
Vol:.(1234567890)

Journal of Hardware and Systems Security (2023) 7:44–54
https://doi.org/10.1007/s41635-023-00133-3

1 3

CROWBAR: Natively Fuzzing Trusted Applications Using ARM CoreSight

Haoqi Shan1,2 · Moyao Huang1 · Yujia Liu3 · Sravani Nissankararao4 · Yier Jin1 · Shuo Wang1 · Dean Sullivan4

Received: 31 January 2023 / Accepted: 3 May 2023 / Published online: 15 June 2023
© The Author(s) 2023

Abstract
Trusted execution environments (TEE) are deployed on many platforms to provide both confidentiality and integrity, and their
extensive use offers a secure environment for privacy-sensitive operations. Despite TEE prevalence in the smartphone and
tablet market, vulnerability research into TEE security is relatively rare. This is, in part, due to the strong isolation guarantees
provided by its implementation. In this paper, we propose a hardware assisted fuzzing framework, CROWBAR, that bypasses
TEE isolation to natively evaluate trusted applications (TAs) on mobile devices by leveraging ARM CoreSight components.
CROWBAR performs feedback-driven fuzzing on commercial, closed source TAs while running in a TEE protected envi-
ronment. We implement CROWBAR on 2 prototype commercial-off-the-shelf (COTS) smartphones and one development
board, finding 3 unique crashes in 5 closed source TAs that are previously unreported in the TrustZone fuzzing literature.

Keywords Trusted execution environments · ARM CoreSight · Trusted applications · Fuzzing

1 Introduction

Fuzzing ARM TrustZone software is imperative especially
given the number of devices in the market whose secu-
rity relies on trusted execution environments (TEE). This

popularity is, in part, due to the confidentiality and integrity
guarantees provided by TrustZone of which many funda-
mental applications employ to securely provision and deploy
critical resources. It is surprising, therefore, how few are the
number of works investigating TrustZone fuzzing despite its
popularity and extensive use in mobile and notebook envi-
ronments. The scarcity, however, is not without a warrant
as TEEs are built upon strong isolation guarantees. Major
vendors also ensure their TEEs are locked down by the time
they hit the market and release little information regarding
their SoC implementation. ARM’s business model further
complicates the matter. Its inventory is built mostly upon
soft processor core IP that ARM licenses to vendors with
extensive functionality that accounts for nearly 100 unique
products [1] each of which can be configured with a rich
variety of features.

The two most relevant works on fuzzing TrustZone
employ rehosting [2] and blackbox fuzzing [3] techniques,
and each is a significant achievement. Harrison et al. devel-
oped PartEMU [4], which is the first design for rehosting
via emulation of a whole system TEE capable of dynami-
cally analyzing several closed-source TrustZone Operating
Systems (TZOSes). In so doing, they were able to perform a
large-scale study of trusted applications (TAs) from 13 ven-
dors, thereby unveiling several unknown bugs. Busch et al.
recently proposed TEEzz [5], a blackbox fuzzing framework

 * Dean Sullivan
 dean.sullivan@unh.edu

 Haoqi Shan
 haoqi.shan@ufl.edu

 Moyao Huang
 moyaohuang@ufl.edu

 Yujia Liu
 liuyujia1@lixiang.com

 Sravani Nissankararao
 sravani.nissankararao@unh.edu

 Yier Jin
 yier.jin@ieee.org

 Shuo Wang
 shuo.wang@ece.ufl.edu

1 Department of Electrical and Computer Engineering,
University of Florida, Gainesville, USA

2 CertiK, New York, USA
3 Li Auto Inc., Beijing, China
4 Department of Electrical and Computer Engineering,

University of New Hampshire, Durham, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-023-00133-3&domain=pdf

45Journal of Hardware and Systems Security (2023) 7:44–54

1 3

capable of natively fuzzing TAs on COTS devices by lever-
aging observable information from the normal world. Their
approach resulted in the discovery of 40 unique bugs across
several COTS vendors.

Despite their achievements, both PartEMU and TEEzz
have drawbacks. PartEMU is built using propriety knowl-
edge that is closed-source, hence difficult to recreate. It also
naturally suffers from slowdowns caused by emulation and
potential inaccuracies in implementation. TEEzz is innately
limited from true introspection due to its blackbox nature.
This makes coverage and crash analysis difficult because
of the limited information recoverable from the normal/
secure world interface. Crashes can typically only be tri-
aged based on a return code or system reboot using blackbox
techniques. In practice, however, TEEzz circumvented this
by obtaining stack traces via a normal world-accessible TEE
log interface. TEEzz approaches nearly ideal behavior in its
ability to natively evaluate TAs in their host environment.
Our approach builds upon this feature while circumventing
introspection restrictions of black box fuzzing techniques
using the trace features of ARM CoreSight [6].

In our paper, we demonstrate the feasibility of fuzzing
TAs natively using ARM CoreSight-enabled smartphones
in a framework called CROWBAR. This overcomes the
limitations of blackbox fuzzing by allowing introspection of
executing TAs control flow in a native environment, thereby
enhancing feedback-driven fuzzers, improving code cover-
age analysis, and allowing binary-only crash triage. We
show how to enable and configure ARM CoreSight for trace-
assisted fuzzing on prototype devices, integrate and evaluate
trace information using AFL++ [7], a popular control-flow-
driven mutational fuzzer, and perform the native evaluation
on COTS devices running Trusty and QSEE. In summary,
we make the following contributions:

• We propose and evaluate the use of ARM CoreSight to
perform coverage-driven fuzzing on TrustZone-protected
applications code with prototype smartphones to achieve
native introspection.

• We implement CROWBAR, outlining in detail the pro-
cess by which CoreSight features are discovered, ena-
bled, and configured on prototype smartphones.

• We demonstrate CoreSight-assisted trace integration and
evaluation by fuzzing TAs from multiple vendors, i.e.,
Google Trusty and Qualcomm QSEE natively. We evalu-
ate 5 TAs and find 3 unique crashes.

• We provide a detailed discussion of the challenges faced
in using CoreSight-assisted fuzzing across a representa-
tive range of device vendors.

The remainder of the paper first addresses background in
Section 2. We then introduce the design of CROWBAR in
Section 3 before detailing its implementation in Section 4.

We then evaluate CROWBAR in Section 5 and present an
analysis of challenges in Section 6. We then present related
works in Section 7 and conclude in Section 8.

2 Background

In this section, we present the necessary technical back-
ground and terminology used throughout the paper. We
describe the CoreSight Architecture, CoreSight tracing, and
TrustZone architecture.

2.1 ARM CoreSight Infrastructure

The ARM CoreSight infrastructure defines a set of stand-
ard interfaces and components to assist ARM-based SoC
manufacturers to debug their software and hardware. Spe-
cifically, ARM supplies a series of IP components to imple-
ment SoC-level debug and trace functionalities, such as the
CoreSight SoC-400 library for Cortex-A class designs [8].
The CoreSight SoC library provides a comprehensive set of
trace macrocells including the Embedded Trace Macrocell
(ETM), Program Trace Macrocell (PTM), and Embedded
Cross Trigger (ECT) among others. In addition, ARM also
licenses the Trace Memory Controller (TMC) to configure
where traces are stored. In our paper, we aim to provide a
fuzzing framework for ARM Cortex-A-based commercial
devices which are equipped with the CoreSight SoC-400
library. These components can be accessed either through a
standard JTAG interface (off-chip access) or can be accessed
via the memory bus (on-chip access).

We access and configure the CoreSight components
via memory-mapped I/O, as shown in Fig. 1. We use the
Embedded Trace Macrocell and Program Trace Macro-
cells provided by the CoreSight SoC-400 to collect traces

Fig. 1 ARM CoreSight Architecture that illustrates how the ARM
Core, RAM, ETM, AMBA AXI, and other CoreSight components are
interconnected

46 Journal of Hardware and Systems Security (2023) 7:44–54

1 3

while TAs execute. We use the Embedded Cross Trigger
to actively invoke TAs to avoid the cost of world switch-
ing. We also use the Trace Memory Controller to control
where the generated trace is stored. Detailed information
on each component is described below.

Embedded Trace Macrocell The ETM is used as a non-inva-
sive debug method on ARM-based SoCs to enable devel-
opers to collect the instruction flow of a target application
while running without affecting the performance of the
CPU. The ETM is tapped on the instruction and data bus to
monitor the current instruction and data being manipulated.
It can be programmed via multiple interfaces, including
system registers, memory-mapped I/O, or via an external
debugger interface. It is worth noting that ARMv8-A, the
most popular ARM architecture used by COTS devices,
does not support data tracing if ETMv4 [6] is used.

Embedded Cross Trigger The ECT sub-system is used to
pass debug events from one debug component to another
within the CPU complex. In other words, a processor can
pass debug information to another and thus perform invasive
debugging between processors on the same die using the
ECT. The ECT comprises the Cross Trigger Interface, Cross
Trigger Matrix, and Event Asynchronous Bridge.

Trace Memory Controller The TMC serves as the final trace
component by terminating the trace bus into dedicated on-
chip SRAM. The TMC allows developers to choose to store
the trace via the embedded trace buffer (ETB) or embedded
trace FIFO (ETF). The embedded trace router (ETR) is also
often used to route the trace into system memory via the
Advanced eXtensible Interface (AXI) bus due to the limited
memory size of on-chip SRAM.

2.2 ARM TrustZone and TEE

ARM TrustZone is a hardware-based security extension
that offers hardware-enforced isolation for ARM-based
CPUs. TrustZone technology is integrated into ARMv7-A
and ARMv8-A architecture-based processors and occupies
the majority of the mobile devices today. TrustZone is the
hardware foundation of a TEE on ARM-based processors.
Together, they act as a firewall to enforce access control to
secure both peripheral and memory regions used and exe-
cuted upon by TAs. The isolation separates two execution
environments: the secure world and the normal world. The
ARM TrustZone architecture design is illustrated in Fig. 2.

Secure World The secure world hosts the TEE and runs
trusted code. The trusted code can be developed by ARM,
SoC manufacturers, or trusted third-party developers. The

secure world guarantees that the code and data that runs in
the TEE are protected with respect to confidentiality and
integrity [9].

Normal World The normal world hosts the Rich OS Execu-
tion Environment (REE) and runs non-secure world code.
The REE can be used to run a regular Linux OS or Android
OS and is considered untrusted by the TEE. The REE resides
outside the isolation boundary of the TEE and thus cannot
access its peripherals and protected memory.

TrustZone Implementation ARM uses the non-secure (NS)
bit in the Secure Configuration Register (SCR) to represent
the current security state of the processor. The main system
AXI bus propagates the NS bit to indicate whether an access
terminates in the secure or non-secure region. The processor
switches between the normal world and the secure world
(world switching) by issuing a Secure Monitor Call (SMC).
The SMC is handled by the Secure Monitor in Exception-
Level 3 (EL3). Because the SMC cannot be issued within the
non-privileged mode, the Rich OS often exposes an SMC
call as a device driver interface for user privilege applica-
tions. SELinux is used to restrict applications that request
switching into the secure world in order to use secure-world
services. In addition, software that runs in a secure world
can access both secure and non-secure memory and periph-
erals, while software running in the normal world can only
access non-secure memory and peripherals.

3 On Device Fuzzing—in the Secure World

In this section, we introduce the technical challenges in
fuzzing TAs and how to achieve such goals on prototype
devices, including popular smartphones and tablets.

3.1 Feasibility of Trace Collection in Secure World

The current challenge in fuzzing TAs mainly lies in the
fact that the trusted world is not intended to be monitored

Fig. 2 ARM TrustZone Architecture on ARMv8

47Journal of Hardware and Systems Security (2023) 7:44–54

1 3

by untrusted third parties. The problem is exacerbated
further because TAs that are running on most commercial
devices are not open source. The main accessible way
for security researchers to find vulnerabilities in TAs is
through reverse engineering which involves tremendous
human effort. However, as was mentioned in Section 2,
CoreSight is designed to help developers collect raw exe-
cution traces regardless of the world (secure/non-secure)
in which the CPU is running. In other words, if CoreSight
components are both equipped and enabled on the device
hosting the trusted application, it is possible to collect the
trusted application execution trace.

With that said, to protect the TrustZone design, ARM
implements a mechanism that allows the vendor to decide
whether CoreSight is functional while the CPU runs in the
secure world via a fuse setup. In 2019, Ning and Zhang
[10] demonstrated that certain COTS devices from dif-
ferent vendors have CoreSight components enabled. This
was used to recover a fingerprinted image from the secure
world. And, even though this attack is not directly related
to fuzzing TAs, it still betrays the possibility of collect-
ing runtime traces with CoreSight in the trusted world on
COTS devices. After the publication of this paper, many
vendors fixed the issue outright by simply disabling Core-
Sight. We have verified this approach on several newly
released smartphones from different vendors, see Table 1.

3.2 Enabling CROWBAR with Prototype Devices

However, there is one exception that we have found.
Although CoreSight is most likely disabled in produc-
tion devices, it is likely still enabled in the prototypes for
those devices. Prototype devices are typically used for the

development and validation of the hardware design prior
to the massive production stage. The prototype devices are
not for sale and are only used by the vendor’s internal team.
They generally remain strictly controlled until the release
of actual devices. After the release of production devices,
these prototype devices are either destroyed or sold to third
parties such as rare phone collectors or used markets. We
also encountered cases wherein certain vendors allow their
employees to purchase these prototype devices.

In many cases, the prototypes that are available on the
used market have nearly identical hardware designs as the
production stage devices. Even the stock firmware can be
used by these prototypes, excepting features requiring hard-
ware key provisioning using development keys such as fin-
gerprint unlocking or secure payments. Otherwise, they can
be used normally, but are popularly employed in security
research due to the lack of restrictions compared to their
COTS counterparts. For example, iPhone prototypes are
very popular in the Apple jailbreak community [11].

To verify if we can use these prototypes to conduct fuzz-
ing on TAs with unlocked CoreSight components, we pur-
chased 9 prototype devices spanning 7 vendors from both
Ebay and other online used markets. The collected devices
are listed in Table 1. We further compiled and loaded kernel
modules to access the CoreSight authentication registers to
verify if it can be used to perform either invasive or nonin-
vasive secure world debugging. We found that many support
secure world debugging in either scenario.

We develop CROWBAR based on the use of prototype
devices and their exposure of ARM CoreSight features as
illustrated in Fig. 3. CROWBAR consists of 4 parts: a fuzz-
ing framework that handles TA executions; a state manager
that collaborates with the fuzzer to track and maintain the

Table 1 Prototype smartphones and tablets. Note that all tested models deploy the ARMv8 architecture except the Redmi 6 device, which
deploys the ARMv7 architecture

PT ProtoType, MP Massive Production

Model SoC Batch TZOS SPNIDEN SPIDEN DBGEN NIDEN Coresight

Pixel 2 MSM8998 MP QSEE ✓ ✓ ✓ ✓ ✓
Pixel 3XL SDM845 PT QSEE ✓ ✓ ✓ ✓ ✓
Pixel 4 SM8150 PT QSEE ✓ ✓ ✓ ✓ ✓
Pixel 4 SM8150 MP QSEE ✗ ✗ ✗ ✗ ✗
Samsung S10+ Exynos 9820 PT TEEGRIS ✗ ✗ ✗ ✗ ✗
Huawei P9 Kirin 955 MP TrustedCore ✗ ✗ ✓ ✗ ✗
Huawei Y Max SDM660 PT QSEE ✓ ✓ ✓ ✓ ✗
Honor Note 10 Kirin 970 PT TrustCore ✗ ✗ ✗ ✗ ✗
Moto One Power SDM636 PT QSEE ✓ ✓ ✓ ✓ ✗
Moto G8 Power SM6125 PT QSEE ✓ ✓ ✓ ✓ ✗
Xiaomi A2 SDM660 PT QSEE ✓ ✓ ✓ ✓ ✓
Redmi 6 MT6762 PT OP-TEE ✓ ✓ ✓ ✓ ✗

48 Journal of Hardware and Systems Security (2023) 7:44–54

1 3

state of TAs during fuzzing; CoreSight discovery and con-
figuration that is used to collect the native execution trace
of TAs to perform effective coverage-guided fuzzing; and a
trace integrator responsible for reconstructing TA control
based on CoreSight supplied packets.

4 CROWBAR Implementation on Prototype
Devices

In this section, we first describe how to verify if the proto-
type device has debugging enabled and provide details on
configuring CoreSight per prototype.

4.1 Debug Authentication

Verification of CoreSight components is achieved by read-
ing the debug authentication signal from the authentica-
tion status system register DBGAUTHSTATUS_EL1, in
which the invasive/non-invasive debugging in normal/
secure world enable bits can be inferred. Specifically,
there are four authentication signals defined: (1) DBGEN;
(2) NIDEN; (3) SPIDEN; and (4) SPNIDEN. In general,
they can be interpreted as signals that control if the cor-
responding debug feature can be configured in each world,
as shown in Table 2. The DEVICEEN bit must be enabled
for any of the four authentication signals to be enabled.
Furthermore, vendors may use the eFuse to hard wire them
so that the debug features can be leveraged during devel-
opment and locked down in production. Although this is
an approach for vendors to have more granular control
over debug feature availability, ARM does not prevent

the SoC manufacturer from implementing extra protec-
tion to secure CoreSight as we found and will discuss in
Section 6.

Access to the debug authentication register is privi-
leged, so we opted to read the register on each individual
prototype device using a kernel module. Table 1 shows
that the majority of prototype devices have all the authen-
tication signals asserted. Interestingly, on certain massive
production stage devices, such as the Pixel 2, the authen-
tication signal is asserted as well which allows us to use
CoreSight in both worlds. Comparatively, newer massive
production-stage devices, such as the Pixel 4, are correctly
fused to disable CoreSight.

4.2 CoreSight Configuration

There are several prerequisites that have to first be met to
be able to configure the CoreSight components on proto-
type devices for coverage-driven feedback: (1) the prototype
devices have to be rooted; (2) the vendors have to release the
kernel source code; (3) the CoreSight component topology
has to be known; and (4) the CoreSight component clock
domain has to be enabled.

Fig. 3 CROWBAR design on prototype device

Table 2 Debug Authentication Signals

Signal Description World

DBGEN Invasive debug enable Normal world
NIDEN Noninvasive debug enable Normal world
SPIDEN Invasive debug enable Secure world
SPNIDEN Noninvasive debug enable Secure world

49Journal of Hardware and Systems Security (2023) 7:44–54

1 3

Rooted Device First, the configuration of CoreSight com-
ponents is privileged and can only be performed by the root
user, which means the bootloader of the prototype devices
should be unlocked so that we can load our customized ker-
nel. Note that, even though the devices we purchased are
prototype devices, we found in many cases the sellers flashed
the stock firmware and subsequently locked the phone to be
able to use them as daily phones.

Kernel Source To make the prototype devices functional and
successfully boot, we need the kernel source code from vendors
to configure all the hardware properly. This is challenging even
though the Linux kernel uses the GPL license because certain
vendors choose not to release the kernel source used in their
firmware. In addition, the kernel version should be consistent
with the stock ROM running on our device. Typically, vendors
release old source code and never update it.

CoreSight Topology Access to the kernel source code from
the vendor allows us to configure CoreSight properly for the
specific prototype device. Albeit CoreSight is licensed by
ARM as IP, the manufacturer is free to customize its inte-
gration into their SoC. CoreSight IP is highly configurable
which allows the manufacturer to choose, for example, the
amount of ETR, ETB, and TPIU, how these are connected to
one another, and the physical memory address of these com-
ponents. All of this information needs to be detected. We
can reuse the released kernel code to find the corresponding
device tree file, if there is any; however, this is not always
available. Instead, our implementation first reads the ROM
table base address from the system register via our kernel
module and dynamically enumerates all available CoreSight
components present on the SoC.

CoreSight Clock Domain On certain devices, such as the
Pixel 2, the clock domain of the CoreSight component is
disabled by default which results in a bus error fault when
we try to access CoreSight via memory-mapped registers. To
successfully configure CoreSight, the debug clock domain
has to be configured and enabled via its device tree. We use
the released kernel source code to find the corresponding
debug clock domain and enable ite

4.3 Fuzzing Framework

In Sections 4.1 and 4.2, we discussed the prerequisites to
configure CoreSight on different prototype device platforms.
We now show how to effectively fuzz TAs given access to
CoreSight. We use QSEE as an example to explain our meth-
odology as all of the prototype smartphones in which we
can capture TrustZone execution traces are equipped with
Qualcomm CPUs. QSEE is implemented by Qualcomm as
the trusted execution environment for their SoC designs.

As illustrated in Fig. 4, the TAs are invoked by client appli-
cations in the normal world. Such a request traverses multiple
layers of privilege levels across the normal and secure world.
To request a corresponding trusted application, the client appli-
cation first issues a QSEECom_send_command call exposed
by the QSEE normal world common library. The common
library then interacts with a QSEE normal world kernel driver
(QSEECom Driver) using an ioctl call. The QSEECom
Driver further invokes the Secure Channel Mon-
itor (SCM) Driver to issue a secure monitor call to
request a world switch and transfer control and command to
the trusted world. The QSEE secure world operating system
then dispatches the request to the corresponding trusted appli-
cation and passes the request details as an event. When the
trusted application finishes the command execution and copies
the result into a shared response buffer, control flow is then
reversed and the client application can then retrieve the result
from the preallocated shared memory region.

To effectively mimic this process and fuzz the trusted
application, we leverage our capability of customizing a ker-
nel module and rewrite the QSEECom Driver to record
all regular commands and associated memory requests from
client applications. To do so, we rewrite the QSEECOM_
IOCTL_SEND_CMD_REQ ioctl handler and extract the
useful information from a request memory pointer param-
eter including the command ID, request data, and request
data length. We then store the request details as a seed for
our fuzzing process. This allows us to record both the com-
mand ID and request buffer content for each invoked trusted
application.

Once we have the seed in place to properly initialize the
fuzzing campaign, we can configure the prototype devices to

Fig. 4 QSEE end-to-end call flow

50 Journal of Hardware and Systems Security (2023) 7:44–54

1 3

capture the trusted application execution trace as feedback
for the fuzzing process. We first configure the correct Core-
Sight topology using the CSAL module from ARM [12] with
the inferred topology using either the device or topology dis-
covery process described in Section 4.2. We then find and
connect the CPU core which runs the TA and configure it
as a trace source tapped to the CoreSight funnel. The funnel
component is then either connected to a replicator component
so the trace can be duplicated and fed into a different sink, or
directly into on-chip SRAM memory using the trace buffer.
In addition to the CoreSight interconnection configuration, we
also need to configure the ETM to only capture the trace of
TAs. The filter is applied by setting up the ETM to only acti-
vate with a specific world and at a specific privilege level, i.e.,
secure world and EL0. Note that per specification, the ETM
is able to filter the trace using a specific process ID; however,
we found that almost all TZOSes do not properly configure
the context ID register (CIDR) of the CPU core which results
in the ETM context ID value filter being unusable.

After CoreSight is configured to capture the trusted appli-
cation runtime trace on a specific CPU core, we then instruct
our fuzzer, AFL++ [7], to generate the mutated input based on
the seed input previously collected. Instead of directly fuzzing
the target application with AFL++, we implement a wrapper
program to take the mutated input and pack it into the normal
request format so it can be passed to the QSEECom Driver.
This wrapper program is also pinned to the same CPU core
that we configured to host the trusted application. In addition,
the wrapper program takes care of the fuzzing context setup,
such as initializing the trusted application if it is not loaded in
the trusted world and examining the shared buffer allocated
by the QSEECom Driver. The wrapper program evaluates
the return value within the response buffer to determine if the
previous command execution was successful. A failed attempt
is then recorded and later analyzed. In addition, the kernel mes-
sage is examined to determine if the failed attempt is caused
by an invalid command ID or due to a crash in the trusted
application. The crash status is sent back to AFL++. Finally,
the QSEECom Driver is modified to block requests that
invoke non-fuzzed TAs to eliminate tracing interference. After
the completion of the wrapper program, the program execution
trace is dumped from the CoreSight on-device trace buffer and
parsed to reconstruct the trusted application’s control flow.

4.4 Trace Integration

To reconstruct the TA control flow, the trace data needs
to be extracted from the CoreSight component first and
parsed. CoreSight is normally exposed to the memory
bus so that developers can configure it through memory-
mapped registers and perform on device tracing and
debugging. Developers can utilize two ways to read/write

these memory-mapped registers: via sysfs or /dev/
mem on Linux. If the Linux kernel has the correct Core-
Sight kernel modules and they are correctly configured
during compilation, a set of sysfs interfaces are exposed
under /sys/bus/coresight. However, this is not
always true. In many cases, the kernel for the test device
may not have any CoreSight drivers provided. To achieve
the maximum flexibility, we use /dev/mem as a way to
access the CoreSight registers as long as we know where
CoreSight is mapped into physical memory and how the
CoreSight component topology is connected. We use the
CSAL module to assist the CoreSight configuration by
directly reading/writing to /dev/mem.

In our scenario, we mainly use the ETM from Core-
Sight to collect instruction traces from a specific ARM
CPU core. The ETM also can be configured to filter the
trace so it only generates an instruction trace when TA
code runs instead of TZOS. Once we have CoreSight
configured, we instruct the fork server from the fuzzer to
enable CoreSight tracing and invoke the TA from normal
world. We instruct the fork server to disable CoreSight
tracing once the TA execution is completed in case the
ETB is overflowed. The ETB is an on-chip SRAM buffer
with a typical size between 4KB and 16KB. We begin the
decoding process with OpenCSD by reading from the ETB
after execution of the TA command request is completed.
OpenCSD is an open source library developed by Linaro
to perform trace data deformatting and packet decoding.
The decoded packet is used to find all instruction addresses
that were executed by the previous command handling.
The ETM saves the generated trace using address elements
that contain the address of instructions indicating their
start address and instruction set. The address elements are
generated in certain scenarios where the trace analyzer
cannot infer the address of the current trace, such as when
an indirect branch is taken, an exception is taken, or mis-
speculation occurs. We describe how we handle this in the
subsequent section.

5 Evaluating CROWBAR: CoreSight‑Assisted
Fuzzing on Prototype Devices

5.1 Trace Evaluation

To better illustrate how CoreSight generates traces while the
CPU is running, we execute a sample program that invokes
a syscall, library call, input validation, and indirect branch
operations. In Fig. 5, we list the assembly instructions and
decoded CoreSight traces side-by-side. The recorded trace
and corresponding assembly code show that the ETM does
not generate traces for every instruction the CPU core exe-
cutes. Instead, it only generates P0 elements (elements that

51Journal of Hardware and Systems Security (2023) 7:44–54

1 3

contain instruction address information) when the CPU core
takes exceptions, branch instructions, or Instruction Syn-
chronization Barrier (ISB) instructions [13]. CoreSight does
not generate trace data for regular instructions that do not
change the control flow. This is because it is assumed the
trace analyzer has the binary code of the traced program
and can reconstruct the control flow information depend-
ing on where and when the branch instruction is taken. For
conditional branch instructions, the ETM generates ATOM
elements to record whether a branch was taken or not. The
combination of these two types of elements enables us to
directly decode the trace and use the packet information to
represent the control flow with a coarse granularity without
taking time to parse the assembly code and fully recover the
control flow.

In our framework, we parse the trace and find all P0 ele-
ments that directly include address values when the executed
instruction address cannot be inferred. We also include the
ATOM elements that contain the branch choice of condi-
tional branch instructions. The ATOM elements always fol-
low the P0 elements to provide extra control flow informa-
tion. In practice, developers can choose to reconstruct the
full control flow by parsing the assembly code and tracing
binary data at the same time to find the addresses of the
ATOM elements. This, however, is time-consuming and not
necessary for our purposes. Instead, we first use the Mur-
murHash hash algorithm [14] to hash the address of the P0
elements so that we can map them into the shared memory
region of AFL++ to generate uniform coverage distribution.

Regarding the ATOM elements themselves, due to the
fact that they are nothing but an EENE-like string, we can-
not directly hash and map them. As such, we process the
conditional branch choices in an ATOM element one by
one. For the first choice, we concatenate the address of the
P0 element with the first choice and then hash the result
to generate a unique value for this combination. The hash
result is further used to concatenate with the next choice and
hashed again. All the hash results are mapped into the shared

memory region of AFL++ where a counter is maintained
to keep track of the number of times certain addresses are
visited. The shared memory region is used by AFL++ as
the coverage bitmap for feedback purposes to generate the
next mutated input. The pseudo code for this process can be
found in listing 1 as following.

5.2 CoreSight‑Assisted Fuzzing Evaluation

We implemented our CoreSight-assisted fuzzing on the
NVIDIA TX2 development board (Trusty) and Pixel 3/4
prototype device (QSEE). We describe concrete details and
fuzzing results below.

Pixel 3/4 We first recompiled the kernel for Pixel 3 and
Pixel 4 to support userspace hardware memory addresses
by disabling the CONFIG_STRICT_DEVMEM option so
that we can directly interact with the memory-mapped Core-
Sight component using /dev/mem. We also modify the
QSEECom Driver to intercept the trusted world request
for fuzzing seed collection purposes. We collected roughly
100 different TA commands and associated request buffer
memory content to use as seed input for AFL++. These
seed inputs were then used to interact with the keymaster
and gatekeeper TAs. The execution speed of these TAs
is relatively slow. The fuzzing speed of keymaster and
gatekeeper is around 14 iterations per second. Analysis
of the slowdown revealed that most of time consumption
comes from reboots caused by crashing trusted world code.
This has the side-effect, however, of making it difficult to
recover fuzzing context.

NVIDIA TX2 To evaluate if our framework works on other TZOS
designs, we also implemented our framework on the NVIDIA
TX2 development board which uses Trusty as its TZOS. Trusty
is developed by Google and used on Pixel 7 [15] as the TEE.
We also modify the normal world TEE driver to log the request
buffer content and then invoke the client application to perform
encryption/decryption/key generation in the trusted world. The

Fig. 5 Example of collected CoreSight trace

52 Journal of Hardware and Systems Security (2023) 7:44–54

1 3

fuzzing speed on sample TAs hwkey-agent and luks-
srv is around 10 iterations per second. We further modified the
trusted application hwkey-agent to contain extra code that
will crash using an Out-of-Bound memory access. Our fuzzer
triggered the crash within 10 min of fuzzing without previous
knowledge of the correct command ID.

Overall Evaluation We evaluated CROWBAR’s feedback-
driven fuzzing on Pixel 3/4 prototype devices. Our approach
found 3 new and unique crashes in 5 preinstalled TAs. The
analysis herein did not extend to crafting exploits from the
found vulnerabilities. However, these crashes are not cov-
ered in the previous TrustZone fuzzing research based on a
review of the literature. We argue this shows the feasibility
of our approach, particularly its capabilities for exposing
coverage information across TrustZone worlds for feedback-
driven fuzzing analysis.

6 Discussion of CROWBAR Limitations

As we have shown in the previous section, there are many
challenges to enable and configure CoreSight on prototype
devices. This process may even render some prototype
devices unusable. Here, we provide a brief summary of issues
that prevent researchers from using these prototype devices.

Qualcomm SoC We found that Qualcomm SoC-based
devices are the easiest to find on the used market and the
most third-party researcher-friendly among all the proto-
types we purchased. We were able to recover CoreSight
memory address and topology using its open-source kernel
code, which allowed us to successfully access and configure
CoreSight on Qualcomm SDM845 and SM8150 devices and
perform CoreSight-assisted fuzzing on the Pixel 3 and Pixel
4 prototype devices, respectively. We were also able to probe
the debug authentication register and find the CoreSight
topology dynamically. However, for the SDM660 used by
Huawei Y Max, the debug clock domain was disabled, and
we were unable to enable it via kernel code modifications.
As such, the kernel crashed whenever CoreSight memory-
mapped addresses were accessed. On certain devices, such
as the SDM636 and SM6125 for Motorola, CoreSight can
be configured and accessed yet the compiled display driver
did not work rendering it unusable.

Samsung SoC Exynos is a powerful SoC that is made by
Samsung and used on high-end Samsung smartphones.
We found that the authentication signal on Samsung S10+
is all asserted. However, Samsung has a unique propri-
etary design [16] to add an extra layer of protection for
their debug component, named Secure JTAG. The Secure
JTAG uses the eFuse to protect the debug component with a

password hash. The Secure JTAG further controls the debug
authentication signals which prevent unauthorized access to
the debug component even on prototype devices, regardless
of whether hardware JTAG or memory-mapped registers
are employed.

Huawei SoC Kirin is Huawei’s SoC design used on their
high-end smartphones. As we mentioned before, access to
CoreSight components requires privileges in order to run our
own kernel module. This requires the device to be unlocked
and rooted. However, the Huawei Kirin-based prototype
devices we purchased are all flashed with stock firmware
which locks the bootloader by default. Unlocking Huawei’s
bootloader is non-trivial as it has not been officially sup-
ported by Huawei since 2018 [17]. Furthermore, the kernel
source code released by Huawei does not contain any Core-
Sight memory address or topology information which makes
the usage even more difficult.

ASLR in CoreSight Tracing CoreSight components are inter-
connected with the CPU core. As such, the trace addresses
of executed instructions are virtual addresses. To mitigate
memory vulnerabilities in the trusted world, vendors such as
Qualcomm and Samsung have enabled Address-Space Lay-
out Randomization (ASLR) to randomize the load address
of trusted applications. This feature cannot be disabled and
makes the collected execution trace inconsistent between
different loading/unloading of the same TA. However,
once the TA is loaded, the memory layout does not change
until the TA is reloaded. To address this issue, we reverse-
engineered the TA loading process of QSEE and found that
QSEE always calls an initialization function, tz_app_
init, after the trusted application is successfully loaded.
This design makes the TA loading and initialization pro-
cess deterministic although the recorded execution address
is changed. We leverage this behavior to remove the address
difference caused by ASLR by aligning our recorded execu-
tion trace with that function offset every time the fuzzed
TA is reloaded. However, this approach is limited to rooted
Qualcomm devices.

Scalability of CoreSight Configuration The process of infer-
ring CoreSight component topology and subsequent configu-
ration is time-consuming and must be done on a per-device
basis. It is made more difficult due to the unavailability of
the technical reference manual (TRM) of many of the SoCs
used in our prototype devices. However, we found that we
can successfully configure the CoreSight devices to collect
the secure world trace on four different devices from two
different vendors, as shown in Table 1. While we argue this
is a significant achievement, scalability concerns regarding
CoreSight-assisted fuzzing are still an issue if the solution
is to be generic.

53Journal of Hardware and Systems Security (2023) 7:44–54

1 3

7 Related Work

Approaches related to TEE fuzzing can be organized into
two categories based on fuzzing environment: firmware
rehosting through emulation and black box fuzzing running
on-device. Both of them overcome certain challenges of
TrustZone fuzzing.

Rehosting-based approaches aim to provide black box
software with the necessary dependencies for supervised
execution. Costin et al. demonstrated the feasibility of
automated vulnerability discovery in embedded devices
via full system emulation [18]. Talebi et al. [19] enables
dynamic analysis of Linux kernel drivers by running the
target in an emulator environment and forwarding access to
real hardware. However, these techniques used in REE can-
not be applied to fuzz TrustZone vulnerabilities as they are
dependent on software and hardware components that are
not publicly documented. Besides, the manual reverse engi-
neering effort for finding out the dependencies and inter-
faces is tremendous. However, Harrison et al. developed
PartEMU [4], which provides necessary software and hard-
ware dependencies for TEE vulnerabilities with minimum
effort. The small selection of simulation components makes
PartEMU the first and the most feasible design for rehosting
a whole TEE system to an emulated environment. Despite
its high fidelity in TEE fuzzing, PartEMU has three main
shortcomings: (1) the low fuzzing coverage due to missing
implementation of TA command interactions; (2) it does
not simulate hardware root of trust and consequently fails
to fuzz the TAs dependent on these proprietary hardwares;
and (3) the fuzzing framework suffers major overhead due
to the cross-architecture emulation.

Rehosting approaches also have some other inherent limita-
tions. First, the program to be rehosted is not always accessi-
ble for researchers to reverse-engineer its format. For instance,
pseudo-TAs of OP-TEE [20] are statically built into the OP-TEE
core blob, which will take a lot of effort to analyze its code.
Another scenario is when TAs are encrypted and only expose
limited APIs to the REE, e.g., Huawei devices with Trusted-
Core. Second, the effectiveness of rehosting-based fuzzing
depends on the accuracy of hardware emulation. Feng et al. pro-
posed a novel tool, called P2IM [21], using abstracted hardware
register patterns to generate hardware models automatically on-
the-fly and applicable to fit diverse firmware implementations.
[22] attempts using machine learning to generate hardware
models. While these techniques show the feasibility of filling
the gap between the emulation model and real hardware, they
cannot be used directly on TA fuzzing.

Meanwhile, black box fuzzing is also studied on TrustZone
fuzzing due to the nature of intransparency. Recently, Busch
et al. proposed a fuzzing framework capable of effectively
fuzzing TAs on COTS devices, TEEzz [5]. By leveraging

observable information from REE, the fuzzer can infer the types
and parameters of TAs API through their interaction to generate
fuzzing templates and, therefore, achieve high-efficiency on-
device fuzzing. Whereas TEEzz overcomes several limitations
of TEE fuzzing, it requires fully rooted devices, multiple avail-
able CAlibs, and specified TEE platforms. The requirements of
TEEzz together with its burdensome manual work for specified
fuzzing template extractor make its fuzzing approach neither
general nor efficient.

8 Conclusion

There exist too few frameworks for fuzzing TEEs consider-
ing the market share ARM TrustZone occupies. The two most
robust solutions currently are PartEMU and TEEzz, each sig-
nificant achievement that addresses this concern. However,
they suffer from several issues that make them non-ideal can-
didates for rapidly and scalably fuzzing TAs. We attempt to
solve this issue using COTS devices with ARM CoreSight-
assisted fuzzing in which we evaluate using CoreSight-enabled
prototype smartphones to fuzz TAs. We, therefore, implement
CROWBAR and outline in detail the process by which Core-
Sight features are discovered, enabled, and configured on a
range of prototype devices. This allows us to demonstrate
CoreSight-assisted trace integration and evaluation by fuzzing
TAs from multiple vendors. In total, we evaluate 5 TA and find
3 unique crashes. Finally, we provide a detailed discussion of
the challenges faced in leveraging CoreSight-assisted fuzzing
on prototype devices across a representative range of device
vendors that will hopefully prove useful for future research in
the area.

Statements and Declarations

Funding U.S. Department of Energy award number DE-SC0018430

Competing Interests There are no competing interests.

Author Contributions H.S, M.H., S.N, Y.L., and D.S wrote the main
manuscript text. H.S and S.N prepared the figures. All authors reviews
the manuscript.

Data Availability Data and materials are available upon request.

Ethical Approval Not applicable.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are

54 Journal of Hardware and Systems Security (2023) 7:44–54

1 3

included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Ltd A. System IP. https:// www. arm. com/ produ cts/ silic on- ip- system.
(Date last Access 28 July 2022)

 2. Fasano A, Ballo T, Muench M, Leek T, Bulekov A, Dolan-Gavitt
B, Egele M, Francillon A, Lu L, Gregory N et al (2021) Sok:
Enabling security analyses of embedded systems via rehosting.
In: Proceedings of the 2021 ACM Asia Conference on Computer
and Communications Security, pp. 687–701

 3. Liang H, Pei X, Jia X, Shen W, Zhang J (2018) Fuzzing: State of
the art. IEEE Trans Reliab 67(3):1199–1218

 4. Harrison L, Vijayakumar H, Padhye R, Sen K, Grace M (2020) Par-
temu: Enabling dynamic analysis of real-world trustzone software
using emulation. In: Proceedings of the 29th USENIX Conference
on Security Symposium. SEC’20. USENIX Association, USA

 5. Busch M, Machiry A, Spensky C, Vigna G, Kruegel C, Payer
M (2023) Teezz: Fuzzing trusted applications on cots android
devices. In: 2023 2023 IEEE Symposium on Security and Pri-
vacy (SP) (SP), pp. 220–235. IEEE Computer Society, Los
Alamitos, CA, USA. https:// doi. org/ 10. 1109/ SP462 15. 2023.
00013. https:// doi. ieeec omput ersoc iety. org/ 10. 1109/ SP462 15.
2023. 00013

 6. ARM (2018) ARM® Embedded Trace Macrocell Architecture
Specification: ETMv4.0 to ETMv4.6. ARM

 7. Fioraldi A, Maier D, Eißfeldt H, Heuse M (2020) {AFL++}:
Combining incremental steps of fuzzing research. In: 14th USE-
NIX Workshop on Offensive Technologies (WOOT 20)

 8. ARM (2015) CoreSight SoC-400. ARM. (Date last Access 28 July 2022)
 9. Pinto S, Santos N (2019) Demystifying arm trustzone: A compre-

hensive survey. ACM Comput Surv (CSUR) 51(6):1–36
 10. Ning Z, Zhang F (2019) Understanding the security of arm debug-

ging features. In: 2019 IEEE Symposium on Security and Privacy
(SP), pp. 602–619. https:// doi. org/ 10. 1109/ SP. 2019. 00061

 11. Bicchierai L (2019) The prototype iPhones that hackers use to
research Apple’s most sensitive code. https:// www. vice. com/ en/
artic le/ gyakgw/ the- proto type- dev- fused- iphon es- that- hacke rs- use-
to- resea rch- apple- zero- days

 12. https:// github. com/ ARM- softw are/ CSAL. (Date last Access 2
Dec 2022)

 13. ARM. Embedded Trace Macrocell Architecture Specification.
https:// devel oper. arm. com/ docum entat ion/ ihi00 14/q/ prefa ce/
Addit ional- readi ng/ The- ETM- docum entat ion- suite. (Date last
Access 14 July 2022)

 14. Wikipedia: MurmurHash (2022) https:// en. wikip edia. org/ wiki/
Murmu rHash

 15. Google. Google Pixel 7 Tech Specs. https:// store. google. com/ us/
produ ct/ pixel_7_ specs? hl= en- GB. (Date last Access 1 July 2022)

 16. Yoo S-G, Park K-Y, Kim J (2012) Software architecture of jtag
security system. WSEAS Transactions on Systems 11(8):398–408

 17. Fedewa J (2018) Huawei will stop providing bootloader unlock-
ing for all new devices. https:// www. xda- devel opers. com/ huawei-
stop- provi ding- bootl oader- unlock- codes/

 18. Costin A, Zarras A, Francillon A (2016) Automated dynamic
firmware analysis at scale: a case study on embedded web inter-
faces. In: Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, pp. 437–448

 19. Talebi SMS, Tavakoli H, Zhang H, Zhang Z, Sani AA, Qian Z
(2018) Charm: Facilitating dynamic analysis of device drivers of
mobile systems. In: USENIX Security Symposium, pp. 291–307

 20. Linaro (2018) Pseudo Trusted Applications. https:// optee. readt hedocs.
io/ en/ latest/ archi tectu re/ trust ed_ appli catio ns. html# pseudo- trust ed-
appli catio ns. (Date last Access 10 Oct 2022)

 21. Feng B, Mera A, Lu L (2020) P2im: Scalable and hardware-
independent firmware testing via automatic peripheral interface
modeling. In: Proceedings of the 29th USENIX Conference on
Security Symposium, pp. 1237–1254

 22. Gustafson E (2019) Toward the analysis of embedded firmware
through automated re-hosting. In: 22nd International Symposium
on Research in Attacks, Intrusions and Defenses

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://www.arm.com/products/silicon-ip-system
https://doi.org/10.1109/SP46215.2023.00013
https://doi.org/10.1109/SP46215.2023.00013
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00013
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00013
https://doi.org/10.1109/SP.2019.00061
https://www.vice.com/en/article/gyakgw/the-prototype-dev-fused-iphones-that-hackers-use-to-research-apple-zero-days
https://www.vice.com/en/article/gyakgw/the-prototype-dev-fused-iphones-that-hackers-use-to-research-apple-zero-days
https://www.vice.com/en/article/gyakgw/the-prototype-dev-fused-iphones-that-hackers-use-to-research-apple-zero-days
https://github.com/ARM-software/CSAL
https://developer.arm.com/documentation/ihi0014/q/preface/Additional-reading/The-ETM-documentation-suite
https://developer.arm.com/documentation/ihi0014/q/preface/Additional-reading/The-ETM-documentation-suite
https://en.wikipedia.org/wiki/MurmurHash
https://en.wikipedia.org/wiki/MurmurHash
https://store.google.com/us/product/pixel_7_specs?hl=en-GB
https://store.google.com/us/product/pixel_7_specs?hl=en-GB
https://www.xda-developers.com/huawei-stop-providing-bootloader-unlock-codes/
https://www.xda-developers.com/huawei-stop-providing-bootloader-unlock-codes/
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html#pseudo-trusted-applications
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html#pseudo-trusted-applications
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html#pseudo-trusted-applications

	CROWBAR: Natively Fuzzing Trusted Applications Using ARM CoreSight
	Abstract
	1 Introduction
	2 Background
	2.1 ARM CoreSight Infrastructure
	2.2 ARM TrustZone and TEE

	3 On Device Fuzzing—in the Secure World
	3.1 Feasibility of Trace Collection in Secure World
	3.2 Enabling CROWBAR with Prototype Devices

	4 CROWBAR Implementation on Prototype Devices
	4.1 Debug Authentication
	4.2 CoreSight Configuration
	4.3 Fuzzing Framework
	4.4 Trace Integration

	5 Evaluating CROWBAR: CoreSight-Assisted Fuzzing on Prototype Devices
	5.1 Trace Evaluation
	5.2 CoreSight-Assisted Fuzzing Evaluation

	6 Discussion of CROWBAR Limitations
	7 Related Work
	8 Conclusion
	References

