
Vol.:(0123456789)

Journal of Geovisualization and Spatial Analysis            (2024) 8:12  
https://doi.org/10.1007/s41651-024-00173-5

Geospatial Structure and Evolution Analysis of National Terrestrial 
Adjacency Network Based on Complex Network

Zhiyang Zhi1 · Jianzhong Liu2 · Jiale Liu1 · Aiguang Li3

Accepted: 10 March 2024 
© The Author(s) 2024

Abstract
The first law of geography is one of the most important concepts in geographical analysis, revealing the significant role 
of spatial proximity. At present, some current international relation studies or geographic network analysis studies tend to 
build corresponding network models according to different themes, but the most basic level of geographic neighborhoods 
is intentionally or unintentionally neglected in those processes. Based on the adjacency relationship between the terrestrial 
countries in the world, the model of the terrestrial adjacency network (TAN) is constructed. The model includes almost all 
land-based countries and is divided into three main regions, respectively, Eurasia, Africa, and America. On the mathemati-
cal model of these regions, we analyze the geospatial structure and network evolution of the adjacent networks utilizing 
statistical methods and network analysis methods. This study helps to map and understand the geographical attributes and 
characteristics of countries from the perspective of holistic structure, aiming to provide a quantitative reference for subsequent 
research on international relations and geographic computing. Moreover, despite some limitations, TAN represents a new 
advance in geographical network analysis that can be further applied by overlaying more attribute data.
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Introduction

In recent years, with the slowdown of the global economic 
growth rate and the intensification of development imbal-
ance among countries, the world situation has undergone 
significant changes, and the rich and diversified network 
relations among countries have encountered new crises. 

The outbreak of the Russia-Ukraine conflict in 2022 and the 
continued escalation of the Palestinian-Israeli situation in 
October 2023 indicate that the world pattern will develop in 
a more complex direction. How to find the relative essence 
of the law from the complex reality has become an urgent 
problem in the current international relation research. As a 
result, network-based research on national geopolitical rela-
tions has gradually become a hotspot in international rela-
tions and geography and other interdisciplinary disciplines 
(Uitermark and Van Meeteren 2021; Schottler et al. 2021).

In the early days, scholars analyzed and calculated 
international relations (Maoz 2012, Hafner-Burton et al. 
2009; Bohmelt and Spilker 2016) and state power (Bonac-
ich 1972, Kim 2010) with the help of network methods. 
With the profound changes in international relations (Jin 
and Huang 2013) and the continuous enrichment of geo-
relations research (Song et al. 2018; Lu and Du 2013; An 
et al. 2016; Du and Mei 2017), some geo-relations schol-
ars have constructed different network models by using 
the theories and methods of network analysis, such as the 
global natural gas trade network (Geng et al. 2014; Liu 
2016), the oil trade network (Liu et al. 2017), the envi-
ronmental expansion of the global energy network (Chen 
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et al. 2018), the global agricultural products trade network 
(Wang et al. 2018), and the Belt and Road along the route 
countries food virtual water trade network research (Zhu 
et al. 2020).

In addition to theme-oriented network analysis, some 
scholars have also dissected the geosystem properties and 
functional evolution laws through network attributes and 
node characteristics (Qin et al. 2019; Yang et al. 2021). 
The use of gwpcorMapper (Percival et al. 2022) and geo-
graphically weighted correlation and partial correlation 
analysis can provide valuable insights into the study of 
geopolitical relations using complex networks. Karount-
zos et al. (2023) introduces a GIS-based decision support 
framework for creating zero-emission maritime networks, 
specifically focusing on the Greek Coastal Shipping Net-
work (GCSN). The approach employs GIS and exploratory 
spatial data analysis (ESDA) to identify suitable areas for 
implementing zero-emission routes, adding to the body 
of knowledge on sustainability and decarbonization in the 
maritime sector.

Similarly, different scholars have explored the applica-
tion of networks in different regions, such as the economic 
and trade networks between China and neighboring coun-
tries (Pan et al. 2015), and the study of geopolitical rela-
tions in Southeast Asia (Qin et al. 2018). Scholars have 
done more research (Anderson and Dragićević, 2020) on 
thematic networks such as political, economic, and trade 
ties between countries, constructing defined networks 
based on defined themes and studying the characteristics 
of their existence. However, there are fewer studies on 
the underlying structure of geopolitical networks, so it is 
necessary to start from the bottom, reveal the geopolitical 
proximity laws and quantitative characteristics between 
countries, and provide logical support for other network 
studies.

As far as the current international community is con-
cerned, each country’s own geographic location and its rela-
tive position (adjacent, separated, or far away) from other 
countries are fixed for a certain period of time, thus con-
stituting the basic geopolitical relations among countries. 
Based on these basic geographic neighboring relationships, 
we constructed a national land neighboring network. The 
land adjacency network can help us to reconceptualize the 
geographic connotations of different countries and regions 
in a quantitative way, and then provide reference for avoiding 
geopolitical risks and guiding national development.

The research objectives of this paper are threefold: (1) 
to construct a terrestrial adjacency network model based 
on national land neighboring relationships, (2) to spatially 
characterize the specified region based on the network indi-
cators, and (3) to conduct an evolutionary analysis with the 
help of the terrestrial adjacency network to reveal possible 
geo-relationship patterns.

Materials and Methods

Data Description and Network Model Generation

Geographic network is a complex network of the real type, 
and the terrestrial adjacency network (TAN) model based 
on terrestrial adjacency relationship is a typical example of 
geographic relationship network. TAN’s construction treats 
countries or regions as network nodes and uses adjacencies 
and related attributes as constraint rules. The focus of adja-
cency networks is on the calculation of expression relation-
ships and network indicators, so some factors that are not 
used for the time being in the construction of TAN, such as 
the topographical conditions of different countries, will be 
ignored.

The research object of this paper is global terrestrial 
countries, and relevant data are obtained from the Database 
of Global Administrative Areas (https:// gadm. org/). For 
countries and regions in dispute in GADM, international 
practice prevails. Data on country attributes (e.g., national 
rail mileage, road mileage, territorial area, etc.) from the 
World Bank, with additions for missing values from Wiki-
pedia and The World Factbook. Because of the complexity 
of borders between countries, there are some special circum-
stances that need to be explained: (a) Turkey’s Edirne and 
Kirklareli provinces share borders with Greece and Bulgaria, 
respectively, despite being separated from Turkey proper by 
the Turkish Strait. This creates a neighboring relationship 
between Turkey, Greece, and Bulgaria, with Azerbaijan also 
considered adjacent due to their common border. (b) Bosnia 
and Herzegovina extends into the sea and divides Croatia’s 
coastline, but their territorial borders connect with Monte-
negro, making Croatia adjacent to Montenegro. (c) Territo-
rial adjustments resulting from a 1974 agreement between 
Saudi Arabia and UAE invalidated their contiguous relation-
ship, separating UAE and Qatar. (d) West Malaysia borders 
Thailand to the north and Singapore to the south, with East 
Malaysia separated from the west by the sea. As a result, 
Malaysia is adjacent to both Thailand and Singapore.

Tables 1 and 2 provide examples of node set and edge 
data ,  respect ively.  The node set  is  denoted 
V = {v1, v2,⋯ , vn} ,  t h e  e d ge  s e t  i s  d e n o t e d 
E = {eij}(i, j ∈ [1,N], i ≠ j) , and finally, the undirected 
graph model G

ad
 is generated, where ad is the abbreviated 

form of adjacent.
Figure 1 divides the main study area into three regions 

based on the natural characteristics of the continents: Eurasia, 
Africa, and America. Notably, the 79, 49, and 23 land-based 
countries are included in the corresponding study areas. The 
TAN models are constructed as three undirected subgraphs of 
GEA =

(

VEA,EEA

)

,NEA = 79 , GAF =
(

VAF,EAF

)

,NAF = 49 , 
and GAM =

(

VAM ,EAM

)

,NAM = 23 , respectively. It should 

https://gadm.org/
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be noted that because the scale of the study is large and the 
polar regions are not considered, it is more reasonable to 
construct TAN based on Mercator projection.

Geographic Meaning of Network Indicators

In the previous section, we built the TAN model. This sec-
tion will focus on introducing the network indicators used 
and their geographical significance in spatial structure 
analysis and evolution analysis based on specific network 

indicators. As shown in Table 3, the adopted network indi-
cators are divided into three aspects: node indicators, edge 
indicator, and network structure indicators.

Degree centrality is often used to measure the importance 
of a node, and the formula is expressed as

where N is the total number of network nodes.
Cluster coefficient refers to the proportion of neighbors of 

each other. The larger the cluster coefficient of the nodes in 

(1)Dci
= Di∕(N − 1)

Table 1  Example of node set 
of TAN

VID Country ISO Longitude (°) Latitude (°) Attribute A

v1 Afghanistan AFG 66.029 586 33.828 415 A1

v2 United Arab Emirates ARE 54.327 280 23.914 678 A2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

vn Vatican City Data 12.452 861 41.903 540 An

Table 2  Example of edge set of TAN

EID Source ISO Country Longitude (°) Latitude (°) Target ISO Country Longitude (°) Latitude (°) Edge Attribute
Ai_j

e1−7 AFG Afghanistan 66.029 586 33.828 415 CHN China 103.915 700 36.517 460 A1−7

e2−25 ARE United Arab Emir-
ates

54.327 280 23.914 678 OMN Oman 56.095 588 20.588 5442 A2−25

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

e7−72 CHN China 103.915 700 36.517 460 RUS Russia 96.723 288 61.980 730 A7−72
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Fig. 1  Terrestrial adjacency network model diagram
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the network, the higher the degree of tightness of the given 
node with the other nodes in the neighborhood is indicated 
by the formula:

 There can be at most Di(Di − 1)∕2 edges between Di nodes, 
and Ei represents the actual number of edges that exist 
between ni nodes.

Closeness centrality is a reflection of the degree of con-
venience between a node and other nodes in the network, 
expressed as the reciprocal of the cumulative shortest path 
lengths between nodes.

where dij is the network length from node vi to node vj and 
di denotes the average length from node vi to the remaining 
points. The more convenient the remaining nodes in this 
node network, the greater the value of closeness centrality.

Betweenness centrality is the ratio of the number of short-
est paths from node vl to node vk to the number of all pos-
sible shortest paths from node vl to node vk . Node between-
ness centrality and edge betweenness centrality reflect the 
bridge passing role and mediating influence of that node and 
neighborhood in the network model, respectively. The node 
betweenness centrality is calculated as

(2)Ci =
2Ei

Di(Di − 1)

(3)Cc(i) =
1

di
, di =

1

N − 1

N
∑

j=1

dij

(4)Bi =
∑

j,k∈V

nlk(i)

nlk

Similarly, the betweenness centrality Bij of an edge eij is 
defined as the proportion of the number of all shortest paths 
in the network that pass through that edge.

where nlk denotes the number of shortest path entries 
between nodes vl and vk and nlk(eij) denotes the number 
of shortest path entries between nodes vl and vk that pass 
through edge eij.

Eigenvector centrality reflects the degree to which a node 
in a network is connected to a more influential node (the 
influence of a node in an unweighted network is expressed 
as the node’s degree value; the influence of a node in a 
weighted network is expressed as the weighted degree), 
which is calculated as.

where � is the eigenvalue, aij is the adjacency matrix ele-
ment, and xj is the eigenvector.

Network density describes the tightness of a network and 
measures the completeness of the network graph as the ratio 
of the actual number of connections in the network to the 
maximum possible number of connections between nodes, 
with a value in the range of [0,1].

where M is the number of edges in the network and N is the 
number of nodes in the network.

(5)Bij =
∑

i,j,l,k∈V;eij∈E

nlk(eij)

nlk

(6)Eci
=

1

�

N
∑

j=1

aijxj

(7)d(G) = 2M∕[N(N − 1)]

Table 3  Summary of terrestrial adjacency network indicators

Category Indicator Notation Geographical significance

Node indicators Degree D The number of neighboring countries of a given country
Degree centrality Dci

Distribution of the importance of a country’s degree value
Cluster coefficient Ci The proportion of neighboring countries in a given country being neighbors to each 

other, the larger the cluster coefficient, the stronger the geographic clustering of 
countries in the region

Closeness centrality Cci
The ease of travel from one country to another country in the network

Node betweenness centrality Bi The ability of the country to act as a bridge in the adjacency network model
Eigenvector centrality Eci Measure how connected a country is to countries with high influence (the primary 

indicator here is degree value)
Edge indicator Edge betweenness centrality Bij The adjacency between the two countries plays a bridge transmission role and inter-

mediary influence in the adjacency network model
Network 

structure 
indicators

Density d(G) Represents the compactness of a network model, mainly measuring the completeness 
of the network diagram

Transitivity T(G) Measures whether there are more optional paths for connectivity between countries
Degree correlation r(G) Measures the homogeneity (small degree value nodes connected to small degree value 

nodes) or heterogeneity (large-small) of adjacency network in a certain region
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Network transitivity depends on the degree and aggre-
gation coefficient of each node in the network, i.e., con-
necting the same nodes may also connect each other in 
the network graph.

where triangles are the number of triangles in the network 
and triads are the number of triples, i.e., the number of pairs 
of edges with common vertices.

Degree correlation refers to the fact that there is a cor-
relation between degrees in the degree distribution of 
a real complex network, and describes the relationship 
between nodes with large degrees and nodes with small 
degrees in the network. The Pearson correlation coeffi-
cient method is a further simplification made by Newman 
based on Pastor-Satorras et al. and points out that it is 
necessary to calculate the Pearson correlation coefficient 
of the degree of the vertices only, r(−1 ≤ r ≤ 1) to charac-
terize the degree correlation of the network. r is defined 
as follows:

where Di,Dj denotes the degree of two nodes vi , vj , respec-
tively; M denotes the total number of edges of the networks; 
aij denotes the elements of the adjacency matrix A of the 
undirected network G, here 0 or 1; when r takes the value 
of the range of r > 0 , the network is positively correlated, 
which means that nodes in the network with larger values 
of degree tend to be connected with nodes of larges values 
of degree; when r < 0 , the network shows a negative cor-
relation, and nodes with larger degree values tend to be con-
nected to nodes with smaller degree values. When r = 0 , the 
network is not correlated.

(8)T(G) = 3 ×
triangles

triads

(9)

r(G) =
M−1

∑

j>i DiDjaij − [M−1
∑

j>i
1

2
(Di + Dj)aij]

2

M−1
∑

j>i
1

2
(D2

i
+ D2

j
)aij − [M−1

∑

j>i
1

2
(Di + Dj)aij]

2

Network Structure and Evolution

A typical spatial graph can depict the flow of various 
resources between different geographic locations or describe 
the occurrence of different correlated events between multi-
ple geographic locations. The spatial structure is crucial to 
us because TAN is the graphical expression and extension 
of geographic science. There have three main perspectives 
for analyzing the structure and evolution of TAN: (1) region, 
which measures the extent of change in specified nodes; 
(2) direction, indicating directional trends among network 
attributes; and (3) shape, where expansion or contraction 
forms subgraphs with varying levels of complexity. These 
perspectives are briefly depicted in Fig. 2.

Of course, there are dynamic changes in the adjacency 
network. Dynamic evolution can help us analyze geopoliti-
cal changes in real TAN using networks. When the existence 
of nodes and edges of the network is changed, the network 
structure will change accordingly, mathematically expressed 
as G0(V0,E0)

conditions
→ G1(V1,E1) . Network changes caused 

by the mapping of realistic conditions on the network struc-
ture are called network component evolutionary analysis. 
The evolutionary analysis is most commonly used for net-
work association detection and evolution under artificial 
conditioning for given targets. Community structure analysis 
can help uncover underlying patterns in TAN by identifying 
tight connections within communities and distant connec-
tions between communities. The goal is to separate different 
communities and explore their relationships in an efficient 
and reliable manner. When selecting community detection 
methods for TAN analysis, it is important to consider the 
neighborhood characteristics of the model and the three 
spatial analysis perspectives mentioned earlier. While there 
are many community detection methods available, the focus 
should be on selecting methods that align with the unique 
features of TAN.

To aid in community detection in TAN, k-shell analysis 
(KSA) and ego network analysis (ENA) algorithms are intro-
duced. KSA is an indicator proposed by Kitsak et al. that 
evaluates node importance based on location information. 

(a) (b) (c)

Fig. 2  Schematic diagram of the main perspectives of adjacency net-
work structure and evolution analysis. a The nodes inside the dashed 
ellipse indicate the nodes to be studied, and the ellipse indicates 
the area involved in these nodes. b The dashed arrows represent the 

directional trend of the spatial distribution of network node attributes. 
c The dashed box circles the same number of nodes but takes on a 
different shape
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The k-shell network refers to a maximal subgraph of the 
entire graph in which all nodes have degrees at least k (Kit-
sak et al. 2010). This decomposition model is most use-
ful for analyzing large-scale networks, as nodes within the 
subgraph with a high number of network cores have a more 
stable position in the overall model and deeper structural 
hierarchies (the first column in Fig. 3).

In ego network analysis (Freeman 1982), there is a single 
focal node, which is the central node of the study. It includes 
the central node and all nodes that are connected to it by 
some path. The n-step neighborhood extends the definition 
of the neighborhood size by including all nodes connected 
to the ego network at path length n, along with all connec-
tions between these nodes. By using ENA, differences in 
the central node can be identified, the peripheral domain of 
the node can be examined, and changes in the local network 
structure can be described (the second column in Fig. 3). 
KSA is a degree-based contraction algorithm, while ENA is 
a path length-based expansion algorithm, and both are run 
using the Gephi software (https:// gephi. org/).

Condition-based network component evolution analysis 
is a different approach to community detection. It involves 
adjusting the state of specified components to bring about 
changes in the network structure, as depicted in the third and 
fourth columns in Fig. 3. Through the use of TAN models, 
differences in attributes before and after network changes 
can be jointly analyzed by incorporating realistic condition 
factors such as setting the existence status of edges to 0 or 
1 depending on whether two countries are hostile towards 

each other. Additionally, layer attributes eij.x are integrated, 
which establishes neighboring networks as a tool within the 
framework of geographic network analysis. The evolution-
ary analysis offers insights into the impact of components 
on other members of the network, which in turn leads to a 
richer geographic interpretation.

It has been discovered that the connections between nodes 
in networks are often weight-dependent. Therefore, a purely 
topological model is not enough to accurately model the 
complex properties observed in real networks. In order to 
adequately capture these properties, it is necessary to con-
struct a model that takes into account the weights of the con-
nections. Here, we delves into the transition from unweighted 
networks to weighted networks and introduces a mathemati-
cal model denoted as G = (V ,E)

conditions
→ Gw(V ,E,W) , where 

V represents the nodes of the network, E represents the 
edges, and W represents the weights assigned to each edge.

At the theoretical level, the accessibility index, which 
considers the TAN, superimposed road density, railway den-
sity, and complex network indicators, can measure the con-
nectivity between countries over a larger area. Although it 
may not be as precise as traditional accessibility calculations 
at each pixel level, it has the advantage of considering all 
countries in the region. At the practical level, to measure the 
adjacency between two countries, the land-based adjacency 
network model accessibility index LT

ij
 is constructed based 

on some indicators of the complex network. LT
ij
 is an index 

used for comprehensive analysis, considering the topological 

Fig. 3  Schematic diagram of network evolution analysis

https://gephi.org/
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characteristics of near centrality and edge intermediary cen-
trality, combined with the actual available data, such as mile-
age data for railways and roads. As shown in Eq. (1):

Among them, Cc(i) and Cc(j) are the closeness centrality 
of nodes, and the larger the value, the stronger the ability to 
communicate with other nodes. Bij is the betweenness cen-
trality of the edge between the two countries, and the greater 
the value, the more obvious the intermediary effect; wi and 
wj are the basic weight parameters, here is the national land 
transportation capacity value. Here, ri is the national railway 
mileage, and hi is the highway mileage, all in kilometers 
(km); Areai is the territory of the country in square kilom-
eters  (km2); the k1 and k2 in the formula represent the propor-
tion of a country’s road and rail transport in land transport, 
respectively, and we use these two coefficients to refine the 
country’s land transport capacity.

Terrestrial Adjacency Network Spatial 
Structure and Evolution Analysis

The TAN model facilitates quantitative calculations, which 
are the focus of this chapter. Specifically, four aspects of 
quantitative analysis are addressed: scale-free characteris-
tics, indicator orientation, indicator spatial clustering distri-
bution characteristics, and network evolution analysis.

Analysis of Spatial Structure Characteristics

The two prominent complex network models are the small-
world and scale-free models. Networks in scale-free models 

(10)LT
ij
=

Cc(i) × wi + Cc(j) × wj

2
× Bij,

the node degrees obey a power-law distribution are called 
scale-free networks (Barabasi and Albert 1999). A power-
law distribution is a probability distribution characterized 
by a power function between the frequency of a random 
variable and its value. In a power-law network, neither the 
variance nor the expectation may exist, which is why Bara-
bási et al. called it “scale-free.” The probability of distri-
bution P(k) is defined as the ratio of the number of nodes 
with degree k to the total number of nodes in the adjacency 
network, and the power-law distribution takes the form 
P(k) ∝ k−�.

By studying power-law distributions, we can better under-
stand the connectivity patterns between nodes in a network 
and thus gain a deeper understanding of the network struc-
ture, network performance, and even possible changes in 
the network. This is crucial for conducting geo-community 
division and analyzing geospatial structures.

Scale‑Free Properties of TAN Models

The degree values and frequency distribution of the Eurasian 
TAN were obtained and presented in Fig. 4a. China (Asia) 
and Russia (Europe) have the highest degree value of 14. 
Countries with a degree value of 4 are the most frequent (16 
countries). Those with a degree value of 2 are the second 
most frequent (20.3%). The degree values range between 1 
and 6, accounting for 84.8%, indicating that most countries 
have neighbors ranging from 1 to 6. The average degree and 
weighted degree of the network are both 4.152. Nodes with 
degree values above 10 only account for a small proportion 
(2.53%).

The frequency distribution of the degree values of coun-
try nodes on Eurasia was fitted with a Gaussian distribution, 
which showed a right skewness (0.873) and an excellent fit. 
This indicates that most countries have only a few neighbors, 

(a) (b)
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Fig. 4  a Node degree value distribution statistics and normal distribution fitting. b Scale-free detection of node degree value in Eurasian
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while a few countries have many neighbors. The kurtosis of 
the fitted curve was − 0.549, showing that the curve is flat-
topped and flatter than the normal distribution. Therefore, 
the degree value distribution does not follow the normal 
distribution.

In Fig. 4b, the logarithmic degree values and corre-
sponding frequencies were linearly fitted in a Cartesian 
coordinate system to test for scale-free properties. The 
results showed a good fit with R2 = 0.923 and a reason-
able coefficient gamma value of γ = 1.584 (within the 
range of 1 ~ 3). This confirms that the Eurasian TAN has 
a scale-free property. Figure 5 shows the scale-free detec-
tion plots for the Africa and America TANs, after cal-
culating their degree values. The frequency distribution 
reveals that the Africa TAN has the highest frequency 
of degree value 3 and 6, while the America TAN has 
the highest frequency of degree value 2. However, both 

networks lack large numbers of nodes with small degrees 
connecting to nodes with large degrees. The power-law 
distribution tests confirm that both networks do not have 
the scale-free property, with low linear fitting errors 
R2 of 0.03588 and 0.02426 for the Africa and America 
TANs, respectively.

To investigate the geographical manifestation of the 
scale-free properties of the Eurasian TAN, we hierarchi-
cally visualize the node degree values and compare net-
work density, transitivity, and degree-degree correlations 
for all regions, as depicted in Fig. 6a.

An analysis of the geographic adjacencies shows a 
non-uniform structure in the Eurasian TAN, with a “core-
verge” arrangement. The network has countries with small 
degree values at the verge and countries with large degree 
values at the core. East Asia shows a strong non-uniform-
ity, whereas Europe displays a weaker non-uniformity.

Fig. 5  a Free-scale detection of network node degree value in Africa. b Free-scale detection of network node degree value in America

Fig. 6  a Diagram of hierarchical display of network node degree value. b Comparison of network structure indicators
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Figure 6b shows an analysis of network structure indi-
cators for various network models. The transitivity of 
each region ranges from 0.35 to 0.41, with Africa having 
the highest transitivity. Differences in terrain and trans-
portation modes appear to have no significant impact on 
exchange transmission among countries within each con-
tinent. The TAN density increases in the order of Total, 
Eurasia, Africa, and America, with America having the 
highest density value of 0.14625 due to the relatively 
smaller number of countries in the region. The Eura-
sian region exhibits the highest degree correlation, while 
Africa shows almost zero degree correlation, suggesting 
weaker non-uniformity and a more regular topology for 
the Africa TAN.

In terms of geographic and network perspectives, the 
Eurasian region has the largest land area globally, but it 
does not have the highest network density or transitiv-
ity. On the other hand, Africa, which comprises one-fifth 
of the global land area, exhibits high transitivity and low 
heterogeneity due to the even distribution of nodes and 
complete connections between countries. The absence of 
extremely large countries in Africa contributes to its better 
structural connectivity.

Statistical Characteristics of Node Indicators

In terms of regional differences, the Eurasian TAN exhibits a 
scale-free structure, while the Africa and America TANs do 
not, indicating a “core–edge” structure in the Eurasian ter-
restrial adjacency relationships. We explore the geographic 
characteristics of network nodes by ranking node indicators 
according to their respective regions and using box plots 
to depict the data, which offers stability in describing the 
discrete distribution of data while avoiding the impact of 
outliers. Table 4 presents the calculation of network indi-
cators for different regions based on the division outlined 
in the “Data Description and Network Model Generation” 
section. The countries in the table are the top five countries 
for this indicator.

Combining Table 4 and Fig. 7, we will explore the differ-
ences of each indicator in different regions. There are several 
conclusions:

The degree value refers to the number of neighbors of the 
countries. The Eurasian TAN’s degree box plot range is 9 at 
the upper edge and 1 at the lower edge, with a mean value 
of 4.1, which is consistent with the overall network. Though 
the Africa TAN box size is consistent with the total TAN, 

Table 4  The top five countries in each indicator by subregion

Indicator Area Countries

Degree (degree centrality) Eurasia Russia, China, Germany, Austria, France
Africa Democratic Republic of the Congo, Tanzania, Zambia, Algeria, Mali
America Brazil, Argentina, Bolivia, Colombia, Peru

Betweenness centrality Eurasia Russia, China, Poland, Turkey, Germany
Africa Niger, Democratic Republic of the Congo, Chad, Central African Republic, Mali
America Colombia, Panama, Costa Rica, Nicaragua, Brazil

Closeness centrality Eurasia Russia, Poland, Ukraine, China, Azerbaijan
Africa Chad, Central African Republic, Sudan, Niger, Democratic Republic of the Congo
America Colombia, Panama, Brazil, Costa Rica, Peru

Eigenvector centrality Eurasia Russia, Poland, Ukraine, China, Azerbaijan
Africa Democratic Republic of the Congo, Tanzania, Zimbabwe, South Sudan, Uganda
America Brazil, Bolivia, Argentina, Peru, Colombia
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its box is slightly upward, indicating the concentration range 
is large compared with the total network node degree value 
distribution in this region. There are outliers present in both 
the Eurasian and America TAN, with Russia and China hav-
ing a maximum value of 14. For the American TAN, Brazil 
has the highest value of 10, and the number of neighbors for 
these countries in the region is significantly different from 
other countries. The upper border of the data box is 5 with a 
lower border of 1, and the mean value is 3.2. Furthermore, 
the data dispersion in degree values of the American TAN is 
smaller compared to the Eurasian TAN. Although the degree 
values in the American TAN are generally smaller, the data 
distribution is more complete.

In terms of node betweenness centrality, Eurasia and 
Africa have more outliers with high values, such as China 
and Poland in Eurasia and Niger and Congo (DRC) in 
Africa. When considering the geographical location of each 
country, it is found that these countries have a strong trans-
mission effect within their respective regions. Compared to 
these countries, Fig. 7b demonstrates that in the American 
region, the box volume is quite large, and the lower border 
overlaps with the minimum value. This overlap indicates that 
the intermediary centrality value of nodes in the Americas 
is more discrete, and the node delivery in this region is quite 
diverse.

Regarding the closeness centrality, it can be observed 
from Fig. 7c that some nodes in the total box plot are located 
beyond the observation range, below the lower border. 
Among the nodes located at the bottom of the numerical 
ranking are Canada, the United States, Belize, Mexico, and 
El Salvador, all of which belong to the American region. 
These observations can be attributed to the fact that the TAN 
of the American region is not connected to other networks, 
which has geographical implications for closeness centrality. 
The differences among the three regions were not significant, 
and the effect of data dispersion was more or less the same. 
Furthermore, it is worth noting that Russia, being an outlier 
of the Eurasian TAN, has many adjacency relations with 
neighboring countries due to its vast territory. In theoretical 
conditions, Russia has become the most accessible country 
to other nations.

The eigenvector centrality measure posits that the impor-
tance of a node depends on both the number of its neighbors 
and the importance of each neighbor node. In this study, the 
calculation method used considers that countries with larger 
degree values are of high importance. As shown in Fig. 7d, 
outliers in the Eurasian region include Poland, Belarus, 
Ukraine, and Kazakhstan, which are neighbors of Russia and 
China. Meanwhile, in the Americas, the data mean is below 
the median, indicating low eigenvector centrality in most of 
these countries. Furthermore, the United States has a low 
eigenvector centrality value, primarily because it does not 
have a large connectivity value. However, this observation 

contradicts the true importance of the United States, which 
should be given special attention in subsequent TAN studies.

Indicator Direction Distribution

This section investigates the spatial directionality of net-
work indicators by plotting their directional distribution 
using standard deviation ellipses. The directional distribu-
tion reveals geographic features’ discrete ranges and direc-
tional trends, and it is created from specified data. ArcGIS 
is used for spatialization mapping. The graph is first filled 
based on the degree value of each country, and the color 
is set to reflect five levels of natural grouping. Next, the 
directional distribution of six network metrics degree value, 
degree centrality, cluster coefficient, closeness centrality, 
node betweenness centrality, and eigenvector centrality is 
displayed with a 1 standard deviation ellipse. Figure 8 shows 
the result of this analysis.

Figure 8a shows the distribution of indicator directions 
under the entire region. With the exception of the eigenvec-
tor centrality error ellipse, the indicator error ellipse expands 
along Eurasia towards Africa and points towards South 
America. This indicates that the country degree distribu-
tion, degree of clustering, and ease of access to other coun-
tries expand along this direction to the vertical sides. The 
ellipse for betweenness centrality (L5) is the smallest and 
encompasses northern Africa, the Middle East, and Southern 
Europe. This region serves as a junction connecting Europe, 
Asia, and Africa, and its countries have high intermediary 
capacity. The eigenvector centrality ellipse (L6) is elon-
gated, covering Eastern Europe and Central Asia. Russia 
and China, which have a significant influence on the degree 
value of these countries, are adjacent to these regions.

Figure 8b reveals that the ellipses of the Eurasian TAN 
indicators are more concentrated on the European side and 
more dispersed on the Asian side. Two points should be 
highlighted: (1) Following the withdrawal of the African 
region from the study, the elliptical aggregation center of 
the clustering coefficient (L2) shifted to Europe and the Mid-
dle East, where many countries gathered on one side of the 
ellipse, while countries with large territorial areas such as 
Russia, Kazakhstan, Mongolia, and China were on the other 
side; (2) the betweenness centrality ellipse (L5) moved and 
rotated northwards, indicating the mediating influence of 
countries such as Poland, Belarus, and Turkey without the 
participation of the African region.

In Fig. 8c, high degree values in countries such as the 
DRC, Tanzania, and Zambia cause the eigenvector centrality 
ellipse (L6) to lean towards this area. The betweenness cen-
trality ellipse (L5) covers countries including Niger, Chad, 
Sudan, South Sudan, and Central Africa. These countries 
serve as a central hub connecting Northern and Southern 
Africa and have high intermediary centrality values. The 
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Fig. 8  The spatial direction distribution of each indicator in different regions. a Total. b Eurasia. c Africa. d America
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ellipses of other indicators are relatively balanced in size 
and shape, in agreement with the shape of the African con-
tinent. The spatial distribution characteristics suggest that 
the network structure in Africa is balanced, with relatively 
low heterogeneity (− 0.0286) in degree.

In Fig. 8d, Brazil stands out with a high degree value, 
and countries that connect to it most probably fall within the 
eigenvector centrality ellipse (L6). The betweenness central-
ity ellipse (L5) is narrow and links North and South America 
towards Costa Rica and Panama. The diagram reveals that 
the degree distribution, degree of aggregation, and connec-
tivity in this area are heavily concentrated along the west 
coast.

Characteristics of Indicators’ Spatial Clustering Distribution

Cluster analysis is a crucial data mining and law exploration 
method that involves dividing spatial data into regions where 
objects with identical or similar attributes are classified in the 
same set, using specialized elements and data features. In this 
section, we use the network indicators of each country node in 

the African region as weighted elements and employ the tool of 
Anselin Local Moran I in ArcGIS to classify clusters by iden-
tifying cases of high-high, high-low, low–high, and low-low 
clustering with statistical significance. Here, the confidence 
level of the algorithm is set to 95%, and the spatial conceptu-
alization parameter is set to CONTIGUITY_EDGES_ONLY. 
The plotted thematic diagram is shown in Fig. 9.

In terms of degree value (centrality) clustering, Central 
Africa, which is located in the center of Africa, connects 
a number of highly valued countries showing high-high 
clustering; Algeria, which is located in the north of Africa 
and has the largest territory in Africa, has a high degree 
value, but the surrounding countries, such as Tunisia, have 
a small degree value, showing high and low clustering. 
Regarding cluster coefficients, Algeria and Tunisia corre-
spond to low–high and high-low clustering. As for the cen-
trality of betweenness, the countries of the central region, 
Niger, Chad, and Central Africa, which play a significant 
role in linking the east and west coasts of Africa and the 
northern and southern regions of Africa, show high-high 
clustering. Closeness centrality aspect of Central Africa to 

Fig. 9  Cluster distribution of different indicators in the African TAN
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other regions is more convenient, showing high-high cluster-
ing; while located in the southern side of Africa, Botswana, 
South Africa and Lesotho in the network of limited connec-
tivity, showing low-low clustering. Eigenvector centrality, 
the degree value of Central African countries is generally 
higher, so it presents high-high clustering; Mauritania, Sen-
egal, Liberia, and other countries are located in the west 
coast of Africa around the high value of the country node is 
less, so it presents high-high clustering.

In the same way, we also conducted spatial clustering 
analysis on the Eurasian and American regions. In these 
regions, countries with significant territorial areas situated 
on the periphery of the region—such as Russia, China, and 
France in Eurasia and Algeria in Africa—tend to exhibit 
high or low clustering of degree values (centrality). In terms 
of cluster coefficient, we observed a tendency for high-low 
and low–high cluster distributions to occur in pairs, such as 
Mongolia and China in the Eurasian region and Tunisia and 
Algeria in the African region.

The clustering distribution of closeness centrality tends 
to be low-low in marginal areas with more homogeneous 
network connectivity structures, such as Yemen and Oman 
in the Eurasian region, the United States and Canada in the 
American region, and South Africa and Botswana in the 
African region. In theory, influential large countries tend 
to have large degree values, small cluster coefficients, and 
high intermediary centrality. The clustering distribution of 
complex network indicators can reveal certain geographical 
patterns and provide quantitative references for understand-
ing national factors.

Terrestrial Adjacency Network Evolution Analysis

K‑Shell Network Evolution

In the “Network Structure and Evolution” section, we intro-
duced the principle and significance of k-shell analysis. To 

narrow the focus of our study, this section will perform KSA 
on the Eurasian TAN model to explore the deeper structure 
of adjacency networks. Using dynamic simulation with the 
help of Gephi software, we obtained the network evolution 
shown in Fig. 10.

At k = 1, the network remains unchanged with no impact 
on the number of nodes and edges. The remaining 79 coun-
tries and 164 edges have a residual ratio of 100%.

At k = 2, 70 nodes remain, a decrease of 11.39%. One 
hundred fifty-five edges account for 94.51%, down 5.49%. 
Denmark, Portugal, Monaco, Vatican, San Marino, Kuwait, 
Singapore, Malaysia, and South Korea exit the network 
structure. These countries may have a single adjacency 
structure or are located at the edge of the network, as indi-
cated by the cluster coefficient distribution map.

At k = 3, the remaining 45 nodes account for 56.96%, 
representing a 31.65% decrease. The remaining 108 edges 
account for 65.85%, a decrease of 28.66%. Countries in 
Northern Europe, Western Europe, South Asia, and the Ara-
bian Peninsula withdraw from the adjacency network due to 
their small number of neighbors and lack of strong network 
adjacency support.

At k = 4, only 13 nodes remain, accounting for 16.46% of 
the original network, a decrease of 40.5%. The remaining 
29 adjacency relationships account for 17.68%, representing 
a decrease of 48.17%. Most countries in Eurasia withdraw 
from the k-shell range, leaving only 13 countries behind. 
China, Russia, Germany, Iran, Turkey, and Afghanistan 
form the outer ring of the network structure, while Armenia, 
Azerbaijan, and the five Central Asian countries form the 
inner ring. This forms a spatial adjacency network structure 
with the deepest core in the Eurasian TAN. The k = 4 core 
country node network diagram is shown on the right side 
of Fig. 10.

Following the k-shell mining, the indicators for countries 
within the k = 4 community structure are aggregated. The 
subgraph, consisting of 13 nodes, is considered sample data 

Fig. 10  K-shell network evolution process and k = 4 country node network diagram
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and compared to the overall Eurasian network of 79 nodes 
in terms of mean and standard deviation. The results are 
shown in Table 5.

It can be seen from the table that in the community 
space structure of k = 4, the mean degree value of 6.462 is 
slightly higher than the average degree of the entire Eura-
sian network of 4.152, which is close to the “six-degree 
fractal theory” in the characteristics of the small world. 
The standard deviations of nodes’ closeness centrality and 
cluster coefficient in the subgraph are 0.030 and 0.210, 
respectively, with smaller data values compared to the 
entire Eurasian network, indicating that the two indicators 
fluctuate less in the community, confirming the stability of 
this spatial structure from the data level.

Besides, the mean value of the betweenness centrality of 
the sample (113.24 ×  10−3) is higher than that of the whole 
Eurasian network (42.66 ×  10−3), suggesting that the nodes 
within this structure all have high transmissibility. In terms 
of eigenvector centrality, the mean value of the subgraph 
(0.184) is much larger than the mean value of the Eurasian 
network (0.084). From the geographical meaning, we guess 
that the reason may be the community includes two coun-
tries with large degree values, China and Russia, and the 
eigenvector centrality of other countries is influenced by this 
resulting in large values, making the fluctuation of eigenvec-
tor centrality of subgraph also relatively large.

Ego Network Evolution

In the previous section, we conducted the k-shell analysis 
of the Eurasian TAN and obtained the network topology 
with the deepest core. To explore the community composi-
tion phenomenon of national nodes within the network, we 
will be using ego network analysis in complex networks in 
this section. We will analyze specific nodes and observe the 
laws contained in their TAN models. Four countries, France, 
Germany, Turkey, and Iran, were chosen for the study. Dif-
ferent levels of network association structures are identified 
based on algorithmic simulations, and the results are shown 
in Figs. 11 and 12.

Based on the results above, when d = 1, Germany (n = 10 
[12.66%], e = 17 [10.37%]) and France (n = 9 [11.39%], 
e = 14 [8.54%]) both experience comparable depth changes 
in the adjacency network, and the countries they are con-
nected to remain primarily within Europe. When d = 2, in 
terms of network expansion, Germany (n = 22 [27.85%], 
e = 45 [27.44%]) has better network scalability than France 
(n = 19 [24.05%], e = 31 [18.9%]), and Germany has natural 
conditions for expanding eastward. When d = 3, Germany 
(n = 39 [49.37%], e = 75 [45.73%]) is readily associated with 
Eastern Europe, Central Asia, and even East Asia, while 
France (n = 39 [49.37%], e = 75 [45.73%]) is primarily con-
nected to countries within Western and Central Europe.

Table 5  K-shell country node 
attribute statistics (k = 4)

*The overall data here refers to the Eurasian TAN

Country ISO Degree Closeness 
centrality

Cluster Betweenness cen-
trality (×  10−3)

Eigenvector 
centrality

Russia RUS 14 0.361 0.143 479.46 0.397
China CHN 14 0.316 0.143 280.20 0.356
Turkey TUR 8 0.294 0.286 218.35 0.130
Iran IRN 7 0.292 0.286 133.06 0.150
Ukraine UKR 7 0.320 0.333 124.90 0.213
Afghanistan AFG 6 0.283 0.400 40.34 0.176
Azerbaijan AZE 5 0.315 0.600 89.41 0.156
Kazakhstan KAZ 5 0.298 0.400 34.51 0.194
Georgia GEO 4 0.310 0.667 58.34 0.134
Turkmenistan TKM 4 0.267 0.500 9.77 0.111
Tajikistan TJK 4 0.260 0.667 2.14 0.137
Kyrgyzstan KGZ 4 0.245 0.667 1. 28 0.140
Armenia ARM 4 0.265 0.833 0.36 0.098
Sample mean 6.615 0.294 0.456 113.24 0.184
Sample S.D 3.409 0.030 0.210 135.02 0.088
Overall mean* 4.152 0.242 0.531 42.66 0.084
Overall S.D.* 2.531 0.044 0.320 77.87 0.075
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Regarding Iran and Turkey, when d = 1, they have a simi-
lar shape, connecting both eastern and western countries. 
The proportion of connected nodes for Iran is 10.13%, and 
for Turkey, it is 11.39%, with a proportion of adjacency of 
7.93% and 9.76%, respectively. When d = 2 and d = 3, the 
proportion of nodes and connected edges for both coun-
tries’ spatial structures are quite similar, indicating that 
their spatial extension characteristics are comparable. 
Additionally, the closeness centrality for Iran and Turkey 
are Cc_IRN = 0.292 and Cc_TUR = 0.294 , respectively, and 
the cluster coefficients are CIRN = 0.286 and CTUR = 0.286 , 
showing that their abilities to connect and aggregate with 
neighboring countries are relatively similar.

The main difference between Iran and Turkey is that 
Turkey can extend its network to Southern Europe, while 
Iran’s network can extend to Southeast Asia, dependent on 
the direction of the spatial network. In terms of between-
ness centrality, BIRN = 0.133 and CTUR = 0.218 . Turkey has 
a higher value, indicating that Turkey performs better than 
Iran in terms of hub function, according to TAN analysis.

Evolution Under Node or Edge Failure

During the network evolution process, when a node fails, 
it can have a significant impact on neighboring countries’ 
network indicators. For example, in Afghanistan, despite 
some progress in political and economic reconstruction, the 

security situation is still uncertain. By changing the existing 
attribute of Afghan nodes in the land adjacency network, we 
can simulate the “failure” of nodes and analyze the changes 
in Afghanistan’s neighboring countries and network struc-
ture. After the Afghanistan node fails, the Eurasian land 
network has 78 nodes and 158 edges. Figure 13 shows the 
indicator calculations for Afghanistan’s neighbors before 
and after the failure of the Afghanistan node.

Neighboring countries’ indicators underwent four signifi-
cant changes. Firstly, the degree centrality of nodes shows 
a downward trend when a node is missing. This is because 
the total number of nodes is reduced by 1, and the degree 
value of the surrounding country also decreases. Secondly, 
Pakistan’s indicator decreased significantly, making it more 
vulnerable to Afghanistan’s cluster than other countries. 
Tajikistan, Uzbekistan, and China, however, remained sta-
ble. Thirdly, China and Iran experienced a decline in inter-
mediary capacity, while Turkmenistan and Pakistan showed 
improvement in this area according to the line graph. Finally, 
the indicators of closeness centrality for neighboring coun-
tries decreased, especially in Tajikistan, indicating a high 
reliance on Afghanistan as a gateway for communication 
with the rest of Eurasia compared to other neighbors.

By performing “nodal failure” simulations, we can 
identify alternative countries for certain indicators in land-
based adjacency. For instance, we can use the change in 
betweenness centrality to determine that if the Afghan 

Fig. 11  Change and ego network structure of French and German nodes
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node is “unblocked,” Pakistan and Turkmenistan can be 
used as alternative transit countries. Moreover, Pakistan 
exhibits greater capability in assuming substitution than 
Turkmenistan.

In the case of the Russia-Ukraine conflict, on 22 Febru-
ary 2022, the Russian Federation Council passed a resolu-
tion allowing the Russian President to use the armed forces 

outside Russia, marking the beginning of hostilities between 
Russia and Ukraine. Figure 14 shows the calculations made 
by Russia’s neighbors and Ukraine’s neighbors before and 
after the rupture of bilateral relations on land.

For Russia’s neighbors, a break in the Russia-Ukraine 
proximity will inevitably reduce Ukraine’s centrality. 
In terms of cluster coefficients, the Belarus and Poland 

Fig. 12  Change and ego network structure of Iranian and Turkish nodes
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indicators declined because Belarus and Poland are neigh-
bors of both Russia and Ukraine (Poland shares borders 
with the Russian enclave and is considered adjacent) and 
the adjacency structure formed is easily affected. In terms 
of betweenness centrality, Ukraine has seen a significant 
decrease in intermediary capacity, while Belarus and Poland 
have seen a varying degree of improvement, suggesting that 
Belarus and Poland can also serve as a route for Russia to 
Europe compared to Ukraine. China, Azerbaijan, Georgia, 
Kazakhstan, North Korea, Mongolia, Norway, and Estonia 
all have decreased their closeness centrality values compared 

to before, with Ukraine seeing the largest decline. This indi-
cates that Russia has a great influence on the ability to sur-
round land geospatial interactions, especially Ukraine, from 
the perspective of land-based adjacency networks.

Evolution with Attributes

As described in the “Methods” section, we consider 
overlaying attribute data such as roads on top of the net-
work model to make the evolution of the network model 
more realistic. The evolutionary model uses data, such 

Fig. 13  Indicators change before and after the Afghanistan node fails

Fig. 14  Indicators change before and after the Russia-Ukraine edge fails
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as closeness centrality and edge betweenness centrality, 
and uses it to traverse and calculate the adjacency rela-
tionship between all nodes. Figure 15 demonstrates the 
network accessibility after overlaying the attribute data, 
with thicker lines indicating greater overland accessibility 
between two nodes.

Remark 1 As we expected, due to the complexity of 
the countries in the study region and the limited data col-
lection capacity, there are some missing road transport 
coefficients and rail transport coefficients for the coun-
tries. For this problem, we averaged the available data on 
road transport share and rail transport share and assigned 
them to the countries with missing data to ensure the nor-
mal operation of the model.

In the TAN without superimposed attributes, the top five 
neighboring state relationships in edge betweenness central-
ity Bij are Poland-Russia, Russia-China, Germany-Poland, 
Russia-Ukraine, and Iraq- Saudi Arabia. After overlaying the 
land transportation attributes, the network model changes, 
and the top five in terms of accessibility index LT

ij
 between 

countries becomes Germany-Poland, Poland-Russia, Ger-
many-France, Austria-Hungary, and Russia-China.

Compared to the ranking of the Bij in TAN, the LT
ij
 

between Poland-Russia and Germany-Poland still ranks 
high. Correspondingly, Russia-China, which were ranked 
second in Bij , dropped to fifth place in LT

ij
 . We hypothesize 

that the decline may be due to the fact that both countries 

are larger, weakening the ability to communicate overland 
between them.

In contrast, we also observe that the top ranked coun-
tries in terms of accessibility are all European countries, 
and the accessibility between some of them has been greatly 
improved, such as Germany-France and Austria-Hungary. 
This is likely because the European region has a well-devel-
oped system of roads and railroads, which facilitates land 
communication, while European countries have smaller ter-
ritories, enabling better infrastructure connections.

Discussion

As O’Sullivan says, computational methods and digital data 
offer exciting new research opportunities across the social 
sciences and promise new insights (O’Sullivan and Manson 
2015; Watts 2013). TANs are different from physical and 
virtual networks, being intermediate between the two. The 
nodes in TAN exist and are geographically fixed, while the 
edges are abstractions of national adjacency situations, ren-
dering the network model distinct. Though the introduction 
of network analysis to the study of geopolitical relations is 
not new, incorporating terrestrial adjacency and performing 
spatial structure analysis is novel.

In this study, community detection in network analysis 
enables the induction of a “hidden order” from datasets. 

Fig. 15  The accessible network diagram with a traffic attribute network
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Similar to the k-shell analysis, the final presentation of solid 
societies shows a strong resemblance to Brzezinski’s account 
of the geographic situation of Eurasian countries in his noted 
book, The Grand Chess Game (Brzezinski 2016). Equally, 
network analysis using TAN validates some of the conclu-
sions of qualitative analysis from a quantitative perspective, 
with overall convergence despite some differences. We usu-
ally refer to Turkey as the crossroads of Europe and Asia, 
and this fact is reinforced by the comparison of quantitative 
nodal indicators in the comparative analysis of the locations 
of Turkey and Iran.

Relatively speaking, we have made a new discovery too. 
In the analysis of the Russian-Ukrainian conflict, China’s 
eigenvector centrality values increase, while Ukraine’s 
eigenvector centrality values show a decrease. This suggests 
that, in response to the basic facts of the conflict between 
the two countries, China’s influence on Russia will be even 
more important than other terrestrial neighbors. The “edge 
failure” strategy has the same effect on cluster coefficients 
and degree correlation indicators for two neighboring nodes 
but will have different effects on mediating ability and 
degree influence. The neighboring countries of the study 
will become stronger in strong indicators (e.g., eigenvector 
centrality of China in the Russian perspective) and weaker in 
weak indicators (e.g., Moldova in the Ukrainian perspective) 
due to “edge failure.”

While our exploration of network models has delved 
deeper into region, direction, shape, and evolution, the scope 
of study and diversity of network components limit the rich-
ness of our study. We chose Eurasia for community detec-
tion and network evolution, not to diminish the importance 
of other networks, but because the Eurasian TAN exhibits 
scale-free characteristics, richer node characteristics, and 
complete structure and represents more significant changes.

Despite the comparative analysis above being enlighten-
ing, the study’s limitation lies in the need for further cross-
validation. To address these shortcomings, other studies 
offer potential solutions. For instance, considering trade-offs 
in spatial decision-making (Vahidnia et al. 2022) can aid 
in designing more reasonable cross-experiments. Similarly, 
incorporating spatial scale in disaster response (de Bruijn 
et al. 2017) can lead to the selection of more appropriate 
association analysis methods. Additionally, analyzing the 
spatial distribution characteristics (Adeleke et al. 2022) and 
influencing factors (Fang et al. 2022) of the research object 
can provide diverse perspectives on spatial distribution and 
network evolution. Furthermore, the collection of more node 
attribute data will be pursued. As more attributes are added 
and interact with each other, multidimensionality, change, 
mediation, and competition emerge in the network resulting 
in a rather complex situation. Including island countries, 
such as the UK and Japan, in analysis frameworks is essen-
tial for a complete simulation of the national relationship 

network, as they have a significant impact on Eurasian affairs 
despite no longer being in the Eurasian TAN. This high-
lights the need for a broader approach to network analysis 
in geography.

Conclusions

This study validates the application of complex network 
analysis in examining geopolitical relationships, thereby 
contributing to the advancement of this research field. By 
using complex networks to analyze geospatial structures and 
evolution, we can gain a deeper understanding of the char-
acteristics, properties, and spatial changes of TANs across 
different continents. This includes examining their region, 
direction and evolution to further our understanding of com-
plex geo-relationships.

Community detection methods, like KSA and ENA, have 
identified the strongest structures within the Eurasian TANs, 
including extended networks with one country as the central 
node. These discoveries offer new insights for interpreting 
geographic relationships and researching international rela-
tions. It provides a systematic perspective on geographical 
connections between land-based countries, making it a fresh 
addition to geographic network analysis.

In the future, understanding how networks evolve with 
attached properties can aid in planning infrastructure and rail 
transport between land-based countries. High intermediation 
national nodes and adjacency relationships can also guide 
the selection of multimodal transport sites. As network anal-
ysis gains recognition in other disciplines, geographers will 
demonstrate their unique strengths through its application.
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