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Abstract
In order to accomplish a target search task safely and efficiently and make full use of prior information and real-time information,
a path planning method of unmanned surface vehicle (USV) for intelligent target search is proposed. The overall strategy is
divided into three parts: global path planning based on prior information, local path planning based on real-time information, and
improved A* obstacle avoidance algorithm. Before the start of the task, the global path planning is carried out based on prior
information such as the initial position of USV, the predicted position of the target and range of search area. After the start of the
task, if USV finds suspicious targets, in order to further approach these suspicious targets, it will enter different local path
planningmodes according to the characteristics of these targets. During task execution, if obstacles are encountered, an improved
A* obstacle avoidance algorithm is adopted. The simulation results show that the proposed method can improve the efficiency of
target recognition and reduce the turning cost of USV when encountering obstacles. So, for USV intelligent target search, the
proposed path planning method can save resources and improve search efficiency.

Keywords Global path planning . Local path planning . Target search . A* obstacle avoidance algorithms

Introduction

In the military and civilian fields, with the rapid develop-
ment of technology, unmanned surface vehicle (USV) is
increasingly used to perform various tasks such as target
search, post-disaster personnel search and rescue, surface
warning, and security patrol (Kim and Lee, 2019). During
the movement, disturbed by various obstacles, USV may
not be able to search for as many targets as possible or the
coverage of the map is too low, which cannot meet the
requirement of search task. So, a better path planning
method of USV is the key to complete the search task.
The path planning problem of USV can be modeled as a
constrained optimization problem including tasks such as
path planning and obstacle avoidance.

Target search is an indispensable part of most tasks per-
formed by USV. The main purpose of path planning based
on target search is to search for as many targets as possible
while increasing the coverage of the map. In the process of

increasing the coverage rate of searching target, the de-
signed search paths of USV should be overlapped as less
as possible to achieve the effect of searching for the target
as soon as possible. Galceran and Carreras propose a par-
allel search strategy of target searching, which can achieve
the complete coverage of the search area, but the path of
searching is too long (Galceran and Carreras 2013). Nasr
propose a multi-scroll chaotic system to avoid the redun-
dancy of orbits. At the boundary conditions, in order not to
leave the workspace, a mirror mapping method is utilized,
which constrains all the mobile robot positions in the
workspace and which can reflect all the overflow
waypoints returning to it. Compared with simply using
the double-scroll chaotic systems in the whole workspace,
the suggested new multi-scroll chaotic system, combined
with the mirror mapping method, shows good results that
can achieve a higher coverage for a larger workplace of the
mobile robot (Nasr et al. 2019). The above path planning
strategies can fulfill the requirements of covering the entire
search area, but still need to be improved for search
efficiency.

When USV travels on the planned path, it often encounters
obstacles. To ensure safe driving, it is necessary to avoid obsta-
cles. Common path planning algorithms for avoiding obstacles
include Dijkstra algorithm (Zhou 2019), A* algorithm (Zhou
et al. 2013) and artificial potential field method (Zhang 2018),
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gridmethod (Lee et al. 2011), firefly algorithm (Patle et al. 2018),
and genetic algorithm (Jiang et al. 2014). Among the
abovementioned algorithms, the A* algorithm is a more
effective method for solving the shortest path and is also
a suitable obstacle avoidance algorithm for USV. Singh
proposes an A* approach with an USV enclosed by a cir-
cular boundary as a safety distance constraint on genera-
tion of optimal waypoints to resolve the problem of motion
planning for an USV moving in a maritime environment.
The proposed approach is effective for global path plan-
ning of USVs (Singh et al. 2018). A collision-free path
planning method based on improved A* algorithm for au-
tomatic guided vehicles (AGVs) logistics sorting system is
proposed by Yuan et al. In the method, the environment of
warehouse operation for AGVs is described by using grid
method. The estimated cost of A* algorithm is improved
by adding the penalty value of the paths that AGVs share
with each other to alleviate traffic congestion and collision
resolution rules are made according to different types of
collisions. The new collision-free path planning method
can improve the sorting efficiency of multi-AGVs system
and relieve traffic congestion (Yuan et al. 2016). In view of
the low time and space utilization of the traditional A*
algorithm, Yao and Lin improve the traditional A* algo-
rithm not only by weighting the evaluation function, but
also by reducing the search step and the search time in the
feasible path planning (Yao et al. 2010). Among the several
A* algorithms mentioned above, the traditional A* algo-
rithm is improved, which shortens the search time and op-
timizes the search path to a certain extent, but these algo-
rithms do not take into account the cost of turning. In this
paper, the traditional A* algorithm is improved. By in-
creasing the cost of turning in the evaluation function, the
A* algorithm reduces the number of turning in the process
of path finding, and further optimizes the search path.

Aiming at the shortcomings of existing path planning
methods, this paper proposes a path planning algorithm of
USV for intelligent target search, which combines global path
planning with local path planning and improves the efficiency
of search targets. It increases the map coverage of USV, and
considering the cost of USV turning, adds the turning cost to
the evaluation function, improves the A* obstacle avoidance
algorithm and saves resources.

This paper is organized as follows: Firstly, the global path
planning based on prior information is introduced, which can
search the target area by expanding spiral trajectory; secondly,
the local path planning based on real-time information is in-
troduced, and the quick confirmation of suspicious targets is
achieved by switching automatically among three modes;
thirdly, the traditional A* path planning algorithm is intro-
duced, and the A* algorithm is improved by reducing turning
times. Then, the algorithm proposed in this paper is simulated.
Finally, a conclusion is drawn.

Global Path Planning Based on Prior
Information

The global path planning of USV is a large-scale and long-
endurance path planning, which can be defined as based on
the prior information provided by electronic charts, compre-
hensive consideration of operational tasks and their own nav-
igation characteristics plan a non-touch path from the starting
point to the target (Xia et al. 2019).

Parallel search is one of the most commonly used strategies
in global path planning. The search trajectory is parallel and
covers the area to be searched by circular trip. However, the
parallel search has the limit of turning, which makes USV at
high speed and has safety risk. Since the center of the area to
be searched has the largest probability to find the target,
searching for the target from the center of the area by the
expanding spiral trajectory can find the target as quickly as
possible. Theoretical analysis shows that the distance between
two adjacent turns of the expanding spiral is equal; then, twice
sensor target sensing distance can be used as this distance, so
that the search area can be searched without repetition. At the
same time, considering the safety factor, USV should keep
running smoothly when performing the target search task.
While USV driving along the straight line, it does not turn,
and the turning angle is small when driving along the
expanding spiral trajectory, so straight line plus spiral is se-
lected as a global search path in the proposed algorithm.
Therefore, the proposed algorithm enables USV to quickly
reach the center of the search area along the straight line and
then search along the expanding spiral trajectory.

As depicted in Fig. 1, in order to quantify the comparison
between extended spiral path and parallel search path, this
paper takes 100 target points which obey two-dimensional
normal distribution on the coordinate map and makes a paral-
lel search path and extended spiral path cover the search area.
The green points in the graph are the target points, the blue
points form parallel search paths, and the red points form
extended spiral paths. The average driving distances by the
two methods are calculated respectively when the USV

Fig. 1 Comparison of parallel search and extended spiral search
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detects all the targets through simulation experiments. The
experimental results are depicted in Table 1; the average driv-
ing distance of spiral path is far less than that of parallel
search. By expanding the spiral path, the target can be
searched faster. The mean value of two-dimensional normal
distribution is [50, 50] and the covariance is [100 80; 80 100].
These parameters are derived from the empirical values in a
real USV.

Before USV departs, it is necessary to carry out global path
planning based on the starting point and the area to be
searched, then find the center based on the search area range
which is considered the position with the highest probability
of occurrence of the target. First, plan a straight line path from
the starting point to the center of the search area, approach the
most likely position of the target in the fastest way, then plan
an expanding spiral trajectory consisting of planning points
separated by the same angle base on the center of the search
area, until the range of spirals can cover the entire search area.
When planning the expanding spiral trajectory, first, based on
region range of search area, the radius R and the center of the
circumcircle of the search area are calculated; then, the R is
used as the maximum radius of the expanding spiral trajectory
and the center is used as the starting point of expanding spiral
trajectory; finally, the Archimedes spiral formula is applied to
generate an expanding spiral trajectory, which covers the en-
tire search area. The Archimedes spiral formula is depicted in
Eq. (1):

x ¼ αþ βθð Þcos θð Þ
y ¼ αþ βθð Þsin θð Þ

�
ð1Þ

where x is the abscissa of the planning point, y is the ordi-
nate of the planning point, θ is the polar angle of the current
circumference, α is the distance from the starting point of the
spirals to the origin of the coordinate, and β is the increase of
the radius per radian. The larger β, the greater the distance
between two adjacent turns. According to Eq. (2), the number
of spiral coils covering the search area can be calculated as n:

n ¼ R= 2� π � βð Þ ð2Þ

The schematics of the global path planning is depicted in
Fig. 2. As can be observed from the figure, USV reaches the
center of the area to be searched along a straight path, then

starts to search outward with an expanding spiral trajectory.
The black square in the figure is the obstacle coverage area
acquired by the prior information of electronic charts. If a
portion of the planning path points is in the obstacle coverage
area, then these points are deleted so that all planning points
are in a position where USV can actually reach.

This paper improves the planning method of global path
planning, completes the search of the target area by expanding
spiral trajectory and makes the whole motion process more
stable and safer. The prior information provided by the elec-
tronic chart can help in avoiding the known obstacle area,
which ensures the safe driving of USV. At the same time,
the coverage of the map is increased, the search efficiency is
improved, and resources are saved.

Local Path Planning Based on Real-Time
Information

Global path planning is to plan a safe and feasible path based
on prior information. However, when USV is sailing at sea, it
will encounter various situations. In this situation, global path
planning alone cannot meet the requirements of actual target
search. Therefore, we need to carry on local path planning in
real time according to the complex and changeable situation.
Local path planning is guided by global path and uses real-
time local environment information to quickly confirm suspi-
cious targets (Liu et al. 2019).

When USV detects the suspicious target, it enters into the
local path planning, which takes the current position of USV
as the starting point, and approaches the suspicious target in a
faster way for further confirmation. According to the different
states of USV, three different local path planning modes are
designed, which are approaching suspicious target path plan-
ning mode, shrinking spiral path planning mode, and circular
path planning mode. During the whole target search task, the
automatic switching of these three modes can ensure that the
target is detected quickly.

Table 1 Comparison of parallel search and extended spiral

Average driving
distance (km)

Parallel search 203.70

Extended spiral 34.17

Fig. 2 Sketch of global path planning
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Approaching Suspicious Target Path Planning Mode

When USV detects a small probability suspicious target, it
needs to be further close to the suspicious target for confirma-
tion. Because straight line is the fastest approach method,
approaching suspicious target path planning mode is designed
based on characteristics of straight line, in which the midpoint
between the current position of USV and suspicious target is
regarded as a planned point. As depicted in Fig. 3, the current
position of USV is point A. Through coordinated work of
multiple sensors, the position of suspicious target is deter-
mined to be point B. Planned point C is at the midpoint of
point A and point B. The coordinate of point C (x1, y1) are
calculated by Eq. (3), where (x, y) is the current position of
USV, (x0, y0) is the suspicious target position;

x1 ¼ x0 þ xð Þ
2

y1 ¼
y0 þ yð Þ
2

8><
>: ð3Þ

Shrinking Spiral Path Planning Mode

When USV detects the large probability target, we need to
approach the suspicious target and observe the suspicious tar-
get from different angles. The shrinking spiral path planning
can meet the above two requirements simultaneously, so that
USV moves around the suspicious target and gradually ap-
proaches the suspicious target for further confirmation.
Taking the suspicious target position as the center of the
shrinking spiral and the distance between the current position
of USVand the target as the maximum radius of the shrinking
spiral, the coordinate of the planned points of the shrinking
spiral path are calculated according to Eqs. (1) and (2). As
depicted in Fig. 4, USV is getting closer and closer to the

suspicious target so as to observe the suspicious target from
different distances and angles.

Circular Path Planning Mode

In USV target search task, if the target has been con-
firmed, it is necessary to monitor the target and wait
for the next ins t ruct ion of the control center.
Monitoring target requires USV to move around the tar-
get without losing the target, and circular path is a better
way to achieve the above requirements. The circular path
planning sketch is depicted in Fig. 5. In this mode, tak-
ing the target as the center of the circle and the distance
between the current position of USV and the target as the
radius, the circular path is planned. In movement process
of USV, if the target deviation exceeds a certain range,
the circular path is re-planned according to the above
method to ensure that the target is always within the
scope of USV surveillance.

Fig. 3 Sketch of approaching suspicious target path planning

Fig. 4 Sketch of shrinking spiral path planning

Fig. 5 Sketch of circular path planning
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According to the different states of USV, three different
local path planning modes are designed in this paper. After
discovering the suspicious target with small probability, we
can approach the suspicious target quickly by approaching
suspicious target path planning mode. After discovering the
suspicious target with large probability, we can observe the
suspicious target from different distances and angles by
shrinking spiral path planning mode. After confirming the
target, we can monitor the target by circular path planning
mode and wait for the next instruction, through the combina-
tion of the three modes to complete the local path planning, in
order to achieve rapid confirmation of suspicious targets.

Improved A* Obstacle Avoidance Algorithm

In global path planning and local path planning, the distance
between adjacent planned points is relatively long. In the pro-
cess of moving from one planned point to the next planned
point, real-time obstacles are often encountered. In this situa-
tion, the former planned point can be used as the origin node
of the improved A* algorithm, and the latter planned point can
be used as the ending node of the improved A* algorithm. So
in this paper, improved A* algorithm is used to plan the path
to avoid obstacles between two planned points.

Environment Model

Set the current map area as G and build a two-
dimensional grid map. The starting and ending points
correspond to two adjacent points in global or local path
planning, respectively.

By storing the information of grid map in matrix, the ele-
ment G(i, j) in the matrix is the mapping of the node state of
the i row and the j column of the grid map. For each element in
matrix, 1 represents that the current node is not passable and 0
represents that the current node is passable. The sketch of grid
map is depicted in Fig. 6. The black grid represents the obsta-
cle area, and the rest of the grid represents the accessible area.
Using the method of one-to-one correspondence between the
matrix and the grid, the two-dimensional grid map can be
modeled (Jiang et al. 2019).

Basic Principle of A*

The A* algorithm is a heuristic path search method, it
makes use of a heuristic evaluation function (Eq. (4)) as
a label for node n, where g(n) is the travel time of the
current evaluated path from origin node to node n and
h(n) is an estimated travel time from node n to ending
node. The sum of these two functions, f(n), is the “merit”
of node n and reflects how likely it is for node n to be on
the shortest path. The lower the merit of a node, the more

likely the shortest path will go through this node. Based
on this idea, the algorithm does a best-first search. It
places all encountered nodes in two lists: open and closed.
The open list records all the nodes that have been encoun-
tered but not traversed as the current node. The traversed
nodes are placed in the closed list. At the beginning, the
open list has only one origin node and the closed list is
empty (Fu et al. 2006). For each iteration, the algorithm
selects the smallest f(n) value node from the open list. The
algorithm is then executed as the current node and re-
moved from the open list and placed in the closed list.

f nð Þ ¼ g nð Þ þ h nð Þ ð4Þ

Because of h(n), A* algorithm has the potential of heuristic
search. So how to select the h(n) is very important for A*
algorithm. The h(n) used in general A* algorithm is
Manhattan distance (Hart et al. 1968). The calculation method
is depicted in Eq. (5):

h nð Þ ¼ jxd−xcj þ jyd−ycj ð5Þ

where xd denotes the coordinate of the X-axis direction of
the target, yd denotes the coordinate of the Y-axis direction of
the target, xc denotes the coordinate of the X-axis direction of
the current point, and yc denotes the coordinate of the Y-axis
direction of the current point.

Improved A* Algorithm

Compared with the traditional BFS (breadth-first search) and DFS
(depth-first search) (Banerjee et al. 2018) blind search algorithms,
A* algorithm is more efficient because it is a heuristic search

Fig. 6 Sketch of grid map
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algorithm. The A∗ algorithm has a similar procedure as
the Dijkstra except that the evaluation function f(n)
would be used as the label, instead of g(n). Dijkstra
algorithm identifies the ending node for each connection
and stores the total cost of its path so far (i.e., g(n), it
takes g(n) as the label. The A* algorithm stores the total
estimated cost f(n) from the origin node to the ending
node, in addition to the total cost g(n). This estimate
f(n) is the sum of g(n) and the estimated cost h(n) from
the current node to the ending node. f(n) is called the
heuristic value of nodes, which is non-negative.
Generating heuristic value is the key of A* algorithm.
That is to say, A* algorithm adds constraints to guide
its way towards the goal. In the case of meeting feasibil-
ity and monotony, the algorithm can also get the optimal
solutions.

However, the traditional A* algorithm does not take into
account the cost of turning in the path. As depicted in Fig. 7,
the extended node sketch shows that node A is the origin
node, node E is the ending node, node C is the current position
of USV, black grid is not passable, and gray grid is passable. In
the traditional A* algorithm, for the current node C, sub-nodes
P and Q with the same value of evaluation function have the
smallest value of evaluation function among all sub-nodes of
node C. The traditional A* algorithm is to select the node with
the smallest evaluation function in the open list table. When
the two evaluation functions are equal, the nodes are selected
according to the order of entering the open list table. However,
according to life experience, the cost of turning cannot be
neglected, especially for USV moving on the windy sea, turn-
ing will lead to unstable motion of USV, and increase the
energy consumption of USV. Therefore, we establish an opti-
mization model of turning angle and energy cost, the model
e(n) is depicted in Eq. (6).

e nð Þ ¼ γ� angle

45
ð6Þ

γ is an influence factor to control the cost of turning, and
angle is the angle of turning.When the planned path turns 45°,
the cost of turning is γ. Because this paper is based on anUSV
project, in this project, the energy consumption of turning 45°
is 0.5 times that of driving 100 m, so the value of γ is 0.5 in
this paper. The improved evaluation function is depicted in
Eq. (7), its distance unit is 100m,which normalizes the energy
consumption of USV driving 100 m to 1.

F nð Þ ¼ g nð Þ þ h nð Þ þ e nð Þ ð7Þ

The angle between the direction from node A to current
node C and the direction from current node C to the next sub-
node (P or Q) is calculated, respectively. Based on this, the
evaluation function F(n) is recalculated for all valid sub-nodes
and the sub-node with the smallest F(n) is selected in the open
list table. The schematic sketch of extended nodes is depicted
in Fig. 7. Compared with USV passing through node P to
node E, USV passing through node Q to node E along its
original direction decreases a one-step turning process leading
to saving energy. Therefore, the cost of turning e(n) is added
into the design of the evaluation function to reduce the number
of turning times of the planned path, so as to achieve the
purpose of saving resources.

Analysis of Simulation Experiment

In traditional target search path planning, parallel search is
adopted, which results in low search efficiency. In this paper,
the global path planning and local path planning are combined
into the target search, which not only covers the search range,
but also greatly improves the search efficiency. In order to
verify the performance of global path planning and local path
planning, the following experiments are carried out. As
depicted in Table 2, the initial parameters of USV path plan-
ning are set. The starting point of USV is (119, 24), the center
of the area to be searched is (119.02, 24.02), the searching
radius is 1000 m, the suspicious targets can be classified as
fake target and real target, the fake target location is (119.03,
24.01), and the real target location is (119, 24.02). According
to the initial parameters, the global and local path planning
results are simulated using the simulation platform of
MatlabR2018a. The simulation results are depicted in Fig. 8.

Fig. 7 Sketch of extended nodes

Table 2 Initial parameter table of USV path planning

Starting point
(longitude,
latitude)

Center point
of searching
(longitude,
latitude)

Search
radius(m)

Fake target
(longitude,
latitude)

Real target
(longitude,
latitude)

(119,24) (119.02,24.02) 1000 (119.03,24.01) (119,24.02)
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From Fig. 8, we can see that the linear path is planned be-
tween the departure point and the center point of the region to
be searched through global path planning, and then the
expending spiral planning begins at the center of the region to
be searched to cover this region. When USVarrives at the point
(119.025, 24.016) in the global path, a suspicious target is found
at (119.03, 24.01). At this time, USVenters approaching suspi-
cious target path planning mode of local path planning. The
midpoint between the current position of USV and the suspi-
cious target is regarded as the planned point.When USVarrives
at the planned point, after further detection, the suspicious target
is confirmed as the fake target, then USV returns to the global
path and continues to perform the search task. When USV
arrives at the point (119.012, 24.02), another suspicious target
is found, which is located at (119, 24.02). Then USV enters
approaching suspicious target path planning mode of local path
planning, and further detects the suspicious target. When the
suspicious target is detected as a large probability target, USV
enters shrinking spiral path planning mode, and detects the
suspicious target multiple times at different distances and

angles. After repeated confirmation, the suspicious target is a
real target, then USV enters the circular path planning mode,
which makes USV move around the target and ensures that the
target has been monitored by USV. Within the control range,
USV waits for the next instruction of the control center.

Compared with the parallel search method, the searchmethod
combining global path planning and local path planning pro-
posed in this paper expands the search from the center of the area
to be searched to the surrounding area, first USV searches the
place with highest probability of the target, so as to achieve the
requirement of fast search to the target; after detecting the suspi-
cious target, it enters the local path planning mode, then ap-
proaches suspicious targets quickly and confirms repeatedly. In
this way, the search efficiency is greatly improved.

The distance between any two adjacent planned points in
the planned path of USV in Fig. 8 is relatively long, so that
obstacle may appear in real time. Therefore, in the process of
moving from one point to the next point, obstacle avoidance
path planning algorithm is needed. Following, we use the
simulation platform of MATLAB R2018a to compare the tra-
ditional A* algorithm with the improved A* algorithm.

In the improved A* algorithm proposed in this paper, the
cost of turning is added to the evaluation function. Let the cost
of moving one square in each horizontal and vertical direction
be 1, the cost of moving one square in the diagonal direction is
1.4, the cost of turning increases by 0.5 with the turning angle
increases by 45°. Figures 9 and 10 are the planned paths of the

Fig. 9 the planned path of the traditional A* algorithm

fake target

（119.03，24.01）

midpoint as planning mode

（119.025，24.016）

expanding spiral trajectory

the area to be searched

（119.012，24.02）

midpoint as planning mode

real target

circular path

starting point shrinking spiral path

Fig. 8 Simulation results of USV path planning

Fig. 10 the planned path of the improved A* algorithm

Table 3 Total cost of path and turning cost of two algorithms

Total cost Turning cost

A* 59.3 15.5

Improved A* 54.3 10.5
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traditional A* algorithm and the improved A* algorithm, re-
spectively. The upper left corner of the graph is the origin
point, the gray square is the ending point, the white area is
passable, and the black area is not passable.

Comparing Figs. 9 and 10, it can be observed that at
the two sub-nodes with the same f(n), the traditional A*
algorithm will choose the lower nodes as the optimal
sub-nodes, while the improved algorithm will choose
the upper nodes as the sub-nodes along the original di-
rection of the path to reduce the turning times. Giving
the same origin point and the same ending point, as
depicted in Table 3, the turning cost of path planned by
the traditional A* algorithm is 15.5, and the total cost of
path is 59.3. the turning cost of path planned by im-
proved A* algorithm is 10.5, and the total cost of path
is 54.3. It can be clearly observed that the improved A*
algorithm reduces the turning cost of path, reduces the
total cost of the path, and the decrease of the turning
cost can make the whole motion process more stable
and safer.

In this paper, the computational performance of the tradi-
tional A* algorithm and the improved A* algorithm is tested
on VS2017 platform, the hardware used is i5-6300HQ CPU.
As depicted in Table 4, the running time of the traditional A*
algorithm is 116 ms and that of the improved A* algorithm is
124 ms. The computational performance of the improved al-
gorithm is only 6% lower than that of the traditional algo-
rithm. It can still achieve real-time planning without affecting
the practical application of USV path planning.

Conclusion

In this paper, a path planning algorithm for USV in intelligent
target search is proposed, which includes global path planning
based on prior information, local path planning based on real-
time information and improved A* obstacle avoidance algo-
rithm. During the process of searching, with the change of
USV’s status, the global path planning and three local path
planning modes are automatically switched to cope with var-
ious situations arising from the searching task. And the im-
proved A* algorithm which adds the turning cost to the eval-
uation function makes the path between two planned points
more efficient and safer. Comprehensive analysis shows that
the proposed path planning algorithm for USV in intelligent
target search not only improves the efficiency of target search,
but also saves resources.
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