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Abstract

Map label placement is an important task in map production, which needs to be automated since it is tedious and requires
a significant amount of manual work. In this paper, we identify five cartographic labeling situations that present challenges
by causing intensive manual work in map production of city wayfinding maps, e.g., label placement in high density areas,
utilizing true label geometries in automated methods, and creating a good relationship between text labels and icons. We
evaluate these challenges in an open source map labeling tool (QGIS), provide results from a preliminary study, and discuss
if there are other techniques that could be applicable to solving these challenges. These techniques are based on quantified
cartographic rules or on machine learning. We focus on deep learning for which we provide several examples of techniques
from other application domains that might have a potential in map label placement. The aim of the paper is to explore those
techniques and to recommend future practical studies for each of the identified five challenges in map production. We believe
that targeting the revealed challenges using the proposed solutions will significantly raise the automation level for producing
city wayfinding maps, thus, having a real, measurable impact on production time and costs.

Keywords Map labeling - Map production challenges - City wayfinding maps - Automated cartography - Deep learning -

Image synthesis - Generative adversarial networks

Introduction

Label placement is an important task in map production
that requires a substantial amount of manual work and time.
To reduce this time and enhance visual, informative, and
esthetic quality of the maps, numerous studies have been
carried out on automatic map labeling (see Wolff and Strijk
(2009) for an overview of early studies). Even though several
labeling problems have satisfying solutions (such as how to
find optimal solutions for point placement on small scale
maps), the automation level of map labeling in production
is still low. This low automation rate is likely due to several
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reasons. Firstly, adequate methods may not have been devel-
oped to solve the labeling challenges that occur in a produc-
tion environment. Secondly, current label placement tools
might not implement the best methods available. Thirdly,
map producers might not entirely utilize the capability of
the map labeling tools. Fourthly, the data structures used for
the cartographic data are not sufficient to support the best
methods/tools available. Most likely, the current low degree
of automation in map labeling in production is caused by a
combination of these reasons.

In map production, text labels and icons are often placed
simultaneously since there are dependencies between how
they are placed. Therefore, in this study, we include place-
ment of both text labels and icons. In the paper, the terms
labels and map labeling include both (placement of) text
labels and icons.

Most research in map labeling is based on quantifying
rules found in the cartographic literature, often based on
seminal work such as Imhof (1975) and Wood (2000). This
approach has been successful in the sense that rule-based
systems and optimization techniques have been developed
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and implemented in tools, but it has not solved several
challenges in map production. In an era of increasing use of
machine learning in many application domains, an obvious
question is if and how machine learning and precisely deep
learning could be applied to map labeling. This question
boils down to whether we can utilize cartographic knowl-
edge of map labeling implicitly present in map examples
to train, e.g., a neural network to perform map labeling
of good quality, or at least to evaluate if a map labeling is
appropriately conducted. This is, in our view, still an open
question that we in this study address and give insight to
but not fully answer.

The paper has two main aims: the first is to identify
cartographic labeling challenges, occurring in a map pro-
duction environment that cannot be solved by current label
placement tools. The second aim is to discuss whether
there are published methods that might be useful to solve
these challenges and/or if deep learning methods could be
applicable. Based on this, we formulate recommendations
for further studies. The paper starts with describing rules
of map labeling in a production environment, with a focus
on city wayfinding maps. Then, follows an introduction to
deep learning and its potential use in map labeling. In the
following sections, some challenging cartographic labe-
ling situations, occurring in production of city wayfind-
ing maps, are described. This part also includes descrip-
tions of several methods that potentially could be useful
for solving the labeling challenges, including rule-based
and deep learning methods. The paper ends with some
concluding remarks.

Map Labeling Rules for City Wayfinding
Maps

General Label Placement Rules

Map labeling rules concern the whole labeling process
which includes the following: (1) the choice of labels to
show and their classification, (2) determination of font char-
acteristics, and (3) label placement (Yoeli, 1972). In this
study, we are mainly interested in the placement of labels,
for which several general rules must be obeyed (for more
details, see Imhof 1975; Wood 2000; van Dijk 2002; Rylov
and Reimer 2015):

— Legibility: a label is not allowed to overlap another label.

— Association: it should be easy to interpret which map
object a label refers to, hence avoid placing labels too
close to other objects.

— Map readability: If the labels must be placed on top of
map objects, they should not cover important features
of those objects (and ideally only overlap homogenous
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areas and less important objects). Furthermore, the map
objects should not disturb the interpretation of the labels.

— Esthetics: The labeling should contribute to an overall
esthetic map.

These rules are applicable for map labeling of all types
of maps. To fulfill these rules, as well as other cartographic
aspects, there are more specific rules defined for a specific
cartographic product. In this study, we focus on city way-
finding maps.

Production Rules for Label Placements in City
Wayfinding Maps

In this study, we focus on city wayfinding maps' in Lon-
don. City wayfinding maps provide directional information
in complex urban environments in such a way that they can
be easily interpreted by pedestrians and cyclists. The rules
considered for label placement are based on design stand-
ards produced by Transport for London? as well as internal
labeling rules from the mapping company T-Kartor.> Even
though the cartographic rules are for a specific cartographic
product (city wayfinding map for London), the main content
is largely generally applicable (and generally follows recom-
mendations found in, e.g., Imhof 1975). The intention here
is not to provide a complete list of label placement rules,
rather to provide an outline of the rules as a base for discus-
sion about limitations in the available algorithms/tools (see
Appendix 1 for detailed rules). In short, the following rules
(and their exceptions) apply.

e Point feature labeling: generally, point feature labels
should be horizontal and ideally above to the right of the
point (see, e.g., Slocum et al., 2005). In city wayfind-
ing maps, most point objects are in fact represented by
icons and some types of these icons are not allowed to
be moved. If there is not enough space, callouts are used

(Fig. ).

e Line feature labeling: line feature labels, e.g., for roads,
are to be placed within the road area. Straight parts of a
road are preferable for labels due to readability; if not
possible, the label shape needs to adapt to the shape
of the feature. Labels can also be wrapped into two (or
more) lines, or shortened, to make them fit. For long line
features, labels are repeated.

! https://www.t-kartor.com/our-services/city-wayfinding/

2 Transport for London (2009) Street map design standard—Issue 1.
Transport for London (2011) Street map design standard—Issue 2.

3 https://www.t-kartor.com/
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Fig. 1 The taxi icons are an example of point feature label placement,
where the point is not visible, and the icon is placed on the point
location; alternatively, a callout is used as for the top left taxi station
icons. © Copyright Transport for London

e Area feature labeling: preferably, area labels should
be completely placed within the polygon feature they
represent, wrapping text into several lines if necessary.
But if unavoidable, area labels may cross the polygon
boundary. Labels should be horizontal and aligned
according to their relation to the polygon feature (e.g.,
left alignment if placed more to the right of the fea-
ture). City wayfinding maps also contain area labels for
administrative areas (e.g., neighborhoods), using large
fonts, opacity, and large space between characters. Ide-
ally, these labels do not overlap other labels, but in
practice, this is hardly avoidable and, thus, overlap is
allowed as long as it does not harm map readability.

e Icons: most icons relate to a specific location on a street
(e.g., a bus stop). Icons come with an arrow that needs
to point to the true location on the street. Ideally, icons
are placed in a 90-degree angle to the corresponding
street, but other angles are possible if necessary for
avoiding overlaps with map features or other labels.
Icons should not overlap roads, but may overlap build-
ings if necessary. Icons representing (parts of) area
features should align with the parts they represent and
text labels of these features, respectively. Exceptions
are possible if there is no other solution.

e Label overlap and removal: In short, the first rule is that
no text labels and icons may overlap, and the second
rule is that it is not allowed to remove a text label or
icon. Clearly, these rules often result in conflicts that
require exceptions, e.g., for text labels to overlap icons
or buildings they do not represent as long as it is still
clear which building each label corresponds to.

e Hyphenation and other text manipulations: For a label
text, the following priorities should be used: (1) complete
text in one unit, (2) shortened text in one unit, (3) text
divided into two units, and (4) text divided into two or
several rows. For city wayfinding maps, there is a list
of allowed abbreviations that can be used. Also, under
several restrictions, font size may be changed to obtain
optimally looking labels.

Map Labeling Based on Deep Learning

In this section, we discuss the potential of deep learning
methods for map labeling. After a brief introduction to deep
learning and its applications, we provide a more general out-
look on how deep learning may contribute to achieving the
key elements in good label placement. Deep learning may
possibly also be utilized for improving the evaluation step in
label placement, especially for evaluating cartographic rules
that are difficult to quantify, e.g., map readability.

Introduction to Deep Learning

Machine learning techniques have experienced a prosperous
development in recent years in several application fields such
as image recognition (Ohri et al. 2021), image classification
(Zhao and Du 2016), and robot technology (Levine et al.
2018). Classical machine learning techniques may achieve
acceptable performance but require tedious feature engineer-
ing, in contrast to deep learning techniques, and particu-
larly convolutional neural networks (CNN) and the learn-
ing mechanisms such as attention, adversarial, and spatial
transformation. CNN include convolutional layers stacked
on top of each other and each layer is capable of recog-
nizing more sophisticated features and generating feature
maps. The fully connected networks are prone to overfitting
if not regularized as each neuron in one layer is connected
to all neurons in the next layer. With CNN, regularization is
achieved by exploiting the hierarchical patterns in their input
data by employing increasingly complex filters or kernels
on the data with increasing network depth. Much research
has gone into optimizing the network design to increase the
performance of learning specific tasks and to solve some
technical issues such as overfitting, vanishing gradient prob-
lem, and under-specification. This leads to efficient model
architectures such as Faster-R-CNN, U-Net, YOLO, SSD,
FPN, or Inception (Dhilon and Verma 2019).

One type of deep learning models increasingly applied in
many learning applications and of interest to map labeling
is generative adversarial networks (GAN). A GAN includes
two networks trained in contest: the generative network gen-
erates new samples and learns to map from a latent space to
a given data distribution, while the discriminative network
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Fig.2 Context-aware placement of objects (cars and pedestrians).
By example images, an extended GAN network is trained to learn
the context of where cars and pedestrians (foreground objects) are

evaluates the generated samples and distinguishes them from
the true data distribution (Goodfellow et al. 2014). These
two networks play a minimax game which, if its equilibrium
is reached, results in very good performance, e.g., generating
highly realistic looking images.

GAN are relevant in this context because the problem
of placing labels on maps lies in the intersection of vision
and language and can be formulated as an image synthesis
problem. The two most interesting approaches for image
synthesis are image composition and image translation.
Image composition aims to synthesize new images by plac-
ing foreground objects into an existing background image
(Lee et al. 2018; Fig. 2). The foreground objects in our case
are the labels that should be placed in the background image,
i.e., the map, at semantically sensible regions. To achieve
synthesis realism and to generate labeled maps similar to
the manually labeled dataset, some techniques and networks
mentioned below can be used to learn and control certain
parameters such as text locations within the background
image, geometric transformation of the foreground texts,
and blending between the foreground text and background
image. On the other hand, image-to-image translation aims
to find a mapping from one visual domain to another and
to learn the required transformations to perform on images
from one domain so they have the features of images from
another domain.

There are, however, some inherent problems of using
many deep learning techniques in map labeling since they
rely on image-to-image translations. These translations
only focus on the synthesis of appearance features (here the
label) by learning the style of images of the target domain.
Generally speaking, a solution to the label placement prob-
lem should include both synthesis realism in the geometry

@ Springer

located in the background image. The network can then produce the
synthetical images shown as result in the bottom row. Source: Lee
etal. 2018

domain (alignment, etc.) and the appearance domain (the
text itself as well as the relation to the background map). A
geometry synthesizer needs to learn the local geometry of
background images (maps) consisting of the roads, build-
ings, etc. on which the labels representing our foreground
objects (labels) can be transformed and placed. To which
extent this is possible is further elaborated on below.

Earlier Studies on Machine Learning in Label
Placement

Pokonieczny and Borkowska (2019) utilized machine learn-
ing to determine feature labeling in topographic maps. They
trained a network with input terrain coverage data and labels
from several maps to determine in which rectangle a label
should be placed around a feature. They achieved up to 80%
correctly placed labels which made it possible to reduce
manual editing by 50%.

Li et al. (2020) developed a deep learning methodology
for placing area feature labels. A common strategy in 43,
implemented in several GIS programs, is to place the label
on top of the centroid of the polygon that defines the area.
However, for many polygonal shapes, this strategy is not
cartographically satisfying, and in map production, cartog-
raphers manually select other positions. Furthermore, it is
difficult to formalize what is a good position for an arbi-
trary polygon shape. Li et al. (2020) utilized data to train a
stacked hourglass network to produce a heatmap that indi-
cates a good position of the area label. The methodology was
applied to map labeling of property units in a cadaster map
and yielded relatively good results.

It should be noted here that neither of these two studies
is concerned with conflicting labels and overlap of other
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map features only plays a very minor role here; in other
words, they treat quite simple labeling tasks. Therefore,
their methodologies are likely not extendable to more gen-
eral and/or more complex labeling situations.

Potential Deep Learning Techniques for Automated
Label Placement

In this section, we describe some deep learning techniques
that are related to the key elements of good label place-
ment. The approach is to formulate the problem of text
placement as a learning task, and then to explore deep
learning techniques from other domains that share similar
issues and, this way, to identify the appropriate approaches
that may be pursued further.

Legibility

Legibility in map labeling mainly concerns avoiding labels
to overlap, which can be facilitated by a saliency-based
method (Vilaplana 2015). The saliency model computes
a saliency map for a given image such that homogene-
ous image regions usually have lower saliency. Then, a
predefined threshold on the resulting saliency map will
determine the appropriate locations for text placement.
This saliency guidance helps to find the right locations for
texts within the semantically sensible regions or at least to
improve the identified candidate locations while avoiding
collisions with other objects.

Another deep learning method that may be interesting
for label placement is the image text quality assessment
(ITQA for short) which aims to evaluate the image qual-
ity with a focus on text as it computes the quality score
of an image through predicting the degree of degradation
at textual regions. Furthermore, Li et al. (2018) proposed
a method based on ResNet to perform image text qual-
ity assessment, which is composed of three stages: text
detection, text quality prediction, and weighted pooling
of the quality of all detected text lines. Other methods
can learn from ranked datasets such as user rankings (Liu
et al. 2017). Siamese networks are trained on ranked sets
and transfer this learning to a CNN that performs the
absolute legibility assessment. Another related applica-
tion is image stitching in which the overlapped objects
should be detected so that they can be stitched and gener-
ate a wide field of view image. Lyu et al. (2019) claimed
in their survey that feature-based methods have domi-
nated image stitching and that learned CNN features are
more flexible, and more potential matched candidates
could be extracted from images with wide baseline or
low-texture regions.

Association

There is a challenge to model associations in deep learning
applied to raster maps. The raster map features alone might
be insufficient to capture the relation between objects and
their labels. The same applies to the practical level since
learning object-centric representations from pixels is not
efficient for complex tasks in which it is required to encode
fine-grained locations, orientations, and complex composi-
tion of objects. However, several semantic and context-based
methods have been developed in the deep learning domain
that could be applicable for label placement.

Lee et al. (2018) developed a model for context-aware
synthesis and placement of object instances that can simul-
taneously determine locations to place an object in a scene,
and its appearance, i.e., scale and shape, or pose, given a
semantic mask. They used an architecture that consists of
two GAN modules and spatial transformation networks
(STN). An STN is a special type of CNN capable of making
geometric transformations on images and generating realistic
looking ones by limiting the space of possible outputs to a
low-dimensional geometric transformation of real images.
Using only GAN can produce images of remarkable com-
plexity and realism but may potentially ignore the explicit
spatial interaction between multiple entities present in the
image. That is the reason for introducing ST-GAN and using
it for image composition tasks in both paired and unpaired
settings (Lin et al. 2018). Volokitin et al. (2020) developed
a method for the automatic determination of plausible loca-
tions for object placement into images using masked con-
volutions which compute feature maps for left, right, top,
and bottom contexts just once per image and thus learn the
spatial context of different image regions.

Readability

Map readability can be evaluated by detecting the occlusion
(overlap) in the final maps. By using de-occlusion techniques
which aim to recover and complete the invisible parts of
occluded objects, we can ensure that no important features
are hidden. In addition, saliency models could be useful to
identify the attention points or regions that people would
focus on and important objects that should be not occluded.
Saliency feature learning was used to increase readability
of posters, which are very informative, but they are usually
viewed only for a few seconds (Fang et al. 2020). The used
data are collected from eye-tracking experiments and the
evaluation is done using specific metrics such as time to
first fixation and observation length. The same techniques
are used for natural scenes data in order to identify the most
noticeable objects which attract human attention. Fang
et al. (2020) evaluated the capabilities of six state-of-the-
art models on natural scene content (i.e., text or characters)
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to find salient regions and generate saliency maps. The use
of custom loss functions can enhance the readability of the
obtained maps. For example, using a repulsion loss can help
to keep away the labels from each other by penalizing the
generated samples with small spaces between the labels.

Esthetics

There are some examples of deep learning studies in cartog-
raphy addressing esthetics, mainly focusing on cartographic
generalization (Zhou and Li 2017; Touya et al. 2019; Feng
et al. 2019; Courtial et al. 2020). For example, Courtial et al.
(2020) explored deep learning techniques for mountain road
generalization, where a U-Net network was trained on raster
images of road objects in the Alps. The authors conclude
that the network achieves smoothing, enlargement, and cari-
cature operations on the mountain road objects in most of
the cases, but they mentioned that the result is not as good
as the reference data (i.e., the production data at IGN, the
French mapping authority).

In art, Cetinic et al. (2019) investigated scoring artistic
images according to three subjective aspects of human per-
ception: esthetic valuation, received sentiment, and memo-
rability. Their experiments were performed using different
decision trees and CNN models on image features related to
the content, composition, and color of digitized fine art col-
lections. For each concept, they evaluated several different
CNN models trained on various natural image datasets and
select the best performing model based on the qualitative
results and the comparison with existing subjective ratings
of artworks. They conclude that CNN models pre-trained
on natural images can learn and extract meaningful esthetic,
memorability, and sentiment features in art images.

Some Challenges in Label Placement

In the production of city wayfinding maps (at T-Kartor), map
labeling is a substantial part of the manual handling. Some
tools have been evaluated to increase the automation level,
but so far, no satisfying solution has been found. One reason
might be that the requirements of the city wayfinding maps
are somewhat unique and therefore hard to automate using
standard tools. This situation is also worsened by the fact
that the best cartographic solution is sometimes a violation
of one or several of the requirements (simply because it is
impossible to place all labels adhering to the complete list of
requirements). We do, however, believe that the challenges
for the labeling of city wayfinding maps are to a large degree
shared with the labeling of other types of high-quality maps
with dense information content.

In the following sections, we describe some labeling chal-
lenges that cause much interactive work in the production of
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city wayfinding maps. These challenges have been identified
together with cartographers at T-Kartor. We also look into
and discuss if there are map labeling methods and/or deep
learning techniques that potentially could be useful in these
situations, as well as perform some tests. To illustrate the
label placement challenges, we use two types of city way-
finding maps. The first type are production maps created
by the company T-Kartor. These maps are produced in an
ESRI ArcGIS environment using the Maplex label engine
and substantial manual label (annotation) editing both in
the ArcGIS environment and in the publishing tool Adobe
[llustrator. The second type are maps created by us in the
open source program QGIS* or in the Maplex label engine
with the same input data as for the production maps. Details
of the QGIS map labeling tool are given in Appendix 2 (see
also Ertz et al. 2009). The Maplex label engine is a rule-
based system that is integrated into the ESRI environment.’
Maplex is extensively used and has shown to produce good
results for several map types (see, e.g., the evaluation in
Kern and Brewer 2008).

Challenge 1: Label Placement
in High-Density Areas

Problem Identification

High-density areas are characterized by a scarcity of space
for both map features and labels (Figure 3). To cope with
this, cartographers often manually find solutions that are a
compromise between wanted properties of the map. One par-
ticular challenge in high-density areas is to define priorities
between the labels, especially since it is not possible to state
that one label type always should be in priority over another
label type. Referring to Figure 3a, we can identify that the
area label (representing the landmark building) The Original
London Visitor Centre has been prioritized (by the cartogra-
pher) before the line label Cockspur street (that was divided
into two lines which is not an optimal solution according
to the labeling rules). On the other hand, the area label The
Ambassadors Theatre (in Figure 3b) is moved from its ideal
placement where the main part of the label is in fact placed
on another side of a street (which is not recommended from
an association perspective) to allow space for the line labels
West St and Tower Ct.

Figure 4a shows text labels placed automatically in QGIS,
while the icons are placed manually (identical to Fig. 3a).
The label placement is affected by how the parameters are

* https://qgis.org/
3 https://desktop.arcgis.com/en/arcmap/latest/map/working-with-text/
working-with-the-maplex-labeling-engine.htm
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Fig.4 Map samples of high-density areas. Labels are placed automatically in QGIS (a) and in ESRI Maplex Label Engine (b, ¢). In ¢, overlap-
ping labels have been allowed; this type of map is used as the starting point for the manual editing by T-Kartor. The area is the same as in Fig. 3a

set in QGIS (e.g., which type of area labels are used, priori-
ties of labels, if labels are allowed to overlap other objects).
For us, it turned out to be difficult to find a set of parameters
that utilize the available space in such a good way that was
done manually in Fig. 3a. Some shortcomings in the map in
Fig. 4a overlap between text labels and icons and that some
text labels (e.g., The Original London Visitor Centre) had a
fixed form that made it not possible to find a better location
that could allow also other labels to be shown (e.g., Embassy
of Brazil). Also, the parameter setting used was not optimal
to show all the road labels. Figure 4b shows the same area
where the map labeling is conducted by the Maplex tool.
Both QGIS and Maplex create satisfying labeling in terms
of readability. The main problem is that the tools are not
capable of placing all the labels. This omission could be
acceptable in many map services, but not in the city wayfind-
ing map which has a requirement that all labels are present.
The question then boils down to whether QGIS and Maplex
are useful tools for placing a majority of the labels and the
rest then being placed manually. In the production environ-
ment for city wayfinding maps, they have concluded that, at
least in dense areas, the labeling tools do not provide good
enough solutions. In other words, the proposed solutions
(in Fig. 4a,b) do not provide any time savings in map pro-
duction. The little support from the automatic tools can be

illustrated by comparing Fig. 4a and Fig. 4b with the manu-
ally made labeling in Fig. 3a; there are quite a few labels that
are not moved and/or changed (more lines) between these
maps. Instead, T-Kartor produces a labeling solution where
all labels are present and then start the manual work from
there. In Fig. 4c, such a map is generated in Maplex (where
overlap between labels has been allowed). From this map,
some placements of road labels are saved but almost all other
labels have to be moved (and in some cases also divided into
several lines).

Rule-Based Techniques

Labeling dense areas is a well-known challenge in auto-
mated label placement. Early studies of Doerschler and
Freeman (1992) aimed at improving rule-based systems for
automatic label placement to cope with high-density maps
but it turned out to be difficult to utilize the available space
for the labels. One improvement was the introduction of the
slider model which allowed a more flexible label placement,
not restricted by a fixed number of solutions (van Kreveld
et al. 1999; Strijk and van Kreveld 2002). Also, optimization
techniques (e.g., developed by Christensen et al. 1995 and
Zoraster 1997) have shortcomings to deal with high-density
areas. Much of the development of optimization techniques

@ Springer
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have concentrated on finding a solution with most added
(point) labels, and have not addressed the cartographic chal-
lenges in high-density maps concerning, e.g., the association
property; see, e.g., Rylov and Reimer (2014) who address
this issue utilizing a multicriteria optimization technique.
Haunert and Wolff (2017) argue that the association criteria
must be strengthened in their development of a new inte-
ger linear programming approach. However, it should be
noted that both Rylov and Reimer (2014) and Haunert and
Wolff (2017) only deal with point labels, which is the usual
case for label placement optimization research. This is not
adequate for labeling a high-density map as in Fig. 3a. What
we can see in this map, especially in the upper part, is that
the point and line labels have to fight for the same space, and
therefore, it is almost impossible to find a good cartographic
solution if the label types are treated independently. To
improve this situation, Lu et al. (2019) developed a unified
framework for placing all types of labels; this framework is
based on a hybrid algorithm combining discrete differen-
tial evolution and genetic algorithms. However, as far as we
know, there is no available tool, commercial or open source,
that has a common framework for all label types.

To circumvent adding labels to high-density areas, a
leader approach could be utilized. In this approach, the label
is placed outside the area and a leader connects the label to
the feature, as done for the Ticket shop icon in Fig. 3b. The
labels could then be placed either in the map or just outside
the border of the map. For the latter case, Kindermann et al.
(2015) developed an efficient algorithm that creates a planar
solution (guaranteeing no overlaps of the leaders) where the
labels are allowed to be placed along two borders.

Another approach in high-density areas would be to per-
form a selection of data that should be labeled. We have not
found any research on this for city wayfinding maps, but
for other types of maps. For example, Brewer et al. (2013)
provided an automated method for adaptive thinning of road
features and road labels suitable (for multiscale design)
which removes features by a feature hierarchy and network
connectivity while preserving many urban/rural local den-
sity patterns. Also, Raposo et al. (2017) perform selection of
labels in a multi scale context targeting summits (point data)
in hydrological datasets. The latter study is using a tessel-
lation approach (where restrictions are set for the labels in
each cell in the tessellation) which could be of interest for a
city wayfinding map.

Furthermore, label placement, of, e.g., high-density areas,
could utilize an automated evaluation step. This could be
implemented by computing several candidate solutions in
the first step, and then in the evaluation step, select the best
one according to certain criteria. But even the best identi-
fied solutions could include some labels that are not placed
satisfactorily, and in these cases, the evaluation step could
identify which of the labels need interactive improvement.

@ Springer

From a practical perspective, this identification would save
much labor time since cartographers would not be required
to manually inspect all labels from the automated solution
(see, e.g., Klute et al. (2019) for a practical implementation
of semi-automated map labeling). Analytical evaluation of
map labeling was studied by van Dijk (2002) who quantified
several map labeling rules to form a label quality function
used for evaluation (for a practical use of a similar frame-
work, see Kern and Brewer (2008)).

Deep Learning Techniques

In the deep learning domain, there are some interesting
techniques that could be applied for high-density areas. As
mentioned above, Lee et al. (2018) developed a model for
context-aware synthesis and placement of objects. Closer
to that, Volokitin et al. (2020) developed a method to auto-
matically determine plausible locations for object place-
ment into images considering the surrounding context. Such
approaches can be useful to simultaneously determine the
location to place the labels on the map, and their appear-
ances, i.e., font and shape so as to avoid occlusion and
overlaps.

Associations are important in map labeling in high-den-
sity areas. Association is linked to the concept of semantic
coherence, since both concerns that the text should be placed
at semantically sensible regions within the background
images. To learn this pairing, Zhan et al. (2021) used seman-
tic image segmentation datasets to classify image regions
into two lists where one list includes only image regions that
are semantically sensible for text embedding and the other
include those which are not semantically sensible for text
embedding. However, most current image composition sys-
tems deal only with one foreground object, while map labe-
ling in dense areas deals with multiple foreground objects
(labels). To include multiple foreground objects, hierarchical
composition techniques have been developed (see, e.g., Zhan
et al. (2021)).

If a GAN is used for map labeling in high-density areas,
the formulation of the adversarial loss function (that mod-
els the difference between the original target image and the
generated one) is important. In order to measure the error
of the automatic label placement relatively to the original
target image (manually labeled), the objective criteria used
for the evaluation of the automatic segmentation methods
can be used. Applicable loss functions in this case can be
the overlap-based losses such as the Dice similarity coef-
ficient or Jaccard index, or spatial distance-based ones such
as mean boundary distance or Hausdorff distance (Wang
et al. 2020a). In addition, the core network for the GAN
discriminator should be well chosen. The basic discriminator
is trained as a binary classification model to predict the prob-
ability that a given image is real. However, in a WGAN, the
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output is a score of “realness” for a given image. Therefore,
instead of playing the role of classifier and using loss func-
tions such as binary cross-entropy, the WGAN model uses
a new loss function that pushes the discriminator to predict
a precise score.

Preliminary Study: Using Deep Learning for Label
Placement Evaluation

We created and assessed an evaluation framework for map
labeling of high-density city wayfinding maps using deep
learning (Fig. 5) (see Wei (2020) for details). The deep learn-
ing part was implemented in GoogLeNet (Szegedy et al. 2015)
and trained by manually created map labeling examples. The
map examples were of size 256 X256 pixels (as required by
GoogLeNet) in scale 1:2250 tailored for the learning task
(Fig. 6). All the training map samples were manually classi-
fied into three quality classes (good, moderate, and bad) based
on the categories legibility, disturbance, and association. In
total, 2400 map samples were used, 1500 for training and
900 for validation (with an equal amount for all three quality
classes). The trained network was then used to evaluate map
samples where the map labeling had been automatically gen-
erated by QGIS (for details, see Cederholm 2020).

The idea was then that the trained network should be able
to evaluate map samples with automated map labeling con-
ducted in QGIS. However, it turned out that the framework
was not able to perform an acceptable evaluation of the test
map samples, but rather that the framework identified all
input images as poor quality. It turned out that this initial test
of performing map labeling evaluation using deep learning
has at least four shortcomings:

Fig.5 Overall conceptual

1) The evaluation schema is too complex for the neural
network to learn. The map samples contained several
labels and each label was manually classified accord-
ing to the three categories (legibility, disturbance, and
association). If only one of these labels was defined to be
bad in one single category, the whole map sample was
classified as “bad map labeling.”

2) The map samples were based on a single raster file. This
implies that no information about what type of features
that were hidden by the labels was learned in the training
by the neural network. The solution for this would be to
use several raster maps for a single map sample (as done
in some other deep learning image applications), e.g., with
one specific raster map that only contains the labels.

3) Due to hardware restrictions, only 800 iterations were
performed in the training of the Googl.eNet network,
which likely is too little training.

4) The sample size, i.e., number of map examples, is likely
too small for both training and validation.

Challenge 2: Utilizing True Label Geometries
in Automated Methods

Problem Identification

Automated labeling methods and tools generally utilize sim-
plified geometries for the labels, most commonly minimum
bounding rectangles. This works fine in many situations,
but may entail shortcomings in others. Below we illustrate
some shortcomings connected to large transparent text labels
and icons.

framework. Raster maps are L Allowed to
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