk measure to control the risk of worst-case cost. The most significant 
decisions of this model are the strategic decisions of determining the optimal suppliers and the operational decisions of vehicles 
routing under disruption simultaneously. Other decisions include determining which suppliers should be fortified, the amount to be 
transported to the hybrid manufacturing-distribution (HMD) center through the supplier or prepositioned emergency inventory, and 
the amount of lost sales. In order to validate the proposed model and its features, several numerical examples along with sensitivity 
analysis are performed by GAMS software, which shows the efficiency and application of the developed model, and some manage-
rial insights are reported. The results of the sensitivity analysis show that as α increases from 0.1 to 0.9, the mean-CVaR objective 
function cost increases to 13.2%. As λ increases from 0.1 to 0.9, the mean-CVaR objective function cost increases to 35.6%. The 
increase of these two risk factors makes the proposed model more risk-averse. As the expected shortage cost increases by 150%, 
the mean-CVaR objective function cost increases to 36% while the amount of expected shortage decreases by 56%.

Keywords  Supplier selection/order allocation problem · Vehicle routing problem · Green paradigm and greenhouse 
emissions · Fuel consumption · Two-stage stochastic programming · Disruption risk and resilience

Introduction

Natural disasters such as floods, earthquakes, and hurricanes 
and intentional/unintentional human actions such as strikes, 
fires, terrorist attacks, and epidemic/pandemic outbreaks are 

some of the disruptions that may occur in the supply chain 
(Aldrighetti et al. 2021; Azimian et al. 2021). The effects of 
these major disruptions include the incomplete implemen-
tation of companies’ production plans; delays in purchase 
orders; lost sales; inventory shortage; high supply, produc-
tion, and transportation costs; disruption of the transport 
fleet; and disruption of routs. Following the outbreak of the 
coronavirus in 2020, many factories around the world shut 
down. The shutdowns had a major impact on the global sup-
ply chains. Some major automakers faced the threat of a 
shortage of parts. There were also concerns about supplies 
of Apple products as the disruptions continue.
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In today’s competitive market, companies are looking 
to outsource the elements needed in their production plan-
ning. Therefore, the supplier selection and order allocation 
(SS&OA) play an essential role in supply chain manage-
ment. The supplier selection problem is one of the strategic 
decisions that will be made in the long term. The SS&OA 
problem is vulnerable to supply disruption, which leads to a 
reduction or loss of supplier capacity, and among its effects 
are delays in customer orders and a lack of inventory. Vari-
ous resilience strategies have been used to deal with these 
disruptions. Supply chain resilience is the ability of a network 
to withstand disruptions, adaptation, and recovery until cus-
tomer demand is met and performance is guaranteed (Hos-
seini et al. 2019a, b). Multiple sourcing strategies, backup 
supplier, supplier recovery, supplier fortification, and prepo-
sitioned inventory have been reported as effective risk mitiga-
tion strategies in the resilient supply chain (Wang et al. 2022; 
Wofuru-Nyenkeet al. 2022; Esmaeili-Najafabadi et al. 2021).

The vehicle routing problem (VRP) is one of the opera-
tional decisions that will be made in the short term. The pur-
pose of the VRP problem is to find the optimal set of routes 
for the vehicle fleet from one warehouse to a specific set 
of customers to meet customer demand with the objective 
function of minimizing the total cost of transportation, fixed 
cost of vehicles, and other related costs (Hamidi Moghaddam 
et al. 2021). In most vehicle routing problems, all transport 
routes and vehicles are always available and serving custom-
ers. However, once a disruption occurs, the transportation 
network may lose the capacity of the vehicle fleet or a num-
ber of routes may be inactive due to route disruptions, road-
work, quarantine for COVID-19, and heavy traffic. Trans-
portation mitigation strategies can include contracting with 
3PLs, backup vehicles, and various modes of transportation.

Environmental concerns have led to the enactment of 
laws and regulations by the government and international 
institutions. Therefore, companies are required to pay atten-
tion to environmental issues when configuring their supply 
chain network. For example, the use of up-to-date produc-
tion technologies and transportation modes is one of the 
most effective ways to reduce environmental damage, which 
leads to lower greenhouse gas emissions, fuel consumption, 
and pollution, but at a higher cost (Tahmasebi Zadeh and 
Boyer 2021). The green paradigm protects the environment 
by minimizing the environmental wastes/pollution through 
the purchase of green materials from suppliers and green 
production using less-pollutant technologies (Panpatilet al. 
2022). As a result of this increase in global awareness and 
government legislation on environmental impacts, it is nec-
essary to integrate environmental issues into the SS&OA 
problem and VRP. In the green SS&OA problem and green 
VRP, we seek to reduce greenhouse gas (GHG) emissions 
in suppliers and reduce fuel consumption in the delivery of 
goods to customers by vehicles.

Traditionally, strategic decisions are made for the SS&OA 
problem and then operational decisions for the VRP. That is, 
first the major suppliers and order allocation are identified, 
and then routing decisions are made. While in the real world, 
both decisions are made simultaneously. Proactive optimiza-
tion models under disruptions and developing resilient sup-
ply chain network designs can help supply chains and markets 
survive (Aldrighetti et al. 2021). Also, one of the topics of 
interest today is green supply chain management issues and 
environmental concerns. Thus, this paper presents the strategic 
and operational decision-making in a risk-averse, multiproduct 
green and resilient supplier selection and order allocation inte-
grated with vehicle routing (G&RSS&OA-V) problem under 
supplier capacity, transport fleet, and route disruptions (David 
et al. 2022). Resilient strategies are adopted before disruption. 
We adopt multiple sourcing, fortification, and prepositioned 
inventory strategies under supply disruption. We also consider 
a 3PL contracting strategy to provide transportation services 
under the disruption of the transport fleet and route. Hence, we 
propose a new two-stage stochastic programming model for the 
risk-averse decision-maker with the mean-risk objective func-
tion. We use CVaR as a risk measure in optimizing the objec-
tive function, which seeks to minimize the worst-case scenario.

The structure of this paper is as follows. The “Literature 
Review” section prepares a review of the related literature. 
The green and resilient supplier selection and order alloca-
tion integrated with vehicle routing (G&RSS&OA-V) prob-
lem under disruption with formulation, assumptions, and 
limitations is elaborated in the “Model Description” section. 
The “Computational Analysis and Examples” section pre-
sents a computational experiment and sensitivity analysis. 
Finally, the “Conclusion” section states the conclusions and 
future research of this paper.

Literature Review

In this article, we aim to combine supply and transportation 
(vehicles and routs) disruption risk in the G&RSS&OA-V 
problem. Hence, in the following, the related literature is 
reviewed in the two research streams: supplier selection 
and order allocation under disruption and vehicle routing 
problem under disruption. In the scope of our review, we 
have ignored articles that only address the SS&OA and VRP 
without disruption.

Supplier Selection and Order Allocation Under 
Disruption

The SS&OA problem is a complex, multicriteria decision 
problem that deals with selecting the best suppliers and 
assigning orders to the suppliers. Sawik (2011) presented a 
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risk-averse selection of supply portfolio in a make-to-order 
manufacturing strategy under disruption risks by using 
CVaR. Sawik (2013) proposed a risk-neutral, risk-averse, 
and mean-risk resilient supply portfolio under disruption 
with CVaR metric to control the risk of worst-case cost. 
Naqvi and Amin (2021) reviewed the supplier selection 
and order allocation problem in three categories: literature 
reviews, deterministic optimization models, and uncertain 
optimization models.

Torabi et al. (2015) designed the resilient supplier selec-
tion and order allocation problem in response to uncer-
tainties caused by major disruptions and operational risks 
of supply. They used a biobjective two-stage mixed pos-
sibilistic, stochastic programming model to minimize total 
expected cost and maximize a resilience objective. They also 
considered proactive strategies such as suppliers’ business 
continuity plans and fortifying suppliers. Esmaeili-Najafab-
adi et al. (2019) studied a joint supplier selection and order 
allocation problem under disruption risks. They developed 
a mixed-integer nonlinear programming model to minimize 
costs of centralized multiproduct supply chains and used 
two proactive strategies to reduce interruptions, including 
supplier protection and propositioned emergency inventory 
policy. Fattahi et al. (2020) developed a mixed-integer two-
stage stochastic nonlinear programming in supply chain net-
work design under a disrupted distribution center. They set 
a new measure of supply chain resilience as the expected 
amount of the supply chain’s operational cost increase due to 
a disruption event during its recovery period. They reformu-
lated a mixed-integer nonlinear programming model into a 
conic quadratic mixed-integer program that can be solved by 
commercial solvers such as CPLEX. They used the sample 
average approximation method to manage the large number 
of disruption scenarios and also examined the criterion of 
risk-based resilience using CVaR.

Kaur and Singh (2021) presented a multiperiod, multi-
product hybrid supplier selection and order allocation model 
under supply disruption risks and disruptive technologies. 
Suppliers are divided into efficient and inefficient suppliers 
using the DEA method, and efficient suppliers are evalu-
ated and ranked using the FAHP-TOPSIS method, and then 
the risk of noncompliance of each supplier is calculated by 
TOPSIS. Finally, mixed-integer programming is applied to 
minimize the total cost of logistics and the associated dis-
ruption risk. Esmaeili-Najafabadi et al. (2021) proposed a 
mixed-integer nonlinear programming model for risk-averse 
supplier selection and order allocation in the centralized sup-
ply chains under local and regional disruption risks. They 
categorized the suppliers into domestic suppliers and foreign 
suppliers. Finally, they used value-at-risk (VaR) and con-
ditional value-at-risk (CVaR) to analyze the risk aversion 
model. Chen et al. (2022) proposed a mixed-integer linear 
programming model multiperiod and multistage supply 

chain under supply disruption during COVID-19. They used 
product design change considering product life cycle and 
design change time as a proactive strategy.

Fahimnia and Jabbarzadeh (2016) integrated supply chain 
sustainability and resilience and developed a sustainability 
performance scoring method. They designed a stochastic 
multiobjective fuzzy goal programming model under sup-
ply disruption. Hamdan and Cheaitou (2017) suggested a 
dynamic green supplier selection and order allocation with 
quantitative discounts and different supplier availability 
between planning periods. First, the decision-makers used 
fuzzy TOPSIS to assign two preferred suppliers’ weights 
based on traditional and green. Second, top management 
used AHP to determine the weight of importance to each of 
the two criteria. Third, they used a biobjective integer lin-
ear programming model with all-unit quantity discounts to 
maximize order quantity to suppliers and minimize the total 
cost. Zahiri et al. (2017) proposed a multiobjective fuzzy 
possibilistic-stochastic programming model for a sustainable 
and resilient supply chain under uncertainty. Vahidi et al. 
(2018) proposed a sustainable and resilient SS&OA problem 
under operational and disruption risks. The first objective 
function has been developed to maximize the sustainability 
and resilience aspects of selected suppliers, and the second 
objective function aims to minimize the total expected cost 
of the biobjective two-stage possibilistic-stochastic program-
ming model.

Ghomi-Avili et al. (2021) studied inventory-pricing deci-
sions in a competitive green supply chain network design 
problem under supplier and distribution center disruptions. 
They introduced a robust bilevel model integrated by condi-
tional value at risk (CVaR) to maximize the total profit and 
reduce the CO2 emissions. They also used the Stackelberg 
game to model the competition and to show the customer 
response in a price-dependent demand environment with 
fuzzy coefficients for each supply chain. In their model, they 
used the strategy of contracting with reliable suppliers to 
mitigate supply disruption and the sharing strategy to reduce 
distribution center disruption risks. Yavari and Zaker (2020) 
presented biobjective linear programming in a resilient green 
closed-loop supply chain network for perishable products 
under supply and power network disruption. Their first goal 
is to minimize the total network costs, and their second goal 
is to minimize the total network carbon emissions. In order 
to deal with disruptions, they used intermediate facilities, 
lateral transshipment, emergency inventory, capacity expan-
sion, and integrating interdependent networks as resilient 
strategies. Tirkolaee et al. (2020) designed a hybrid fuzzy 
decision-making and sustainable-reliable SS&OA model. 
They used the weighted goal programming method with 
three objective functions to minimize the total cost, maxi-
mize the weighted value of products, and to maximize the 
reliability of the supply chain.
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Nayeri et al. (2021) proposed a multiobjective fuzzy 
robust stochastic model for a sustainable-resilient-respon-
sive supply chain network under supply, manufacturer, and 
distribution center disruption. The purpose of their model 
is to minimize total costs and environmental damages while 
maximizing social impacts, responsiveness, and resilience 
levels. They used node criticality and node complexity as 
resilience measures. Hasani et al. (2021) proposed a robust 
green and resilient multiobjective supply chain optimization 
model under disruption for the global medical equipment 
manufacturing system. The first goal is to maximize the total 
profit. The second goal is to minimize the centralization 
facilities. The third goal is to minimize the CO2 emissions 
from material transport between facilities. They used four 
mitigation strategies such as facility fortification, facility 
dispersion, semifinished products, and multiple sourcing. 
Yavari and Ajalli (2021) designed a biobjective mixed-inte-
ger linear programming model for a green resilient supply 
chain network under disruption risks to minimize total cost 
and carbon emissions. In order to deal with disruptions, 
they applied coalition between suppliers, multiple sourcing, 
emergency inventory, and capacity expansion.

Vehicle Routing Problem Under Disruption

The VRP inherently provides significant savings in trans-
portation costs. The green VRP (GVRP) is also an attractive 
research field that is of interest to many researchers. Lin 
et al. (2014) reviewed GVRP models in energy consumption, 
greenhouse gas emissions, and reverse logistics and classi-
fied them to green VRP, pollution routing problem, and VRP 
in reverse logistics. Moghdani et al. (2021) systematically 
reviewed GVRP in its variants, objective functions, uncer-
tainty, and solution approach.

Ahmadi-Javid and Seddighi (2013) designed a location-
routing problem under disruption. The capacity of each 
producer–distributor and the vehicles are vulnerable. They 
applied the mixed-integer linear programming model to 
minimize the total cost under three risk-measurement poli-
cies: moderate, cautious, and pessimistic. Nasiri et al. (2018) 
proposed an integrated supplier selection and order alloca-
tion problem with vehicle routing and in multi-cross-dock 
supply chain in order to make a suitable trade-off between 
cost and responsiveness. They used mixed-integer linear 
programming to minimize the objective function including 
purchase, shipping, cross-docking, holding, and early/tardy 
delivery penalty costs.

Yavari et al. (2020) presented a location-inventory-rout-
ing problem for perishable products under route disruptions. 
They integrated the location-inventory-routing problem by 
price-sensitive demand, a product with a certain lifetime, 
and disruption in routes. They used a mixed-integer non-
linear programming model to maximize the profits of their 

entire network. Zhong et al. (2020) introduced a risk-averse, 
biobjective mixed-integer nonlinear programming model 
for disaster relief facility location and vehicle routing under 
stochastic demand. Their model included conditional value 
at risk with regret (CVaR-R) as a risk measure. They pro-
posed two goals including CVaR-R of the waiting time and 
the CVaR-R of the network cost. Finally, they solved the 
proposed model by the hybrid genetic algorithm. Dehghan 
et al. (2021) proposed a scenario-based mixed-integer lin-
ear programming model for the capacitated location rout-
ing problem with simultaneous pickup and delivery under 
disrupted depots to minimize the expected cost of the fixed 
location, unfulfilled demand, and variable routing costs. 
They used three tailored metaheuristic algorithms to solve 
the proposed model.

Disruption risks cause customers not to receive their 
goods or services at scheduled times in a VRP problem. This 
causes dissatisfaction and loss of customers and over time 
causes significant financial losses to the transportation net-
work. Therefore, it is absolutely necessary to consider a reli-
able VRP in the transportation network. Zhang et al. (2015) 
developed a reliable location-routing problem under depot 
disruption risks. They also designed a two-stage scenario-
based mixed-integer programming model for the location-
routing problem with the goal of minimizing costs. Then, 
they develop an efficient metaheuristic method to solve their 
proposed problem. Xie et al. (2016) formulated a reliable 
location-routing problem under depot disruption. Disruption 
in the depot makes it impossible to send the vehicle. There-
fore, customers in that depot must be serviced by additional 
vehicles from other backup depots. Finally, they applied 
integer linear programming to minimize the fixed setup cost 
of depots, transportation cost, and the cost of penalties for 
missing services.

Rayat et al. (2017) presented a reliable multiperiod, mul-
tiproduct location-inventory-routing problem under disrup-
tion. They used a biobjective mixed-integer nonlinear pro-
gramming model to minimize the first objective function, 
including the total locating, routing, and inventory costs. 
Their model also minimized the second objective func-
tion, which includes the total failure costs related to dis-
rupted distribution centers. Cheng et al. (2018) studied a 
two-stage robust approach for designing a reliable logistic 
network under supply and transportation disruptions. In the 
first stage, location decisions are made before disruptions 
and recourse decisions are made after the disruptions. They 
solved the proposed model exactly by a column-and-con-
straint-generation algorithm, which works better than the 
Benders decomposition method. Elluru et al. (2019) pro-
posed a resilient location routing model with time windows 
under the disrupted distribution center and route. They used 
proactive and reactive strategies to deal with the disruptions. 
In the proactive strategy, the risk factor of each distribution 
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center is considered before the disruption. The reactive 
strategy identifies the disrupted routes and recalculates the 
distribution routes to minimize the penalty for time win-
dow delays. Then, the proposed model optimizes the facility 
expansion costs, unmet demand costs, and delay costs.

Table 1 classifies more characteristics of the literature in 
the field of the SS&OA problem and VRP under disruption. 
We also discuss the features of our work and demonstrate 
them in the last row of Table 1.

Gap Analysis

Table 1 and the reviewed articles show the gap in the litera-
ture, and we try to fill them. The limitation of most existing 
studies is that most of them consider the SS&OA problem 
and VRP separately. They assume that supply facilities and 
transportation networks are always reliable and available. 
They also do not care about green goals like minimizing 
greenhouse gas emissions and pollution, while in reality, 
integrating the SS&OA problem with VRP saves costs. Dis-
ruption risks can damage the facilities and transportation 
networks. Hence, disruption risks can affect the performance 
of logistics networks. As a result, it is very important to take 
into account integrated green and resilient SS&OA and VRP 
under disruption risks in the design phase of the logistics 
network in order to make decisions at the strategic planning 
level simultaneously with operational planning decision lev-
els. Also, most of the articles addressed the supply disrup-
tion risk, and the number of articles that paid attention to the 
transportation network disruption risk (disruption in vehicles 
and network routes) is almost negligible. With regard to mit-
igation strategies, most articles considered proactive resil-
ience strategies for supplier disruptions, and a few articles 
evaluated proactive resilience strategies for transportation 
network disruptions. A limited number of articles considered 
real-world assumptions, such as complete disruption of the 
transportation network and partial disruption of supply. In 
addition, another important limitation of the existing stud-
ies is that they assume the logistics network design problem 
for the risk-neutral decision-maker, while in real life, most 
decision-makers are risk-averse. Therefore, we conclude that 
the integrated risk-averse SS&OA and VRP have not been 
extensively studied and analyzed in the literature with the 
mean-risk objective function. Based on the mentioned fea-
tures, the main contributions of our article are as follows:

1.	 This paper considers stochastic programming for 
the G&RSS&OA problem integrated with VRP 
(G&RSS&OA-V) that optimizes strategic supplier selec-
tion decisions and operational routing decisions.

2.	 The proposed model formulates new multiproduct risk-
averse mathematical programming for the G&RSS&OA-

V problem with the mean-risk objective function. We 
use CVaR as a risk measure, which is a linear, convex, 
well-behaved, and coherent risk measure to control the 
risk of worst-case cost (Sawik 2013). The proposed 
objective function minimizes the costs of supplier selec-
tion and order allocation, greenhouse emissions, fuel 
consumption (routing), resilience, lost sales, and CVaR 
simultaneously.

3.	 The G&RSS&OA-V problem, in addition to supply 
disruptions, also considers the transportation network 
disruptions (routes and vehicle transport fleet).

4.	 Aldrigetti et al. (2021) provided a review of the supply 
chain network design literature under disruption risks 
and suggested investing in different proactive resilience 
strategies in supplier selection and logistics network 
design. Our proposed model accounts for resilience 
strategies in the G&RSS&OA-V problem before the 
disruption.

5.	 Suppliers do not completely lose their capacity due 
to supply disruption but lose it partially. The resilient 
strategies adopted in this area are to fortify suppliers, 
multiple suppliers, and prepositioned inventory.

6.	 Some vehicles and some routes are completely deac-
tivated due to transportation disruption. The resilient 
strategy in this area is to contract with a 3PL to serve 
the transportation network.

Model Description

Description of Green and Resilient Supplier 
Selection and Order Allocation Integrated 
with Vehicle Routing (G&RSS&OA‑V) Problem Under 
Disruption Risk

Supplier selection and order allocation (SS&OA) deci-
sions at the strategic planning level and routing (VRP) 
decisions at the operational planning level are what we 
seek to integrate. We use the green paradigm to minimize 
the total negative environmental impacts and resilience 
strategies to deal with disruptions. Environmental experts 
use the life cycle assessment (LCA) method to analyze the 
environmental impact of activities and processes (Pishvaee 
et al. 2012). For this purpose, we use the environmental 
LCA method to measure greenhouse emissions. In this 
paper, we consider strategic and operational decisions on 
the G&RSS&OA-V problem under supply and transport 
network disruption. The purpose of the proposed problem 
is to select main green suppliers, assign orders to suppli-
ers, and find optimal green vehicle routing to meet cus-
tomer demand so as to minimize the costs of selecting 
suppliers and order allocation, greenhouse emissions, fuel 
consumption (routing), lost sales, resilient strategies, and 
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CVaR. In our study, the customer can be a central depot, 
a retailer, or an end customer.

The capacity of suppliers as well as the transportation 
network that serves customers is vulnerable to various 
types of disruption. If a disruption leads to a reduction 
in the capacity of suppliers, a reduction in the number 
of vehicles, a route ban, and a route breakdown, a series 
of costs such as lost sales costs and resilience strategies 
are imposed on the system to meet unfulfilled customer 
demand as much as possible. The root of disruptions is 
natural disasters (floods, earthquakes, hurricanes, etc.) and 
man-made disruptions (labor strikes, terrorist attacks, quar-
antine for COVID-19, etc.).

In this paper, we use a scenario-based approach that 
threatens supply and transport network disruption sce-
narios. Disruptions are usually formulated by a set of sce-
narios, so that a set of facilities is disrupted together under 
each disruption scenario (Snyder and Daskin 2006). In the 
G&RSS&OA-V problem under random disruption, the 
parameters are usually investigated through a set of dis-
crete scenarios with a definite probability and applied to 
the model.

The characteristics of the disruptions in our problem are:

•	 In each scenario, a disruption event may attack each sup-
plier, and the level of disruption in supplier capacity var-
ies. Hence, the remaining capacity of each supplier can 
be different from other suppliers under any disruption 
scenario. Depending on the severity of the disruption, 
the degree of disruption varies in the range [0,1]. For 
example, bbis = 0.6 means that 60% of the capacity of 
supplier i is available.

•	 In each scenario, each vehicle may be disrupted and 
completely removed from the transport network, and the 
parameter related to it is binary. For example, vvks = 0 
means that vehicle k is broken in scenario s.

•	 In each scenario, each route may be disrupted and 
completely disabled in the transport network, and the 
parameter related to it is binary. For example, rdjls = 0 
means that the route j to l and vice versa is inactive 
under scenario s.

•	 Estimation of the probability of potential disruptions 
and their impact on the supply and transportation pro-
cess under each scenario can be obtained through risk 
assessment analysis (Torabi et al. 2014).

In general, companies can increase resilience by creat-
ing redundancy in the entire supply chain (including prepo-
sitioned emergency inventory strategy and dual/multiple 
sourcing strategy), increasing supply chain flexibility, and 
changing corporate culture (Sheffi 2005). To cope with 
potential supply and transport network disruptions, we 

employ the following diverse (proactive) resilience strate-
gies in the proposed model:

1.	 Employing a multiple sourcing strategy for outsourced 
materials/parts. One of the solutions to reduce disrup-
tion is dual or multiple sourcing instead of single sourc-
ing. Dual or multiple sourcing is more expensive than 
single sourcing, but in the event of a disruption, it can 
respond to customer demand and prevent shortages and 
increase the credibility and reliability of companies 
(Torabi et al. 2015).

2.	 Fortifying suppliers.
3.	 Using prepositioned emergency inventory. Another 

common resiliency strategy is to maintain prepositioned 
inventory that is held in fortified suppliers and used after 
a disruption.

4.	 Concluding a contract with 3PL for servicing the trans-
portation network.

As Fig. 1 shows, our problem network consists of three 
layers of suppliers, a hybrid manufacturing-distribution 
(HMD) center, and customers. The HMD center pro-
duces different products and dispatches them to custom-
ers through vehicle routing. The HMD center outsources 
materials/parts to a set of selected suppliers. Suppliers 
are divided into two categories. The first category is that 
suppliers do not use resilience strategies. The second cat-
egory is suppliers which use resilience strategies. The 
transportation network can also use a resilience strategy. 
In this paper, we use a HMD center, the advantages of 
which include reducing pollution and saving on trans-
portation network costs. Based on customer demand, we 
determine the HMD center production–distribution plan 
and supply plan. We may not meet demand under sup-
ply and transportation network disruption, so shortage 
is allowed as lost sales. The location of suppliers, HMD 
center, and customers are fixed and predefined.

Two‑Stage Risk Aversion Stochastic Programming 
Framework with CVaR Criteria

Two-stage stochastic programming is a common approach 
in SS&OA problems because of the two-stage nature of 
decisions. Birge and Louveaux (1997) defined the general 
formulation of a two-stage stochastic programming frame-
work. In these models, strategic decisions such as selecting 
the main suppliers are made in the first stage before know-
ing the realization of stochastic parameters. However, when 
stochastic parameters are revealed, the operational and tacti-
cal decisions such as production, transportation, and routing 
should be considered the second-stage decisions (Govindan 
et al. 2017).

366 Process Integration and Optimization for Sustainability (2023) 7:359–380



1 3

Rockafellar and Uryasev (2000) described conditional 
value risk (CVaR), and in this study, we use a mean-risk 
model in order to integrate risk parameters in two-stage sto-
chastic programming models. Thus, we can apply a linear 
programming problem based on phrase (1) (Soleimani and 
Govindan, 2014, Noyan 2012).

� is a decision variable that illustrates the optimal value of 
VaR in the risk-averse model. zs is the tail cost in scenario s 
defined as the nonnegative value that the cost of scenario s 
exceeds VaR. Phrase (1) is a two-stage stochastic program-
ming model integrated with CVaR in the G&RSS&OA-V 
problem under disruption. We present the entire model in 
the next segment.

The G&RSS&OA‑V Model

Decisions of the G&RSS&OA-V problem include identi-
fying major green suppliers, order allocation to suppliers, 
green production rate per customer, green vehicle routing, 
resilience strategies, and lost sales. In the proposed prob-
lem, we consider scenario-based modeling under supply 
and transportation network disruption caused by natural 

(1)

min(1 + �)CTX +
∑

s

ps(qs)
T
ys + �(� +

1

1−�

∑

s

pszs)

st ∶

Wsys = hs − TsX,∀s

ys ≥ 0,∀s

zs ≥ (qs)
Tys − �,∀s

zs ≥ 0,∀s

� ∈ R

0 ≤ � ≤ 1

and man-made disasters, in which the probability of occur-
rence of each scenario is definite. The explanations of each 
scenario are in accordance with “Description of Green and 
Resilient Supplier Selection and Order Allocation Inte-
grated with Vehicle Routing (G&RSS&OA-V) Problem 
Under Disruption Risk.” In each scenario, the capacity of 
the suppliers decreases due to disruption, so that the remain-
ing capacity of each supplier under each scenario is known. 
Also, some vehicles and some routes under disruption may 
be inactive. In each scenario, it is clear which vehicles and 
routes are inactive after the disruption. In addition, proac-
tive resilience strategies can help to satisfy the customer’s 
unmet demand as much as possible. Therefore, we propose 
a single-objective mixed-integer two-stage stochastic linear 
programming model for the G&RSS&OA-V problem under 
disruption with the mean-risk objective function. We use 
CVaR as a risk measure; we seek to minimize the sum of the 
total expected cost and CVaR cost.

The G&RSS&OA-V problem decision-making process 
has a two-stage nature with a scenario-based approach. 
Here, the variables of selecting supplier, fortifying sup-
plier, determining prepositioned inventory, and contracting 
with 3PL are scenario-independent. These are the first-stage 
variables and are fixed under each scenario. While the vari-
ables of flow between facilities, the production rate, routing, 
and sales lost are scenario-dependent. These are second-
stage or recourse variables and can change in relation to 
all disruptions. The G&RSS&OA-V problem is an NP-hard 
problem in terms of complexity because it is the integra-
tion of two NP-hard problems. One is the SS&OA problem, 
which belongs to the category of integer linear programming 
problems (Karp 1972), and the other is the VRP (Golden 
et al. 2008). Despite the complexity of the G&RSS&OA-V 

Fig. 1   The proposed network 
for RSS&OA-V problem

Supply resilient
strategies:

-Multiple supplier
-Fortification
-Pre-positioned
inventory

Suppliers Hybrid
manufacturing
-distribution

center

Customers

Transportation
resilient strategy

-Third-party logistic
(3pl)

Flow between facilities

Flow between customers by vehicles

Flow between customers by 3pl

Selected suppliers

Hybrid manufacturing-distribution center

Customers

Non selected suppliers
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problem, its most important superiority is the cost savings 
resulting from merging the two problems.

One of the disadvantages of the stochastic programming 
approach is the lack of sufficient historical data in most 
real situations, which makes it difficult to estimate random 
distributions for uncertain parameters (Pishvaee and Tor-
abi 2010). This issue is also true regarding the scenario-
dependent parameters under the supply and transportation 
network disruption risks. Therefore, it is almost impossible 
to find probability distributions for such uncertain param-
eters. Due to the unavailability of the required data, they 
rely on judgmental data extracted from specialists and field 
experts (Torabi et al. 2015).

In the following, we first describe the assumptions, sets, 
subsets, parameters, and decision variables and then illus-
trate our risk-averse two-stage stochastic linear program-
ming model.

Model Assumptions and Limitations

The assumptions considered in the proposed model are as 
follows:

	 1.	 Each material/part is supplied only by a certain number 
of suppliers, not all suppliers.

	 2.	 Each product contains only a given number of parts, 
not all parts.

	 3.	 We assume multiple potential locations to select and 
contract with suppliers.

	 4.	 The HMD center produces and distributes products and 
meets customer demand through a routing system.

	 5.	 The transport fleet is heterogeneous and the capacity of 
vehicles is different. Customer demand meet through 
vehicles in the network. Each vehicle also meets its 
dedicated customers with the goal of minimizing rout-
ing costs.

	 6.	 Shortage in customer demand is allowed in the form of 
lost sales under disruption

	 7.	 Suppliers and the transport network may face frequent 
disruptions that lead to reduced supply capacity and 
the transport network. Hence some costs such as lost 
sales and costs of implementing resilience strategies 
are imposed on the present problem.

	 8.	  In this study, supply resilience strategies include mul-
tiple sourcing, supplier fortification, and pre-positioned 
inventory. Transport network resilience strategy is to 
conclude a contract with a3PL.

	 9.	 The cost of transport by 3PL is much higher than the 
cost of transport by the network itself.

	10.	 3PLcapacity does not decrease due to disruption and 
there is also a limited capacity for transporting prod-
ucts.

	11.	  Each random scenario occurs independently of other 
scenarios with a certain probability.

	12.	 The remaining capacity rate in each supplier, com-
plete disruption of vehicles, and complete disruption 
of routes are stochastic and scenario-based.

	13.	 Emitted greenhouse gases and fuel consumption depend 
on distance, cargo weight, type, and speed of a vehicle.

The main assumption of our model is the use of a hybrid 
manufacturing-distribution (HMD) center, the advantages 
of which are saving space, reducing time, reducing costs, 
reducing emissions (the main goal of the green paradigm), 
saving transportation, using common equipment in two 
manufacturing and distribution centers, and coordinating 
policy of two manufacturing and distribution centers. To 
distribute products to customers, routing is used by a hetero-
geneous transport fleet, which leads to a reduction in costs, 
including the cost of transportation, and reducing the cost of 
transportation also reduces pollution (Ostermeier and Hüb-
ner 2018). In real life, disruption in suppliers is partial and 
disruption in vehicles and routes is complete. The resilient 
strategies employed have different levels of resilience to be 
more realistic assumptions. In general, the assumptions of 
the proposed model are based on real life.

Model Formulation

Sets and subsets:

I	� set of all suppliers

i	� index of suppliers, i ∈ I

L	� set of all customers

j,l	� index of all customers, j, l ∈ L

A	� set of all nodes (includes customer nodes plus origin 
node (HMD center))

a	� Total number of nodes

S	� set of disruption scenarios

s	� index of disruption scenarios, s ∈ S

M	� set of products

m	� index of products, m ∈ M

P	� set of materials/parts

368 Process Integration and Optimization for Sustainability (2023) 7:359–380



1 3

p	� index of materials/parts, p ∈ P

E	� set of fortification level

e	� index of fortification level, e ∈ E

K′	� set of primary vehicles

k′	� index of primary vehicles, k ∈ K

K″	� set of vehicles in the 3PL

k″	� index of vehicles in the 3PL, k�

∈ K
�

K	� set of all vehicles, K = K
�

∪ Kε

Mp	� set of products in which part p is used, Mp ⊆ M

pi	� set of materials/parts that supplied through supplier i, 
pi ⊆ P

pm	� set of materials/parts used in product m, pm ⊆ P

Parameters:
Demand:

dml	� demand of customer l from product m

Fixed cost:

ci	� fixed selection and ordering cost in supplier i

cgie	� fixed fortification cost of supplier i at level e

cpip	� fixed supply cost per part/material p in supplier i

cv	� fixed cost of concluding a contract with 3PL for ser-
vice by the transportation fleet

Variable cost:

pnip	� greenhouse emission cost for supply and transporta-
tion per part/material p in supplier i by HMD center

pfjp	� greenhouse emission cost for pre-positioned emer-
gency inventory per part/material p in supplier i by 
HMD center

cmjlk	� fuel consumption cost for transport from node j to 
l by vehicle k

cvmjlk'	� fuel consumption cost for transport from node j to 
l by 3PL (vehicle k′)

Shortage cost:

lsm	� lost sale cost per unit of product m

Capacity constraints:

cai	� maximum capacity of fortified supplier i for holding 
pre-positioned emergency inventory

capi	� maximum initial capacity of supplier i for supplying 
parts/materials

cape	� maximum capacity of HMD center for producing 
and distributing the product

cappk	� maximum capacity of vehicle k

Factors:

wp	� weight of part/material p

bbis	� remaining capacity rate of supplier i for supplying 
parts/materials under scenario s

ps	� probability of occurrence of scenario s

zmpm	� consumption coefficient of part/material p in product 
m

wwm	� weight of product m, wwm =
∑

p∈Pm

zmpmwp,∀m  

vvks	� binary parameter equals “1” if the vehicle k is not 
disrupted under scenario s, otherwise equals “0”

rdjls	� binary parameter equals “1” if the route of node i to 
node j is not disrupted under scenario s, otherwise 
equals “0”

α	� confidence level

λ	� risk weight (factor)

Decision variables:

XNipms	� the amount of part/material p supplied and shipped 
for product m from non-fortified supplier i under 
scenario s
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XFipms	� the amount of part/material p supplied and shipped 
for product m from fortified supplier i under sce-
nario s

Nms	� the amount of lost sales of product m in the HMD 
center under scenario s

Oipms	� the amount of part/material p use for product m 
from pre-positioned emergency inventory of sup-
plier i under scenario s

Qmkls	� the amount of product m assemble by the manufac-
turer for the customer l shipped by vehicle k under 
scenario s

Moip	� the amount of pre-positioned emergency inventory 
of part/material p in fortified supplier i

vlk	� non-negative variable to remove subtours

VaR	� value at risk

Cos	� auxiliary variable for calculating the conditional 
value at risk under scenario s

xi	� binary variable equals “1” if supplier i is selected, 
otherwise equals “0”

yie	� binary variable equals “1” if selected supplier i for-
tified at level e, otherwise equals “0”

vl	� binary variable equals “1” in case of concluding a 
contract with 3PL for servicing the transportation 
fleet, otherwise equals “0”

zjlks	� binary variable equals “1” if primary vehicle k trav-
els from node j to node l under scenario s, other-
wise equals “0”

Objective Function

The objective function aims to minimize the total mean-
CVaR cost.

(2)MinTc = (1 + �)
∑

i∈I

cixi

(3)+(1 + �)
∑

i∈I

∑

e∈E

cgieyie

The detailed objective function is the following: we con-
sider the total cost of the two-stage mean-risk stochastic 
mathematical programming model as follows (Rahimi and 
Ghezavati 2018).

Expressions (1) to (11) represent the objective function 
of the model, which is described in the following sentences: 
term (1) includes the fixed cost of selecting and ordering 
with vulnerable suppliers multiplied by the risk weight plus 
one. Term (2) shows the fixed fortification cost of suppliers 
at different levels multiplied by the risk weight plus one. 
Term (3) indicates the fixed supply cost of prepositioned 
emergency inventory of fortified suppliers multiplied by the 
risk weight plus one. Phrase (4) includes the fixed cost of 
concluding a contract with 3PL for servicing the transporta-
tion fleet multiplied by the risk weight plus one. Term (5) 
is the greenhouse emission cost for supply and transpor-
tation of parts/materials from nonfortified suppliers to the 
HMD center. Phrase (6) calculates the greenhouse emission 
cost for supply and transportation of parts/materials from 

(4)+(1 + �)
∑

i∈I

∑

p∈P

cpipMoip

(5)+(1 + �)cv.vl

(6)+
∑

i∈I

∑

p∈Pm

∑

m∈M

∑

s∈S

pspnipXN ipms

(7)+
∑

i∈I

∑

p∈Pm

∑

m∈M

∑

s∈S

pspnipXFipms

(8)+
∑

i∈I

∑

p∈Pm

∑

m∈M

∑

s∈S

pspf ipOipms

(9)+
∑

m∈M

∑

s∈S

pslsmNms

(10)
+

∑

j ∈ J

j ≠ l

∑

l∈L

∑

kε∈Kε

∑

s∈S

pscmjlk"zjlkεs

(11)
+

∑

j ∈ J

j ≠ l

∑

l∈L

∑

kε∈Kε

∑

s∈S

pscvmjlkεzjlkεs

(12)+�

(

VaR +
1

1 − �

∑

s∈S

psCos

)

Total cost = (1 + �) × Fixed costs + Expected costs + λ × CVaR costs
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fortified suppliers to the HMD center. Term (7) covers the 
purchase and transportation cost of parts/materials as prepo-
sitioned emergency inventory from fortified suppliers for the 
HMD center. Term (8) calculates the lost sales cost of the 
HMD center. Term (9) includes the fuel consumption cost 
for transport by network vehicles from the HMD center to 
customers. Term (10) includes the fuel consumption cost 
for transport by 3PL from the HMD center to customers. In 
term (11), to achieve a better risk estimate of the worst-case 
scenario in the G&RSS&OA-V problem, we minimize the 
cost of CVaR under the disruption risk by considering resil-
ience strategies. We use CVaR with the auxiliary function 
provided by Rockafellar and Uryasev (2000, 2002). λ is the 
risk factor that indicates the decision-makers’ willingness 
to risk VaR (value at risk). α is the confidence level that 
controls the risk of losses due to supply and transportation 
network disruption, and Cos is the cost of scenario s that 
exceeds VaR.

Constraints

(13)

s.t.

Cos ≥
∑

ieI

∑

pϵPm

∑

mϵM

pspnipXNipms +
∑

ieI

∑

pϵPm

∑

mϵM

pspnipXFipms

+
∑

ieI

∑

pϵPm

∑

mϵM

pspfipOipms +
∑

mϵM

pslsmNms

+
∑

j ∈ J

j ≠ l

∑

lϵL

∑

kϵK

pscmjlk
�Ojlk

�
s +

∑

j ∈ J

j ≠ l

∑

lϵL

∑

kεϵkε
pscmjlkεOjlk

��
s − VaR

∀s

(14)Cos ≥ 0 ∀s

(15)
∑

eϵE

yie ≤ xi ∀i ∈ I

(16)
∑

pϵP

wpMoip ≤ cai
∑

eϵE

yie ∀i ∈ I

(17)
∑

pϵPi

∑

mϵMp

wpXNipms ≤

�

xi −
∑

eϵE

yie

�

bbiscapi ∀i, s

(18)
∑

pϵPi

∑

mϵMp

wpXFipms ≤ capi
∑

eϵE

yiebies ∀i, s

(19)
∑

mϵMp

Oipms ≤ MOip ∀i, p, s

(20)

∑

kϵK

∑

lϵL

Qmkls ≤
1

zmpm

∑

iϵI

�

XNipms + XFipms + Oipms

�

∀m, p, s

(21)
∑

kϵK

Qmkls + Oms ≥ dml ∀m, l, s

Constraints (13) and (14) are risk constraints and used to 
calculate CVaR costs (Rockafellar and Uryasev 2000, 2002). 
Constraint (13) is the tail cost for scenario s which is defined 
as the cost of each scenario minus VaR. Constraint (14) Cos 
is a nonnegative variable under scenario s. Constraint (15) 
states that fortification of a supplier depends on the selection 
of that supplier, and supplier fortification is done maximum 
in one level. Constraint (16) sets the maximum capacity of 
prepositioned emergency inventory at each fortified supplier. 
Constraint (17) indicates the maximum capacity of unforti-
fied suppliers after disruption. Constraint (18) illustrates the 
maximum capacity of fortified suppliers after disruption. 
Constraint (19) indicates the maximum prepositioned emer-
gency inventory of each part/material under each scenario 
in each fortified supplier. Constraint (20) demonstrates the 
amount of products produced at the HMD center under each 
scenario. Constraint (21) states that the amount of product 
produced by the HMD center plus its lost sales is greater 
than the demand for that product. Constraint (22) indicates 
the capacity of each vehicle. Under complete disruption, it 
reaches zero. If not, it is equal to cappk’. Constraint (23) 
specifies the 3PL capacity for vehicles. In case of conclud-
ing a contract with 3PL, the capacity is equal to cappk″; 
otherwise, it is equal to zero. Equation (24) guarantees that 
each vehicle (related to the network itself or 3PL) that enters 

(22)
∑

m∈M

∑

l∈L

wwmQmk
�
ls
≤ cappk

�.vvk
�s ∀k

�

s

(23)
∑

m∈M

∑

l∈L

wwmQmkεls ≤ cappk
��.vl ∀kε, s

(24)

∑

j ∈ A

j ≠ l

zjlks =
∑

j ∈ A

j ≠ l

zljks ∀l, k, s

(25)
∑

l∈L

zjlks ≤ 1 ∀j = 0, k, s

(26)

∑

m∈M

Qmkls ≤ M
∑

j ∈ A

j ≠ l

zjlks ∀l, k, s

(27)vjk − vlk + azjlks ≤ a − 1
∀j, l ∈ A ∶ j ≠ l

j ≠ 0, k, s

(28)
∑

m∈M

∑

l∈L

∑

k∈K

wwmQmkls ≤ cape ∀s

(29)
MOip,Nms,XNipms,XFipms,Oipms,Qmkls, vlk,VaR,Cos ≥ 0 ∀i, j,m, p, k, s

(30)xi, yie, zjlks, vlϵ{0, 1} ∀i, j, k, e, s

371Process Integration and Optimization for Sustainability (2023) 7:359–380



1 3

a node must also leave it. Constraint (25) ensures that each 
vehicle on each route exits the origin node (HMD center) 
only once. Constraint (26) represents that the amount of 
products produced in the HMD center per customer depends 
on the existence of the transportation route to that customer. 
Equation  (27) is the subtour elimination constraint that 
causes each tour to start from one HMD center and multiple 
customers (Miller et al. 1960). Constraint (28) expresses the 
capacity of production and distribution in the HMD center. 
Constraints (29) and (30) also specify the type of decision 
variables.

Computational Analysis and Examples

Considering that the G&RSS&OA-V problem is NP-hard, in 
order to solve the model in a reasonable time, we present a 
small- or medium-sized computational example to validate 
the proposed problem. In fact, due to the limitations of the 
GAMS software, it can be an acceptable size for the compu-
tational example. The objective is to minimize the expected 
costs plus CVaR costs (mean-CVaR) of the supply network 
under disruption. The input data are hypothetical for compu-
tational examples. The examples are implemented in GAMS 
software to discover the optimal solution to the proposed 
G&RSS&OA-V problem. All calculations were performed 
on a laptop with an Intel Core i7 processor with 8 GB RAM. 
We consider a problem consisting of four suppliers, two 
fortification levels, two product types, three parts/material 
types, one HMD center (origin node), seven customers, five 
vehicles related to the transportation network, and five vehi-
cles related to 3PL. In the real world, we cannot consider all 
the parameters definitively, especially the remaining capac-
ity rate in each vulnerable supplier, complete disruption of 
vehicles, and complete disruption of routes and related costs. 

Then, we consider them as stochastic parameters. Khalili 
et al. (2017) described each risk by two parameters: risk 
probability and risk severity. In this study, we assume four 
cases for risk severity in stochastic parameters (high, mid, 
low, and no disruption). Thus, to deal with the uncertainty, 
we create ten scenarios with a definite probability together 
with the severity of the disruption of unfortified suppliers 
and vehicles in Table 2 in the test example. Table 3 illus-
trates the severity of the disruption in fortified suppliers in 
the test example. Table 4 shows the severity of route dis-
ruption in scenarios. Table 5 demonstrates the generated 
parameters. In all computational analyses, the parameters 
are generated by uniform distribution.

Computational Results

The G&RSS&OA-V problem was solved based on the data 
in Tables 2, 3, 4, and 5. Table 6 shows different components 
of objective function, risk measure, and expected lost sale 
for the described example (α = 0.1, λ = 0.1).

In the first-stage decisions, among the four suppliers, the 
model selects suppliers 1, 2, 3, and 4. All four suppliers are 
fortified at level two. Prepositioned emergency inventory 
is stored in all four suppliers. Also, a contract is concluded 
with 3PL to serve the transportation network. Regarding the 
second-stage decisions, we investigate the outputs related 
to the four scenarios 2, 5, 8, and 10 in which the severity 
of supply disruption is high, med, low, and no disruption, 
respectively.

Scenario 2 uses the strategy of multiple suppliers to 
purchase part/material 1, including fortified suppliers 1, 
2, and 4. Also, scenario 2 uses the strategy of multiple 
suppliers to purchase part/material 3, including fortified 
suppliers 2 and 3. In scenario 2, the prepositioned emer-
gency inventory is stored in suppliers 3 and 4. Table 7 

Table 2   Likelihood and severity 
of disruption in unfortified 
suppliers and vehicles in test 
example

*When we have no disruption

Disrup-
tion 
scenario

Severity of disruption 
in unfortified suppliers

ps bbis Severity of 
vehicle  
disruption

vvks

i k

s 1 2 3 4 1 2 3 4 5

1 High 0.08 0.18 0.23 0.18 0.19 High 0 0 1 0 1
2 High 0.11 0.19 0.21 0.12 0.18 Mid 1 1 0 1 0
3 High 0.08 0.15 0.19 0.25 0.16 Low 1 1 1 1 0
4 Mid 0.09 0.35 0.32 0.33 0.28 High 1 0 1 0 0
5 Mid 0.11 0.32 0.33 0.28 0.28 Mid 0 1 1 0 1
6 Mid 0.1 0.3 0.35 0.34 0.34 Low 1 0 1 1 1
7 Low 0.08 0.5 0.47 0.5 0.36 High 0 0 0 1 1
8 Low 0.12 0.38 0.37 0.38 0.47 Mid 0 1 0 1 1
9 Low 0.11 0.5 0.5 0.37 0.43 Low 1 0 1 1 1
10 No disruption 0.12 1* 1* 1* 1* No disruption 1* 1* 1* 1* 1*
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shows the amount of production and lost sales under sce-
nario 2 for products 1 and 2. The network uses vehicles 
1 and 2 in routing. Also, 3PL uses vehicle 7 in routing.

Scenario 5 uses the strategy of multiple suppliers to 
purchase part/material 1, including fortified suppliers 1, 
2, 3, and 4. There is the prepositioned inventory in the 
fortified suppliers 1, 2, 3, and 4 under scenario 5. Table 7 
shows the amount of production and lost sales under sce-
nario 5 for products 1 and 2. The network uses vehicles 2, 
3, and 5 in routing. 3PL also uses vehicles 6, 7, 8, and 9.

Scenario 8 uses the strategy of multiple suppliers to pur-
chase part/material 1, including fortified suppliers 1, 2, 3, 
and 4. There is the prepositioned inventory in the fortified 
suppliers 1, 2, 3, and 4 under scenario 8. Table 7 shows the 
amount of production and lost sales under scenario 8 for 
products 1 and 2. The network uses vehicles 2, 4, and 5 in 
routing. 3PL also uses vehicles 6, 7, 8, 9, and 10.

Scenario 10 uses the strategy of multiple suppliers, 
including fortified suppliers 1, 2, 3, and 4, to purchase 
part/material 1. There is the prepositioned inventory in 
the fortified suppliers 1, 2, 3, and 4 under scenario 10. 
Table 7 shows the amount of production and lost sales 
under scenario 10 for products 1 and 2. Vehicles 1, 2, 3, 
4, and 5 are also used in routing. 3PL also uses vehicles 
6, 7, 9, and 10.

Table 7 shows that the production rate among the sce-
narios increases from high to low, and vice versa, the 
amount of lost sales between the scenarios decreases from 
high to low.

Sensitivity Analysis on the Risk Parameters

In this section, we present a complete sensitivity analy-
sis of the risk-averse parameters α and λ. We then apply 

different values of α and λ in the mean-risk model to 
understand how they affect the proposed G&RSS&OA-V 
model. There are usually two well-known financial metrics 
for controlling the risk of supply disruptions based on α 
confidence level, which are:

•	 Value at risk (VaR) is a decision variable based on α% 
costs so that for α% scenarios, the result will not exceed 
VaR.

•	 Conditional value at risk (CVaR) is the expected cost 
of the portfolio in the worst ( 1 − � ) % total costs, i.e., 
( 1 − � ) % of results more than VaR, and the average 
value of these results (greater than VaR) is represented 
by CVaR. The mathematical properties of CVaR are 
superior to VaR. CVaR is a coherent risk measure. For 
example, the CVaR portfolio is a continuous and con-
vex function, while VaR may even have a discontinuous 
function (Sarykalin et al.2008; Sawik 2013).

A risk-averse decision-maker wants to use CVaR to 
minimize the worst-case scenario that goes beyond VaR. 
In the mean-CVaR model, the supply portfolio integrated 
with routing decisions is selected along with green para-
digm and proactive resilience strategies to minimize both 
expected costs and CVaR costs.

α is one of the fundamental parameters of risk-averse 
decision-making, the effects of which should be analyzed 
on the proposed model. We put seven cases for alpha 
(α = 0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9) with a fixed value of 
lambda (λ = 0.1) to investigate how alpha (α) affects the 
objective function.

According to Fig. 2, with increasing alpha (α), the mod-
el’s risk aversion behavior increases; in other words, the 
model acts more conservatively. As you can see in Fig. 2, 

Table 3   Severity of disruption 
in fortified suppliers in test 
example

*When we have no disruption

Disruption 
scenario

Severity of disruption 
in fortified suppliers

bies (e = 1) bies (e = 2)

i i

s 1 2 3 4 1 2 3 4

1 High 0.31 0.35 0.3 0.31 0.35 0.44 0.45 0.38
2 High 0.33 0.34 0.26 0.26 0.43 0.45 0.4 0.36
3 High 0.35 0.35 0.27 0.31 0.38 0.44 0.43 0.35
4 Mid 0.38 0.44 0.36 0.44 0.55 0.53 0.53 0.47
5 Mid 0.36 0.44 0.38 0.42 0.54 0.52 0.47 0.53
6 Mid 0.36 0.4 0.45 0.37 0.54 0.51 0.53 0.53
7 Low 0.55 0.57 0.59 0.5 0.66 0.62 0.69 0.67
8 Low 0.5 0.56 0.57 0.59 0.63 0.68 0.7 0.66
9 Low 0.57 0.56 0.58 0.5 0.65 0.62 0.65 0.69
10 No disruption 1* 1* 1* 1* 1* 1* 1* 1*
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Table 4   Severity of route 
disruption scenarios (rdjls) in 
test example

Disruption scenario (s) 1 2 3 4 5 6 7 8 9 10

Severity of route disrup-
tion route (j.l)

High Mid Low High Mid Low High Mid Low No dis

1.2 1 1 1 0 1 1 0 0 0 1*
1.3 0 1 1 0 1 1 1 1 1 1*
1.4 1 0 1 0 1 1 1 1 0 1*
1.5 1 1 0 1 1 0 0 1 1 1*
1.6 0 0 1 1 0 1 0 1 1 1*
1.7 1 1 1 1 1 1 1 0 1 1*
1.8 0 1 1 1 0 1 1 1 1 1*
2.1 1 1 1 0 1 1 0 0 0 1*
2.3 0 0 1 1 1 1 1 1 1 1*
2.4 1 0 1 1 0 1 1 1 1 1*
2.5 0 1 1 0 1 1 0 1 1 1*
2.6 1 1 0 1 0 1 0 1 1 1*
2.7 0 1 1 0 1 0 1 0 1 1*
2.8 1 1 1 1 1 1 1 1 0 1*
3.1 0 1 1 0 1 1 1 1 1 1*
3.2 0 0 1 1 1 1 1 1 1 1*
3.4 1 1 1 0 1 0 0 1 1 1*
3.5 1 0 1 1 1 1 1 0 1 1*
3.6 0 1 1 0 0 1 0 0 0 1*
3.7 1 1 0 1 1 1 0 1 1 1*
3.8 1 1 1 1 0 1 1 1 1 1*
4.1 1 0 1 0 1 1 1 1 0 1*
4.2 1 0 1 1 0 1 1 1 1 1*
4.3 1 1 1 0 1 0 0 1 1 1*
4.5 0 1 1 1 0 1 0 0 1 1*
4.6 1 1 0 1 1 1 0 0 1 1*
4.7 0 1 1 0 1 1 0 1 0 1*
4.8 0 1 1 1 1 1 1 1 1 1*
5.1 1 1 0 1 1 0 0 1 1 1*
5.2 0 1 1 0 1 1 0 1 1 1*
5.3 1 0 1 1 1 1 1 0 1 1*
5.4 0 1 1 1 0 1 0 0 1 1*
5.6 1 1 1 1 1 1 1 1 0 1*
5.7 0 0 1 0 0 1 0 1 1 1*
5.8 1 1 1 0 1 1 1 1 1 1*
6.1 0 0 1 1 0 1 0 1 1 1*
6.2 1 1 0 1 0 1 0 1 1 1*
6.3 0 1 1 0 0 1 0 0 0 1*
6.4 1 1 0 1 1 1 0 0 1 1*
6.5 1 1 1 1 1 1 1 1 0 1*
6.7 0 1 1 0 1 1 1 1 1 1*
6.8 1 0 1 0 1 0 0 1 1 1*
7.1 1 1 1 1 1 1 1 0 1 1*
7.2 0 1 1 0 1 0 1 0 1 1*
7.3 1 1 0 1 1 1 0 1 1 1*
7.4 0 1 1 0 1 1 0 1 0 1*
7.5 0 0 1 0 0 1 0 1 1 1*
7.6 0 1 1 0 1 1 1 1 1 1*
7.8 1 0 0 1 0 1 1 1 1 1*
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VaR and CVaR values increase with increasing alpha. Also, 
with the increase of alpha, the first-stage costs do not change 
significantly. It is worth noting that the second-stage costs 

and the mean-CVaR costs increase with increasing alpha 
with a slight slope.

Table 8 demonstrates the effect of different alpha on the 
VaR, CVaR, first-stage cost, second-stage cost, and mean-
CVaR. According to Table 8, there is the lowest mean-CVaR 
in α = 0.1. Also, by increasing α from 0.1 to 0.9, the mean-
CVaR objective function value grows from 8,115,034 to 
9,187,824, that is, the objective function increases by 13.2%.

As shown in Fig. 5, at different α (0.1, 0.5, 0.7), CVaR 
increases with increasing λ. According to Fig. 6, at different 
α (0.1, 0.5, 0.7), the cost of mean-CVaR objective function 
increases while λ increases. For example, at α = 0.1, as λ 
increases from 0.1 to 0.9, the mean-CVaR objective func-
tion value grows from 8,115,034 to 11,004,211; that is, the 
objective function increases by 35.6%.

Lambda (λ) is the risk weight, and as λ increases, the 
degree of risk-averse decision-making increases and the 
model becomes more conservative. Therefore, by increas-
ing the parameter λ and/or α, we achieve a high degree of 
risk aversion decision-making.

Sensitivity Analysis on the Lost Sale (Shortage) Cost

In the supply chain, a demand management strategy can 
be used to mitigate network risk (Tang 2006). The short-
age cost (lsm) in the form of lost sales is a parameter that 
is effective in regulating demand management. By adjust-
ing the shortage cost (lsm), we examine its effects on this 
model. To analyze the effect of lsm on the objective func-
tion, we set four cases of lsm according to Table 9 with a 
constant value for α = 0.1, λ = 0.1. Table 9 shows the results 
of this experiment. The higher the shortage cost (lsm), the 
higher the mean-CVaR and CVaR cost and the lower the 
expected shortage quantity. Therefore, increasing lsm leads 
to a decrease in shortage and an increase in resilience. 
Also, as the cost of shortages (lsm) increases, the number of 
selected suppliers does not change. According to Table 9, as 
the expected shortage cost increases from 12,500 to 30,000 
(a 150% increase), the mean-CVaR objective function cost 
increases from 5,949,329 to 8,115,034 (a 36% increase), 

*When we have no disruption

Table 4   (continued) Disruption scenario (s) 1 2 3 4 5 6 7 8 9 10

8.1 0 1 1 1 0 1 1 1 1 1*
8.2 1 1 1 1 1 1 1 1 0 1*
8.3 1 1 1 1 0 1 1 1 1 1*
8.4 0 1 1 1 1 1 1 1 1 1*
8.5 1 1 1 0 1 1 1 1 1 1*
8.6 1 0 1 0 1 0 0 1 1 1*
8.7 1 0 0 1 0 1 1 1 1 1*

Table 5   Parameters and scalars of the test example

Parameters Severity Distribution

ci - Uniform(20,000,40,000)
cai - Uniform(10,000,20,000)
capj - Uniform(5000,7000)
cappk - Uniform(6000,12,000)
lsm - Uniform(20,000,40,000)
dml - Uniform(200,500)
cpip - Uniform(100,200)
cmjlk - Uniform(10,30)
cmjlk’ - Uniform(30,60)
cgie - Uniform(1000,2000)
pnip - Uniform(40,60)
pfip - Uniform(70,90)
zmpm - Uniform(1,3)
wp - Uniform(2,4)
bbis High Uniform(0.1,0.25)

Mid Uniform(0.25,0.35)
Low Uniform(0.35,0.5)

bies (e = 1) High Uniform(0.25,0.35)
Mid Uniform(0.35,0.45)
Low Uniform(0.5,0.6)

bies (e = 2) High Uniform(0.35,0.45)
Mid Uniform(0.45,0.55)
Low Uniform(0.6,0.7)

cv - 20,000
cape - 100,000

Table 6   Different components of the main example

First-stage 
costs

Second-
stage costs

Mean-
CVaR

CVaR VaR Expected 
lost sale

2,596,086 5,689,224 8,605,587 606,688 356,079 155
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while the amount of expected shortage amount decreases 
from 315 to 138 (a 56% decrease).

Also, in Table 9, we intend to examine the strategies that 
help suppliers to become more resilient during disruptions. 
The strategy of fortifying suppliers at four levels of shortage 
cost shows that four suppliers are fortified at level 2. The 
prepositioned inventory strategy at four shortage cost levels 
states that inventory is increasing. This increase indicates 
that the assumed model has to increase the inventory of this 

strategy to reduce the shortage and more resilience, while 
the objective function cost increases with the increase of this 
strategy. In the multiple-sourcing strategy, p1 means pro-
curement of material/part 1 with supplier i. p1,2 means pro-
curement of material/part 1 and material/part 2 with supplier 
i. p1,2,3 means procurement of material/part 1, material/
part 2, and material/part 3 with supplier i. As can be seen 
in Table 9, in some cases, we have single-sourcing, dou-
ble-sourcing, and triple-sourcing strategies. The multiple-
sourcing strategy helps to reduce the scarcity and increase 
the resilience of the model. In general, double or multiple 
sourcing is more expensive than single sourcing, but it pre-
vents shortages in the event of a disruption and increases the 
reliability of the system.

Managerial Insights

Based on the analyzed results, the following managerial 
insights are provided:

•	 Applying the G&RSS&OA-V problem improves the per-
formance of SS&OA and VRP problems under economic 

Table 7   Comparison between 
production and lost sales

Scenario Severity of 
disruption in 
supply

Severity of trans-
portation network 
disruption

The amount of 
product (Qmkls)

Quantity The amount of 
lost sale (Nms)

Quantity

2 High Mid
∑

k,l

Q(m=1).k.l.2   305 N1.2 289
∑

k,l

Q(m=2).k.l.2   813 N2.2 219

5 Mid Mid
∑

k,l

Q(m=1).k.l.5   1354 N1.5 136
∑

k,l

Q(m=2).k.l.5   2329 N2.5 0

8 Low Mid
∑

k,l

Q(m=1).k.l.8   1611 N1.8 99
∑

k,l

Q(m=2).k.l.8   2329 N2.8 0

10 No disruption No disruption
∑

k,l

Q(m=1).k.l.10   2016 N1.10 41
∑

k,l

Q(m=2).k.l.10   2329 N2.10 0
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Fig. 2   Alpha vs. cost, mean-CVaR, VaR, and CVaR

Table 8   Effect of different alpha 
on VaR, CVaR, first-stage cost, 
second-stage cost, and mean-
CVaR (λ = 0.1)

λ is also another essential parameter of risk-averse decision-making, the effects of which should be ana-
lyzed on the proposed model. To analyze how λ affects the objective function, we set five cases of λ (0.1, 
0.5, 0.9, 5, 10) ith a constant value for α = 0.1. Figure 3 and Fig. 4 show the results of this experiment. As 
shown in Fig. 3, at a constant alpha (α) value by increasing the λ values, the first-stage costs decrease and 
the second-stage costs increase. According to Fig. 4, at a constant alpha (α) value, as the λ values increases, 
the Var and CVaR costs increase

α 0.1 0.3 0.5 0.6 0.7 0.8 0.9

VaR 349,642 480,390 590,427 576,408 616,189 723,134 746,948
CVaR 533,704 599,208 756,815 709,747 663,818 741,922 1,459,407
First-stage cost 2,622,188 2,470,178 2,436,527 2,473,741 2,337,033 2,514,960 2,572,953
Second-stage cost 5,177,257 5,433,567 6,123,415 5,608,118 5,559,949 5,377,333 6,211,635
Mean-CVaR 8,115,034 8,210,684 8,879,277 8,400,207 8,197,068 8,217,981 9,187,824
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and environmental aspects, and resilience strategies sig-
nificantly contribute to the problem performance under 
disruption. Hence, managers can make optimal decisions 
about proactive resilience strategies and green paradigm.

•	 The supplier selection and order allocation integrated 
with vehicle routing (SS&OA-V) problem is mainly 
investigated for the risk-neutral decision-maker, and 
our results show that the supply and transportation net-
work disruption and green requirements significantly 
affect the structure of the SS&OA-V problem, so the 
proposed problem should be considered a risk-averse 
G&RSS&OA-V problem.

•	 The type of disruption events and the probability of dis-
ruption events have a great impact on the configuration 
of supplier selection and the transportation network.

•	 By increasing the weight factor parameter (λ) and the 
confidence level (α), the model becomes more risk-averse 
or, in other words, acts more conservatively. Managers 
can tune their risk level in CVaR through the confidence 
level (α) and its weight factor (λ).

•	 Also, increasing the shortage cost (lsm) leads to less 
shortage and more resilience of the model. Managers 
can tune demand management through parameter lsm.

Conclusion

In this paper, we proposed the multiproduct green and resil-
ient supplier selection and order allocation integrated with 
vehicle routing (G&RSS&OA-V) problem under disruption 
risks to optimize total cost. We tried to consider the most 
practical environmental objectives and resilience strategies 
in the problem. To the best of our knowledge, this is the first 
time that the SS&OA-V problem with an efficient and practi-
cal combination of GSCM and proactive resilience strate-
gies with risk aversion decisions is proposed to minimize 
greenhouse emissions and fuel consumption simultaneously. 
The objective function of our model includes minimizing the 
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mean-risk (mean-CVaR) costs to optimize the performance 
of the worst-case scenario of the G&RSS&OA-V problem 
in a two-stage stochastic programming model. Our proposed 
model includes three stochastic parameters: the remaining 
capacity rate in each supplier, complete disruption of vehi-
cles, and complete disruption of routes. We considered mul-
tiple sourcing, supplier fortification, prepositioned inventory, 
and concluding a contract with a 3PL as resilience strategies.

In order to validate the proposed model, numerical examples 
are solved by using GAMS software. We used three important 
model parameters for sensitivity analysis. Various computational 
experiments are performed to examine these parameters on the 
objective function of the proposed model. In future research, 
we can consider other disruption risks (political and economic 
crises) and operational risks (cost fluctuations, climate changes) 
and their impact on suppliers and HMD center. Considering new 
proactive and reactive resilience strategies and green objectives 
will be another research avenue, accounting for the occurrence 
of multiple successive disruptions instead of one. In addition, 
applying other transportation modes, such as air transportation 
under the transportation network disruption, will lead to greater 
resilience. Further, the approach of this model can be used with 
the concept of sustainability which, in addition to economic fac-
tors and environmental concerns, also plans and manages social 
responsibility. Providing a metaheuristic algorithm to solve 
large-scale problems and identify an example of a problem that 
can sufficiently represent a set of all disruption scenarios can be 
another future area of research. In order to manage the uncer-
tainty of the input data, we propose optimization approaches 
such as robust and fuzzy.
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