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Abstract: In HetNets (Heterogeneous Networks), each network is allocated with fixed spectrum resource

and provides service to its assigned users using specific RAT (Radio Access Technology). Due to the high

dynamics of load distribution among different networks, simply optimizing the performance of individual

network can hardly meet the demands from the dramatically increasing access devices, the consequent upsurge

of data traffic, and dynamic user QoE (Quality-of-Experience). The deployment of smart networks, which are

supported by SRA (Smart Resource Allocation) among different networks and CUA (Cognitive User Access)

among different users, is deemed a promising solution to these challenges. In this paper, we propose a frame-

work to transform HetNets to smart networks by leveraging WBD (Wireless Big Data), CR (Cognitive Radio)

and NFV (Network Function Virtualization) techniques. CR and NFV support resource slicing in spectrum,

physical layers, and network layers, while WBD is used to design intelligent mechanisms for resource mapping

and traffic prediction through powerful AI (Artificial Intelligence) methods. We analyze the characteristics

of WBD and review possible AI methods to be utilized in smart networks. In particular, the potential of

WBD is revealed through high level view on SRA, which intelligently maps radio and network resources

to each network for meeting the dynamic traffic demand, as well as CUA, which allows mobile users to

access the best available network with manageable cost, yet achieving target QoS (Quality-of-Service) or QoE.
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1 Introduction

Future wireless communications are expected to sup-

port various emerging applications, including high

speed mobile Internet, massive IoT (Internet-of-

Things), industrial automation networks, unmanned

vehicle networks, etc. Each application has dif-

ferent QoS (Quality-of-Service)/QoE (Quality-of-

Experience) requirements in terms of transmission

rate, coverage, capacity, reliability, latency, etc. To

support such diverse and stringent requirements, it

is necessary to deploy different types of wireless net-

works in the same coverage area, such as Wi-Fi,

UMTS (Universal Mobile Telecommunications Sys-

tem), 4G LTE (Long Term Evolution), and future

5G (5th Generation) networks, which form HetNets

(Heterogeneous Networks). In such HetNets, each

network is assisted with one or more specific RATs

(Radio Access Technologies) operating in fixed ra-

dio spectrum, and there is usually no cooperation

among different networks. While advanced technolo-

gies can be applied to improve the capacity of in-
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dividual networks, a typical dilemma of such non-

cooperative HetNets is that the capacities for each

network are typically pre-determined but the traf-

fic loads are distributed unevenly and dynamically,

which makes it difficult for HetNets to meet the chal-

lenging demand from the dramatically increasing ac-

cess devices, the consequent upsurge of data traffic,

and user QoS/QoE.

In this paper, a framework to transform HetNets

to smart networks is proposed for meeting the chal-

lenging demands of future wireless communications,

by leveraging WBD (Wireless Big Data), CR (Cog-

nitive Radio) and NFV (Network Function Virtual-

ization) techniques.

In the past decades, CR[1] technique had been

developed for different wireless networks to share

the radio spectrum in a dynamic manner. On the

other hand, the development of SDR (Software De-

fined Radio) technology makes it possible for radio

devices to have programmable and reconfigurable

RATs[2]. Besides the reconfigurability in spectrum

domain and physical layer, programmable network

layer using NFV has also been proposed[3]. Through

NFV, the network resources can be sliced into vir-

tual resources to support different applications dy-

namically, e.g., massive IoT, vehicle networks and

industrial wireless networks. By transferring hard-

ware inflexibility into software reconfigurability, CR

and NFV techniques can make radio resources and

network functions effectively programmable.

While CR and NFV support resource slicing in

spectrum, physical layer, and network layer, intel-

ligent mechanisms for resource mapping and traffic

demand prediction are highly desirable in order to

maximize the potential of the smart networks. In

this paper, WBD is used to design the intelligent

mechanisms through using powerful AI (Artificial

Intelligence) methods. Here, WBD is used to de-

scribe the “big data” resource specified in the field

of wireless communications and networks, including

traffic flows generated in devices to infrastructure

communications, device to device communications,

observed data from sensor networks, network traf-

fic data collected in BS (Base Station), location in-

formation about mobile users, information related

to device types. The computer science communities

have found that patterns can be mined from the data

if it is large enough and further the optimal decisions

can be made[4]. In wireless communications and net-

works, sensing techniques and large-scale computing

infrastructures nowadays make it possible to obtain

and process a variety of big data. The developed

intelligent mechanisms will provide us the guidelines

for effectively utilizing radio spectrum, air interfaces,

as well as network resource. The study unlocks the

power of knowledge from massive and heterogeneous

data collected in HetNets and to applys the informa-

tion to transform big data from burden to opportu-

nities.

Despite the promise of WBD for HetNets, two re-

lated fundamental problems need to be addressed.

The first one is how to design HetNets-specific AI

methods for transforming raw data into actionable

insight. AI methods such as machine learning are

sensitive to the distribution and characteristics of

data, thus general learning algorithms without tak-

ing into account domain knowledge may not be ef-

fective when applied to WBD. The second problem

is how to evolve existing system to data-driven sys-

tem. The implementation of AI methods in Het-

Nets will inevitably introduce extra communication

overhead for collecting distributed data. Also, some

machine learning algorithms are time-consuming for

latency constraint wireless applications, thus direct

deployment of data-driven design into existing Het-

Nets may introduce additional problems.

In this respect, in the proposed framework to

transform HetNets to smart networks, WBD engine

is the brain to control the operations of CR and NFV,

as shown in Fig. 1, and an on-line/off-line hierarchi-

cal scheme is adopted for the tradeoff between la-

tency constraints and computational complexity. For

better showing the potential of WBD, SRA (Smart

Resource Allocation) and CUA (Cognitive User Ac-

cess) are investigated in details.

The rest of the paper is organized as follows. In

section 2, a brief overview of enabling techniques for

smart networks including CR, NFV and AI methods
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is given. In section 3, we define WBD and give possi-

ble solutions to handle it based on its characteristics.

In section 4, the framework of the smart networks is

given in detail. The open problems of designing the

smart networks will be discussed in section 5. Fi-

nally, we conclude the paper in section 6.

next generation
cognitive radio SDN/NFV

smart networks

wireless big data

Figure 1 Enabling technologies of the smart networks

2 Brief overview of enabling tech-

niques for smart networks

In this section, the enabling technologies for smart

networks are briefly reviewed, including CR, NFV,

and data-driven AI methods.

2.1 CR

CR was first proposed in Ref. [5], and became pop-

ular after FCC (Federal Communications Commis-

sion) recommended it as a promising solution for

supporting dynamic spectrum access[6]. Since then,

a lot of researches have been carried out[7-9]. Here,

we focus on two CR paradigms related to HetNet:

OSA (Opportunistic Spectrum Access) and CSA

(Concurrent Spectrum Access). In the OSA model,

a spectrum band can be reused by secondary systems

only if it is idle. In the CSA model, the spectrum

band is shared by primary system and secondary sys-

tem while secondary system has to obey certain con-

straints for protecting the primary system.

The cognitive cycle of CR consists of spectrum

awareness, analysis, decision, and spectrum exploita-

tion. The loop will be repeated until the system

fully reaches the optimal state. Spectrum awareness

is powered by spectrum sensing[10], which aims to

tell whether the specific spectrum is idle. Analysis

and decision focus on the solution of the most effec-

tive resource allocation[11]. Although CR has been

investigated for over a decade, practical imperfec-

tion is unavoidable[12]. The imperfection mainly lies

in the channel/noise uncertainty, signal uncertainty,

noise/channel correlation and transceiver design. To

cope with the problem brought by uncertainty, some

robust schemes, such as eigenvalue based spectrum

sensing, have been proposed, and a good survey is

given by Sharma et al.[12].

Reconfiguration of operational parameters, such

as waveform, transmitting power, modulation, car-

rier frequency, bandwidth, coding, etc. is the en-

abler for CR. Self-adaptive reconfiguration of oper-

ational parameters are implemented so as to reuse

the available spectral opportunities[2]. In Ref. [13],

SDAI (Software Defined Air Interface) is proposed

as a framework of 5G air interface. In SDAI, mod-

ules and related parameters are adapted in real time

to flexibly fit all sorts of applications for 5G, and to

realize agility and efficiency.

2.2 NFV

Wireless networks are supported by RAN (Radio Ac-

cess Network) and CN (Core Network), where the

RAN is in charge of user access and related ser-

vice for each base station while the CN controls

the interconnection among base stations and Inter-

net. In traditional wireless networks, physical equip-

ments such as routers, base stations and switches

are coupled heavily with the software running on

them. Such coupling makes it difficult to upgrade

services through updating evolving software or net-

work protocols. To solve this problem, SDN (Soft-

ware Defined Network) which utilizes virtualization

technology to abstract away the softwares originally

running on physical devices is proposed to offer a

new paradigm to manage networking services[3]. The

main purpose of SDN is to decouple the physical

network forwarding devices and the CPFs (Control

Plane Functions)[14].

NFV has been promoted and advocated by
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many industrial organizations[15], and standardiza-

tion organizations[16]. NFV for wireless networks[17]

is different from wired networks. Ref. [18] proposes

a substrate for virtualizing wireless resource in cel-

lular networks. Based on that, Ref. [19] proposes a

new framework called wireless virtualization to slice

the resource for wireless communication. Specifi-

cally, IEEE 802.11 based virtualization, 3GPP LTE

based virtualization and IEEE 802.16 based virtual-

ization have their own challenges and solutions[19,20].

Ref. [3] presents a good survey on this topic.

2.3 AI methods

Machine learning is the core topic of artificial intel-

ligence. The machine learning model is expected to

abstract hidden knowledge from the observed data,

and then the model can be used to predict the un-

known data with the learned knowledge. The data

utilized to train the model is defined as training data.

The most remarkable difference between machine

learning and traditional algorithmic approaches lies

in the generation of models. Machine learning is

an data-driven method, for its models are entirely

determined by data[21]. From the angle of training

modes, machine learning techniques can be classified

into supervised learning, unsupervised learning and

reinforcement learning. In supervised learning, each

training data has a label as the supervisor to indicate

the ground truth. On the contrary, data in unsuper-

vised learning does not have the label. Though the

data in reinforcement learning also has no label, its

model can interact with environment, which gener-

ates feedback data to train the model.

Much research has been done on applying ma-

chine learning to wireless networks for intelligence.

Ref. [22] proposes a construct called knowledge plane

(KP). In that paper, the author stated that the tra-

ditional network carries the data without knowing

what is transmitted, making the network can only

make low level decisions on packets. Thus, network

should have an AI techniques based KP. The main

purpose of embedding KP into network is to main-

tain a high level view of users’ purpose in order to re-

alize fault diagnosis, automatic reconfiguration, sup-

port for overlay networks and intrusion detection.

In Ref. [23], a wide range of machine learning algo-

rithms for KP are surveyed. According to the for-

mulation of algorithms, Ref. [23] categorizes the ma-

chine learning algorithms into classification & regres-

sion, acting & planning and interpretation & under-

standing. Based on Ref. [23], Ref. [24] proposes the

definition of cognitive networks, and explains that

the cognitive networks should utilize hybrid obser-

vations from different elements of network to make

decisions and to output actions that can be imple-

mented to globally optimize the networks. Ref. [25]

surveys the existing applications of machine learning

algorithms on CRN (Cognitive Radio Networks).

However, there are some problems with the liter-

atures. First, the existing application of AI tech-

niques is within a single network, which is not suit-

able for complex heterogeneous networks. Second,

existing work focuses on applying machine learning

algorithms in CRN but there is little research on CR-

specified AI methods. NLP (Natural Language Pro-

cessing), CV (Computer Vision) and speech recog-

nition are most successful applications of machine

learning algorithms, however, all these three fields

design new domain-specified algorithms which in-

versely influence the machine learning community,

such as CNN (Convolutional Neural Network) in CV

and LSTM (Long Short-Term Memory) in NLP. Up

to now, no CR specified AI tool is designed.

3 Wireless big data

WBD can be seen as the big data specified in the field

of wireless networks, which comes from a wide range

of sources. Specifically, WBD contains, e.g., traffic

flow generated in device to infrastructure communi-

cation, device to device communications, observed

or sensed data from sensor networks, network traf-

fic data collected in base station and stakeholders,

GPS information about human and device, power

consumption of communications and sensing, and

some other hardware related information, as shown

in Fig. 2.
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Figure 2 Definition of wireless big data

WBD implies informative hidden knowledge about

the wireless environment and can help to meet the

challenges in today’s wireless networks if utilized

correctly. Spectrum data collected by wireless sen-

sor network, for example, can provide deeper un-

derstanding about coverage map of base station[26].

Also, WBD can help to predict the future[27]. When

a user is predicted to handover to another base sta-

tion using wireless localization, resource provision-

ing can be made to occur in the new base station.

Further, WBD can help to design next generation

wireless networks. Through comprehensive analysis

of WBD from all aspects of wireless networks, some

unseen problems can be identified for performance

improvement.

However, big data analysis in wireless networks

is a typical multi-type multi-objective task, which is

totally different from that in CV and NLP. For exam-

ple, the data from different base stations or different

stakeholders can be significantly diverse. To better

understand and utilize WBD, we will investigate it

from the perspective of decentralization, heterogene-

ity, imperfectness as well as highly temporal-spatial

variation.

3.1 Decentralized generation and storage

Distributed storage and parallel analysis in data cen-

ter have been well studied in data science since the

scale of data is far beyond the capability of single

server[28]. In the fields like CV and NLP where big

data has played a significant role, data is collected

and dumped into hundreds of wired servers and fur-

ther analyzed in parallel.

Different from CV and NLP scenarios, WBD is

generated and stored by lots of separate entities. Un-

fortunately, to collect a full copy of the data is quite

costly as the related entities are even not all con-

nected with a wired link. The data exchange could

be expensive[29]. Therefore, current big data based

machine learning techniques are not fully suitable

for analyzing WBD and thus a distributed learning

technique is highly desirable. It has been studied

that the accuracy of distributed learning and the

corresponding required communication overhead are

interrelated[30]. The granularity and structure are

the tunable components to find an appropriate trade-

off between communication overhead and learning

accuracy. For example, the traffic flow patterns can

be learned in a cloud data center by collecting all

flow data from each base station. Or, the network

flows can also be learned preliminarily in base sta-

tion and only learned results are sent to data center.

The former solution can absolutely learn better but

at a higher cost.

Although densely deployed sensors can bring

higher accuracy, it is too expensive so that sensors

in wireless monitoring network have to be sparsely

implemented. Reconstructing accurate wireless en-

vironment from sparse sensors in a wide area is of

significant importance for WBD[26]. Matrix com-

pletion[31] is a powerful tool to recover the matrix

with only several known elements by convex opti-

mization. Therefore the wireless environment can
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be reconstructed without using densely deployed sen-

sors.

3.2 Heterogeneity

Data generated by different entities in the wireless

networks differs a lot. For example, historical billings

of a specific user and estimation of channel informa-

tion are respectively generated in user’s equipment

and base station. However, billings can tell if it is

a heavy or important user. Therefore, by combining

the channel information and historical billings, the

network has the ability to decide the most suitable

network for the user. Besides, data from one entity

also has apparent difference. Let us take the user de-

vice for example, the streaming video flow looks in-

dependent from its historical locations. Conversely,

with the track, network can predict the moves of de-

vices and provide proactive handoff and video pre-

caching for better experience.

Some methods have been proposed to tackle the

problem of heterogeneous data fusion[32]. Tensor

based learning[33] and multi-view learning[34] are two

most promising ways among them. Tensor is the

matrix with higher order. Compared with the ma-

trix based methods, tensor based approaches better

sketch the data when it comes from more than two

views. As for multi-view learning, it is originally

designed to use unlabeled data to enhance the per-

formance of supervised learning[21], and further ex-

tended recently to handle the multi-source learning

problem[35]. The consensus principle and the com-

plementary principle are two basic idea in multi-view

learning. The former implies that results from dif-

ferent views should agree with each other to improve

the learning performance. The latter indicates that

some complementary information can be extracted

from multiple views for using as much information

as possible.

3.3 Incompleteness and inconsistency

Deficiency in completeness and consistency of data

evidently causes inaccuracy to decision making[36],

which definitely lowers the QoE of users. Imperfect

data mostly results from the various data providers

with diverse reliability[37] as well as the denial of ac-

cessing data due to, e.g., privacy protection.

For the first reason, robustness can be ensured by

building trust relationships[22]. Credence values are

determined according to the past accuracy or other

standards so that the uncertainty in low-trust data

should be fixed. The conflicting or missing data

and errors can thus be fixed by the reliable sources.

For instance, in the smart networks scenario where

the system has to obtain the real time system load

of CDMA (Code Division Multiple Access) system

for resource allocation, base station reports its load

with an interval while the traffic of gateway is real-

time, thus credit of actual system load for gateways

should be higher than that for base stations. As

for the second reason, it is an emerging problem in-

corporating multiple networks held by several stake-

holders only concerning their own interest. Service

providers want to collect data as much as possible

while users are in the opposite for the privacy sake

and even creates their own cloud platforms through

such as OwnCloud. And for the companies which

already have user data, it is also difficult for data

sharing because legally this needs the authorization

of users and the cost of data gathering also lowers

the willingness of sharing. This problem remains to

be solved and changed from a zero-sum game to a

win-win game, demanding the participation of every

company and individual involved.

However, there has been literature trying to solve

this problem by adapting to the environment of lim-

ited information. Ref. [38] aims to integrate HetNets

by reinforcement learning with limited feedback and

noisy information. Game theory based learning and

sequential decision making are also investigated in

Refs. [39] and [40] respectively for CRN where play-

ers can hardly obtain complete and instantaneous

knowledge of the network.

3.4 Temporal-spatial variation

Intelligent decision making in the smart network

demands the real-time training and responds from
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WBD analysis system. Real-time big data analysis

in fact has been investigated long before. Ref. [28]

demonstrates a structure of real-time big data sys-

tem and advocates the principle of design, Ref. [41]

suggests to apply it to build a smart city. Nonethe-

less, the data in WBD, such as spectrum informa-

tion, often has drastic variation of probability distri-

bution as the change of time and space. Chaos will

be caused if the training data is simply scaled up as

the traditional way does. Hence, applying the same

mechanism in Ref. [28] to build a WBD based de-

cision making system induces severe degradation of

performance[42].

Of course, the problem can be possibly solved in

tabular manner, in which data is categorized and

carefully labeled for different scenarios. However,

complex wireless environment is hard to enumerate,

and it is worth noting that labeling the data is time-

consuming and extremely costly. Two bright ways to

work out this problem are transfer learning[42] and

incremental learning[43]. Transfer learning believes

that though data distribution varies, some high level

knowledge remains the same. Thus these schemes

try to turn the historical data into a transferable

or incremental knowledge by off-line training. With

new arriving data, the system is able to obtain new

knowledge to adapt to the new environment in a

short period of time. It will become the core tech-

nique for the WBD-driven decision making.

3.5 Streaming feature

The behavior of wireless networks is often modeled

as the Markov process[44], implying that data orig-

inated in wireless networks is not independent but

correlated in stream manner. Further, phenomena in

wireless networks always simultaneously affect mul-

tiple data streams, which implies the designed al-

gorithm for single data stream is not effective for

extracting complete information about an event.

Time series mining[45] and forecasting[46] are two

powerful tools for finding frequent patterns of data

stream. Ref. [47] proposed a PCA (principle compo-

nent analysis) based algorithm to find correlations

in multiple data stream. Tensor based algorithms[48]

are also suitable for multiple streaming mining.

4 The framework of smart networks

Smart networks are expected to provide the following

four key features: efficient resource utilization, dy-

namic network optimization, intelligent service pro-

visioning and enhanced user experience, and these

features are achieved by WBD engine in conjunction

with CR and NFV techniques. The WBD based

smart decision making guides CR techniques and

SDN enabled NFV to reconfigure radio resource, in-

frastructure resource, as well as network functions.

WBD engine is actually an adaptive big data en-

gine specialized for wireless big data due to its spe-

cial characteristics. It consists of four important

functions, namely wireless data acquisition, wireless

data management, wireless data analysis and smart

service provisioning. Wireless data acquisition con-

cerns the deployment of data collecting agents for

reporting real time wireless environment as well as

the storage of the data. Wireless data management

is responsible for transforming unorganized and un-

structured data from various sources, like spectrum

data and traffic flows, into structured and unified

data in convenience of analysis. Wireless data anal-

ysis provides the hidden information of WBD and

helps to make intelligent decisions for smart service

provisioning.

Logical structure, action stream of smart networks

and the deployment of WBD engine are shown in this

section for detailed description of smart networks’

framework. In the end, the cases of SRA and CUA

are exhibited to demonstrate the power of smart net-

works.

4.1 Logical structure of smart networks

Smart networks are logically decomposed into appli-

cation component, network component and resource

component, as shown in Fig. 3. The application

component is connected to network component by

access controller. Similarly, the resource component
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provides service to network component through re-

source controller. Application component consists of

all the users to access smart networks, ranging from

UE (User Equipment) to IoV (Internet of Vehicles).

Since different types of users have different QoE de-

mands, the users in application component are clus-

tered based on their QoE demand and corresponding

resource requirement. For example, applications in

industrial automatic control system often require the

communication latency less than 10 ms, while the

amount of data to be transmitted is relatively small.

In contrast, multimedia streaming applications are

latency tolerant but bandwidth consuming. Also,

users can switch from one cluster to another.

network 
slice A

network 
slice B

network 
slice C

UE  A

UE B

UE C

virtual 
resource

virtual 
resource

virtual 
resource

spectrum
resource

infrastructure
resource

air interface
resource

slice A

slice B

slice C

Figure 3 Composition of smart networks

Before the start of the detailed discussion of re-

source component, we first clarify the meaning of

accessing to wireless network. If a device intends to

get the wireless service, an AP (Access Point) and

the corresponding radio frequency as well as the time

slots are then all chosen by the device. Next, a rout-

ing path[49] from the chosen AP to target service is

constructed. Thus the access request demands not

only the AP and radio resource, but also network

functions, routers, switches and corresponding band-

width in backhaul and fronthaul. The resource com-

ponent contains radio resource and infrastructure re-

source. The radio resource is sliced in both time

domain, frequency domain, and spatial domain for

further multiplexing. While infrastructure resource

consists of AP, antennas, processor hardware and

routers. When the resource controller between re-

source component and network component receives

the request from networks, corresponding resource

will be appropriately provided to each network in

the form of virtual resource slice.

Network component bridges the gap between

physical resource and users. Due to NFV, CPFs

(Control Plane Functions) in network component are

abstracted away from originally coupled forwarding

devices into a logically centralized network function

controller. The CPFs of wireless network can be cat-

egorized into RAN functions and CN functions. The

CPFs in RAN consist of admission control, inter and

intra cell radio resource management, radio resource

scheduling and handoff management, etc., while mo-

bility management, charging rules function, packet

gateway etc. are the counterparts in CN. Because

of different latency constraints of different applica-

tions, network function controller is hierarchical to

control the latency constraints, ranging from BS con-

troller to NET controller, where NET controller is in

charge of QoE provisioning and cooperation within

HetNets. Distributed BS controller is on the bot-

tom of the hierarchy for radio resource management,

synchronization and access control in BS. The BS

controller is commanded by RAT controller, which

is responsible for the network to allocate resource to

distributed BS. Because the corporation of HetNets

can be both centralized and distributed, the NET

controller can be a central substrate to give instruc-

tions or a set of mechanism for different networks to

cooperate. For instance, networks held by the same

mobile service provider may have a centralized NET

controller, however NET controller for networks from

different operators can only be distributed.

WBD engine is a pervasive structure in the smart

networks. Roughly speaking, all decision makings

in the smart networks are based on the WBD en-

gine, especially in access control and allocation con-

trol. It’s worth noting that the WBD engine is not a

substantiality as a software or a protocol layer, but

an embedded data enabled framework within each

element of the smart networks. In practical sce-

narios, WBD engine embedded in access controller
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learns the matching policy between user demand

and network selection. Also, the matching policy

between network demand and resource allocation is

learned by the WBD engine in allocation controller.

Thus when new access request arrives, these two con-

trollers can quickly react and match the appropriate

network and resource. The WBD engine is not a sub-

stantial structure but indicates that all elements in

the smart networks can leverage data-driven meth-

ods to continuously update the knowledge from data,

and that is the reason why we call it smart.

4.2 Action stream of smart networks

The actions of smart networks can be concluded as

perception, learning, reasoning, memory and adap-

tion, as shown in Fig. 4. Especially in the percep-

tion step, distributed sensors continuously monitor

the wireless environment. Besides, GPS traces and

network flows are also stored for further learning.

Then the WBD engine combines existing knowledge

and the data to be processed in the learning step.

After learning from historical data, WBD engine is

capable of giving instructions for networks to auto-

matically adapt. These actions again generate new

data as part of WBD for network to perceive and

learn.

memory

learning

reasoning

perception

adaptation

Figure 4 Action stream of smart networks

In a scenario where the UE and BS both sense

the wireless environment and take actions to inter-

act with each other, data is generated during inter-

actions and is learned by WBD engine, and then

the UE and BS controllers remember the knowledge

about matching relations between QoE demand, net-

work selection, and corresponding resource alloca-

tion. When new users come in, the knowledge in

memory will give instructions to both UE and BS

for selection process, and again the interactions from

new users generate new data for WBD engine to up-

date the knowledge. Through this data-driven meth-

ods and adaptive resource allocation, more users can

be accessed without decrease of experience, as shown

in Fig. 5.

time

capacity

capacity 

demand

on-demand 

allocation

fixed 

allocation

Figure 5 Capacity improvement by on-demand physical re-

source allocation

4.3 WBD engine

WBD is expected to reveal the intrinsic feature

of wireless environment. For example, interference

and jamming analysis in hot spot can help bet-

ter achieve interference cancellation and network se-

lection. Also, health care application can benefit

from the analysis of wireless reflected signals. Com-

plex data mining is time-consuming and computa-

tion costly, which thus should be placed in cloud

centers. However, wireless networks are expected to

react and adapt quickly when environment changes.

Thus, a on-line off-line hierarchical framework is pro-

posed in the smart networks, as shown in Fig. 6.
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Figure 6 Wireless big data engine framework

In the smart networks, off-line data engine, de-

ployed in cloud center, is responsible for complex

analysis to extract knowledge from raw data. While

the on-line engine is deployed in the edge of networks

for quick reaction to new collected data. The moti-

vation behind the on-line off-line framework is that

learning knowledge from raw data is time consum-

ing and stays closely related to the scale of data.

Thereafter, it’s somewhat reasonable to assume that

time complexity of nonlinear data mining algorithm

(e.g., the support vector machine[21]) without prior

knowledge is O(M2N), where M is the number of

training data and N is the dimensionality of each

data. In wireless big data scenarios, M will always

more than 107, and N is larger than 1 000. It can

be seen that the time consuming is unacceptable for

real time analysis. Although so, with prior infor-

mation and Teacher-Student interactions, learning

speed and required training data can be significantly

cut down[42,50]. Thus, we deploy complex mining al-

gorithm in off-line engine to learn high level knowl-

edge and further migrate it to the on-line engine,

where the learning process in on-line engine is speed

up to meet the latency constraints with prior knowl-

edge and smaller M . It is worth noting that the

off-line engine will not always be running due to the

energy consumption and cost constraints, instead,

it will operate periodically. The computation in on-

line engine heavily depends on the knowledge sent by

off-line engine. To accelerate the reaction time of the

smart networks, on-line engine will unify the learned

knowledge in off-line engine, as explained in section

3.3, with new arriving data to adapt to the environ-

ment. In conclusion, the off-line engine is responsi-

ble for complex and time-consuming computation to

extract knowledge for on-line engine to update, so

that complete computation is not needed in on-line

engine.

4.4 Smart resource allocation and cogni-

tive user access

CR and NFV techniques integrate and slice the fixed

radio and network resource of HetNets into a re-

source pool, enabling the dynamic resource alloca-

tion among HetNets. Along with the WBD engine,

smart networks have the capability to predict the

load distribution of HetNets and thus to make proac-

tive resource allocation, which is called SRA (Smart

Resource Allocation). For a better demonstration of

SRA, we present a simple example of HetNets con-

taining a CDMA system and a LTE system here.

The CR techniques investigated by Ref. [51] intro-

duces a scheme for the spectrum sharing between

CDMA system and LTE system, which realizes the

dynamic radio resource allocation between two net-

works. In the meanwhile, NFV takes care of the con-

sequent network resource allocation, such as build-

ing more instances of control modules like handoff

management, mobility management, policy, etc. for

the network with extra users and release the redun-

dant instances for the network with reduced users[20].

However, this scheme requires that some parameters,

like the loads of CDMA system[51], should be ob-

tained in real time. Rather than passively and con-

tinuously listening to the delayed reports from base

stations, prediction of needed parameters provided

by WBD engine are preferred, which helps the net-

works to make proactive adaptations.

Apart from SRA, CUA is another important fea-

ture of smart networks. CUA concerns the problem

about which network is the best choice for a smart

device who is able to adopt multi-RAT. The opti-
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mal network access selection should consider lots of

factors, therefore, it is not always wise to select the

network with the latest technologies though SRA en-

sures the scalability of networks. For instance, to

simultaneously achieve the required rates, lowest la-

tency and least energy consumption, the smart deci-

sion is based on the real-time system parameters like

loads, packet loss, signal strength as well as the real-

time user devices parameters like battery level, appli-

cation and location[52]. However, real-time parame-

ters are quite difficult to obtain and thus the existing

schemes mostly focus on trial based learning[52-54],

which is passive and inefficient. With the intelligence

provided by WBD through reinforcement learning,

smart networks realize CUA by prediction, proactive

handoff and proactive resource allocation along with

SRA. Compared to the past schemes, CUA shows its

advantages in proactivity and efficiency.

5 Challenges and open problems

The proposed smart network is not a complete off-

the-shelf solution, a lot of research is needed to make

it a reality. In this section, some fundamental and

open problems that are important for the success of

smart network are discussed.

5.1 Definition of the knowledge

In section 3.3, the knowledge is deemed the key for

deploying WBD in practice, however, it is not easy

to fully understand the definition of the knowledge.

In wireless context, what can be learned and what

should be learned are not defined. Also, quantita-

tive relationship between knowledge and accuracy

in wireless networks stays unclear. To control the

tradeoff between analysis accuracy and communi-

cation overhead, how much knowledge that current

task needs is essential.

5.2 Tradeoff between analysis accuracy

and communication overhead

More data often implies higher learning accuracy,

however, they also indicates stringent storage and

transmission requirement. Careful tradeoff between

them is fundamental to the success of the smart net-

works. It is worth noting that different hierarchies

and different elements of wireless networks have dif-

ferent accuracy demand and computing power con-

straints. Formulation and optimization of this prob-

lem is a challenging issue.

5.3 Inference rather than correlation

Large portion of research in machine learning com-

munity is about how to find correlation or unexplain-

able results, however, the operators holding wireless

networks need not only unexplainable correlation,

but also causality that human can understand. Re-

cent criticism on deep learning[55] says that the DNN

(Deep Neural Network) is a black box that human

cannot understand. How to design wireless networks

specified inference tools is important for the opera-

tors and the whole community to adopt data-driven

network design.

5.4 Integrating networks from different

operators

Incompleteness and inconsistency problem of WBD

has been discussed in previous sections and some

existing research has pointed out the directions[56].

Yet, since wireless networks in a coverage area are

usually held by several stakeholders with compet-

ing business, efficient cooperation between them is

difficult from commercial perspective. How to de-

sign solutions to persuade competitive operators to

corporate is hard but important for all research on

virtualization of wireless networks.

5.5 Legacy support and scalable for fu-

ture

Existing radio resource allocation scheme is fixed

spectrum allocation, thus isolation and slicing of

physical resource in the smart networks must sup-

port legacy system as much as possible to reduce the

expenditure when evolving to the smart networks.

Also, the framework of the smart networks should
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be scalable to new techniques and even next genera-

tion cellular networks.

5.6 Security and privacy

Privacy and security of data collection and pro-

cessing is important for practical implement. Tra-

ditional research on data privacy mainly concerns

the protection of data generators during the pro-

cess in database, and differential privacy technique

is the main solution. Because the open environ-

ment of wireless communication, privacy and secu-

rity problem of wireless data processing is far more

difficult[57], and further research is required.

6 Conclusions

To meet the unprecedented requirements of wireless

services in terms of data traffic, massive access, and

user QoE, in this paper, we proposed an architec-

ture for smart networks with intelligent mechanisms

supported by wireless big data and AI methods, in

conjunction with cognitive radio and network func-

tion virtualization techniques. The network capac-

ity can be boosted using smart resource allocation,

while the QoE or QoS of users can also be enhanced

using cognitive user access. Possible artificial intelli-

gence methods are reviewed, and some fundamental

problems of great importance for future research are

pointed out.
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