
Vol.:(0123456789)1 3

Journal of Hardware and Systems Security (2023) 7:11–24
https://doi.org/10.1007/s41635-022-00130-y

FPGA Design Deobfuscation by Iterative LUT Modification at Bitstream
Level

Michail Moraitis1  · Elena Dubrova1

Received: 18 May 2022 / Accepted: 14 November 2022 / Published online: 16 February 2023
© The Author(s) 2023

Abstract
Hardware obfuscation is a well-known countermeasure against reverse engineering. For FPGA designs, obfuscation can be
implemented with a small overhead by using underutilised logic cells; however, its effectiveness depends on the stealthiness
of the added redundancy. In this paper, we show that it is possible to deobfuscate an SRAM FPGA design by ensuring the full
controllability of each instantiated look-up table input via iterative bitstream modification. The presented algorithm works
directly on bitstream and does not require the possession of a flattened netlist. The feasibility of our approach is verified on
the example of an obfuscated SNOW 3G design implemented on a Xilinx 7-series FPGA.

Keywords  Obfuscation · Hardware opaque predicate · SRAM FPGA · Bitstream modification · Reverse engineering

1  Introduction

Our world is being transformed by the fourth industrial
revolution which is marked by the rapid development and
integration of life-changing technologies such as cloud com-
puting, artificial intelligence (AI), and the internet of things
(IoT). These technologies have an increasing demand for
more powerful, low-power, agile, and low-cost devices. This
can be offered through hardware acceleration. Two popular
candidates for this role are application-specific integrated
circuits (ASICs) and static random access memory field-
programmable gate arrays (SRAM FPGAs). ASICs have an
excellent performance and power consumption profile which
can offer a very efficient acceleration. However, they are

severely lacking in agility, having a constant configuration
and a very slow time to market. Furthermore, they require
high engineering effort to design and their cost per chip
becomes viable only for large chip orders making them an
expensive solution for small companies and startups. On the
other hand, SRAM FPGAs offer lower performance and con-
sume more power compared to ASICs but they require lower
engineering effort and most importantly hold the advantage
of reconfigurability making them a very agile device with
low time to market. Therefore, SRAM FPGAs are a very
attractive choice for many computationally heavy applica-
tions such as cryptographic algorithm implementation and
AI acceleration. This growth in popularity, however, gives
rise to SRAM FPGA-specific security challenges.

The programming of SRAM FPGAs is performed through
a file called bitstream that contains the configuration infor-
mation describing a given design in a hidden and proprietary
format. The bitstream has to be loaded to the device at every
power-on due to the volatile nature of SRAM. This fact renders
bitstreams particularly vulnerable to threats such as reverse
engineering and modification. Reverse engineering can lead to
intellectual property theft and facilitate bitstream modification
attacks. It has been demonstrated that, with bitstream modi-
fication, it is possible to recover the secret key from FPGA
implementations of cryptographic algorithms [1–9].

These attacks assume an adversary that has access to the
bitstream of a design under attack. According to the design
flow stages presented in [10], the adversary can acquire a
bitstream during the bitstream-at-rest and bitstream-loading

This work was supported in part by the research grant 2021-
02426 from Vinnova and by the Vinnova Competence Center for
Trustworthy Edge Computing Systems and Applications at KTH
Royal Institute of Technology.
We would also like to thank the anonymous reviewers whose
constructive comments helped us improve the quality of the
present manuscript.

 *	 Michail Moraitis
	 micmor@kth.se

	 Elena Dubrova
	 dubrova@kth.se

1	 Department of Electrical Engineering, Royal Institute
of Technology (KTH), Electrum 229, Stockholm 196 40,
Sweden

http://orcid.org/0000-0002-0278-5986
http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-022-00130-y&domain=pdf

12	 Journal of Hardware and Systems Security (2023) 7:11–24

1 3

stages. The adversary is typically assumed to be able to
reverse engineer the bitstream to a certain degree and the
goal of the attack is to recover and/or manipulate the logic
of a given design to meet various ends, e.g. trojan injec-
tion, secret key recovery, and intellectual property theft. In
the future, when AI algorithms become a natural part of
many systems, the extraction of neural network models from
FPGA bitstreams through reverse engineering, or the tam-
pering of the neural networks through bitstream modifica-
tion, can pose a serious threat.

A popular method of defense against bitstream reverse
engineering and modification is to conceal the design’s
functionality using obfuscation techniques. Typically this
is accomplished by redundancy addition (e.g. injection of
redundant combinational logic). In this paper, we focus on
FPGA obfuscation techniques that make use of constant
values to change the function implemented in underutilised
LUTs without changing their behavior during execution.

Our Contributions:

•	 We demonstrate that, by assuring the full control-
lability of each input of each instantiated LUT in a
design via iterative LUT modification, we can defeat
obfuscation based on constant values and potentially
unlock bitstreams locked using combinational logic
locking [11].

•	 Our approach is not impacted by the level of stealthiness
of the constant values or the circuit that generates them.
Therefore, it can be used to remove obfuscation that
uses constants created by hardware opaque predicates
regardless of how stealthy they are. This is achieved by
searching for the LUT inputs that behave as undetect-
able stuck-at faults during the execution of the algorithm
under attack rather than the hardware opaque predicate
itself.

•	 Our method uses bitstream reverse engineering to deter-
mine the logic functions implemented by LUTs and the
wires connected to the LUT inputs1. This is an advantage
over methodologies that require a netlist.

•	 We demonstrate the feasibility of our approach on the
example of an obfuscated SNOW 3G design imple-
mented in a Xilinx 7-series FPGA.

Paper Organization: The rest of the paper is organized
as follows. Section 2 presents background information on
FPGA technology. Section 3 presents an overview of the
related literature pertaining to bitstream encryption, design
obfuscation, and fault identification. Section 4 gives a high-
level overview of the proposed deobfuscation method.

Section 5 presents the adversary model along with three
attack scenarios. Section 6 presents the formulation of
our method into an algorithm. In Section 7, the method is
applied to an obfuscated SNOW 3G design to display its fea-
sibility in practice. Section 8 discusses issues related to the
presented approach. Finally, Section 9 concludes the paper.

2 � Background on FPGA Technology

This section covers the basics of FPGA technology, with
a focus on Xilinx 7 series FPGAs, a popular line of FPGA
devices.

2.1 � Bitstream Format of FPGA Basic Building Blocks

An FPGA fabric is a mesh of configurable logic blocks
(CLBs) implementing user-defined logic that is connected
through routing channels that pass through programmable
switch boxes. By defining both, the functionality of the
logic elements and their interconnections, a physical cir-
cuit is created on this mesh. In Fig. 1, an abstract view of
a typical SRAM FPGA architecture is presented. In this
subsection, we describe the basics of logic and routing
in Xilinx 7 series FPGAs and their representation in the
bitstream.

2.1.1 � Look‑Up Tables

In SRAM FPGAs, CLBs typically consist of k-input LUTs.
In Xilinx 7 series FPGAs, k = 6 ; thus, a LUT can imple-
ment a Boolean function of up to 6 variables. Regardless
of the actual number of inputs the LUT’s function depends
on, its truth table appears in the bitstream as a 64-bit vector,

Switch
boxCLB

Switch
boxCLB

Switch
boxCLB

Switch
boxCLB

Switch
box CLB

Switch
box CLB

Switch
box CLB

Switch
box CLB

Switch
boxCLB

Switch
boxCLB

Switch
boxCLB

Switch
boxCLB

I/O I/O

I/O

I/O

Fig. 1   A typical SRAM FPGA architecture

1  A short, 2-page, version of the paper was presented at [75].

13Journal of Hardware and Systems Security (2023) 7:11–24	

1 3

called initialization vector, partitioned into four 16-bit
words which are placed at a fixed distance from each other.
Each bit of the initialization vector represents the output
value of the LUT for a specific input assignment. If some
of the LUT inputs are not used, they are treated as don’t-
cares in the truth table and their value is by default fixed
to constant-1.

2.1.2 � Programmable Interconnect Points

The routing in FPGAs is performed through program-
mable interconnect points (PIPs). A PIP is a connection
between two points called source and destination PIP
junction. Therefore, activating or deactivating a PIP in
the bitstream results in creating or removing the connec-
tion between the corresponding source and destination PIP
junctions. Each FPGA device has a predefined set of PIPs
which dictates the possible ways that PIP junctions can be
connected to each other. In other words, two PIP junctions
cannot be connected unless there is a PIP that allows this
connection.

In Xilinx 7 series FPGAs, there are two types of PIPs:
PIPs that appear in the bitstream and PIPs that do not.
Following the terminology of project Xray [12], we
call PIPs that do not appear in the bitstream fake and
PIPs that do appear regular. Our deobfuscation method
makes use of three PIP junction types, PJ1, PJ2, and
PJ3, which correspond to the immediate connections of
LUT inputs2.

2.2 � Architecture of Xilinx 7 Series FPGA

The fabric of Xilinx 7 series FPGAs is a grid of tiles
uniquely identified by their X and Y coordinates. There
are several different types of tiles but in this paper, we are
concerned with the two most basic ones, the interconnect
tiles (INT tiles) and the configurable logic block tiles (CLB
tiles).

The INT tiles are responsible for the majority of routing.
An INT tile is a large switchbox consisting of a set of PIP
junctions. A CLB tile has a small switchbox connected hori-
zontally to an INT tile on one side and to two blocks called
slices (which constitute the main body of the CLB) on the
other. If a CLB tile is on the right side of its corresponding
INT tile, then they are both labeled as right; otherwise, they
are labeled as left.

Each slice contains four LUTs, eight flip flops (FFs), a
fast carry logic unit, and multiplexers (MUXes) to control
the internal routing. The slices are positioned vertically

inside a CLB; thus, they are usually referred to as top and
bottom slices. Slices are also categorized as SliceM or Sli-
ceL depending on whether they contain ordinary LUTs
(SliceL) or special LUTs that can be also configured into
a 32-bit shift register or a distributed LUT-based RAM
(SliceM).

3 � Background on Bitstream Encryption,
Design Obfuscation, and Fault
Identification

This section reviews previous work on bitstream encryption,
design obfuscation and fault identification. It starts by present-
ing attacks against bitstream encryption schemes of several
popular FPGA models and proceeds to present obfuscation
techniques used to enhance the security of the designs. Finally
it presents an overview of fault identification techniques.

3.1 � Bitstream Encryption

Acknowledging the importance of securing the bitstream file,
commercial FPGA vendors offer the option of secure configu-
ration through proprietary bitstream encryption mechanisms.
On an abstract level, these mechanisms work as follows. First,
the user has to enable the bitstream encryption feature in the
FPGA vendor’s design tool and define the encryption key.
Typically, the encryption algorithm used is the advanced
encryption standard (AES) with a 256-bit key. With this fea-
ture enabled, the tool generates an encrypted bitstream. On
the FPGA side, there is a dedicated decryption core that uses
a key commonly stored in either e-fuses or battery-backed
RAMs (BBRAMs) that are embedded in the FPGA device. If
the key stored in the FPGA matches the one used to encrypt
the bitstream, then the bitstream gets decrypted correctly and
configures the FPGA.

Unfortunately, in many cases, such protection schemes
have been shown vulnerable to physical attacks. In [13–15],
the bitstream encryption key is recovered through side-
channel analysis for several different commercial FPGAs.
State-of-the-art FPGAs like the Xilinx Ultrascale+ have
implemented a key-rolling mechanism to thwart side-
channel attacks by limiting the number of blocks that are
encrypted/decrypted by the same key [16]. However, the
use of key-rolling comes with a performance-security
trade-off. In [17], after thorough experimentation, it was
found that to be protected against current side-channel
attacks, the key-rolling factor has to be set between 20 and
30. This imposes a considerable performance overhead.
In [18], contactless optical probing is used to read the
decrypted bitstream from the output bus of the dedicated
decryption core of a Xilinx 7-series FPGA. In [19], the
decrypted bitstream is obtained using the FPGA itself as

2  The names of PIP junctions are given by us and are not related to
the terminology used in [12].

14	 Journal of Hardware and Systems Security (2023) 7:11–24

1 3

a decryption oracle by exploiting a design flaw of Xilinx
7-series FPGAs. In principle, this vulnerability does not
affect the Xilinx Ultrascale+ FPGAs given that the ven-
dor-recommended settings are used. However, in [20], it is
shown that when settings outside of the recommendations
are used, these devices can display security weaknesses
that can be exploited to re-enable the attack vector pre-
sented in [19]. Finally, in [21], thermal laser stimulation
is used to recover the key stored in a BBRAM of a Xilinx
Kintex Ultrascale FPGA while it is powered off.

To summarise, the security of bitstream encryption is an
open topic as FPGA vendors constantly strive to make their
implementations more secure. Currently, no attack has been
shown to be entirely successful against the bitstream encryp-
tion mechanism of Xilinx Ultrascale+ FPGAs. However, this
series of FPGAs is very new (making its debut a bit more
than half a decade ago). One of the main reasons to use an
FPGA is its reconfigurability, which gives them a very long
life cycle; thus, replacing FPGAs with the latest available
models is typically not practiced. This offers a large attack
surface of older FPGAs in which the bitstream encryption
has been shown to be vulnerable.

3.2 � Obfuscation

Since for many FPGA models the current implementations
of bitstream encryption cannot effectively protect a design,
additional protection mechanisms have to be applied. A pop-
ular countermeasure against SRAM FPGA bitstream reverse
engineering and modification is design obfuscation.

3.2.1 � ASIC

Obfuscation attempts to transform a design into a function-
ally equivalent, but structurally different, representation
which is more difficult to understand. For ASICs, there are
well-studied obfuscation techniques such as gate camouflag-
ing (low-level obfuscation) [22–24], combinational logic
locking [25–28], and sequential logic locking [29–33]. Gate
camouflaging makes it hard to recover the functionality of
the logic blocks in a circuit while logic locking makes it hard
to understand the functionality of the whole netlist. Logic
locking is one of the most popular approaches for protecting
intellectual property and is based on embedding a secret key
that needs to be supplied for the design to function correctly.
In combinational logic locking, this is achieved by injecting
redundant logic controlled by key bits in the design which
introduces faults in the case that the key bits are not set cor-
rectly. In sequential logic locking, the finite state machines
(FSMs) in a design are given extra states from which the
FSM cannot escape and move to the original states unless a
correct key is supplied. A comprehensive overview of logic
locking techniques can be found in [34].

3.2.2 � FPGA

Transferring ASIC obfuscation methods to FPGAs requires
adaptation to the unique characteristics of the FPGA tech-
nology. In FPGAs, logic is implemented by look-up tables
(LUTs) with a predefined number of inputs (typically
between four and six) and outputs (typically one or two).
When a gate-level netlist is translated into LUTs, many of
them use fewer inputs than there are available. This affects
the way gate camouflaging and combinational logic locking
is implemented.

In [11, 35–37], combinational logic locking schemes ded-
icated to FPGAs are presented. The basic idea is to insert
key bits to the unused inputs of already instantiated LUTs
and define the locked logic that corresponds to the wrong
values of the key bits by modifying the LUT’s truth table.
Following the terminology introduced in [11], we refer to
this unused portion of instantiated LUTs as FPGA dark sili-
con. In the same paper, the term occupancy is defined as
the percentage of the LUT inputs that are actually used in
the instantiated LUTs of a design. The authors reported an
average of 30% occupancy while studying nine benchmark
designs which indicates that finding such LUTs is very com-
mon. Even in the case where the occupancy is high, by split-
ting large LUTs into smaller ones, we can create FPGA dark
silicon. Therefore, finding unused LUT inputs to embed the
key for logic locking is typically not a problem.

Since LUTs are the basic logic elements (gates) in
FPGAs, the aforementioned combinational logic locking
methods, given a correct key, also function as gate cam-
ouflaging. That is because the truth table of the LUT is
changed, but its actual functionality remains the same. This
aspect of FPGA dark silicon modification is highlighted
in [5] where the truth table entries corresponding to unused
LUT inputs are modified. Such type of camouflaging is
effective against an adversary capable of reverse engineer-
ing the bitstream format of LUT truth tables, but not the
routing that would reveal which inputs of the LUT are used.

In Fig. 2, an example of how the FPGA dark silicon can
be leveraged to obfuscate the logic functions of LUTs is pre-
sented. In the example, a LUT implements a function with
three inputs, R1 , R2 , and R3 , the truth table of which is shown
in blue background. Assuming that the LUT has four inputs,
the initialization vector of this LUT would be 16 bits long
with the output values in the blue background appearing
twice. To obfuscate the logic of the LUT (or lock with logic
locking), the fourth unused input of the LUT is connected to
a key value that is constantly zero. The new input is used to
define redundant logic (the red XOR gate) that changes the
overall function described in the LUT initialization vector
by defining the values on the red background. The red output
values cannot appear but this is not known to the adversary.
Alternatively, instead of activating the fourth LUT input,

15Journal of Hardware and Systems Security (2023) 7:11–24	

1 3

assuming that unconnected inputs are constant-1, the bits
of the initialization vector corresponding to combinations
where the value of this input is zero can be modified as pro-
posed in [5]. However, as explained earlier, detecting such
constants is easy with adequate bitstream format knowledge.

From the testing perspective, the utilization of unused
LUT inputs is equivalent to the injection of undetectable
stuck-at faults, which do not cause incorrect output values
for any input assignment during the execution of the pro-
tected algorithm. The stuck-at faults can be in the form of the
correct key values in the case of logic locking, or predefined
constants, e.g. the default value on an unused input pin, or the
output of a combinational logic circuit with redundancy like
x + x for constant-1 or x ⋅ x for constant-0 in the case of logic
obfuscation. However, these combinational methods of stuck-
at fault injections are vulnerable to static analysis (given an
adversary with adequate reverse engineering capabilities).
To make the identification of these faults harder, hardware
opaque predicates can be used for constant value generation.

An opaque predicate is a concept widely used in software
obfuscation and in principle is a function that provides a
constant Boolean output regardless of its inputs. The out-
put is known to the designer but not to the user/adversary.
The first implementation of a hardware opaque predicate,
proposed in [38], is an n-stage linear feedback shift regis-
ter (LFSR) with all state registers connected to an n-input
OR gate. Given that an LFSR state always has a hamming
weight (HW) greater than zero3 the output of the OR gate

is constant-1. The weakness of this design is that an LFSR
has a distinct structure and if identified (e.g. by reverse engi-
neering as in [8]), the constant output of the OR gate can
be deduced.

In [39], hardware opaque predicates based on FSMs and
counters are presented. Since FSMs and counters are com-
mon structures, distinguishing hardware opaque predicates
from functional elements is a difficult task. Furthermore,
the authors of [39] have demonstrated that, in some cases,
even the existing FSMs in a design can be used to implement
opaque predicates, making them (and their produced stuck-at
outputs) even harder to detect. To the best of our knowledge,
no methods for identifying such constructions are known at
present, especially if a netlist is not available.

Finally, another type of redundancy that can be used for
obfuscation is functional duplication which occurs when dif-
ferent sub-circuits implement the same function.

3.3 � Fault Identification

In combinational circuits, undetectable stuck-at faults can be
identified using automatic test pattern generation (ATPG),
Boolean satisfiability problem (SAT) solvers, and fault-
independent methods [40–42]. The ATPG and SAT algo-
rithms [43] can guarantee the detection of all undetectable
stuck-at faults, but their worst-case time complexity is expo-
nential. Fault-independent methods cannot always find all
undetectable faults, but they have the advantage of polyno-
mial worst-case time complexity.

SAT-based attacks against logic locking in particular have
drawn a lot of attention, with many methodologies proposed
to counter them and equally as many to enhance them [44].

R₃
D Q

R₂
D Q

R₁
D Q

KEY
D Q

KEY R1 R2 R3 O
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

Fig. 2   Example of FPGA Dark Silicon-Based LUT Obfuscation

3  An LFSR cannot have the all-zero state since that would make it
unable to transition to another state.

16	 Journal of Hardware and Systems Security (2023) 7:11–24

1 3

Regarding functional duplication in combinational cir-
cuits, it can be identified using SAT [45], BDD sweep-
ing [46], and structural hashing [47]. Both SAT and BDD
sweeping guarantee the detection of all functional dupli-
cates, but they have an exponential worst-case time com-
plexity. Structural hashing can identify structurally isomor-
phic equivalent sub-circuits in linear time. For this reason,
obfuscation methods using functional duplication typically
implement duplicated blocks in a diverse manner [35].

4 � Proposed Method

In this section, we give an overview of the proposed deob-
fuscation method.

In the presented deobfuscation scheme, the goal is to find
which LUT inputs are connected to a net that is or behaves
as a constant during the execution of the implemented algo-
rithm. To do that we iteratively set the inputs of LUTs to
constant values, upload the modified design instances to an
FPGA, and observe the output. Our methodology is based
on the observation that the constant values used in logic
camouflaging and the key bits of logic locking essentially
behave as stuck-at-faults. These faults are undetectable since
they do not influence the output of the circuit for any input
assignment4. This occurs because the intended functionality
is the one enabled by the fault since the logic that depends
on stuck inputs is injected for the purpose of obfuscation and
is not part of the original circuit. Therefore, when the correct
stuck-at fault is applied to a redundant LUT input, there is
no deviation from the expected output. Having identified the
stuck LUT inputs and their values removes the obfuscation
since it allows the reconstruction of the original LUT truth
table. As a result, an adversary can find the LUT imple-
mentation of targeted functions (as in the case of attacks
on cryptographic algorithms mentioned in Section 1) or
remove logic locking by either updating the LUT truth table
to express the original function or manipulating the PIPs to
connect the key inputs to equivalent constant values.

5 � Attacking Obfuscated Designs

In this section, we present the adversary model and three
scenarios of attacks against obfuscated and combinational
logic locked designs that can be enabled with the application
of the proposed method.

5.1 � Adversary Model

The assumed adversary model has the following requirements.
FPGA Access The adversary has access to an FPGA

device compatible with the bitstream under attack.
The proposed technique involves loading multiple bit-

streams and observing the output of a design; thus, a com-
patible FPGA has to be available. Depending on the attack
scenario, the FPGA can be the property of the adversary or
the property of a victim.

Bitstream Access The adversary has access to a non-
encrypted bitstream of the implementation under attack.

In SRAM FPGAs, the configuration bitstream has to
be loaded at every device power-on due to the volatility of
SRAM. For that reason, the bitstream is typically stored in
an external, non-volatile memory. This puts the bitstream in
a vulnerable position since, given physical access to the tar-
get FPGA, the contents of the external memory can be read,
or the bus that connects the FPGA to the external memory
can be wiretapped to retrieve the bitstream while it is loaded
to the FPGA.

Another popular way of loading the bitstream is through a
microcontroller. Again, having access to the microcontroller
can also give access to the bitstream that is stored in its
firmware. Furthermore, if the microcontroller is connected
to a network, it becomes possible to extract the bitstream
remotely [48].

If the bitstream is encrypted, one of the methods men-
tioned in Section 3.1 can be used to decrypt it. The selection
of the method depends on the model of the FPGA under
attack and the equipment of the adversary. Each method has
different requirements and not all FPGA models are vul-
nerable to attacks on bitstream encryption as explained in
Section 3.1.

Access Level According to the above, physical access to
the device under attack is often required as means of acquir-
ing a bitstream, breaking the encryption of an encrypted
bitstream, or loading modified versions of the original
bitstream.

The assumption of physical access can be realistic in sev-
eral cases, especially considering that FPGAs are used more
and more in unsupervised environments.

Examples of this are FPGAs used as IoT edge devices [49]
and the FPGA-as-a-service (FaaS) (e.g. Amazon Web
Services (AWS)[50]) setting where cloud-based access
to FPGAs is provided. In FaaS, the FPGA provider has
unobstructed physical access to FPGAs programmed with
designs owned by different clients. As a result, an insider
can potentially access the bitstreams of the client designs.
Furthermore in such environments, space and resource
sharing between devices is a common practice. This allows
clients to attack implementations of other clients through
side-channel and covert-channel attacks. Several works

4  In the case of logic locking we assume that the correct key is pro-
vided.

17Journal of Hardware and Systems Security (2023) 7:11–24	

1 3

have presented attacks in multi-tenant settings (multiple
users per FPGA) [51, 52] but also single-tenant5 settings
(one user per FPGA) [53–55]. Note that for applying exclu-
sively the method proposed in this paper, there are attack
scenarios where physical access to a device under attack is
not required (e.g. scenarios 1 and 2 in Section 5.2).

Bitstream Reverse Engineering Capability The adversary
can reverse engineer the bitstream format of LUT initialization
vectors and the PIPs associated with LUT inputs. This is necessary
for making the LUT inputs controllable and recovering the rela-
tion between the LUT’s physical inputs and the LUT’s truth table.

Several works have presented methods for reverse engi-
neering FPGA bitstream formats [56–59]. For the Xilinx
7 series FPGAs (on which our experiments are based),
project Xray [12] maintains a database that documents the
format of almost every FPGA element. It should be noted
that even in the absence of such a database, the bitstream
format knowledge required for the application of our
method is minimal. This makes it a more viable approach
than one that requires a netlist (reverse engineering of
every activated PIP and flattened netlist reconstruction).

However, depending on the attack scenario, further bit-
stream reverse engineering might be required as we explain
in the next subsection.

5.2 � Attack Scenarios

Summarizing the adversary model, to apply the method
proposed in this paper, an adversary needs to have access
to an unencrypted bitstream of the design under attack, an
FPGA compatible with the bitstream and bitstream reverse
engineering skills. The proposed method is typically used
to enable other attacks the requirements of which can add
to the overall adversary model. What follows is a descrip-
tion of three attack scenarios and their requirements.

• Scenario 1: Bitstream Modification Attack on a Design
with Obfuscated Logic

In this scenario, the attacker has general knowledge of the
functionality of an implementation (e.g. that runs a

specific encryption algorithm) and aims to find and modify
some critical functions. The goal of such an attack can be
to inject a Trojan, degrade the performance of the design,
recover the secret key of a cryptographic implementation
(as in the attack in Section 7), etc. Since the design is
protected by logic obfuscation, the deobfuscation method
presented in this paper can be used as a pre-processing
step. In this scenario, the FPGA used by the adversary
can be any FPGA of the same model as the device under
attack.

• Scenario 2: Unlocking of a Legally Owned Design
Locked with Combinational Logic Locking

In this scenario, a design locked to a device owned
by the adversary is legally acquired. The goal here is to
unlock the design and redistribute it to unlicensed devices.
In the assumed combinational logic locking method, a
structure (e.g. a physical unclonable function (PUF)6 or
a nonlinear-feedback shift register (NLFSR)) is used to
supply the logic locking key to the locked LUTs [11]. The
application of the proposed method here will reveal the
value of the key bits in the locked LUTs. However, in the
case that there are false-positive detections (discussed in
Section 8.2), further reverse engineering is required. This
process will involve recovering the nets of the detected
stuck-at inputs and evaluating if their source is the key-
providing circuit.

• Scenario 3: Unlocking a Design Under Attack Locked
with Combinational Logic Locking

This scenario is similar to scenario 2 with the additional
requirement of having prolonged physical access to the
device under attack (that is not owned by the adversary).
That is because the locked bitstream can only work on this
specific device; therefore, the proposed method has to also
be applied on it.

Table 1 summarises the requirements for applying the
proposed method for the three scenarios.

Table 1   Summary of the requirements of the presented attack scenarios

Scenario Reverse engineering Physical access to the device under attack

1 LUT initialization vector and inputs Not required
2 Potentially netlist Not required
3 Potentially netlist Required

5  Single-tenant settings are considered more secure and are adopted
by providers such as AWS.

6  A PUF is a circuit whose output depends on the physical properties
of the silicon it is implemented on. Thus, the same PUF design gives
different responses when it is implemented on different physical com-
ponents/devices.

18	 Journal of Hardware and Systems Security (2023) 7:11–24

1 3

6 � Deobfuscation Algorithm

In this section, we present our deobfuscation algorithm
FindObfuscated(). Its pseudo-code is shown as Algorithm 1.

FindObfuscated() takes as input a bitstream, B , and
returns a list of potential deobfuscated LUT candidates
(false-positive detections are possible).

First, a list of all active PIPs connected to utilised LUT
inputs is extracted from the bitstream. This list is represented
by a vector P = ((p1,1,… , p1,k1),… , (pn,1,… , pn,kn)) , where
pi,j is the PIP associated with the jth input of the LUT li , for
i ∈ {1,… , n} , j ∈ {1,… , k}.

Each input of a LUT is connected to a PIP junction of
type PJ1 in the CLB’s switchbox (see Fig. 3). This PIP
junction forms a fake PIP with a PIP junction of type PJ2,
which in turn is connected to a PIP junction of type PJ3
located in the corresponding INT tile switchbox. If the
input is not used, then PJ3 forms a fake PIP with PIP junc-
tion VCC_WIRE (constant-1). If the input is used, then
PJ3 forms a regular PIP with one out of 25 possible PIP
junctions in the INT tile switchbox (denoted with PJx in
Fig. 3). Therefore, if the bitstream contains an activated
PIP with destination PJ3, it means that the corresponding
LUT input is connected somewhere in the design.

Next, a list containing the truth tables of all instan-
tiated LUTs, along with their coordinates in the bit-
stream, is extracted. This list is represented by a vector
L = ((l1, c1),… , (ln, cn)) , where ci is the coordinate of LUT
li in B , i ∈ {1,… , n}.

In step 4, the procedure Clean() is called with P and L
as arguments to remove possible don’t-cares in the LUT’s
function truth table. Obfuscation techniques such as [5]
use these don’t-cares to camouflage a LUT’s truth table
without adding any new input to the LUT and so does
the watermarking scheme presented in [60]. Since there
is a one-to-one mapping between LUT inputs and PIPs
involving PJ3, the sub-vectors (pi,1,… , pi,ki) of P provide
information about ki input variables on which the function
of the LUT li actually depends. Leveraging that, Clean
updates the truth table of every LUT in L accordingly.
Note that, in a non-obfuscated bitstream, this step would
be unnecessary since this is how the vendor tools format
LUT truth tables by default.

In steps 5–20, for each LUT li ∈ L and each of its
instantiated inputs j ∈ {1,… , ki} , the truth table of li in B
is modified to a truth table in which the jth variable is
stuck-at-� . This is done by replacing f |xj=� = f |xj=� where
f |xj=� denotes a subfunction of the function f (x1,… , xk) of
the LUT li in which xj = � and � is the Boolean

Fig. 3   Visualisation of PIPs connected to LUT inputs

19Journal of Hardware and Systems Security (2023) 7:11–24	

1 3

complement (NOT) of � . The modifications are done
directly in the bitstream.

The resulting modified bitstream B∗ is uploaded to the
FPGA to compare its output sequence to the one of the
original bitstream B . If the sequences are the same and li
with the jth input fixed to � is not yet in the list of candi-
dates, S , then li is added to S along with its coordinate ci ,
input j, and stuck-at fault value � . If li with the jth input
fixed to � is already in S , it is removed from S and added
to a reserve list R . In this way, the full controllability of
each single instantiated LUT input is assured.

Since ki ≤ 6 for any i ∈ {1,… , n} , the computational
complexity of steps 5–20 is O(12n(t1 + t2)) , where t1 is the
time to upload B∗ into the FPGA (step 9) and t2 is the time
required to observe the output of B∗ in order to check its
equivalence with B (step 10). Although the worse case com-
plexity of equivalence checking is exponential in the number
of primary inputs of the design implemented by B , we found
that cryptographic algorithms are quite sensitive to changes.
In our SNOW 3G case study, observing 20 output words
(640 keystream bits) was enough to get a list that contained
all obfuscated LUTs in the design.

In steps 21–30, we repeat the process for multiple stuck-at
faults at the instantiated inputs of each LUT in S . First, the
number of occurrences of each LUT l in S , N(l), is counted.
Since 4-tuples representing the same LUT with different
instantiated inputs appear in S in order, the counting can be
performed in O(|S|) time by recording the number of LUTs
with the same coordinate c in S.

Let {�1,… , �N(l)} be a set of constants assigned to the
inputs {j1,… , jN(l)} of a LUT l in S . In steps 22–30, for each
l in S and each subset J of the set {j1,… , jN(l)} of size greater
than 1, the truth table of l in B is modified to a truth table in
which all inputs in the subset J are stuck-at the correspond-
ing constants in the subset A of the set {�1,… , �N(l)} . As
in the single stuck-at fault case, the modifications are done
directly in the bitstream.

The resulting modified bitstream B∗ is uploaded to the
FPGA and emulated to compare its output sequence to the
one of B . If the sequences are the same, then l is added to
the set M along with its coordinate c, inputs J, and multiple
stuck-at fault values A.

Since N(l) ≤ 6 for any l, we would need to consider ∑6

i=2
(6Ci) = 57 faults. Thus, the computational complexity of

steps 22–30 is O(57n(t1 + t2)) . It should be noted that when
N(l) = 6 the output of the LUT is also a constant since all
the inputs are constant values. However, this would not apply
if one or more stuck input detections were false-positives.
Therefore, testing multiple faults for these cases is relevant.

The algorithm terminates by returning the union of
S ∪ M.

The reason for creating the reserve list R is to include
cases where logic obfuscation in a LUT is performed

through multiple key values that mask single stuck-at faults
(e.g. (key1 + key2) ⋅ z , where (key1, key2) = (1, 1) are the key
values, and z is the obfuscated signal). Note that such a func-
tion is unlikely to be used for logic locking since three out
of four possible key combinations can be used to unlock the
design. If the execution of the presented algorithm does not
provide sufficient deobfuscation, list R can be merged with
list S and analysed as in steps 21–30. Alternatively, steps
11-16 can be replaced by S = S ∪ (l�

i
, ci, j, �) to include the

elements of R in S from the beginning7. The latter approach
can introduce unnecessary overhead since any logic that
does not contribute to the output is also included in the ele-
ments of R.

7 � Case Study: SNOW 3G Stream Cipher

We demonstrate the feasibility of FindObfuscated() algo-
rithm on the example of SNOW 3G stream cipher obfuscated
with constants given by a simple hardware opaque predi-
cate. The design is implemented on a Xilinx 7-series FPGA
(XC7A35T-2CPG236) using a VHDL description of SNOW
3G kindly provided by the authors of the stream cipher.

7.1 � SNOW 3G Design Description

SNOW 3G is the backbone of the 3GPP confidentiality
and integrity algorithms UEA2 and UIA2 [61] in UMTS,
128-EEA1 and 128-EIA1 in LTE [62], GEA5 and GIA5 in
Extended Coverage GSM for IoT (EC-GSM-IoT) [63], and
128-NEA1 and 128-NIA1 in 5G New Radio (NR) [64].

SNOW 3G is a word-oriented binary additive stream
cipher [65] which takes as input a 128-bit Initialization Vec-
tor (IV) and a 128-bit secret key, and produces a pseudoran-
dom sequence called keystream. Each keystream element is

Fig. 4   SNOW 3G Block Diagram

7  Step 31 will also be omitted since there will be no list R.

20	 Journal of Hardware and Systems Security (2023) 7:11–24

1 3

a 32-bit word. The encryption/decryption is performed by
combining the keystream with plaintext/ciphertext.

Figure 4 shows a block diagram of SNOW 3G. The cipher
consists of a 16-stage LFSR and a non-linear FSM. Like
most stream ciphers, SNOW 3G has two modes of opera-
tion—initialization and keystream generation. In the initiali-
zation mode, marked by a dashed line in Fig. 4, the LFSR
is loaded with a combination of the key and IV, the FSM is
loaded with an all-0 state, and the cipher is clocked for 32
cycles without producing any output. After that, the cipher
enters the keystream generation mode, marked by a solid
line in Fig. 4, in which one keystream word is generated per
clock cycle.

SNOW 3G is resistant to classical cryptanalysis [66–70];
however, physical attacks on its implementations through
cache timing side-channels [71], electromagnetic inference
analysis [72], transient fault injection [73], and bitstream
modification [3] have been reported.

7.2 � Obfuscated SNOW 3G Implementation

We implemented a protected version of SNOW 3G in which
the part sensitive to fault injections, the FSM output, is
obfuscated using constants created by a simple FSM-based
hardware opaque predicate shown in Figs. 5 and 6.

The FSM opaque predicate illustrated in Fig. 5 has three
states: one initialization state, INIT , and two states corre-
sponding to two different tasks, Task 1 and Task 2. The state

machine stays in the initialization state until the execution
of SNOW 3G is initiated. After that, it stays in Task 1 for a
period smaller than the computation of the first SNOW 3G
FSM output, and then traverses to Task 2, where it stays until
the execution of the algorithm is completed. To represent
the different states of such an FSM, two registers are used,
FF0 and FF1 . From the values they take in each state (shown
in Fig. 5), it is evident that both FF0 and FF1 can be used
to supply a constant-1 for obfuscation purposes during the
evaluation of the SNOW 3G FSM’s output.

As shown in Fig. 4, the output function of the SNOW 3G
FSM is (S15 ⊞ R1)⊕ R2 . To obfuscate this function, we add
an AND operation between the SNOW 3G FSM register R2
and the state register FF1 of the hardware opaque predicate
as shown in Fig. 6. Since FF1 is constant-1, the injection of
the AND causes no deviation from the original functionality.

In [3], it is demonstrated that the injection of a stuck-
at-0 fault at the FSM output during the initialization can
be exploited to extract the secret key of SNOW 3G. This
is because, in this case, the LFSR state after the initializa-
tion depends entirely on the characteristic polynomial of the
LFSR. Thus, by analysing the keystream, it is possible to
reverse the LFSR to its initial state and recover the key-IV
combination which is loaded in it. To perform the attack, the
LUTs implementing the SNOW 3G FSM output have to be
identified and modified. However, the logic of the function
is now changed in a way unknown to the potential adversary;
thus, the attack fails since locating the relevant LUTs in the
bitstream is not possible.

7.3 � Deobfuscating SNOW 3G

We developed a software package implementing the Fin-
dObfuscated() algorithm. The package uses the project
Xray [12] to reverse engineer the bitstream format, python
scripts to automate the processing of the PIP and LUT lists

Fig. 5   FSM implementing a simple opaque predicate

R₁
D Q

S₁₅
D Q

FF₁
D Q

R₂
D Q

++++

Fig. 6   Obfuscated SNOW 3G FSM output logic

21Journal of Hardware and Systems Security (2023) 7:11–24	

1 3

extracted from the bitstream, and tcl scripts to automate
the uploading of the bitstreams into the FPGA. We used
the package to deobfuscate the protected implementation
of SNOW 3G described in the previous subsection. The
size of the LUT list L recovered by reverse engineering
in step 3 of FindObfuscated() was n = 3107 (the number
of LUTs reported by Vivado is n = 3053 ). The size of the
PIP list P recovered by reverse engineering in step 2 was ∑n

i=1
(n ⋅ ki) = 12, 533 (compare to 6n = 18, 642 ). It takes 24

seconds to compute both lists.
The modified bitstreams B∗ created in steps 5–8 were

uploaded to the FPGA one by one in step 9. To upload one
bitstream into the FPGA, generate 20 keystream words (640
bits) of B∗ and verify the equivalence of the keystreams of
B
∗ and B requires t1 + t2 = 6.3 secs on average.

The number of LUTs that contain candidate stuck at
faults is 1044. In Table 2, the distribution of the candidate
stuck-at faults in these LUTs is presented. To test multi-
ple stuck-at faults in the algorithm steps 22–30, a total of ∑2

i=2
(2Ci

) × 464 +
∑3

i=2
(3Ci

) × 178 +
∑4

i=2
(4Ci

) × 38+∑5

i=2
(5Ci

) × 10 = 1854 multiple faults have to be evaluated
with one bitstream for each.

The set of deobfuscated LUT candidates returned by Fin-
dObfuscated() contained all LUTs implementing SNOW
3G FSM output because redundant inputs of these LUTs
behave as undetectable stuck-at faults during the execution
of SNOW 3G. Since all points of interest for fault injection
are discovered, after deobfuscation it is possible to extract
the secret key of SNOW 3G through a bitstream modifica-
tion attack as in [3].

The bitstreams analysed in our experiments are available
at https://​github.​com/​Micha​ilM7/​FPGA-​Design-​Deobf​uscat​ion.

8 � Discussion

In this section, we discuss the critical factors that affect the
runtime of the proposed algorithm, the problem of false-
positive detections, and how fault masking can affect the
algorithm’s performance.

8.1 � Runtime

In the experimental results of Section 7, the presented
method is evaluated against a simple FSM-based opaque
predicate where no considerations about its stealthiness are
made. Replacing it with a more sophisticated and stealthy
one will not affect the success rate of our algorithm. This is
because our method does not search for the hardware opaque
predicate itself, but for the LUT inputs that behave as unde-
tectable stuck-at faults during the execution of the imple-
mentation under attack. Our approach evaluates exhaustively
every used LUT input in a brute-force manner. This guar-
antees that every LUT input connected to a constant (or to
a signal that behaves as constant during execution) will be
identified as a candidate by FindObfuscated() regardless of
the way the constant is generated.

The runtime of the proposed algorithm depends on the
number of LUTs and the degree of LUT occupancy or, in
other words, the total number of LUT inputs that are active
in the design. Sophisticated opaque predicates have a mini-
mal area overhead which contributes to their stealthiness, for
example, the LUT overhead in [39] is reported to be 1–2.2%.
As a result, such opaque predicates will cause an equally
minimal increase in the runtime of FindObfuscated().

8.2 � False‑Positive Analysis

Apart from stuck-at LUT inputs, the candidate list returned
by FindObfuscated() will include any unobservable single
stuck-at fault in the design. In the context of our method, these
unobservable stuck-at faults are considered false-positives.
However, the identification of an unobservable stuck-at fault
requires exhaustive simulation. In our experiments we do not
exhaustively test every possible input assignment; instead, we
run SNOW 3G with a constant key and observe a limited
number of outputs (640 bits). As a result, many of the false-
positive detections are not unobservable faults but faults that
we either failed to propagate with an appropriate input assign-
ment or faults for which we did not observe a sufficiently long
output sequence to detect.

Ruling out the false-positives is a very hard task. A
brute-force method leads to exponential complexity since
it requires the evaluation of every possible combination of
the candidate stuck-at faults. However, identifying false-
positives is not always necessary to perform an attack. For
bitstream modification attacks of scenario 1 (presented in
subsection 5.2), the adversary needs to only identify a criti-
cal target function. Since the critical function will appear in
the list returned by FindObfuscated(), the goal is completed
and the remaining detections are ignored. On the other hand,
to defeat logic locking (attack scenarios 2 and 3), all the
LUT inputs connected to a key bit have to be modified; and

Table 2   Number of LUTs with multiple candidate stuck-at inputs

of stuck inputs # LUTs

1 354
2 464
3 178
4 38
5 10
6 0

https://github.com/MichailM7/FPGA-Design-Deobfuscation

22	 Journal of Hardware and Systems Security (2023) 7:11–24

1 3

therefore, all false-positives have to be detected. Since a
brute-force strategy is infeasible, even for moderately sized
designs, the adversary has to further reverse engineer the
bitstream and recover a flattened netlist. By analysing the
netlist, the candidate stuck-at inputs can be grouped into
nets and the logic that generates their values can be traced.
Then the adversary will evaluate which of these logic struc-
tures can be generating the logic keys and make a series of
educated guesses to find the subset of the candidates that are
the logic locking keys.

8.3 � Fault Masking

The core idea of the presented method is to introduce stuck-
at faults and observe their effect. If the effect of the faults
cannot be observed in the output then our approach would
not work. Therefore, applying fault masking in the obfus-
cated/locked logic can make the application of our approach
significantly harder or even completely prevent it. In this
subsection, we discuss how fault masking with redundancy
addition can impact our approach and a possible way to work
around it.

Fault masking is a fault-tolerant technique that is tradi-
tionally used to allow the correct functioning of a circuit
in the presence of faults. The most popular fault masking
scheme is the triple modular redundancy (TMR) [74]. In
TMR, a critical module is triplicated and the outputs of the
three modules are given to a majority voter. The voter gives
the correct output as long as at least two of the modules are
operating correctly. Therefore, TMR offers tolerance to any
number of faults as long as they are concentrated on one
module. However, this comes at the expense of a consider-
able hardware overhead. In [35], TMR is used as part of a
logic locking scheme.

In our analysis, we assume a design that has critical logic
functions obfuscated with sufficiently stealthy constant val-
ues (attack scenario 1) and is also protected with TMR. Each
of the three modules is obfuscated in a different way to avoid
detection (functional duplication). The majority voter unit is
also obfuscated. The goal of the adversary is to remove the
obfuscation from the critical function.

The presented approach relies on observing differences in
the output after the injection of single stuck-at faults, some-
thing that TMR completely prevents. To be able to propagate
a fault, the same fault needs to be injected in two modules at
the same time. Without any knowledge about the location of
the TMR modules, we would need to test length(P)C2 pairs of
fault injections, where P is the list of all utilised inputs of all
utilised LUTs in a design as defined in Section 6. Applying
that on the SNOW3G implementation of Section 7 would
require the testing of 12,533C2 × 22 = 314, 127, 112 faults
which is infeasible.

To work around that, prior to applying our method, a
bitstream modification attack targeting the TMR voter is
required. Even though the voter unit is obfuscated, it is not
protected with fault masking; thus, applying our method
will deobfuscate it. After that, by considering possible voter
implementations, mapping them into LUTs and searching for
them in the deobfuscated LUT initialization vectors returned
from our algorithm, the identification of the voter becomes
possible. After the voter is identified, its logic can be eas-
ily modified to constantly output the response of one of the
TMR modules. This modification removes the TMR since
the remaining two modules get disconnected from the out-
put and single stuck-at faults in the remaining module can
propagate to the output. Therefore, with the proposed worka-
round, the adversary needs to execute our algorithm twice
and perform a bitstream modification attack in between.
Apart from doubling the runtime, this makes the applica-
tion of our method much harder since the step of identifying
the voter circuit requires further reverse engineering and a
skilled attacker.

9 � Conclusion

We proposed a new method for FPGA design deobfus-
cation based on ensuring the full controllability of each
instantiated LUT input in a design via iterative LUT modi-
fication at bitstream level. We implemented the presented
method in a software package and demonstrated its feasi-
bility on the example of a SNOW 3G stream cipher FPGA
implementation.

By providing a novel methodology for testing the resist-
ance of obfuscation strategies, our findings are expected to
contribute to the assurance of FPGA design security.

Funding  Open access funding provided by Royal Institute of Technology.

Data Availability  https://​github.​com/​Micha​ilM7/​FPGA-​Design-
​Deobf​uscat​ion.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

https://github.com/MichailM7/FPGA-Design-Deobfuscation
https://github.com/MichailM7/FPGA-Design-Deobfuscation
http://creativecommons.org/licenses/by/4.0/

23Journal of Hardware and Systems Security (2023) 7:11–24	

1 3

References

	 1.	 Aldaya AC et al ([2015] 2016) AES T-Box tampering attack. J
Cryptogr Eng 6(1):31–48

	 2.	 Ender M et al (2019) Insights into the mind of a trojan designer:
the challenge to integrate a trojan into the bitstream. In: Proc of the
24th Asia and South Pacific Design Automation Conf pp. 112–119

	 3.	 Moraitis M, Dubrova E (2020) Bitstream modification attack on
snow 3g. In: Design, Automation & Test in Europe conf. & Exhi-
bition (DATE) pp. 1275–1278. IEEE

	 4.	 Moraitis M et al (2020) Breaking ACORN at Bitstream Level. In:
IFIP/IEEE 28th Int Conf Very Large Scale Integration (VLSI-
SOC) pp. 117–122. IEEE

	 5.	 Ngo K et al (2020) Attacking Trivium at the Bitstream Level. In:
38th Int Conf Comp Des (ICCD) pp. 640–647. IEEE

	 6.	 Swierczynski P et al ([2016] 2017) Interdiction in practice–
Hardware Trojan against a high-Sec. USB flash drive. J Cryptogr
Eng 7(3):199–211

	 7.	 Swierczynski P et al (2017) Bitstream fault injections (BiFI)–
Automated fault attacks against SRAM-based FPGAs. IEEE Trans
Comp 67(3):348–360

	 8.	 Wallat S et al (2017) A look at the dark side of hardware reverse
engineering-a case study. In: 2nd Int Verification Sec Workshop
(IVSW) pp. 95–100. IEEE

	 9.	 Ziener D et al (2018) Configuration tampering of BRAM-based
AES implementations on FPGAs. In: Int Conf Reconfig Comput
FPGAs pp. 1–7. IEEE

	10.	 Duncan A et al (2019) FPGA bitstream Security: a day in the life.
In: Int Test Conf (ITC) pp. 1–10. IEEE

	11.	 Karam R etal (2016) Robust bitstream protection in FPGA-based
systems through low-overhead obfuscation. In: 2016 Int Conf on
ReConFigurable Computing and FPGAs (ReConFig) pp. 1–8. IEEE

	12.	 SymbiFlow: Project X-Ray (2018) https://​prjxr​ay.​readt​hedocs.​
io/​en/​latest/

	13.	 Moradi A, Schneider T (2016) Improved side-channel analysis
attacks on xilinx bitstream encryption of 5, 6, and 7 series.
In: Int Workshop on Constructive Side-Channel Analysis and
Secure Design pp. 71–87. Springer

	14.	 Moradi A et al (2011) On the vulnerability of FPGA bitstream
encryption against power analysis attacks: Extracting keys from
Xilinx Virtex-II FPGAs. In: Proc 18th ACM Conf Comp Com-
mun Sec pp. 111–124

	15.	 Moradi A et al (2013) Side-channel attacks on the bitstream
encryption mechanism of Altera Stratix II: facilitating black-box
analysis using software reverse-Engineering. In: Proc ACM/
SIGDA Int Symp Field Prog Gate Arrays pp. 91–100

	16.	 Xilinx (2022) Using Encryption and Authentication to Secure
an UltraScale/UltraScale+ FPGA Bitstream (XAPP1267)

	17.	 Hettwer B et al (2021) Side-Channel Analysis of the Xilinx
Zynq UltraScale+ Encryption Engine. IACR Trans Crypto
Hardw Embed Syst 2021(1):279–304

	18.	 Tajik S et al (2017) On the power of optical contactless probing:
Attacking bitstream encryption of FPGAs. In: Proc 2017 ACM
SIGSAC Conf Comp Commun Sec pp. 1661–1674

	19.	 Ender M et al (2020) The unpatchable silicon: A full break
of the bitstream encryption of xilinx 7-series fpgas. In: 29th
USENIX Sec Symp pp. 1803–1819

	20.	 Ender M et al (2022) A cautionary note on protecting xilinx’
ultrascale(+) bitstream encryption and authentication engine. In: 30th
Int Symp Field-Prog Custom Computing Machines (FCCM) pp. 1–9

	21.	 Lohrke H et al (2018) Key extraction using thermal laser stimu-
lation. IACR Trans Crypto Hardw Embed Syst pp. 573–595

	22.	 Cocchi RP et al (2014) Circuit camouflage integration for hard-
ware ip protection. In: 2014 51st ACM/EDAC/IEEE Design
Automation Conf (DAC) pp. 1–5. IEEE

	23.	 Erbagci B et al (2016) A secure camouflaged threshold voltage
defined logic family. In: Int Symp Hardware Oriented Sec trust
(HOST) pp. 229–235. IEEE

	24.	 Rajendran J et al (2013) Security analysis of integrated circuit
camouflaging. In: Proc ACM SIGSAC Conf Comp Commun Sec
pp. 709–720

	25.	 Dupuis S et al (2014) A novel hardware logic encryption tech-
nique for thwarting illegal overproduction and hardware trojans.
In: 20th Int On-Line Testing Symp (IOLTS) pp. 49–54. IEEE

	26.	 Rajendran J et al (2012) Logic encryption: A fault analysis
perspective. In: Design Automation & Test in Europe Conf &
Exhibition (DATE) pp. 953–958. IEEE

	27.	 Rajendran J et al (2013) Fault analysis-based logic encryption.
IEEE Trans Comp 64(2):410–424

	28.	 Roy JA et al (2008) EPIC: Ending Piracy of Integrated Circuits.
In: Design Automation and Test in Europe pp. 1069–1074

	29.	 Alkabani Y, Koushanfar F (2007) Active hardware metering for
intellectual property protection and security. In: USENIX Sec
Symp pp. 291–306

	30.	 Chakraborty RS, Bhunia S (2009) Harpoon: An obfuscation-
based soc design methodology for hardware protection. IEEE
Trans CAD Int Circ Syst 28(10):1493–1502

	31.	 Desai AR et al (2013) Interlocking obfuscation for anti-tamper
hardware. In: Proc of the 8th cyber Sec and information intel-
ligence research workshop pp. 1–4

	32.	 Dofe J, Yu Q (2017) Novel dynamic state-deflection method for
gate-level design obfuscation. IEEE Trans CAD Int Circ Syst
37(2):273–285

	33.	 Meade T et al (2017) Revisit sequential logic obfuscation: Attacks
and defenses. In: 2017 IEEE Int Symp Circ Syst (ISCAS) pp.
1–4. IEEE

	34.	 Chakraborty A et al (2019) Keynote: A disquisition on logic
locking. IEEE Trans CAD Int Circ Syst 39(10):1952–1972

	35.	 Hoque T et al (2019) Hidden in plaintext: an obfuscation-based
countermeasure against FPGA bitstream tampering attacks.
ACM Trans Des Autom Electron Syst (TODAES) 25(1):1–32

	36.	 Kamali HM et al (2018) Lut-lock: A novel LUT-based logic
obfuscation for FPGA-bitstream and ASIC-hardware protection.
In: Comp Soc Ann Symp VLSI (ISVLSI) pp. 405–410. IEEE

	37.	 Olney B, Karam R (2020) Tunable FPGA bitstream obfuscation
with boolean satisfiability attack countermeasure. ACM Trans
Des Autom Electron Syst (TODAES) 25(2):1–22

	38.	 Sergeichikand V, Ivaniuk A (2014) Implementation of opaque
predicates for FPGA designs hardware obfuscation. J Info Con-
trol Manag Sys 12(2)

	39.	 Hoffmann M, Paar C (2018) Stealthy opaque predicates in hard-
ware-obfuscating constant expressions at negligible overhead.
IACR Trans Crypto Hardw Embed Syst pp. 277–297

	40.	 Harihara M, Menon P (1989) Identification of undetectable
faults in combinational circuits. In: Proc 1989 IEEE Int Conf
Comp Design: VLSI in Comp Processors pp. 290–291. IEEE
Comp Society

	41.	 Iyer MA, Abramovici M (1996) Fire: A fault-independent com-
binational redundancy identification algorithm. IEEE Trans
VLSI Syst 4(2):295–301

	42.	 Menon PR, Ahuja H (1992) Redundancy removal and simpli-
fication of combinational circuits. In: Digest Papers VLSI Test
Symp pp. 268–273. IEEE

	43.	 Biere A, Kunz W (2002) Sat and atpg: Boolean engines for
formal hardware verification. In: Proceedings of the 2002 IEEE/
ACM international conference on Computer-Aided Design pp.
782–785

	44.	 Kamali HM, Azar KZ, Farahmandi F, Tehranipoor M (2022)
Advances in logic locking: Past, present, and prospects. Cryptol-
ogy ePrint Archive

https://prjxray.readthedocs.io/en/latest/
https://prjxray.readthedocs.io/en/latest/

24	 Journal of Hardware and Systems Security (2023) 7:11–24

1 3

	45.	 Kim J et al (1997) RID-GRASP: Redundancy identification and
removal using GRASP. In: Int. Workshop on Logic Synthesis. Citeseer

	46.	 Kuehlmann A et al (2002) Robust boolean reasoning for equiva-
lence checking and functional property verification. IEEE Trans
CAD Int Circ Syst 21(12):1377–1394

	47.	 Kuehlmann A, Krohm F (1997) Equivalence checking using cuts
and heaps. In: Proc of the 34th annual Design Automation Conf
pp. 263–268

	48.	 Kataria J et al (2019) Defeating cisco trust anchor: A {Case-Study}
of recent advancements in direct {FPGA} bitstream manipula-
tion. In: 13th USENIX Workshop on Offensive Technologies
(WOOT 19)

	49.	 Biookaghazadeh S et al (2018) Are FPGAs suitable for edge com-
puting? In: USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 18)

	50.	 AWS: Amazon EC2 F1 instances (2017) https://​aws.​amazon.​com/​
ec2/​insta​nce-​types/​f1/

	51.	 Giechaskiel I et al (2019) Reading between the dies: Cross-SLR
covert channels on multi-tenant cloud FPGAs. In: 37th Int Conf
Comp Design (ICCD) pp. 1–10. IEEE

	52.	 Glamočanin O et al (2020) Are cloud fpgas really vulnerable to
power analysis attacks? In: 2020 Design, Automation & Test in
Europe Conf & Exhibition (DATE) pp. 1007–1010. IEEE

	53.	 Giechaskiel I et al (2020) C 3APSULe: Cross-FPGA Covert-Channel
Attacks through Power Supply Unit Leakage. In: Symp Sec Privacy
(SP) pp. 1728–1741. IEEE

	54.	 Giechaskiel I et al (2022) Cross-VM Covert- and Side-Channel
Attacks in Cloud FPGAs. ACM Trans Reconfig Technol Syst

	55.	 Tian S, Szefer J (2019) Temporal thermal covert channels in cloud
FPGAs. In: Proc ACM/SIGDA Int Symp. Field-Prog Gate Arrays
pp. 298–303

	56.	 Benz F et al (2012) Bil: A tool-chain for bitstream reverse-eng.
In: 22nd Int Conf Field Prog Logic App pp. 735–738

	57.	 Ding Z et al (2013) Deriving an NCD file from an FPGA bit-
stream: Methodology, architecture and evaluation. Microprocess
Microsyst 37(3):299–312

	58.	 Note JB, Rannaud É (2008) From the bitstream to the netlist. In:
FPGA 8:264–264

	59.	 Ziener D et al (2006) Identifying FPGA IP-cores based on lookup table
content analysis. In: Int Conf Field Prog Logic App pp. 1–6. IEEE

	60.	 Schmid M et al (2008) Netlist-level IP protection by watermarking
for LUT-based FPGAs. In: Int Conf Field-Prog Tech pp. 209–216

	61.	 3GPP (2009) Specification of the 3GPP confidentiality and integ-
rity algorithms UEA2 & UIA2. https://​www.​gsma.​com/​about​us/​
wp-​conte​nt/​uploa​ds/​2014/​12/​uea2d​esign​evalu​ation.​pdf

	62.	 3GPP (2018) 3GPP TS 33.401 version 14.5.0 Release 14. https://​
www.​etsi.​org/​deliv​er/​etsi_​ts/​133400_​133499/​133401/​14.​05.​00_​
60/​ts_​13340​1v140​500p.​pdf

	63.	 3GPP (2017) 3GPP TS 43.020 version 14.3.0 Release 14. https://​
www.​etsi.​org/​deliv​er/​etsi_​ts/​143000_​143099/​143020/​14.​03.​00_​
60/​ts_​14302​0v140​300p.​pdf

	64.	 3GPP (2022) Sec. architecture and procedures for 5G System. https://​
portal.​3gpp.​org/​deskt​opmod​ules/​Speci​ficat​ions/​Speci​ficat​ionDe​tails.​
aspx?​speci​ficat​ionId=​3169

	65.	 Robshaw M (1994) Stream ciphers. Tech Rep TR - 701. citeseer.
ist.psu.edu/robshaw95stream.html

	66.	 Biryukov A et al (2010) Analysis of SNOW 3G resynchronization
mechanism. In: SECRYPT, pp. 327–333

	67.	 Biryukov A et al (2010) Multiset collision attacks on reduced-
round SNOW 3G and SNOW 3G⊕ . In: Int Conf Appl Crypt Netw
Sec pp. 139–153. Springer

	68.	 Guan J et al (2013) Guess and Determine Attack on SNOW3G
and ZUC. J Softw 6:1324–1333

	69.	 Kircanski A, Youssef AM (2011) On the sliding property of
SNOW 3G and SNOW 2.0. IET Info Sec 5(4):199

	70.	 Nia MSN etal (2014) Improved Heuristic guess and determine
attack on SNOW 3G stream cipher. In: 7’th Int Symp Telecom
(IST’2014) pp. 972–976. IEEE

	71.	 Brumley BB et al (2010) Consecutive S-box lookups: A Timing
Attack on SNOW 3G. In: Int Conf Inf Commun Sec pp. 171–185.
Springer

	72.	 Takahashi J et al (2012) Feasibility of fault analysis based on
intentional electromagnetic interference. In: Int Symp Electromag
Compatibility pp. 782–787. IEEE

	73.	 Debraize B et al (2009) Fault analysis of the stream cipher SNOW
3G. In: 2009 Workshop on Fault Diagnosis and Tolerance in
Crypto (FDTC) pp. 103–110. IEEE

	74.	 Dubrova E (2013) Fault-tolerant design. Springer
	75.	 Moraitis M, Dubrova E (2022) FPGA Design Deobfuscation by

Iterative LUT Modifications at Bitstream Level. In: 27th IEEE
European Test Symp (ETS)

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.gsma.com/aboutus/wp-content/uploads/2014/12/uea2designevaluation.pdf
https://www.gsma.com/aboutus/wp-content/uploads/2014/12/uea2designevaluation.pdf
https://www.etsi.org/deliver/etsi_ts/133400_133499/133401/14.05.00_60/ts_133401v140500p.pdf
https://www.etsi.org/deliver/etsi_ts/133400_133499/133401/14.05.00_60/ts_133401v140500p.pdf
https://www.etsi.org/deliver/etsi_ts/133400_133499/133401/14.05.00_60/ts_133401v140500p.pdf
https://www.etsi.org/deliver/etsi_ts/143000_143099/143020/14.03.00_60/ts_143020v140300p.pdf
https://www.etsi.org/deliver/etsi_ts/143000_143099/143020/14.03.00_60/ts_143020v140300p.pdf
https://www.etsi.org/deliver/etsi_ts/143000_143099/143020/14.03.00_60/ts_143020v140300p.pdf
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169

	FPGA Design Deobfuscation by Iterative LUT Modification at Bitstream Level
	Abstract
	1 Introduction
	2 Background on FPGA Technology
	2.1 Bitstream Format of FPGA Basic Building Blocks
	2.1.1 Look-Up Tables
	2.1.2 Programmable Interconnect Points

	2.2 Architecture of Xilinx 7 Series FPGA

	3 Background on Bitstream Encryption, Design Obfuscation, and Fault Identification
	3.1 Bitstream Encryption
	3.2 Obfuscation
	3.2.1 ASIC
	3.2.2 FPGA

	3.3 Fault Identification

	4 Proposed Method
	5 Attacking Obfuscated Designs
	5.1 Adversary Model
	5.2 Attack Scenarios

	6 Deobfuscation Algorithm
	7 Case Study: SNOW 3G Stream Cipher
	7.1 SNOW 3G Design Description
	7.2 Obfuscated SNOW 3G Implementation
	7.3 Deobfuscating SNOW 3G

	8 Discussion
	8.1 Runtime
	8.2 False-Positive Analysis
	8.3 Fault Masking

	9 Conclusion
	References

