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Abstract
Hardware obfuscation is a well-known countermeasure against reverse engineering. For FPGA designs, obfuscation can be 
implemented with a small overhead by using underutilised logic cells; however, its effectiveness depends on the stealthiness 
of the added redundancy. In this paper, we show that it is possible to deobfuscate an SRAM FPGA design by ensuring the full 
controllability of each instantiated look-up table input via iterative bitstream modification. The presented algorithm works 
directly on bitstream and does not require the possession of a flattened netlist. The feasibility of our approach is verified on 
the example of an obfuscated SNOW 3G design implemented on a Xilinx 7-series FPGA.
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1  Introduction

Our world is being transformed by the fourth industrial 
revolution which is marked by the rapid development and 
integration of life-changing technologies such as cloud com-
puting, artificial intelligence (AI), and the internet of things 
(IoT). These technologies have an increasing demand for 
more powerful, low-power, agile, and low-cost devices. This 
can be offered through hardware acceleration. Two popular 
candidates for this role are application-specific integrated 
circuits (ASICs) and static random access memory field-
programmable gate arrays (SRAM FPGAs). ASICs have an 
excellent performance and power consumption profile which 
can offer a very efficient acceleration. However, they are 

severely lacking in agility, having a constant configuration 
and a very slow time to market. Furthermore, they require 
high engineering effort to design and their cost per chip 
becomes viable only for large chip orders making them an 
expensive solution for small companies and startups. On the 
other hand, SRAM FPGAs offer lower performance and con-
sume more power compared to ASICs but they require lower 
engineering effort and most importantly hold the advantage 
of reconfigurability making them a very agile device with 
low time to market. Therefore, SRAM FPGAs are a very 
attractive choice for many computationally heavy applica-
tions such as cryptographic algorithm implementation and 
AI acceleration. This growth in popularity, however, gives 
rise to SRAM FPGA-specific security challenges.

The programming of SRAM FPGAs is performed through 
a file called bitstream that contains the configuration infor-
mation describing a given design in a hidden and proprietary 
format. The bitstream has to be loaded to the device at every 
power-on due to the volatile nature of SRAM. This fact renders 
bitstreams particularly vulnerable to threats such as reverse 
engineering and modification. Reverse engineering can lead to 
intellectual property theft and facilitate bitstream modification 
attacks. It has been demonstrated that, with bitstream modi-
fication, it is possible to recover the secret key from FPGA 
implementations of cryptographic algorithms [1–9].

These attacks assume an adversary that has access to the 
bitstream of a design under attack. According to the design 
flow stages presented in [10], the adversary can acquire a 
bitstream during the bitstream-at-rest and bitstream-loading 
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stages. The adversary is typically assumed to be able to 
reverse engineer the bitstream to a certain degree and the 
goal of the attack is to recover and/or manipulate the logic 
of a given design to meet various ends, e.g. trojan injec-
tion, secret key recovery, and intellectual property theft. In 
the future, when AI algorithms become a natural part of 
many systems, the extraction of neural network models from 
FPGA bitstreams through reverse engineering, or the tam-
pering of the neural networks through bitstream modifica-
tion, can pose a serious threat.

A popular method of defense against bitstream reverse 
engineering and modification is to conceal the design’s 
functionality using obfuscation techniques. Typically this 
is accomplished by redundancy addition (e.g. injection of 
redundant combinational logic). In this paper, we focus on 
FPGA obfuscation techniques that make use of constant 
values to change the function implemented in underutilised 
LUTs without changing their behavior during execution.

Our Contributions:

•	 We demonstrate that, by assuring the full control-
lability of each input of each instantiated LUT in a 
design via iterative LUT modification, we can defeat 
obfuscation based on constant values and potentially 
unlock bitstreams locked using combinational logic 
locking [11].

•	 Our approach is not impacted by the level of stealthiness 
of the constant values or the circuit that generates them. 
Therefore, it can be used to remove obfuscation that 
uses constants created by hardware opaque predicates 
regardless of how stealthy they are. This is achieved by 
searching for the LUT inputs that behave as undetect-
able stuck-at faults during the execution of the algorithm 
under attack rather than the hardware opaque predicate 
itself.

•	 Our method uses bitstream reverse engineering to deter-
mine the logic functions implemented by LUTs and the 
wires connected to the LUT inputs1. This is an advantage 
over methodologies that require a netlist.

•	 We demonstrate the feasibility of our approach on the 
example of an obfuscated SNOW 3G design imple-
mented in a Xilinx 7-series FPGA.

Paper Organization: The rest of the paper is organized 
as follows. Section 2 presents background information on 
FPGA technology. Section 3 presents an overview of the 
related literature pertaining to bitstream encryption, design 
obfuscation, and fault identification. Section 4 gives a high-
level overview of the proposed deobfuscation method. 

Section 5 presents the adversary model along with three 
attack scenarios. Section  6 presents the formulation of 
our method into an algorithm. In Section 7, the method is 
applied to an obfuscated SNOW 3G design to display its fea-
sibility in practice. Section 8 discusses issues related to the 
presented approach. Finally, Section 9 concludes the paper.

2 � Background on FPGA Technology

This section covers the basics of FPGA technology, with 
a focus on Xilinx 7 series FPGAs, a popular line of FPGA 
devices.

2.1 � Bitstream Format of FPGA Basic Building Blocks

An FPGA fabric is a mesh of configurable logic blocks 
(CLBs) implementing user-defined logic that is connected 
through routing channels that pass through programmable 
switch boxes. By defining both, the functionality of the 
logic elements and their interconnections, a physical cir-
cuit is created on this mesh. In Fig. 1, an abstract view of 
a typical SRAM FPGA architecture is presented. In this 
subsection, we describe the basics of logic and routing 
in Xilinx 7 series FPGAs and their representation in the 
bitstream.

2.1.1 � Look‑Up Tables

In SRAM FPGAs, CLBs typically consist of k-input LUTs. 
In Xilinx 7 series FPGAs, k = 6 ; thus, a LUT can imple-
ment a Boolean function of up to 6 variables. Regardless 
of the actual number of inputs the LUT’s function depends 
on, its truth table appears in the bitstream as a 64-bit vector, 
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Fig. 1   A typical SRAM FPGA architecture

1  A short, 2-page, version of the paper was presented at [75].
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called initialization vector, partitioned into four 16-bit 
words which are placed at a fixed distance from each other. 
Each bit of the initialization vector represents the output 
value of the LUT for a specific input assignment. If some 
of the LUT inputs are not used, they are treated as don’t-
cares in the truth table and their value is by default fixed 
to constant-1.

2.1.2 � Programmable Interconnect Points

The routing in FPGAs is performed through program-
mable interconnect points (PIPs). A PIP is a connection 
between two points called source and destination PIP 
junction. Therefore, activating or deactivating a PIP in 
the bitstream results in creating or removing the connec-
tion between the corresponding source and destination PIP 
junctions. Each FPGA device has a predefined set of PIPs 
which dictates the possible ways that PIP junctions can be 
connected to each other. In other words, two PIP junctions 
cannot be connected unless there is a PIP that allows this 
connection.

In Xilinx 7 series FPGAs, there are two types of PIPs: 
PIPs that appear in the bitstream and PIPs that do not. 
Following the terminology of project Xray  [12], we 
call PIPs that do not appear in the bitstream fake and 
PIPs that do appear regular. Our deobfuscation method 
makes use of three PIP junction types, PJ1, PJ2, and 
PJ3, which correspond to the immediate connections of 
LUT inputs2.

2.2 � Architecture of Xilinx 7 Series FPGA

The fabric of Xilinx 7 series FPGAs is a grid of tiles 
uniquely identified by their X and Y coordinates. There 
are several different types of tiles but in this paper, we are 
concerned with the two most basic ones, the interconnect 
tiles (INT tiles) and the configurable logic block tiles (CLB 
tiles).

The INT tiles are responsible for the majority of routing. 
An INT tile is a large switchbox consisting of a set of PIP 
junctions. A CLB tile has a small switchbox connected hori-
zontally to an INT tile on one side and to two blocks called 
slices (which constitute the main body of the CLB) on the 
other. If a CLB tile is on the right side of its corresponding 
INT tile, then they are both labeled as right; otherwise, they 
are labeled as left.

Each slice contains four LUTs, eight flip flops (FFs), a 
fast carry logic unit, and multiplexers (MUXes) to control 
the internal routing. The slices are positioned vertically 

inside a CLB; thus, they are usually referred to as top and 
bottom slices. Slices are also categorized as SliceM or Sli-
ceL depending on whether they contain ordinary LUTs 
(SliceL) or special LUTs that can be also configured into 
a 32-bit shift register or a distributed LUT-based RAM 
(SliceM).

3 � Background on Bitstream Encryption, 
Design Obfuscation, and Fault 
Identification

This section reviews previous work on bitstream encryption, 
design obfuscation and fault identification. It starts by present-
ing attacks against bitstream encryption schemes of several 
popular FPGA models and proceeds to present obfuscation 
techniques used to enhance the security of the designs. Finally 
it presents an overview of fault identification techniques.

3.1 � Bitstream Encryption

Acknowledging the importance of securing the bitstream file, 
commercial FPGA vendors offer the option of secure configu-
ration through proprietary bitstream encryption mechanisms. 
On an abstract level, these mechanisms work as follows. First, 
the user has to enable the bitstream encryption feature in the 
FPGA vendor’s design tool and define the encryption key. 
Typically, the encryption algorithm used is the advanced 
encryption standard (AES) with a 256-bit key. With this fea-
ture enabled, the tool generates an encrypted bitstream. On 
the FPGA side, there is a dedicated decryption core that uses 
a key commonly stored in either e-fuses or battery-backed 
RAMs (BBRAMs) that are embedded in the FPGA device. If 
the key stored in the FPGA matches the one used to encrypt 
the bitstream, then the bitstream gets decrypted correctly and 
configures the FPGA.

Unfortunately, in many cases, such protection schemes 
have been shown vulnerable to physical attacks. In [13–15], 
the bitstream encryption key is recovered through side-
channel analysis for several different commercial FPGAs. 
State-of-the-art FPGAs like the Xilinx Ultrascale+ have 
implemented a key-rolling mechanism to thwart side-
channel attacks by limiting the number of blocks that are 
encrypted/decrypted by the same key [16]. However, the 
use of key-rolling comes with a performance-security 
trade-off. In [17], after thorough experimentation, it was 
found that to be protected against current side-channel 
attacks, the key-rolling factor has to be set between 20 and 
30. This imposes a considerable performance overhead. 
In  [18], contactless optical probing is used to read the 
decrypted bitstream from the output bus of the dedicated 
decryption core of a Xilinx 7-series FPGA. In [19], the 
decrypted bitstream is obtained using the FPGA itself as 

2  The names of PIP junctions are given by us and are not related to 
the terminology used in [12].
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a decryption oracle by exploiting a design flaw of Xilinx 
7-series FPGAs. In principle, this vulnerability does not 
affect the Xilinx Ultrascale+ FPGAs given that the ven-
dor-recommended settings are used. However, in [20], it is 
shown that when settings outside of the recommendations 
are used, these devices can display security weaknesses 
that can be exploited to re-enable the attack vector pre-
sented in [19]. Finally, in [21], thermal laser stimulation 
is used to recover the key stored in a BBRAM of a Xilinx 
Kintex Ultrascale FPGA while it is powered off.

To summarise, the security of bitstream encryption is an 
open topic as FPGA vendors constantly strive to make their 
implementations more secure. Currently, no attack has been 
shown to be entirely successful against the bitstream encryp-
tion mechanism of Xilinx Ultrascale+ FPGAs. However, this 
series of FPGAs is very new (making its debut a bit more 
than half a decade ago). One of the main reasons to use an 
FPGA is its reconfigurability, which gives them a very long 
life cycle; thus, replacing FPGAs with the latest available 
models is typically not practiced. This offers a large attack 
surface of older FPGAs in which the bitstream encryption 
has been shown to be vulnerable.

3.2 � Obfuscation

Since for many FPGA models the current implementations 
of bitstream encryption cannot effectively protect a design, 
additional protection mechanisms have to be applied. A pop-
ular countermeasure against SRAM FPGA bitstream reverse 
engineering and modification is design obfuscation.

3.2.1 � ASIC

Obfuscation attempts to transform a design into a function-
ally equivalent, but structurally different, representation 
which is more difficult to understand. For ASICs, there are 
well-studied obfuscation techniques such as gate camouflag-
ing (low-level obfuscation) [22–24], combinational logic 
locking [25–28], and sequential logic locking [29–33]. Gate 
camouflaging makes it hard to recover the functionality of 
the logic blocks in a circuit while logic locking makes it hard 
to understand the functionality of the whole netlist. Logic 
locking is one of the most popular approaches for protecting 
intellectual property and is based on embedding a secret key 
that needs to be supplied for the design to function correctly. 
In combinational logic locking, this is achieved by injecting 
redundant logic controlled by key bits in the design which 
introduces faults in the case that the key bits are not set cor-
rectly. In sequential logic locking, the finite state machines 
(FSMs) in a design are given extra states from which the 
FSM cannot escape and move to the original states unless a 
correct key is supplied. A comprehensive overview of logic 
locking techniques can be found in [34].

3.2.2 � FPGA

Transferring ASIC obfuscation methods to FPGAs requires 
adaptation to the unique characteristics of the FPGA tech-
nology. In FPGAs, logic is implemented by look-up tables 
(LUTs) with a predefined number of inputs (typically 
between four and six) and outputs (typically one or two). 
When a gate-level netlist is translated into LUTs, many of 
them use fewer inputs than there are available. This affects 
the way gate camouflaging and combinational logic locking 
is implemented.

In [11, 35–37], combinational logic locking schemes ded-
icated to FPGAs are presented. The basic idea is to insert 
key bits to the unused inputs of already instantiated LUTs 
and define the locked logic that corresponds to the wrong 
values of the key bits by modifying the LUT’s truth table. 
Following the terminology introduced in [11], we refer to 
this unused portion of instantiated LUTs as FPGA dark sili-
con. In the same paper, the term occupancy is defined as 
the percentage of the LUT inputs that are actually used in 
the instantiated LUTs of a design. The authors reported an 
average of 30% occupancy while studying nine benchmark 
designs which indicates that finding such LUTs is very com-
mon. Even in the case where the occupancy is high, by split-
ting large LUTs into smaller ones, we can create FPGA dark 
silicon. Therefore, finding unused LUT inputs to embed the 
key for logic locking is typically not a problem.

Since LUTs are the basic logic elements (gates) in 
FPGAs, the aforementioned combinational logic locking 
methods, given a correct key, also function as gate cam-
ouflaging. That is because the truth table of the LUT is 
changed, but its actual functionality remains the same. This 
aspect of FPGA dark silicon modification is highlighted 
in [5] where the truth table entries corresponding to unused 
LUT inputs are modified. Such type of camouflaging is 
effective against an adversary capable of reverse engineer-
ing the bitstream format of LUT truth tables, but not the 
routing that would reveal which inputs of the LUT are used.

In Fig. 2, an example of how the FPGA dark silicon can 
be leveraged to obfuscate the logic functions of LUTs is pre-
sented. In the example, a LUT implements a function with 
three inputs, R1 , R2 , and R3 , the truth table of which is shown 
in blue background. Assuming that the LUT has four inputs, 
the initialization vector of this LUT would be 16 bits long 
with the output values in the blue background appearing 
twice. To obfuscate the logic of the LUT (or lock with logic 
locking), the fourth unused input of the LUT is connected to 
a key value that is constantly zero. The new input is used to 
define redundant logic (the red XOR gate) that changes the 
overall function described in the LUT initialization vector 
by defining the values on the red background. The red output 
values cannot appear but this is not known to the adversary. 
Alternatively, instead of activating the fourth LUT input, 
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assuming that unconnected inputs are constant-1, the bits 
of the initialization vector corresponding to combinations 
where the value of this input is zero can be modified as pro-
posed in [5]. However, as explained earlier, detecting such 
constants is easy with adequate bitstream format knowledge.

From the testing perspective, the utilization of unused 
LUT inputs is equivalent to the injection of undetectable 
stuck-at faults, which do not cause incorrect output values 
for any input assignment during the execution of the pro-
tected algorithm. The stuck-at faults can be in the form of the 
correct key values in the case of logic locking, or predefined 
constants, e.g. the default value on an unused input pin, or the 
output of a combinational logic circuit with redundancy like 
x + x for constant-1 or x ⋅ x for constant-0 in the case of logic 
obfuscation. However, these combinational methods of stuck-
at fault injections are vulnerable to static analysis (given an 
adversary with adequate reverse engineering capabilities). 
To make the identification of these faults harder, hardware 
opaque predicates can be used for constant value generation.

An opaque predicate is a concept widely used in software 
obfuscation and in principle is a function that provides a 
constant Boolean output regardless of its inputs. The out-
put is known to the designer but not to the user/adversary. 
The first implementation of a hardware opaque predicate, 
proposed in [38], is an n-stage linear feedback shift regis-
ter (LFSR) with all state registers connected to an n-input 
OR gate. Given that an LFSR state always has a hamming 
weight (HW) greater than zero3 the output of the OR gate 

is constant-1. The weakness of this design is that an LFSR 
has a distinct structure and if identified (e.g. by reverse engi-
neering as in [8]), the constant output of the OR gate can 
be deduced.

In [39], hardware opaque predicates based on FSMs and 
counters are presented. Since FSMs and counters are com-
mon structures, distinguishing hardware opaque predicates 
from functional elements is a difficult task. Furthermore, 
the authors of [39] have demonstrated that, in some cases, 
even the existing FSMs in a design can be used to implement 
opaque predicates, making them (and their produced stuck-at 
outputs) even harder to detect. To the best of our knowledge, 
no methods for identifying such constructions are known at 
present, especially if a netlist is not available.

Finally, another type of redundancy that can be used for 
obfuscation is functional duplication which occurs when dif-
ferent sub-circuits implement the same function.

3.3 � Fault Identification

In combinational circuits, undetectable stuck-at faults can be 
identified using automatic test pattern generation (ATPG), 
Boolean satisfiability problem (SAT) solvers, and fault-
independent methods [40–42]. The ATPG and SAT algo-
rithms [43] can guarantee the detection of all undetectable 
stuck-at faults, but their worst-case time complexity is expo-
nential. Fault-independent methods cannot always find all 
undetectable faults, but they have the advantage of polyno-
mial worst-case time complexity.

SAT-based attacks against logic locking in particular have 
drawn a lot of attention, with many methodologies proposed 
to counter them and equally as many to enhance them [44].
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Fig. 2   Example of FPGA Dark Silicon-Based LUT Obfuscation

3  An LFSR cannot have the all-zero state since that would make it 
unable to transition to another state.
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Regarding functional duplication in combinational cir-
cuits, it can be identified using SAT [45], BDD sweep-
ing [46], and structural hashing [47]. Both SAT and BDD 
sweeping guarantee the detection of all functional dupli-
cates, but they have an exponential worst-case time com-
plexity. Structural hashing can identify structurally isomor-
phic equivalent sub-circuits in linear time. For this reason, 
obfuscation methods using functional duplication typically 
implement duplicated blocks in a diverse manner [35].

4 � Proposed Method

In this section, we give an overview of the proposed deob-
fuscation method.

In the presented deobfuscation scheme, the goal is to find 
which LUT inputs are connected to a net that is or behaves 
as a constant during the execution of the implemented algo-
rithm. To do that we iteratively set the inputs of LUTs to 
constant values, upload the modified design instances to an 
FPGA, and observe the output. Our methodology is based 
on the observation that the constant values used in logic 
camouflaging and the key bits of logic locking essentially 
behave as stuck-at-faults. These faults are undetectable since 
they do not influence the output of the circuit for any input 
assignment4. This occurs because the intended functionality 
is the one enabled by the fault since the logic that depends 
on stuck inputs is injected for the purpose of obfuscation and 
is not part of the original circuit. Therefore, when the correct 
stuck-at fault is applied to a redundant LUT input, there is 
no deviation from the expected output. Having identified the 
stuck LUT inputs and their values removes the obfuscation 
since it allows the reconstruction of the original LUT truth 
table. As a result, an adversary can find the LUT imple-
mentation of targeted functions (as in the case of attacks 
on cryptographic algorithms mentioned in Section 1) or 
remove logic locking by either updating the LUT truth table 
to express the original function or manipulating the PIPs to 
connect the key inputs to equivalent constant values.

5 � Attacking Obfuscated Designs

In this section, we present the adversary model and three 
scenarios of attacks against obfuscated and combinational 
logic locked designs that can be enabled with the application 
of the proposed method.

5.1 � Adversary Model

The assumed adversary model has the following requirements.
FPGA Access The adversary has access to an FPGA 

device compatible with the bitstream under attack.
The proposed technique involves loading multiple bit-

streams and observing the output of a design; thus, a com-
patible FPGA has to be available. Depending on the attack 
scenario, the FPGA can be the property of the adversary or 
the property of a victim.

Bitstream Access The adversary has access to a non-
encrypted bitstream of the implementation under attack.

In SRAM FPGAs, the configuration bitstream has to 
be loaded at every device power-on due to the volatility of 
SRAM. For that reason, the bitstream is typically stored in 
an external, non-volatile memory. This puts the bitstream in 
a vulnerable position since, given physical access to the tar-
get FPGA, the contents of the external memory can be read, 
or the bus that connects the FPGA to the external memory 
can be wiretapped to retrieve the bitstream while it is loaded 
to the FPGA.

Another popular way of loading the bitstream is through a 
microcontroller. Again, having access to the microcontroller 
can also give access to the bitstream that is stored in its 
firmware. Furthermore, if the microcontroller is connected 
to a network, it becomes possible to extract the bitstream 
remotely [48].

If the bitstream is encrypted, one of the methods men-
tioned in Section 3.1 can be used to decrypt it. The selection 
of the method depends on the model of the FPGA under 
attack and the equipment of the adversary. Each method has 
different requirements and not all FPGA models are vul-
nerable to attacks on bitstream encryption as explained in 
Section 3.1.

Access Level According to the above, physical access to 
the device under attack is often required as means of acquir-
ing a bitstream, breaking the encryption of an encrypted 
bitstream, or loading modified versions of the original 
bitstream.

The assumption of physical access can be realistic in sev-
eral cases, especially considering that FPGAs are used more 
and more in unsupervised environments.

Examples of this are FPGAs used as IoT edge devices [49] 
and the FPGA-as-a-service (FaaS) (e.g. Amazon Web 
Services (AWS)[50]) setting where cloud-based access 
to FPGAs is provided. In FaaS, the FPGA provider has 
unobstructed physical access to FPGAs programmed with 
designs owned by different clients. As a result, an insider 
can potentially access the bitstreams of the client designs. 
Furthermore in such environments, space and resource 
sharing between devices is a common practice. This allows 
clients to attack implementations of other clients through 
side-channel and covert-channel attacks. Several works 

4  In the case of logic locking we assume that the correct key is pro-
vided.
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have presented attacks in multi-tenant settings (multiple 
users per FPGA) [51, 52] but also single-tenant5 settings 
(one user per FPGA) [53–55]. Note that for applying exclu-
sively the method proposed in this paper, there are attack 
scenarios where physical access to a device under attack is 
not required (e.g. scenarios 1 and 2 in Section 5.2).

Bitstream Reverse Engineering Capability The adversary 
can reverse engineer the bitstream format of LUT initialization 
vectors and the PIPs associated with LUT inputs. This is necessary 
for making the LUT inputs controllable and recovering the rela-
tion between the LUT’s physical inputs and the LUT’s truth table.

Several works have presented methods for reverse engi-
neering FPGA bitstream formats [56–59]. For the Xilinx 
7 series FPGAs (on which our experiments are based), 
project Xray [12] maintains a database that documents the 
format of almost every FPGA element. It should be noted 
that even in the absence of such a database, the bitstream 
format knowledge required for the application of our 
method is minimal. This makes it a more viable approach 
than one that requires a netlist (reverse engineering of 
every activated PIP and flattened netlist reconstruction).

However, depending on the attack scenario, further bit-
stream reverse engineering might be required as we explain 
in the next subsection.

5.2 � Attack Scenarios

Summarizing the adversary model, to apply the method 
proposed in this paper, an adversary needs to have access 
to an unencrypted bitstream of the design under attack, an 
FPGA compatible with the bitstream and bitstream reverse 
engineering skills. The proposed method is typically used 
to enable other attacks the requirements of which can add 
to the overall adversary model. What follows is a descrip-
tion of three attack scenarios and their requirements.

• Scenario 1: Bitstream Modification Attack on a Design 
with Obfuscated Logic

In this scenario, the attacker has general knowledge of the 
functionality of an implementation (e.g. that runs a 

specific encryption algorithm) and aims to find and modify 
some critical functions. The goal of such an attack can be 
to inject a Trojan, degrade the performance of the design, 
recover the secret key of a cryptographic implementation 
(as in the attack in Section 7), etc. Since the design is 
protected by logic obfuscation, the deobfuscation method 
presented in this paper can be used as a pre-processing 
step. In this scenario, the FPGA used by the adversary 
can be any FPGA of the same model as the device under  
attack.

• Scenario 2: Unlocking of a Legally Owned Design 
Locked with Combinational Logic Locking

In this scenario, a design locked to a device owned 
by the adversary is legally acquired. The goal here is to 
unlock the design and redistribute it to unlicensed devices. 
In the assumed combinational logic locking method, a 
structure (e.g. a physical unclonable function (PUF)6 or 
a nonlinear-feedback shift register (NLFSR)) is used to 
supply the logic locking key to the locked LUTs [11]. The 
application of the proposed method here will reveal the 
value of the key bits in the locked LUTs. However, in the 
case that there are false-positive detections (discussed in 
Section 8.2), further reverse engineering is required. This 
process will involve recovering the nets of the detected 
stuck-at inputs and evaluating if their source is the key-
providing circuit.

• Scenario 3: Unlocking a Design Under Attack Locked 
with Combinational Logic Locking

This scenario is similar to scenario 2 with the additional 
requirement of having prolonged physical access to the 
device under attack (that is not owned by the adversary). 
That is because the locked bitstream can only work on this 
specific device; therefore, the proposed method has to also 
be applied on it.

Table 1 summarises the requirements for applying the 
proposed method for the three scenarios.

Table 1   Summary of the requirements of the presented attack scenarios

Scenario Reverse engineering Physical access to the device under attack

1 LUT initialization vector and inputs Not required
2 Potentially netlist Not required
3 Potentially netlist Required

5  Single-tenant settings are considered more secure and are adopted 
by providers such as AWS.

6  A PUF is a circuit whose output depends on the physical properties 
of the silicon it is implemented on. Thus, the same PUF design gives 
different responses when it is implemented on different physical com-
ponents/devices.



18	 Journal of Hardware and Systems Security (2023) 7:11–24

1 3

6 � Deobfuscation Algorithm

In this section, we present our deobfuscation algorithm  
FindObfuscated(). Its pseudo-code is shown as Algorithm 1. 

FindObfuscated() takes as input a bitstream, B , and 
returns a list of potential deobfuscated LUT candidates 
(false-positive detections are possible).

First, a list of all active PIPs connected to utilised LUT 
inputs is extracted from the bitstream. This list is represented 
by a vector P = ((p1,1,… , p1,k1 ),… , (pn,1,… , pn,kn )) , where 
pi,j is the PIP associated with the jth input of the LUT li , for 
i ∈ {1,… , n} , j ∈ {1,… , k}.

Each input of a LUT is connected to a PIP junction of 
type PJ1 in the CLB’s switchbox (see Fig. 3). This PIP 
junction forms a fake PIP with a PIP junction of type PJ2, 
which in turn is connected to a PIP junction of type PJ3 
located in the corresponding INT tile switchbox. If the 
input is not used, then PJ3 forms a fake PIP with PIP junc-
tion VCC_WIRE (constant-1). If the input is used, then 
PJ3 forms a regular PIP with one out of 25 possible PIP 
junctions in the INT tile switchbox (denoted with PJx in 
Fig. 3). Therefore, if the bitstream contains an activated 
PIP with destination PJ3, it means that the corresponding 
LUT input is connected somewhere in the design.

Next, a list containing the truth tables of all instan-
tiated LUTs, along with their coordinates in the bit-
stream, is extracted. This list is represented by a vector 
L = ((l1, c1),… , (ln, cn)) , where ci is the coordinate of LUT 
li in B , i ∈ {1,… , n}.

In step 4, the procedure Clean() is called with P and L 
as arguments to remove possible don’t-cares in the LUT’s 
function truth table. Obfuscation techniques such as [5] 
use these don’t-cares to camouflage a LUT’s truth table 
without adding any new input to the LUT and so does 
the watermarking scheme presented in [60]. Since there 
is a one-to-one mapping between LUT inputs and PIPs 
involving PJ3, the sub-vectors (pi,1,… , pi,ki ) of P provide 
information about ki input variables on which the function 
of the LUT li actually depends. Leveraging that, Clean 
updates the truth table of every LUT in L accordingly. 
Note that, in a non-obfuscated bitstream, this step would 
be unnecessary since this is how the vendor tools format 
LUT truth tables by default.

In steps 5–20, for each LUT li ∈ L and each of its 
instantiated inputs j ∈ {1,… , ki} , the truth table of li in B 
is modified to a truth table in which the jth variable is 
stuck-at-� . This is done by replacing f |xj=� = f |xj=� where 
f |xj=� denotes a subfunction of the function f (x1,… , xk) of 
the LUT li in which xj = � and �  is the Boolean 

Fig. 3   Visualisation of PIPs connected to LUT inputs



19Journal of Hardware and Systems Security (2023) 7:11–24	

1 3

complement (NOT) of � . The modifications are done 
directly in the bitstream.

The resulting modified bitstream B∗ is uploaded to the 
FPGA to compare its output sequence to the one of the 
original bitstream B . If the sequences are the same and li 
with the jth input fixed to � is not yet in the list of candi-
dates, S , then li is added to S along with its coordinate ci , 
input j, and stuck-at fault value � . If li with the jth input 
fixed to � is already in S , it is removed from S and added 
to a reserve list R . In this way, the full controllability of 
each single instantiated LUT input is assured.

Since ki ≤ 6 for any i ∈ {1,… , n} , the computational 
complexity of steps 5–20 is O(12n(t1 + t2)) , where t1 is the 
time to upload B∗ into the FPGA (step 9) and t2 is the time 
required to observe the output of B∗ in order to check its 
equivalence with B (step 10). Although the worse case com-
plexity of equivalence checking is exponential in the number 
of primary inputs of the design implemented by B , we found 
that cryptographic algorithms are quite sensitive to changes. 
In our SNOW 3G case study, observing 20 output words 
(640 keystream bits) was enough to get a list that contained 
all obfuscated LUTs in the design.

In steps 21–30, we repeat the process for multiple stuck-at 
faults at the instantiated inputs of each LUT in S . First, the 
number of occurrences of each LUT l in S , N(l), is counted. 
Since 4-tuples representing the same LUT with different 
instantiated inputs appear in S in order, the counting can be 
performed in O(|S|) time by recording the number of LUTs 
with the same coordinate c in S.

Let {�1,… , �N(l)} be a set of constants assigned to the 
inputs {j1,… , jN(l)} of a LUT l in S . In steps 22–30, for each 
l in S and each subset J of the set {j1,… , jN(l)} of size greater 
than 1, the truth table of l in B is modified to a truth table in 
which all inputs in the subset J are stuck-at the correspond-
ing constants in the subset A of the set {�1,… , �N(l)} . As 
in the single stuck-at fault case, the modifications are done 
directly in the bitstream.

The resulting modified bitstream B∗ is uploaded to the 
FPGA and emulated to compare its output sequence to the 
one of B . If the sequences are the same, then l is added to 
the set M along with its coordinate c, inputs J, and multiple 
stuck-at fault values A.

Since N(l) ≤ 6 for any l, we would need to consider ∑6

i=2
(6Ci) = 57 faults. Thus, the computational complexity of 

steps 22–30 is O(57n(t1 + t2)) . It should be noted that when 
N(l) = 6 the output of the LUT is also a constant since all 
the inputs are constant values. However, this would not apply 
if one or more stuck input detections were false-positives. 
Therefore, testing multiple faults for these cases is relevant.

The algorithm terminates by returning the union of 
S ∪ M.

The reason for creating the reserve list R is to include 
cases where logic obfuscation in a LUT is performed 

through multiple key values that mask single stuck-at faults 
(e.g. (key1 + key2) ⋅ z , where (key1, key2) = (1, 1) are the key 
values, and z is the obfuscated signal). Note that such a func-
tion is unlikely to be used for logic locking since three out 
of four possible key combinations can be used to unlock the 
design. If the execution of the presented algorithm does not 
provide sufficient deobfuscation, list R can be merged with 
list S and analysed as in steps 21–30. Alternatively, steps 
11-16 can be replaced by S = S ∪ (l�

i
, ci, j, �) to include the 

elements of R in S from the beginning7. The latter approach 
can introduce unnecessary overhead since any logic that 
does not contribute to the output is also included in the ele-
ments of R.

7 � Case Study: SNOW 3G Stream Cipher

We demonstrate the feasibility of FindObfuscated() algo-
rithm on the example of SNOW 3G stream cipher obfuscated 
with constants given by a simple hardware opaque predi-
cate. The design is implemented on a Xilinx 7-series FPGA 
(XC7A35T-2CPG236) using a VHDL description of SNOW 
3G kindly provided by the authors of the stream cipher.

7.1 � SNOW 3G Design Description

SNOW 3G is the backbone of the 3GPP confidentiality 
and integrity algorithms UEA2 and UIA2 [61] in UMTS, 
128-EEA1 and 128-EIA1 in LTE [62], GEA5 and GIA5 in 
Extended Coverage GSM for IoT (EC-GSM-IoT) [63], and 
128-NEA1 and 128-NIA1 in 5G New Radio (NR) [64].

SNOW 3G is a word-oriented binary additive stream 
cipher [65] which takes as input a 128-bit Initialization Vec-
tor (IV) and a 128-bit secret key, and produces a pseudoran-
dom sequence called keystream. Each keystream element is 

Fig. 4   SNOW 3G Block Diagram

7  Step 31 will also be omitted since there will be no list R.
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a 32-bit word. The encryption/decryption is performed by 
combining the keystream with plaintext/ciphertext.

Figure 4 shows a block diagram of SNOW 3G. The cipher 
consists of a 16-stage LFSR and a non-linear FSM. Like 
most stream ciphers, SNOW 3G has two modes of opera-
tion—initialization and keystream generation. In the initiali-
zation mode, marked by a dashed line in Fig. 4, the LFSR 
is loaded with a combination of the key and IV, the FSM is 
loaded with an all-0 state, and the cipher is clocked for 32 
cycles without producing any output. After that, the cipher 
enters the keystream generation mode, marked by a solid 
line in Fig. 4, in which one keystream word is generated per 
clock cycle.

SNOW 3G is resistant to classical cryptanalysis [66–70]; 
however, physical attacks on its implementations through 
cache timing side-channels [71], electromagnetic inference 
analysis [72], transient fault injection [73], and bitstream 
modification [3] have been reported.

7.2 � Obfuscated SNOW 3G Implementation

We implemented a protected version of SNOW 3G in which 
the part sensitive to fault injections, the FSM output, is 
obfuscated using constants created by a simple FSM-based 
hardware opaque predicate shown in Figs. 5 and 6.

The FSM opaque predicate illustrated in Fig. 5 has three 
states: one initialization state, INIT , and two states corre-
sponding to two different tasks, Task 1 and Task 2. The state 

machine stays in the initialization state until the execution 
of SNOW 3G is initiated. After that, it stays in Task 1 for a 
period smaller than the computation of the first SNOW 3G 
FSM output, and then traverses to Task 2, where it stays until 
the execution of the algorithm is completed. To represent 
the different states of such an FSM, two registers are used, 
FF0 and FF1 . From the values they take in each state (shown 
in Fig. 5), it is evident that both FF0 and FF1 can be used 
to supply a constant-1 for obfuscation purposes during the 
evaluation of the SNOW 3G FSM’s output.

As shown in Fig. 4, the output function of the SNOW 3G 
FSM is (S15 ⊞ R1)⊕ R2 . To obfuscate this function, we add 
an AND operation between the SNOW 3G FSM register R2 
and the state register FF1 of the hardware opaque predicate 
as shown in Fig. 6. Since FF1 is constant-1, the injection of 
the AND causes no deviation from the original functionality.

In [3], it is demonstrated that the injection of a stuck-
at-0 fault at the FSM output during the initialization can 
be exploited to extract the secret key of SNOW 3G. This 
is because, in this case, the LFSR state after the initializa-
tion depends entirely on the characteristic polynomial of the 
LFSR. Thus, by analysing the keystream, it is possible to 
reverse the LFSR to its initial state and recover the key-IV 
combination which is loaded in it. To perform the attack, the 
LUTs implementing the SNOW 3G FSM output have to be 
identified and modified. However, the logic of the function 
is now changed in a way unknown to the potential adversary; 
thus, the attack fails since locating the relevant LUTs in the 
bitstream is not possible.

7.3 � Deobfuscating SNOW 3G

We developed a software package implementing the Fin-
dObfuscated() algorithm. The package uses the project 
Xray [12] to reverse engineer the bitstream format, python 
scripts to automate the processing of the PIP and LUT lists 

Fig. 5   FSM implementing a simple opaque predicate

R₁
D Q

S₁₅
D Q

FF₁
D Q

R₂
D Q

++++

Fig. 6   Obfuscated SNOW 3G FSM output logic
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extracted from the bitstream, and tcl scripts to automate 
the uploading of the bitstreams into the FPGA. We used 
the package to deobfuscate the protected implementation 
of SNOW 3G described in the previous subsection. The 
size of the LUT list L recovered by reverse engineering 
in step 3 of FindObfuscated() was n = 3107 (the number 
of LUTs reported by Vivado is n = 3053 ). The size of the 
PIP list P recovered by reverse engineering in step 2 was ∑n

i=1
(n ⋅ ki) = 12, 533 (compare to 6n = 18, 642 ). It takes 24 

seconds to compute both lists.
The modified bitstreams B∗ created in steps 5–8 were 

uploaded to the FPGA one by one in step 9. To upload one 
bitstream into the FPGA, generate 20 keystream words (640 
bits) of B∗ and verify the equivalence of the keystreams of 
B
∗ and B requires t1 + t2 = 6.3 secs on average.

The number of LUTs that contain candidate stuck at 
faults is 1044. In Table 2, the distribution of the candidate 
stuck-at faults in these LUTs is presented. To test multi-
ple stuck-at faults in the algorithm steps 22–30, a total of ∑2

i=2
(2Ci

) × 464 +
∑3

i=2
(3Ci

) × 178 +
∑4

i=2
(4Ci

) × 38+∑5

i=2
(5Ci

) × 10 = 1854 multiple faults have to be evaluated 
with one bitstream for each.

The set of deobfuscated LUT candidates returned by Fin-
dObfuscated() contained all LUTs implementing SNOW 
3G FSM output because redundant inputs of these LUTs 
behave as undetectable stuck-at faults during the execution 
of SNOW 3G. Since all points of interest for fault injection 
are discovered, after deobfuscation it is possible to extract 
the secret key of SNOW 3G through a bitstream modifica-
tion attack as in [3].

The bitstreams analysed in our experiments are available 
at https://​github.​com/​Micha​ilM7/​FPGA-​Design-​Deobf​uscat​ion. 

8 � Discussion

In this section, we discuss the critical factors that affect the 
runtime of the proposed algorithm, the problem of false-
positive detections, and how fault masking can affect the 
algorithm’s performance.

8.1 � Runtime

In the experimental results of Section  7, the presented 
method is evaluated against a simple FSM-based opaque 
predicate where no considerations about its stealthiness are 
made. Replacing it with a more sophisticated and stealthy 
one will not affect the success rate of our algorithm. This is 
because our method does not search for the hardware opaque 
predicate itself, but for the LUT inputs that behave as unde-
tectable stuck-at faults during the execution of the imple-
mentation under attack. Our approach evaluates exhaustively 
every used LUT input in a brute-force manner. This guar-
antees that every LUT input connected to a constant (or to 
a signal that behaves as constant during execution) will be 
identified as a candidate by FindObfuscated() regardless of 
the way the constant is generated.

The runtime of the proposed algorithm depends on the 
number of LUTs and the degree of LUT occupancy or, in 
other words, the total number of LUT inputs that are active 
in the design. Sophisticated opaque predicates have a mini-
mal area overhead which contributes to their stealthiness, for 
example, the LUT overhead in [39] is reported to be 1–2.2%. 
As a result, such opaque predicates will cause an equally 
minimal increase in the runtime of FindObfuscated().

8.2 � False‑Positive Analysis

Apart from stuck-at LUT inputs, the candidate list returned 
by FindObfuscated() will include any unobservable single 
stuck-at fault in the design. In the context of our method, these 
unobservable stuck-at faults are considered false-positives. 
However, the identification of an unobservable stuck-at fault 
requires exhaustive simulation. In our experiments we do not 
exhaustively test every possible input assignment; instead, we 
run SNOW 3G with a constant key and observe a limited 
number of outputs (640 bits). As a result, many of the false-
positive detections are not unobservable faults but faults that 
we either failed to propagate with an appropriate input assign-
ment or faults for which we did not observe a sufficiently long 
output sequence to detect.

Ruling out the false-positives is a very hard task. A 
brute-force method leads to exponential complexity since 
it requires the evaluation of every possible combination of 
the candidate stuck-at faults. However, identifying false-
positives is not always necessary to perform an attack. For 
bitstream modification attacks of scenario 1 (presented in 
subsection 5.2), the adversary needs to only identify a criti-
cal target function. Since the critical function will appear in 
the list returned by FindObfuscated(), the goal is completed 
and the remaining detections are ignored. On the other hand, 
to defeat logic locking (attack scenarios 2 and 3), all the 
LUT inputs connected to a key bit have to be modified; and 

Table 2   Number of LUTs with multiple candidate stuck-at inputs

# of stuck inputs # LUTs

1 354
2 464
3 178
4 38
5 10
6 0

https://github.com/MichailM7/FPGA-Design-Deobfuscation
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therefore, all false-positives have to be detected. Since a 
brute-force strategy is infeasible, even for moderately sized 
designs, the adversary has to further reverse engineer the 
bitstream and recover a flattened netlist. By analysing the 
netlist, the candidate stuck-at inputs can be grouped into 
nets and the logic that generates their values can be traced. 
Then the adversary will evaluate which of these logic struc-
tures can be generating the logic keys and make a series of 
educated guesses to find the subset of the candidates that are 
the logic locking keys.

8.3 � Fault Masking

The core idea of the presented method is to introduce stuck-
at faults and observe their effect. If the effect of the faults 
cannot be observed in the output then our approach would 
not work. Therefore, applying fault masking in the obfus-
cated/locked logic can make the application of our approach 
significantly harder or even completely prevent it. In this 
subsection, we discuss how fault masking with redundancy 
addition can impact our approach and a possible way to work 
around it.

Fault masking is a fault-tolerant technique that is tradi-
tionally used to allow the correct functioning of a circuit 
in the presence of faults. The most popular fault masking 
scheme is the triple modular redundancy (TMR) [74]. In 
TMR, a critical module is triplicated and the outputs of the 
three modules are given to a majority voter. The voter gives 
the correct output as long as at least two of the modules are 
operating correctly. Therefore, TMR offers tolerance to any 
number of faults as long as they are concentrated on one 
module. However, this comes at the expense of a consider-
able hardware overhead. In [35], TMR is used as part of a 
logic locking scheme.

In our analysis, we assume a design that has critical logic 
functions obfuscated with sufficiently stealthy constant val-
ues (attack scenario 1) and is also protected with TMR. Each 
of the three modules is obfuscated in a different way to avoid 
detection (functional duplication). The majority voter unit is 
also obfuscated. The goal of the adversary is to remove the 
obfuscation from the critical function.

The presented approach relies on observing differences in 
the output after the injection of single stuck-at faults, some-
thing that TMR completely prevents. To be able to propagate 
a fault, the same fault needs to be injected in two modules at 
the same time. Without any knowledge about the location of 
the TMR modules, we would need to test length(P)C2 pairs of 
fault injections, where P is the list of all utilised inputs of all 
utilised LUTs in a design as defined in Section 6. Applying 
that on the SNOW3G implementation of Section 7 would 
require the testing of 12,533C2 × 22 = 314, 127, 112 faults 
which is infeasible.

To work around that, prior to applying our method, a 
bitstream modification attack targeting the TMR voter is 
required. Even though the voter unit is obfuscated, it is not 
protected with fault masking; thus, applying our method 
will deobfuscate it. After that, by considering possible voter 
implementations, mapping them into LUTs and searching for 
them in the deobfuscated LUT initialization vectors returned 
from our algorithm, the identification of the voter becomes 
possible. After the voter is identified, its logic can be eas-
ily modified to constantly output the response of one of the 
TMR modules. This modification removes the TMR since 
the remaining two modules get disconnected from the out-
put and single stuck-at faults in the remaining module can 
propagate to the output. Therefore, with the proposed worka-
round, the adversary needs to execute our algorithm twice 
and perform a bitstream modification attack in between. 
Apart from doubling the runtime, this makes the applica-
tion of our method much harder since the step of identifying 
the voter circuit requires further reverse engineering and a 
skilled attacker.

9 � Conclusion

We proposed a new method for FPGA design deobfus-
cation based on ensuring the full controllability of each 
instantiated LUT input in a design via iterative LUT modi-
fication at bitstream level. We implemented the presented 
method in a software package and demonstrated its feasi-
bility on the example of a SNOW 3G stream cipher FPGA 
implementation.

By providing a novel methodology for testing the resist-
ance of obfuscation strategies, our findings are expected to 
contribute to the assurance of FPGA design security.
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