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Abstract: Differential privacy is a strong notion for protecting individual privacy in data analysis or

publication, with strong privacy guaranteeing security against adversaries with arbitrary background knowledge.

A histogram is a representative and popular tool for data publication and visualization tasks. Following the

emergence and development of data analysis and increasing release demands, protecting the private data

and preventing sensitive information from leakage has become one of the major challenges for histogram

publication. In recent years, many approaches have been proposed for publishing histograms with differential

privacy. This paper explores the problem of publishing histograms with differential privacy, and provides a

systematical summarization of existing research efforts in this field, begining with a discussion of the basic

principles and characteristics of the technology. Furthermore, we provide a comprehensive comparison of a

series of state-of-the-art histogram publication schemes. Finally, we provide possible suggestions for further

expansions of future work in this area.
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1 Introduction

A histogram is a summary of the occurrence counts

for the values in a particular domain in a given

dataset. Histograms are an effective and popular

statistical tool for various applications, such as linear

range queries in Refs. [1,2], as well as data mining

and analysis[3]. To facilitate these applications, his-

tograms are generated from a raw dataset and pub-

lished for answering analytical queries. Tab. 1 is an

example of a raw data table that stores the infor-

mation of some patients in a particular hospital. A

common task in disease analysis and diagnosis studies

involves requesting for range queries or summariza-

tions of diseases based on some particular patient

features. To answer range queries and facilitate ana-

lytical tasks, histograms are pre-computed based on

raw data (Tab. 1), resulting in a graph like the one

shown in Fig. 1. As shown in Fig. 1, a histogram is

in fact displays a group of bins, each of which corre-

sponds to a particular disease and is associated with

a height as the cardinality of patients belonging to

that group.

With the emergence of the Internet of Things,

Cloud computing, and mobile techniques, it is now rel-

atively easy for various organizations to easily gather
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vast amounts of personal information, such as medical

records, web search history, and traffic monitoring

records, etc. A hospital gathers data from individual

parents every day. These dynamic datasets (daily

datasets of individual patients with fevers, coughs,

and different demographic attributes) can be shared

between researchers to aid in cohort discovery. A

GPS service provider gathers data from individual

users including their location, speed, mobility, etc.

The dynamic datasets, e.g., the numbers of users in

different regions during various time periods, can be

mined from this raw data for commercial interests

such as determining congestion patterns on the roads.

Table 1 Raw patient table

name age disease

Mike 30 flu

Casse 35 fever

Bob 26 HIV

Amy 41 flu

Tod 50 HIV

Ann 33 flu

... ... ...

5

4

3

2

1

0
flu     HIV    fever  cancer  HepA.. diabe

Figure 1 Histogram of patient table

Analysis of such data can yield valuable insights,

including new understanding of a disease, or typical

consumer behavior in a community. However cur-

rently privacy concerns have become a major hurdle

for such analysis for two aspects. First, it has been

increasingly difficult for third-party data analysts to

access their input data. For example, medical re-

searchers have to routinely obtain the approval of

their respective institutional review boards, which is

tedious and time-consuming, before they are able to

look at the data they need. Second, privacy concerns

complicate the publication of results.

The publication of histograms carries the risk of

leaking sensitive information about the underlying

dataset. Therefore, the publication of histograms

must consider any privacy issues associated with the

data. For this reason, many research efforts have

been made to facilitate privacy-preserving histogram

publication.

In recent years, significant breakthroughs have

been made in differential private histogram publi-

cation. The ultimate goal is to ensure that range

queries on a private histogram can be answered as

accurately as possible in a manner that preserves

privacy.

Among the existing privacy-preserving data pub-

lication schemes, including anonymization, sanitiza-

tion, etc., differential privacy is the most promising

technique as it provides a theoretical guarantee of

privacy, for the published data, against any adversary

with background knowledge. In particular, through

careful investigation, we have classified the existing

differential privacy histogram publication schemes

into two groups.

In the first group, coarse histogram bins are sani-

tized using some carefully designed mechanisms, e.g.,

Laplacian Mechanism, Exponential Mechanism, etc.

After which, the sanitized histograms are then post-

processed using particular optimization strategies,

such that the error introduced by the sanitization

is minimized as much as possible, assuring usability

of the histogram data. The second group works in

the opposite direction. Coarse histogram bins are

first preprocessed using particular transformations

or optimizations. The transformed data are then in-

jected with Laplacian or Exponential noises in order

to ensure that the output histogram is Differential

Private-Compliant. Both the groups of methods aim

to provide a theoretical guarantee of privacy for the

published histogram as much as possible while pre-

serving the usability of the published data.

We describe a series of preliminaries in section 2.
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We then present a classification of existing differential

private histogram publication mechanisms and com-

pare them in section 3. We describe our conclusions

in section 4. Triggered expansion and future work is

then discussed in section 5.

2 Preliminaries

2.1 Histogram publication

A histogram is a common representation of a distribu-

tion of numerical or categorical data. Given a series

of n data samples D = {X1,X2, · · · ,Xn}, the value of

each record xi in a particular field (resp., attribute),

say A, is denoted A(xi), A histogram of field A in D

merges neighboring counts into k equal-width bins

H = {B1,B2, · · · ,Bk}, each of which is disjoint with

the others. Each bin holds a count of the records that

fall into it. In the case where A(xi) are numerical

values, each bin Bj = (lj , rj , cj) contains an interval

[lj , rj ] ⊆ [1, n], and a count cj which represents the

number of records in D that fall within the interval

[lj , rj ], i.e. {xi|lj 6 i 6 rj}. The bins in a histogram

must be disjoint but collectively cover all the counts

in D.

A coarse histogram can be further summarized and

approximated by a higher level histogram H, that

may contain fewer bins, each of which covers a larger

interval. Because such an abstracted histogram uses

fewer counts than the original coarse histogram D,

it inevitably introduces error. This error is often

measured using an SSE (Sum of Squared Errors)[4]

between the raw histogram D and the generalized

histogram H as follows

SSE(H,D) =
∑
j

∑
lj6i6rj

(cj − ci)2. (1)

SSE(D,H) can be used to evaluate the usability

of the histogram, For the interval [lj , rj ] of each bin

Bj , the optimal value of cj for Bj that minimizes

SSE(H,D) is simply the mean value of the counts

in [lj , rj ], i.e. j = (
∑rj
i=lj

xi)/(rj − lj + 1).

2.2 DP (Differential Privacy)

Given a set of records D = {X1,X2, · · · ,Xn}, an-

other record set D′ is a neighboring sequence to D, if

and only if any D′ differs from D in only one record.

meaning D′ can be generated from D by either in-

serting or removing a single record.

A histogram publication mechanism Q satisfies

ε-differential privacy (ε-DP)[5], if it outputs a ran-

domized histogram H, such that ∀D,D′, P r(Q(D) =

H) 6 ez × Pr(Q(D′) = H), where D and D′ denote

two arbitrary neighboring datasets, and Pr(Q(D) =

H) denotes the probability that Q outputs H with

input D. From the definition, it can be seen that

the differential privacy model distorts the effect of

some data records in the algorithm output, such that

the records from query Q are indistinguishable to

arbitrary adversaries.

The first and most commonly used mechanism for

achieving differential privacy is the Laplacian mech-

anism, which relies on Laplacian Distributions. To

achieve ε-differential privacy with the Laplacian Mech-

anism, we must first discuss the concept of sensitivity.

The sensitivity ∆[6] of the query (e.g., a histogram

query in our problem) is defined as the maximum

L1-distance between the exact answers of the query

Q on any two neighboring databases D and D′, i.e.,

∆Q = max
D,D′

‖Q(D)−Q(D′)‖1. (2)

2.3 LM (Laplacian Mechanism)

A standard mechanism for achieving differential pri-

vacy is to add Laplacian noise to the original output

of a function f . This means that the noise added

to the original outputs is drawn from a Laplacian

distribution. This Laplacian Mechanism was pro-

posed by Dwork et al[7]. Formally, it takes as input a

database D, a function f , and the privacy parameter

ε as inputs. The noise is generated according to a

Laplacian distribution with the probability density

function p(x|λ) =
1

2λ
exp (−|x|/λ), where λ is deter-

mined by both ∆f and the desired privacy parameter

ε. Then, the Laplacian mechanism works as follows.
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Theorem 1 For any function f : D → Rd, the

mechanism A, which is defined as

A(D) = f(D) + 〈L1(∆f/ε), · · · , Ld(∆f/ε)〉, (3)

satisfies ε-differential privacy, where Li(∆f/ε) are

i.i.d Laplace variables with scale parameter ∆f/ε.

2.4 EM (Exponential Mechanism)

The Laplacian mechanism only works with numerical

data, but sensitive information may also be contained

in categorical values, such as the running example in

Figs. 1 and 2. Let O be the output of a non-numerical

dataset D on function f , and using a scoring function

u(D, r) (r ⊆ O) , a score is assigned to every output

value r. Then, the Exponential Mechanism works as

follows

cell
partitioning

original
database

differentially
private
interface

equi-width
cell histogram

noise

user

Figure 2 Baseline cell partitioning

Theorem 2 Given a score function u : (D ×O)→
Rd, the mechanism A, which is defined as

A(D,u) =

{
r : |Pr[r ∈ O] ∝ exp

(
εu(D, r)

2∆u

)}
, (4)

satisfies ε-differential privacy, where ∆u is the global

sensitivity for function u. According to the definition

of u, a higher value of u indicates a higher probabil-

ity for the output r to be selected. This mechanism

allows attributes that are non-numerical to be san-

itized through the score function u, resulting in a

ε-DP compliant scheme.

2.5 Differentially private histogram

A histogram is typically defined over a specific do-

main and a dataset. It summarizes the occurrence

counts of domain values in the dataset. For example,

if the domain is a set of diseases D (such as cancer,

flu, HIV, hepatitis, etc.) then a histogram of a pa-

tient dataset would show the number of patients with

disease d ∈ D in the dataset to d. Given the disease

information of patients in Fig. 1, Fig. 2 displays a cor-

responding histogram of the disease attribute. This

histogram provides useful statistical summaries of the

disease distributions in a given population. However,

a histogram inevitably leaks sensitive information

from the underlying dataset. For example, if an ad-

versary knows the diseases of all but one patient, they

can easily infer the disease of the last patient from

the released histogram.

2.6 Two strategies for publishing his-

togram

Data publication methods based on the differential

privacy can be divided into two main strategies:

I. Adding noise to the raw data from statistical

information, and optimizing the result. Specifically,

adding Laplacian noise to numerical data and expo-

nential noise to nonnumerical data.

II. Start by converting the raw data, and then add

noise to the transformed data afterwards.

Methods based on strategy I have better privacy

budget with lower utility, and so they do not support

high range queries. Strategy II converts the raw data,

before adding noise to the results.This can improve

data utility and query accuracy, but information may

be lost during data transformation.

3 Different methods for publishing

differentially private histograms

3.1 Constrained inference

Michael Hay[6] first proposed a method for boost-

ing the accuracy of differentially private histograms
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through consistency. The method is called con-

strained inference. As an example, suppose there

is a group of students xt and the number of students

receiving grades xA, xB , xC , xD, xF is A,B,C,D and

F receptively. The number of students passing is

xp. Suppose all queries need to be answered in away

that preserves privacy. One change in the dataset

could affect three returned values, therefore, the sen-

sitivity of this set of queries is 3. Additionally, each

component will have more noise added by the pri-

vacy mechanism. After adding noise, the estimates

for xA, xB , xC , xD, xF may become worse, but the

estimates for xp may be more accurate. The idea of

constrained inference was proposed as a method to

solve this inconsistency.

This method uses the input database and privacy

parameters to choose a set of queries Q for the data

owner. Queries are chosen so that constraints hold

among the answers. The data owner then answers the

set of queries and adds random independent noise to

each answer in the set, and the set of noisy answers

is sent to the analyst.

Because the second step is the same as in Ref. [7],

this method is able to offer the same differential pri-

vacy guarantee.

3.1.1 Histogram segmentation and publica-

tion methods based on strategy I

As previously mentioned, experts have developed two

methods of segmentation based on strategy I (add

noise to original data, and then optimized), There

are a baseline cell-based partitioning strategy for

releasing an equial-width cell histogram[8] and an in-

novative 2-phase kd-tree based partitioning strategy

for releasing a v-optimal histogram[8].

The first strategy is simple. Based on the original

partitioning of the data, a noisy count is released for

each cell, resulting in an equal-width cell histogram.

The second strategy is based on the cell-histogram

from the first phase and hence exploits the indirectly

observed underlying data distribution in the noisy

cell histogram. Additionally, the 2-phase method

incorporates a uniform measure in the partitioning

process, minimizing approximation errors within the

partitions. The specific process of the strategy can

be described using Fig. 3.

cell
partitioning

original
database

differentially
private
interface

equi-width
cell 

histogram

noise
userestimation

subcube
histogram

multi-dimensional
partitioning

Figure 3 Two-phase partitioning

First, a cell-based partitioning based on the domain

is used to generate a fine-grained equal-width cell his-

togram, which gives an approximation of the original

data distribution. Second, a multi-dimensional kd-

tree based partitioning is performed to obtain uniform

or nearly uniform partitions. Finally, given a user-

issued query, an estimation component uses either the

v-optimal histogram or both histograms to compute

an answer. The advantage of the 2-phase partitioning

strategy is that it is both data-aware and adaptive.

3.1.2 Histogram publication methods based

on strategy I

Histogram publication methods based on strategy

I includes LP[8], Boost1[9] and NoiseFirst[10]. The

first method LP was proposed to support unit-length

range queries, Laplacian noise is added to each bin

directly, this leads to a considerable release error and

so it does not support long range queries.

In order to reduce the histogram release error, re-

searchers proposed the other two methods Boost1 and

NoiseFirst. Boost1 post-processes an unattributed

histogram using the least squares method.

NoiseFirst consists of two steps. In the first step,

it calculates a differentially private histogram with

the finest granularity, using the Laplacian mechanism

with unit-length bins. The sensitivity of the first

step is 1, because adding or removing any record can



Different strategies for differentially private histogram publication 73

change the count of any bin by at most 1. Therefore,

it is acceptable to inject Laplacian noise into each

bin to satisfy ε-DP compliance. After the first step,

researchers then calculates the optimal histogram

structure based on the noisy count sequence D̃, us-

ing dynamic programming algorithm[11]. Apparently,

NoiseFirst can be used as a post-processing step to

optimize a published histogram D̃ computed using

a Laplacian Mechanism, by merging adjacent noisy

counts.

The methods introduced above belong to strategy I.

It can be seen from the direction of the research that

reduction of errors and support for different types of

range queries are the major problems for this type of

method.

3.2 Histogram publication methods based

on strategy II

Methods from strategy II generally perform better

than strategy I as shown in Tab. 2. Thus, researchers

proposed a series of methods for publishing differen-

tially private histograms based on strategy II, they

can be categorized into four groups.

1) Based on a hierarchical tree structure, the rep-

resentatives are Privelet[12] and Boost2[9];

2) Based on clustering technology for redrawing

each bin of H, the representatives are Structure-

First[10] and P-HPartition[13];

3) Based on Fourier transform compression of H,

the representatives are FPA[14] and EFPA[13];

4) Using sensitivity control to publish high-

dimensional data, the representatives are DPSense[15]

and DPSense-S[15].

3.2.1 Privelet and boost2

Privelet[12] and Boost2[9] have been proposed in order

to accurately answer long-range queries. The basis

of Privelet is to implement a Haar transform on the

original histogram H, converting each bin count into

wavelet coefficients and storing them in the middle

nodes of the Haar tree. Laplacian noise is added

afterwards. The problem with this method is that

when the number of bins is high, and the Haar tree

is in the index level of the wavelet coefficients, it

directly affects the precision and efficiency of a range

query.

Boost2 takes advantage of an m-ary tree to reorga-

nize a universal histogram and determine the amount

of noise using the height of the tree. After which,

Laplacian noise is added to every node in the tree.

The method follows the semantic constraints of a

range query and the least squares method is used

to improve the accuracy of the query response. The

downside is that when the number of bins is high,

efficiency is low, and this method only supports a

one-dimensional histogram.

3.2.2 StructureFirst and P-HPartition

StructureFirst[10] and P-HPartition[13] have been pro-

posed to reduce query sensitivity and improve his-

togram accuracy. Unlike NoiseFirst, the Structure-

First algorithm computes an optimal histogram struc-

ture from the original count sequence, before adding

the Laplacian noise to each count. Note that the

optimal histogram structure itself is sensitive, there-

fore, StructureFirst spends a portion of the privacy

budget ε to protect it. The main idea is to use the

v-optimization method to combine near similar bins.

The key is choosing the bucket boundaries to avoid

information leakage during the combination opera-

tion which would be an invasion of privacy. Ref. [16]

uses an index mechanism to solve these two problems.

Assume that after merging a histogram with m bins,

the query sensitivity was 1/p, noise demand would be

1/Pε2, where ε2 denotes the assigned privacy budget

for the noise injection phase. Error in this method

comes from reconstruction error and perturbation

error. Perturbation error consists of indexing noise

and Laplacian noise. However, the method does not

take the balance between reconstruction error and

perturbation error into account, and instead adopts

the SSE metric as the main criteria. Error sensitivity

is determined by all the upper bound of all bin counts

if there are many bins close to the upper bound of

the bin count, the SSE method accuracy error is low.

If the histogram contains many bins, adopting

StructureFirst will inevitably result in high com-
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plexity. P-HPartition uses a greedy bisection strat-

egy to deal with H through top-down segmenta-

tion. This continues until each leaf node satisfies

predefined stop conditions, and forms m clusters

Cm = {C1
m,C2

m, · · · ,Cmm}. Finally, Laplacian

noise is added to the clusters. This method also

works on 1-dimensional data, but provides smaller

sensitivity.

3.2.3 FPA and EFPA

These two methods compress the data and sanitize the

compressed data in order to boost histogram accuracy.

The FPA (Fourier Perturbation Algorithm)[15] utilize

discrete Fourier transform technology and the Lapla-

cian mechanism to distribute the histogram. Given

a histogram H = {H1,H2, · · · ,Hk}, the method ap-

plies DFT over H to transform it into Fourier coef-

ficient. As DFT is linearly reversible, each bin can

be calculated using the inverse of DFT . The pro-

cess to apply DFT to histogram H, then choose k

coefficients from the resulting F and add Laplacian

noises to them, the final step is to append n−k zeros

to the histogram and perform the inverse Fourier

transformation. After these operations have been

performed, the histogram can be released. The er-

ror in FPA consists of reconstruction error and noise

error. Reconstruction error is caused by neglected

n− k coefficients, which are substituted with zeros.

The choice of k is very important. A larger k in-

creases perturbation error, and a smaller k increases

reconstruction error. In order to choose the most

appropriate k, Rastogi and Nath[17] also proposed an

extension to FPA, called the Sampling Perturbation

Algorithm (SPA), to select k adaptively depending on

the input dataset. SPA uses exponential mechanism

to select a value of k by the utility function U(H,K),

where

U(H,K) =

(
n∑

i=k+1

| Fi−1 |2
)1

2
+
k
√
n

ε
. (5)

EFPA[13] is an enhanced version of FPA defined in

Ref. [7]. Suppose histogram H has length n, where

n is odd. As EFPA applies DFT on H, it operates

with m instead of n coefficients. Finally, EFPA per-

turbs each Fi
k. Note that the number of retained

coefficients is z = 2k + 1. This is because other than

F0
k the complex conjugate of all other coefficients

also appears in the complete Fourier transform of

H. Finally, F̃ k = F k + (L(2
√
z/ε))

k
is assembled

as an m-dimensional vector by appending m− k ze-

ros. EFPA substantially reduces the amount of noise

added.

3.2.4 DPSense and DPSense-S

For high-dimensional datasets, the key challenge is

their high sensitivity. Large amounts of noise must

be added to satisfy differential privacy. In these sce-

narios, each tuple of the input dataset D is a binary

vector in {0, 1}d, and d can be very large. DPSense

is an approach for publishing statistical information

from datasets with differential privacy via sensitivity

control. DPSense-S is a scalable version of DPSense.

The key idea of DPSense is to choose an appro-

priate sensitivity threshold θ and to limit each row’s

contribution to the column count vector to at most

θ. Given a threshold θ, the method for limiting sen-

sitivity is normalization: D|θ(i, j) = D(i, j), where

RCi < θ; θ(i, j) = D(i, j)
θ

RCi
, where RCi > θ.

In order to minimize the effect of truncation errors

caused by the normalization step and noise errors

caused by the addition of Laplacian noise, the most

important problem is choosing the best θ. This is

because increasing θ reduces truncation errors while

increasing noise errors. According to the exponential

mechanism, the optimal quality function is

q(D, θ, εp) = ac(D|θ)− θ

εp
, (6)

where Prob[θ] satisfies εc-differential privacy. The

design principle of the quality function is that noise

error can be represented by
θ

εp
, and the truncation

error can be represented by ac(D|θ).
Because column counts from a normalized dataset

always underestimate the true counts, DPSense has

a systematic under-estimation bias. In order to ad-

dress the problem, an effective method is to correct

this underestimation by scaling up the noisy counts
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output by DPSense with a factor α, then the quality

function is changed to

qs(D, θ, α, εp) = −ae(D,D|θ)− α θ
εp
. (7)

Experimental evaluation using several utility met-

rics demonstrates the effectiveness of publishing all

columns, and the efficiency of these algorithms makes

private publishing of high dimensional datasets more

practical.

4 Conclusion

Now that the various differentially private histogram

publication methods have been outlined above, we

summarized and compared the methods by their dif-

ferent properties in Tab. 2 below.

The development of differentially private histogram

publication methods has drawn many research ef-

forts and has produced many powerful approaches.

Because different application requirements produce

different data characteristics, there are still many

problems that require further in-depth research.

5 Expansion

In the methods discussed above, the released his-

togram is only applicable to static data. In the real

world, there is a large amount of real-time data that

must be studied and summarized. Unlike static data

which can be studied easily, dynamic data is con-

stantly changing. A series of approaches have been

proposed to capture dynamic data. We studied the

most representative methods DSFT and DSAT. When

we receive sample data from a dynamic database in

real time, it can be used as a black box for generating

“one time” histograms. Next, we will outline the two

algorithms.

DSFT (Distance-based Sampling with Fixed

Threshold) works to determine a value T . assum-

ing that there is an optimal value of T which will

enable the algorithm to exactly generate exact dif-

ferentially private histograms. If the threshold T is

higher than the optimal value, there will be a leftover

privacy budget that is not funny utilized. Conversely,

if T is smaller than the optimal value, the privacy

budget will be exhausted prematurely, resulting in

update errors for the remaining time points. DSFT

uses a fixed threshold and is divided into two steps

at each time point ti: decision and sampling. The

decision step computes a noisy distance between the

original dataset Hi at the current time stamp and

the latest released histogram H̃j and determines if it

is larger than the noise threshold T̃ . If it is, then the

sampling step generates a new differentially private

histogram H̃i, otherwise it outputs the previous H̃j .

The overall privacy budget is divided between the

decision and sampling steps which are designed to

guarantee differential privacy as we will discuss later.

DSAT (Distance-based Sampling with Adaptive

Threshold) releases a series of differentially private

dynamic histograms while adaptively adjusting the

threshold Ti at each time point, based on evolution in

the raw data. With DSAT, researchers do not need to

find an optimal value of T which may be difficult in

practice. We use Ti to denote the generated threshold

at ti and the other notations are the same as DSFT.

T1 is set to be T + Lap(∆/ε̃1), ε̃1 is a tiny privacy

budget because the initial value T1 is not significant

in DSAT. We only need to constrain it between 0

and 2, which is the domain of the L1 distance. Next,

D̃1 is used for the first M time points, where M is

a small integer number to allow a burn-in period for

discrepancy to be accumulation, avoiding frequent

updates of Ti during early time periods. M can be

user-specified and is not a sensitive parameter, it only

needs to be much smaller than N (Number of time

points).

By comparing the two methods, we draw the con-

clusion that the error of DSFT is very sensitive to

the threshold value T [1]. As T increases initially, the

error decreases because of the decreased perturbation

error. As T increases further, the error increases due

to the increased sampling error which becomes the

dominant error. Without prior knowledge, the opti-

mal T is difficult to determine. However, the average

absolute error of DSAT is close to the lowest error

of DSFT with the optimal threshold value T being

approximately 0.025[1]. The initial value of T for
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Table 2 Histogram release strategy comparation

method Ref. [7] Ref. [9] Ref. [10] Ref. [12] Ref. [13] Ref. [10] P-HP Ref. [15] EFPA DS DS-S

conversion

technology

tree transform X

wavelet transform X

Fourier transform X X

cluster transform X X X

dimension
1 X X X X X X X X X

> 2 X X X X

query
long range count X X X X X X X X

unit count X X X X X X

data relationship
independent X X X X X X X X

dependent X X X

error boundary
linear level X X X X X X X

log level X X X X

error source
reconstruction error X X X X X

perturbation error X X X X X X X X X X X

data type
static X X X X X X X X X X X

dynamic

DSAT can be selected arbitrarily. Thus, the DSAT

method can effectively adjust T to its optimal value.

References

[1] C. Li, G. Miklau, M. Hay, et al. The matrix mechanism:

optimizing linear counting queries under differential pri-

vacy [J]. The VLDB journal, 2015, 24(6): 757-781.

[2] C. Y. Song, T. J. Ge. Aroma: a new data protection

method with differential privacy and accurate query an-

swering [C]//The 23rd ACM International Conference on

Conference on Information and Knowledge Management,

Shanghai, China, 2014: 1569-1578.

[3] G. Z. Yuan, Z. J. Zhang, M. Winslett, et al. Optimiz-

ing batch linear queries under exact and approximate

differential privacy [J]. ACM transactions on database

systems, 2015, 40(2): 11.

[4] J. Xu, Z. J. Zhang, X. K. Xiao, et al. Differentially

private histogram publication [J]. The VLDB journal,

2012, 22(6): 32-43.

[5] H. R. Li, X. Li, X. Q. Jiang, et al. Differentially private

histogram publication for dynamic datasets: an adaptive

sampling approach [C]//The 24th ACM International

Conference on Information and Knowledge Management,

Melbourne, Australia, 2015: 1001-1010.

[6] M. Hay, M. Miklau, G. Miklau. Boosting the accuracy

of differentially private histograms through consistency

[J]. Proceedings of the VLDB endowment, 2010, 3(1-2):

1021-1032.

[7] C. Dwork, M. Mcsherry, K. Nissim, et al. Calibrating

noise to sensitivity in private data analysis [C]//The 3rd

Theory of Cryptography Conference, New York, USA,

2006: 265-284.

[8] Y. H. Xiao, X. Li, Y. Y. Fan, et al. DPCube: differen-

tially private histogram release through multidimensional

partitioning [J]. Transactions on data privacy, 2014, 7(3):

195-222.

[9] M. Hay, V. Rastogi, G. Miklau, et al. Boosting the accu-

racy of differentially private histograms through consis-

tency [C]//The 36th Conference of Very Large Databases

(VLDB), Istanbul, Turkey, 2010: 1021-1032.

[10] J. Xu, Z. J. Zhang, X. K. Xiao, et al. Differentially pri-

vate histogram publication [C]//IEEE 28th International

Conference on Data Engineering (ICDE), Washington,

DC, USA, 2012: 32-43.

[11] H. V. Jagadish, N. Koudas, S. Muthukrishnan, et al.

Optimal histograms with quality guarantees [C]//The

24th International Conference on Very Large Data Bases,

New York, USA, 1998: 275-286.

[12] X. K. Xiao, G. Z. Wang, J. Gehrke. Differential privacy

via wavelet transforms [J]. IEEE trans knowl data eng,

2011, 23(8): 1200-1214.

[13] G. Acs, C. Castelluccia, R. Chen. Differentially pri-

vate histogram publishing through lossy compression

[C]//The 12th IEEE International Conference on Data

Mining (ICDM), Brussels, Belgium, 2012: 84-95.



Different strategies for differentially private histogram publication 77

[14] V. Rastogi, S. Nath. Differentially private aggregation of

distributed time-series with transformation and encryp-

tion [C]//The ACM SIGMOD International Conference

on Management of Data (SIGMOD), Indianapolis, USA,

2010: 735-746.

[15] W. Y. Day, N. H. Li. Differentially private publishing of

high-dimensional data using sensitivity control [EB/OL].

http://dx.doi.org/10.1145/2714576.2714621.

[16] C. Dwork. Differential privacy [C]//The 33rd Interna-

tional Colloquium on Automata, Languages and Pro-

gramming (ICALP), Venice, Italy, 2006: 1-12.

[17] V Rastogi, S Nath. Differentially private aggregation

of distributed time-series with transformation and en-

cryption [C]//2010 ACM SIGMOD/PODS Conference,

Indianapolis, USA, 2010: 735-746.

About the authors

Xue Meng received B.Eng. from Xi’an

University of Post and Telecommunica-

tions in 2014. She is currently a grad-

uate student in the School of Cyber

Engineering at Xidian University. Her

research insterests include privacy pre-

serving data management and differen-

tially private data publication. (Email:

1067901461@qq.com)

Hui Li [corresponding author] received

the B.Eng. from the Harbin Institute

of Technology in 2005 and Ph.D. degree

from Nanyang Technological University,

Singapore in 2012, respectively. He is an

associate professor in the School of Cy-

ber Engineering, Xidian University, China.

His research interests include data mining,

knowledge management and discovery and privacy-preserving

queries and analysis in big data. He has over 30 publications in

data management research, the majority of which appear in top-

tier venues such as SIGMOD, SIGKDD, VLDB, ICDE, INFO-

COM, TKDE and VLDB Journal. (Email: hli@xidian.edu.cn)

Jiangtao Cui received the M.S. and

Ph.D. degrees both in computer science,

from Xidian University, Xi’an, China in

2001 and 2005 respectively. Between 2007

and 2008, he was with the Data and

Knowledge Engineering group working

on high-dimensional indexing for large

scale image retrieval, at the University

of Queensland (Australia). He is currently a professor in the

School of Cyber Engineering, Xidian University, China. His cur-

rent research interests include data and knowledge engineering,

and high-dimensional indexing. (Email: cuijt@xidian.edu.cn)

http://dx.doi.org/10.1145/2714576.2714621

	Introduction
	Preliminaries
	Histogram publication
	DP (Differential Privacy)
	LM (Laplacian Mechanism)
	EM (Exponential Mechanism)
	Differentially private histogram
	Two strategies for publishing histogram

	Different methods for publishing differentially private histograms
	Constrained inference
	Histogram segmentation and publication methods based on strategy I
	Histogram publication methods based on strategy I

	Histogrampublicationmethodsbasedon strategy II
	Privelet and boost2
	StructureFirst and P-HPartition
	FPA and EFPA
	DPSense and DPSense-S


	Conclusion
	Expansion

