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Abstract

A fractal bears a complex structure that is reflected in a scaling hierarchy, indicating that there are far more small things than large
ones. This scaling hierarchy can be effectively derived using head/tail breaks—a clustering and visualization tool for data with a
heavy-tailed distribution—and quantified by a head/tail breaks-induced integer, called ht-index, indicating the number of clusters
or hierarchical levels. However, this integral ht-index has been found to be less precise for many fractals at their different phrases
of development. This paper refines the ht-index as a fraction to measure the scaling hierarchy of a fractal more precisely within a
coherent whole and further assigns a fractional ht-index—the fht-index—to an individual data value of a data series that
represents the fractal. We developed two case studies to demonstrate the advantages of the fht-index, in comparison with the
ht-index. We found that the fractional ht-index or fractional hierarchy in general can help characterize a fractal set or pattern in a
much more precise manner. The index may help create intermediate map scales between two consecutive map scales.
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Introduction

All fractals bear a complex structure with far more small
things than large ones. This notion of far more small things
than large ones, being recursive in nature, can be expressed as
a scaling hierarchy of numerous smallest things, a very few
largest, and some in between the smallest and the largest. The
scaling hierarchy can be revealed by head/tail breaks, which is
a clustering and visualization tool for data with a heavy-tailed
distribution (Jiang 2013, 2015a). More specifically, a data
series is ranked from the largest to smallest, and then its aver-
age is to partition the data series into two parts: those greater
than the average as the head, accounting for the minority of
the data series, and those less than the average as the tail,
accounting for the majority. This partition process continues
for the head iteratively until the head is no longer a minority
(for example, 40%). This recursive partition or head/tail
breaks process leads to a number of clusters or hierarchical
levels that are measured by the ht-index (Jiang and Yin 2014).
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To illustrate, given ten numbers that follow Zipf’s law (Zipf
1949) exactly, 1, 1/2,1/3, ..., 1/10, as a whole, their average is
0.29, which partitions the ten numbers into the largest three in
the head and the remaining seven in the tail. For the three in
the head 1, 1/2, and 1/3, as a sub-whole, their average is 0.61,
which, again iteratively, partitions the largest three in the head
into one (1) in the head and two (1, 1/2) in the tail. Thus, the
scaling pattern of far more small numbers than large ones
recurs twice, so the ht-index of the ten numbers is three.

The head/tail breaks or ht-index has been used to re-define
fractal, leading to the so-called third definition of fractal: a set
or pattern is fractal if the scaling pattern of far more small
things than large ones recurs multiple times or with the ht-
index being at least three (Jiang and Yin 2014; Jiang 2015a).
Under the new definition, a fractal is simply characterized by a
data series of a heavy-tailed distribution, with the ht-index
indicating its scaling hierarchy or complexity—the higher
the ht-index of a fractal, the more complex the fractal. The
ht-index is an integer, so complexity or scaling hierarchy is
measured by the integral ht-index. In this paper, we will de-
velop a real number or fraction to measure the scaling hierar-
chy in a more precise manner. The extended ht-index or frac-
tional hierarchy in general may have a variety of applications
related to geospatial data, including map generalization.
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Motivation

Scaling hierarchy cannot always be an integer. For example, a
data series of ten numbers {1, 1/2, 1/3, ..., 1/10} has the ht-
index of three, as seen above. If we append five small numbers
such as 1/11, 1/12, ..., and 1/15 into the data series to become
{1, 1/2, 1/3, ..., 110, 1/11, 1/12, ..., 1/15}, the ht-index re-
mains unchanged. This implies that ht-index is not sensitive to
some small changes (Gao et al. 2016a, b, 2017), although it
has been used for characterizing fractal cities and hierarchical
scaling (e.g., Long 2016). The ht-index, as previously defined,
is likely to be rounded from a fractional ht-index (fht-index).
In other words, scaling hierarchy could be a fraction. The
present paper aims to seek a more precise ht-index—namely,
the fht-index—for characterizing hierarchy of a data series
with a heavy-tailed distribution. This paper further assigns
an fht-index to an individual data value of a data series indi-
cating its appropriate hierarchical level.

To further motivate the fht-index, let us examine three
different Koch curves at different iterations of the gener-
ation (Fig. 1). The two curves shown in panels a and ¢ of
Fig. 1 consist of 13 and 52 segments, respectively, and
their ht-indexes are 3 and 4, because the recurring times
of far more short segments than long ones are 2 and 3 as
shown in panels b and d of the same figure. These two ht-
indexes are exactly 3 and 4, because removing one of the
shortest segments from these two curves would not obtain
the ht-indexes of 3 and 4, while adding one of the shortest
segments would not increase the ht-indexes because of its
insensitivity. From these two indexes, we can conclude
that the Koch curve shown in panel e of Fig. | must have
an fht-index of 3.x, where 0 <x < 1. However, ht-index as
previously defined (Jiang and Yin 2014) captures only
approximately scaling hierarchy and is therefore less sen-
sitive to some small changes. This is what motivates us to
develop the fht-index.

Wholes and Sub-wholes

A fundamental concept of this paper is whole or sub-
wholes. Assuming that the above ten numbers constitute
a complete whole, the first three numbers or the first head
would be a sub-whole. In other words, given a data series
as a whole, its head and the head of the head (in a recur-
sive fashion) would be the sub-wholes. This is just a sim-
ple understanding of whole or sub-wholes. The reader
needs to refer to the following formal definition and
methods for better understanding the whole or sub-
wholes. It is important to realize that the curve shown in
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panel e of Fig. 1 is not a whole, but part of a whole—the
curve shown in panel ¢ of the same figure. In this paper, a
whole is defined as a data series of n values that ranges
from the largest to smallest and meets the following con-
dition: ht-index(n) — ht-index(n-1)=1. For example, the
52 segments constitute a whole because ht-index(52) — ht-
index(51)=1. This definition of whole applies to sub-
wholes as well. For example, the first 13 values of the
52 segments constitute a sub-whole because ht-index(13)
— ht-index(12) = 1. According to the definition of whole
or sub-whole, a Koch curve is not a whole, but the seem-
ingly incomplete Koch curves shown in panels a and c are
a sub-whole or whole. In other words, the curve in panel e
of Fig. 1 is a whole according to the strict definition of
Koch curve, but it is not a whole according to the very
definition of head/tail breaks.

Given the 52 segments as a whole, ranking all its seg-
ments from the longest (of scale 1) to the shortest (of
scale 1/27) creates a data series shown in panel g of
Fig. 1—the row named “whole”—where data and its
whole are shown together with its index in the first three
rows. We have already derived the sub-whole of the 13
segments in the previous paragraph with the ht-index of 3.
We further determine other sub-wholes or sub-data: the
first three segments {1, 1/3, 1/3} with the ht-index of 2
and the first segment {1} with the ht-index of 1. All these
sub-wholes (or sub-data series) are with integral ht-
indexes as shown in panel g of Fig. 1. These indexes with
integral ht-indexes are called anchors for each sub-whole
or whole. Note that the sub-whole and whole constitute a
nested relationship; that is, the first sub-whole is within
the second sub-whole, the first two sub-wholes are within
the third sub-whole, and all the three sub-wholes are with-
in the whole.

Methods—fht-Index for a Data Series and Its
Individual Data

In order to determine the fht-index of the first 21 seg-
ments, we divided the data series range between the
13th and the 52nd (or the range between the third and
fourth anchors) equally into 39 intervals and converted
the equal intervals from a linear scale to a nonlinear scale
using a power function of flinterval) = (j * interval)?,
where ;j is the index of each interval. This provides us
with the fht-index of the first 21 segments: 3.042 (or
x=0.042 in panel g of Fig. 1).

To summarize the calculation of the tht-index in gen-
eral, given a data series, we first seek its whole by
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Fig. 1 (Color online) Motivating
and calculating the fht-index
using the three different Koch
curves. Seen from the recursive
perspective, there are 13 segments
for the curve in panel a—one of
scale 1, four of scale 1/3, and
eight of scale 1/9—so the notion
of far more short segments than
long ones recurs twice, as shown
in panel b. There are 52 segments
for the curve in panel c—one of
scale 1, four of scale 1/3, 16 of
scale 1/9, and 31 of scale 1/27—
so the scaling hierarchy is 4.
There are 21 segments for the
curve in panel e—one of scale 1,
four of scale 1/3, and 16 of scale
1/9—but the plot in panel f shows
only integral part of the ht-index
of 3. The Koch curves in panels e
and c are represented as data
series and whole, respectively, in
panel g for the purpose of
computing fht-index. There are
multiple sub-data series or sub-
wholes with ht-indexes of 1, 2,
and 3; these are also called
anchors and constitute nested
relationships with its whole
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Index 1 3 4 5 6.12 13.20 21 22| .51 52
Data 11/3 1/3 1/3 1/3 1/9 1/9 1/9 1/9 1/9

Whole 11/3 1/3 1/3 1/3 1/9 1/9 1/9 1/9 1/9 1/27 1/27 1/27
Sub-data 1 2 2| 2 2 2 3 3I@E= 3 3 4
Ht-index 4 3 2 1y 1

appending new data values up to the next hierarchical
level and sub-wholes by shrinking the data series to pre-
vious levels recursively. A whole is obtained from a data
series by appending small values at its smallest end until
the ht-index is increased to the next level exactly. In a
similar vein, starting from the first value as the first sub-
whole, more sub-wholes are obtained by adding values
one by one until ht-index is increased to a next level
exactly. A whole and its sub-wholes constitute nesting
relationships. As a rule for determining the whole and
sub-wholes or the anchors, the ht-index at index & must
meet the condition of ht-index(k) — ht-index(k-1)=1.
Next, the range between two largest anchors, representing
the largest sub-whole and the whole, respectively, should
be equally interpolated and the equal intervals are then
converted into a nonlinear scale to get the fht-index of a
data series.

Having obtained the fht-index of the data series, we
assign an fht-index to each data value of the data series.

There are two ways to do this. The first is to take a whole
whose ht-index is an integer, and the other is to take the
data series (which is unlikely to be a whole) whose ht-
index is a fraction. The data series to be examined is
usually unlikely to be exactly a whole. Nevertheless, the
input data series could incidentally be a whole. As shown
in panel g of Fig. 1, the largest data value is assigned to
the first anchor, so it has the highest ht-index of 4, and the
smallest data value is assigned to the fourth anchor, so it
has the lowest ht-index of 1. Having assigned all integral
ht-indexes to these anchors, other indexes are assigned to
some fht-indexes by interpolating the ranges between
these anchors. This assignment of integral ht-indexes
looks like the flip process of determining anchors; the
anchors increase from the first data value to the last, while
the integral ht-indexes decrease from the first data value
to the last. After assigning the integral ht-indexes, we
have to interpolate the ranges between sub-wholes and
the range between the largest sub-whole and the whole
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in order to obtain fht-indexes of other individual values.
Eventually, the fht-index of the 21st segment is 1.63 (or

Function Fht-index (whole)

y=0.63 in panel g of Fig. 1). The above procedure for a
whole can be packed as a function of the fht-index:

// This function returns a fht-index for each value in the whole
// The data is sorted ranging from the largest to the smallest

Anchors (whole)

// this function returns AnchorNum of the whole

Flip AnchorNum in whole;

// The largest AnchorNum is assigned to the lowest marked index, while
//the smallest AnchorNum is assigned to the largest marked index

Foreach marked index p:

Find its next marked index p’;

range = p’ - p;

subHtFraction = Interpolation (AnchorNum,

range) ;

htFraction.add (subHtFraction) ;

Return htFraction;
End Function

For a data series that is not incidentally a whole, it is nec-
essary to append some smallest values in order to make it a
whole. While this is simple for the Koch curves, for real-world
data, it is important to get its trend line that best fits the data
series. In this regard, it is recommended to use trend line
functions such as power law, logarithmic, polynominal, and
exponential. As a rule, the most-fit trend line must be chosen
for a specific data series. The tht-index (e.g., 3.x) of the data
series is obtained by interpolating the range between the larg-
est sub-whole and the whole. The anchors are with integral ht-
indexes, but in the opposite order: the largest anchors with the
smallest integral ht-index and smallest anchors with the largest
integral ht-index. Those data values between anchors or be-
tween the largest anchors and the whole must be obtained
through interpolation. To this point, we have relied on the
Koch curves to illustrate the ideas of fht-index in order to
make it more accessible to experts as well as non-experts.

Case Studies and FHTCalculator

To further explore the tht-index, we applied it to two case studies.
The first case study involves 36 city sizes that follow Zipf’s law
(Zipf 1949) exactly 1, 1/2, 1/3, ..., and 1/36 (panel a of Fig. 2)
with an ht-index of 3. The second case study involves 8106
natural cities with an ht-index of 7, derived from the social media
Brightkite in the USA (panel ¢ of Fig. 2, Jiang and Miao 2015).
For the first case study, appending the smallest values is pre-
determined by the rank sizes, while for the second case study,
the smallest values are determined by a power law function of
P=5.03 ¥ *! of the 8016 city sizes. Unlike the ht-indexes that
are discrete, tht-indexes for individual data values, as shown in
panels b and d, are continuous and thus capture scaling hierarchy
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more precisely than the discrete ht-indexes. The fht-indexes of
these two data are 3.81 and 7.04, respectively, based on the
methods introduced above or by applying these data series into
FHTCalculator (2017). The fht-index of individual value within
the two data is plotted in Fig. 2. Note that the tht-indexes are not
simply interpolated from the discrete ht-index, but are
recalculated from their wholes as described above. We developed
a small program for computing tht-index, called FHTCalculator
(2017). The computing for the two case studies can be done
within a few seconds. This program has been made available in
GitHub, and interested readers can try it with their own data.

Implications

Existing fractals, both classic and statistical, are essentially
defined from the top down, i.e., either a strict or statistical
fractal can be generated by following a rule endlessly, such
as the Koch curve or the statistical Koch curve; see the liter-
ature on the theory (Mandelbrot 1967, 1982) and its applica-
tions in geography (e.g., Batty and Longley 1994;
Frankhauser 1994; Chen 2011). The new relaxed definition
or the third definition of fractal is imposed from the bottom up,
capturing the underlying scaling hierarchy of far more small
things than large ones through the ht-index. The tht-index
takes a step further because it can more precisely measure
the degree of hierarchy from a previously discrete value to
continuous value, or from a previous integer to real number.
This continuous value is sensitive enough to capture different
phrases of a fractal from its initial stage to matured stage with the
tht-index increasing slowly or gradually (rather than rapidly as
the ht-index). It is in this sense that we believe that the new fractal
geometry focuses not only on statics but also on dynamics. This
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Fig. 2 (Color online) Two case studies for visualization of fractional
hierarchy. The 36 city sizes that follow Zipf’s law precisely (a). The ht-
index in blue and fht-index in red of the 36 city sizes (b). Top five
hierarchical levels of 8106 natural cities in the USA (c¢). The ht-index in

new fractal geometry is very much in line with living geometry
developed by Alexander (2002-2005). The living geometry aims
not only for understanding fractal structure but also for making
complex or living structure. In this connection, the fht-index
provides an excellent means for judging living structure, for ex-
ample, when it is applied for measuring degree of livingness
(Jiang 2015b). In addition, the tht-index can more precisely char-
acterize spatial heterogeneity that is more pervasive or ubiquitous
in geography (Jiang 2015c). By focusing on fractal structure of
far more small things than large ones, in addition to spatially
auto-correlated things (Tobler 1970), the ftht-index represents a
new approach for geospatial analysis.

Conclusion

This paper refines the ht-index to be a fraction to better charac-
terize the scaling hierarchy of a fractal or data series with a heavy-
tailed distribution. The existing integral ht-index is implicitly
based on the assumption that any given data series of a heavy-
tailed distribution is always a whole. This assumption does not
always hold true. In many cases, a data series is likely to be part

blue and tht-index in red of the 8106 natural cities (d). It should be noted
that scaling hierarchies with the two data sets are more precisely analyzed
and visualized by the fht-index than the ht-index initially. This fact is
clearly seen in panels b and d

of a whole rather than a whole itself. Based on this new percep-
tion, we put a data series within a whole and seek its sub-wholes
or anchors in order to derive its tht-index. This fht-index is al-
ways greater than or equal to the integral ht-index. We further
assign an tht-index to each data value of the data series. More
precisely, the anchors are with integral ht-indexes, while other
data values or non-anchors are with fht-indexes. The fht-index
may help measure degree of living structure or more efficiently
and effectively visualize fractal urban structure and nonlinear
dynamics, since the structure and dynamics have been firstly
captured by the fht-index. In the future, we will seek applications
of the fht-index to better characterize geographic forms and pro-
cesses, or urban structure and dynamics in particular, and even
beyond the understanding towards the making—how to better
heal and design built environments.
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creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
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@ Springer



6 Page6o0of6

J geovis spat anal (2018) 2: 6

References

Alexander C (2002-2005) The nature of order: an essay on the art of
building and the nature of the universe. Center for Environmental
Structure, Berkeley

Batty M, Longley P (1994) Fractal cities: a geometry of form and func-
tion. Academic Press, London

Chen Y (2011) Modeling fractal structure of city-size distributions using
correlation functions. PLoS One 6(9):e24791. https://doi.org/10.
1371/journal.pone.0024791

FHTCalculator (2017), https:/github.com/dingmartin/FHTCalculator

Frankhauser P (1994) La fractalit’e des structures urbaines [the fractals of
urban structure]. Economica, Paris

Gao PC, Liu Z, Xie MH, Tian K, Liu G (2016a) CRG index: a more
sensitive ht-index for enabling dynamic views of geographic fea-
tures. Prof Geogr 68(4):533-545

Gao PC, Liu Z, Tian K, Liu G (2016b) Characterizing traffic conditions
from the perspective of spatial-temporal heterogeneity. ISPRS Int J
Geo-Informat 5(3):34. https://doi.org/10.3390/1jgi5030034

Gao P, Liu Z, Liu G, Zhao H, Xie X (2017) Unified metrics for charac-
terizing the fractal nature of geographic features. Ann Am Assoc
Geogr:1-17. https://doi.org/10.1080/24694452.2017.1310022

Jiang B (2013) Head/tail breaks: a new classification scheme for data with
a heavy-tailed distribution. Prof Geogr 65(3):482-494

@ Springer

Jiang B (2015a) Head/tail breaks for visualization of city structure and
dynamics. Cities 43:69-77

Jiang B (2015b) Wholeness as a hierarchical graph to capture the nature
of space. Int J Geogr Inf Sci 29(9):1632-1648

Jiang B (2015c¢) Geospatial analysis requires a different way of thinking:
the problem of spatial heterogeneity. GeoJournal 80(1):1-13

Jiang B, Miao Y (2015) The evolution of natural cities from the perspec-
tive of location-based social media. Prof Geogr 67(2):295-306 data
source available at: https://www.researchgate.net/publication/
303895757 BrightkiteCheckinLocation

Jiang B, Yin J (2014) Ht-index for quantifying the fractal or scaling
structure of geographic features. Ann Assoc Am Geogr 104(3):
530-541

Long Y (2016) Redefining Chinese city system with emerging new data.
Appl Geogr 75:36-48

Mandelbrot BB (1967) How long is the coast of Britain? Statistical self-
similarity and fractional dimension. Science 156(3775):636-638

Mandelbrot B. B. (1982), The fractal geometry of nature, W. H. Freeman
and Co.: New York

Tobler W (1970) A computer movie simulating urban growth in the
Detroit region. Econ Geogr 46(2):234-240

Zipf GK (1949) Human behavior and the principles of least effort.
Addison Wesley, Cambridge


https://doi.org/10.1371/journal.pone.0024791
https://doi.org/10.1371/journal.pone.0024791
https://github.com/dingmartin/FHTCalculator
https://doi.org/10.3390/ijgi5030034
https://doi.org/10.1080/24694452.2017.1310022
https://www.researchgate.net/publication/303895757_BrightkiteCheckinLocation
https://www.researchgate.net/publication/303895757_BrightkiteCheckinLocation

	How Complex Is a Fractal? Head/�tail Breaks and Fractional Hierarchy
	Abstract
	Introduction
	Motivation
	Wholes and Sub-wholes
	Methods—fht-Index for a Data Series and Its Individual Data
	Case Studies and FHTCalculator
	Implications
	Conclusion
	References


