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Abstract
Collision process is crucial to the transport in magnetized plasmas. This article 
reviews the three typical approaches, i.e. the Fokker-Planck (FP) approach, the 
Bogoliubov-Born-Green-Kirwood-Yvon (BBGKY) approach, and the quasilinear 
(QL) approach, to deriving the kinetic equation for weakly coupled uniformly mag-
netized plasmas. The collision terms derived based on these three approaches are 
shown to be identical and satisfy the conservation laws and H theorem. Relatively 
speaking, the BBGKY and QL approaches are more systematic and readily to be 
generalized from weakly magnetized plasmas to strongly magnetized plasmas. The 
FP approach is pretty simple for weakly magnetized plasmas and has the advantage 
that the collision term derived based on it can be naturally separated into two parts, 
one part arising from the polarization and the other from the correlation of the fluc-
tuating electrostatic field. However, the usual form of the FP equation is not suitable 
for strongly magnetized plasmas. To derive the magnetized collision term based on 
the FP approach, a general form of the FP equation for magnetized plasmas has to be 
found first.
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1  Introduction

Kinetic equation describing the evolution of particle distribution functions is cen-
tral to plasma physics, in which the collision term plays a very important role. It 
can serve not only as the starting point of the kinetic description of plasmas but 
also as the basis to derive the fluid equations for the fluid description of plas-
mas. Therefore, kinetic equation is fundamental for the study and understanding 
of various plasma processes including waves (Stix 1992), instabilities (Goldston 
and Rutherford 1995), transport (Spitzer and Härm 1953; Braginskii 1965), and 
so on. Derivation of a kinetic equation as accurate as possible is thus a longstand-
ing subject in plasma physics.

The first kinetic equation was developed by Boltzmann (1872) using the binary 
collision (BC) model for molecular gases which have short-range interactions. 
The Boltzmann collision term provides a valid description for well-separated 
BCs. When applied to charged particles interacting through long-range Coulomb 
forces, it breaks down in the sense that it is divergent logarithmically when the 
impact parameter b → ∞ . This divergence is due to the omission of the collective 
interactions since many particles interact simultaneously for the collisions with 
b larger than the mean interparticle spacing, and can be cured by introducing for 
the impact parameter an upper cutoff at the Debye length �D by taking account of 
the Debye screening (Montgomery and Tidman 1964). For the weakly coupled 
plasmas with Γ ≪ 1 , where Γ is the Coulomb coupling parameter defined as the 
ratio of the mean interaction Coulomb potential energy between the charged par-
ticles to the mean particle kinetic energy, the distant collisions with b larger than 
the Landau length �L producing weak deflections play the dominant role (Cohen 
et  al. 1950). �L corresponds to the interparticle spacing at which the Coulomb 
interaction energy becomes of the order of the mean particle kinetic energy. By 
expanding the Boltzmann collision term in powers of the velocity change in a BC 
and retaining terms up to the second order, the Landau collision term could be 
derived (Montgomery and Tidman 1964; Landau 1965). Besides the divergence 
as b → ∞ , the Landau collision term also diverges logarithmically as b → 0 . This 
divergence is due to the unperturbed rectilinear particle trajectory approxima-
tion made for the BC process and can be removed by introducing for the impact 
parameter a lower cutoff at �L (Landau 1965). It seems that the divergence issues 
appearing in the Boltzmann and Landau collision terms can be healed through 
introducing appropriate cutoffs for the impact parameter. However, the simple 
semi-intuitive argument of scattering particles into or out of a volume element 
in the velocity space based on which the Boltzmann collision term was derived is 
not appropriate for the weakly coupled plasmas in which each particle undergoes 
many distant collisions during the time in which the particle travels over its mean 
free path �mfp ∼ Γ−3∕2�D (Cohen et al. 1950).

For the weakly coupled plasmas, there are three typical approaches to deriv-
ing the kinetic equation: the Fokker-Planck (FP) approach, the Bogoliubov-Born-
Green-Kirwood-Yvon (BBGKY) approach, and the quasilinear (QL) approach. 
The FP equation (Fokker 1914; Planck 1917) was originally developed to describe 
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the Brownian motion (Einstein 1906). It is well-suited to handle the physical pro-
cesses in which the interactions are very frequent but most are quite weak. This 
is exactly the main feature of the collisions in the weakly coupled plasmas. The 
key point of the FP approach is to calculate the FP coefficients. In the BC model, 
usually only the first and second order FP coefficients referred to as the dynami-
cal friction and diffusion coefficients, respectively, are retained and calculated 
within the logarithmic accuracy (Rosenbluth et al. 1957). When higher accuracy 
is required for the moderately-coupled plasmas, higher order FP coefficients need 
to be kept as well (Li and Petrasso 1993a, b). Since the collective interactions are 
not taken into account, a natural upper cutoff at �D for the impact parameter is 
usually introduced to remove the divergence within the BC model (Rosenbluth 
et  al. 1957; Li and Petrasso 1993a, b). This difficulty can be overcome by cal-
culating the FP coefficients based on the wave theory (Thompson and Hubbard 
1960; Hubbard 1961a, b). In the wave theory, the fluctuating electric field can be 
first evaluated by combining the linearized Vlasov equation and Poisson equation 
in the electrostatic approximation, and then used to calculate the FP coefficients. 
In this way, the collective interactions are properly considered, making it unnec-
essary to artificially introduce a cutoff for the collisions with b > 𝜆D . However, 
the close collisions with b < 𝜆L are not treated appropriately in the wave theory. 
Consequently, a upper cutoff for the wavenumber k at 1∕�L has to be introduced 
to suppress the divergence of the FP coefficients (Thompson and Hubbard 1960; 
Hubbard 1961a). A satisfactory synthesis of the BC theory and wave theory has 
been made by Hubbard (1961b), in which both the collective interactions and the 
contribution from the close collisions are considered in a proper manner. In such 
a theory, no artificial cutoffs need to be introduced.

Compared to the FP approach, the BBGKY approach is a more systematic way 
to derive the kinetic equation. Its starting point is the first two equations of the 
BBGKY hierarchy for the evolution of the one-particle and two-particle distribu-
tion functions, respectively (Montgomery and Tidman 1964; Ichimaru 1992). These 
two equations can be made to be a closed set using the Mayer cluster expansions 
and neglecting the three-particle correlation (Lenard 1960; Montgomery and Tid-
man 1964; Ichimaru 1992). In this case, the collision term is determined by the 
two-particle correlation functions. In principle, the BBGKY approach can simulta-
neously take into account the collective interactions and the contribution from the 
close collisions. However, in such a case, the evolution equation of the two-particle 
correlation function becomes rather complex. It is usually assumed that the two-
particle correlation function is small compared to the product of the corresponding 
two one-particle distribution functions, which is untenable for the close collisions. 
Under this assumption, using the Bogoliubov’s adiabatic hypothesis that the two-
particle correlation functions relax much faster than the one-particle distribution 
functions, the two-particle correlation function can be analytically solved (Lenard 
1960; Montgomery and Tidman 1964; Ichimaru 1992). Then, the collision term can 
be obtained commonly referred to as the Balescu-Lenard-Guernsey (BLG) collision 
term (Lenard 1960; Balescu 1960; Guernsey 1962). The BLG collision term takes 
account of the collective interactions and thus shows no divergence as k → 0 cor-
responding to b → ∞ . However, it diverges as k → ∞ corresponding to b → 0 since 
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the close collisions are not treated properly. Consequently, an upper cutoff for the 
wavenumber at kmax = 1∕�L is generally introduced in the BLG collision term.

The QL approach is another systematic but much simpler method than the 
BBGKY approach to derive the kinetic equation. Through taking the statistical aver-
age of the Klimontovich equation, the kinetic equation can be obtained with the col-
lision term expressed as the divergence with respect to the velocity of the statistical 
average of the product of the electric field and distribution function fluctuations in 
the electrostatic approximation (Lifshitz and Pitaevskii 1981; Klimontovich 1982; 
Chavanis 2012; Schlickeiser and Yoon 2022). In the polarization approximation 
(Klimontovich 1982), the electric field and distribution function fluctuations can be 
determined through combining the linearized Vlasov equation and Poisson equation 
as the wave theory used to calculate the FP coefficients. In this way, the collective 
interactions are included automatically but the close collisions are not treated prop-
erly as the nonlinear terms involving the product of the electric field and distribution 
function fluctuations are neglected in the fluctuation part of the Klimontovich equa-
tion. As a result, a cutoff at large wavenumber corresponding to small impact param-
eter has to be introduced to eliminate the divergence.

The three approaches described above are equivalent in deriving the BLG colli-
sion term for plasmas and are also generalized to systems with power-law potentials 
in different dimensions of space (Chavanis 2012, 2013a, b). Relatively speaking, 
the FP approach is rather straightforward while the BBGKY and QL approaches are 
more systematic. When the collective effects are neglected, the BLG collision term 
reduces to the Landau collision term.

The collision terms described above do not take account of the magnetic field 
effects and thus applies only to unmagnetized plasmas and weakly magnetized 
plasmas in which all the plasma species’ gyration periods are much longer than 
the duration of the collision process. For the strongly magnetized plasmas where 
there exist particle species with gyration period shorter than the collision duration, 
the magnetic field affects the species’ trajectories remarkably in the collision pro-
cess and its effects on the collision term have to be considered. The strong mag-
netization condition can alternatively be expressed as the particle species’ thermal 
gyro-radius smaller than �D or the species’ gyro-frequency larger than its plasma 
frequency. Plasmas with a strongly magnetized component are found in many 
instances such as the antimatter traps (Fajans and Surko 2020), non-neutral plasmas 
(Anderegg et al. 1997; Hollmann et al. 1999; Affolter et al. 2016, 2018), ultracold 
neutral plasmas (Zhang et al. 2008; Gorman et al. 2021), tokamak scrape-off layer 
plasmas (Greenwald et al. 2014; Creely et al. 2020), astrophysical plasmas (Hard-
ing and Lai 2006; Valyavin et  al. 2014), laser plasmas (Wilks et  al. 1992; Mason 
and Tabak 1998), strongly anisotropic plasmas (Kennedy and Helander 2021a, b) 
due to cyclotron emission and so on. In such strongly magnetized plasmas, consid-
eration of the magnetic field in the collisions will significantly affect the collisional 
transport processes, such as the friction force (Matsuda 1982; Ware 1989; Lafleur 
and Baalrud 2019; Bernstein et  al. 2020; Bernstein and Baarlrud 2021), electron 
cooling (Sørensen and Bonderup 1983; Nersisyan et  al. 2007; Men’shikov 2008; 
Nersisyan and Zwicknagel 2013; Evans et al. 2018; Cohen et al. 2019), resistivity 
(Daybelge 1969; Ghendrih et al. 1987; Baalrud and Lafleur 2021; Dong et al. 2022), 
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temperature relaxation (Aliev and Silin 1963; Silin 1963; Ichimaru and Rosenbluth 
1970; Montgomery et al. 1974; Øien 1995; Dong et al. 2013a, b; Yoon 2016), per-
pendicular particle (Aliev and Shister 1964; Ichimaru and Tange 1974; Matsuda 
1983; Øien 1995; Anderegg et al. 1997; Dubin 1997) and thermal transport (Aliev 
and Shister 1964; Psimopoulos and Li 1992; Dubin and O’Neil 1997; Hollmann 
et al. 1999), etc. All the above discussed three approaches have been successfully 
generalized to deriving the kinetic equation for the strongly magnetized plasmas. 
Apart from the more complex derivation, there is no essential difference in applying 
the BBGKY (Rostoker and Rosenbluth 1960; Rostoker 1960; Silin 1963; Hassan 
and Watson 1977; Øien 1995) and QL (Klimontovich 1982; Yoon 2016) approaches 
to deriving the magnetized collision term. Relatively speaking, the generalization of 
the FP approach to strong magnetization cases is not so smooth. In strongly magnet-
ized plasmas, the particle’s velocity change arising from the gyromotion during the 
collision process is comparable to the velocity itself. This makes the contribution 
to the collision term from the high order moments of the velocity change cannot 
be neglected. As a result, the usual form of the FP equation becomes inapplicable 
in this case. This issue was addressed by Dong et  al. (2016) using the coordinate 
transform method (Newman 1973). They derived a general form of the FP equa-
tion for spatially homogeneous magnetized plasmas. Employing the BC theory and 
wave theory to calculate the magnetized FP coefficients, respectively, the magnet-
ized Landau collision term (Dong et al. 2016) and BLG collision term (Dong et al. 
2017) were reproduced.

In this paper, we shall attempt to present a systematic survey of the theoretical 
knowledge of the collision term for magnetized plasmas. Two cases are distinguished. 
One is the weakly magnetized plasmas where the thermal gyro-radii of all the plasma 
species are smaller than �mfp but larger than �D . In this case, the collisions can be 
viewed as occurring in the absence of a magnetic field. Thus, the collision term is the 
same as that of unmagnetized plasmas. The other is the strongly magnetized plasmas 
where the thermal gyro-radii of all the plasma species are much larger than �L but at 
least one of them is smaller than �D . If the collisions involve one species with thermal 
gyro-radius smaller than �D , the magnetic field effects have to be taken into account. In 
most instances, the collision term can be derived for a magnetized plasma without dis-
tinguishing whether it is weakly magnetized or strongly magnetized. To better describe 
the approaches and processes of deriving the collision terms and show the differences 
between the collision terms for weak and strong magnetization, the two cases with-
out magnetic field and with a uniform magnetic field are actually treated in the paper. 
For the no magnetic field case, spatially inhomogeneous plasmas are considered but 
the collisions are treated in a local approximation, while for the case with a uniform 
magnetic field, only spatially homogeneous plasmas are considered. Most of the dis-
cussion in the paper adopts the perturbation method, i.e., integration along the unper-
turbed orbits, or the linear response theory. The novel effects from reflection (O’Neil 
1983; Psimopoulos and Li 1992; Dong et  al. 2019) and "collisional caging" (Dubin 
1997, 2014) due to velocity diffusion in guiding center collisions are set aside, partly 
because the relevant research is not well systematic and flawless from the viewpoint of 
obtaining a collision term. Readers interested in these respects can refer to the series of 
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work of the UCSD group (O’Neil 1983; Anderegg et al. 1997; Dubin 1997; Dubin and 
O’Neil 1997; Hollmann et al. 1999; Dubin 2014; Affolter et al. 2016, 2018).

The rest of the paper is organized as follows: Sects. 2, 3, and 4 focus on the deriva-
tion of the collision term based, respectively, on the FP, BBGKY, and QL approaches 
with one subsection discussing the case without magnetic field and the other subsection 
the case with a uniform magnetic field. Sect. 5 presents some properties of the magnet-
ized collision term. Conservation of particle number, momentum, and energy is proven. 
It is also shown that the magnetized collision term satisfies the H theorem and ensures 
the distribution function be nonnegative. Finally, a conclusion is given in Sect. 6.

2 � Derivation of the collision term based on the FP approach

2.1 � The case without B

Each particle experiences abundant collisions during the time in which it travels over 
�mfp in a weakly coupled plasma. It has been demonstrated that the distant collisions are 
more important than the close collisions (Cohen et al. 1950). The particle’s diffusion in 
the velocity space caused by the collisions closely resembles that of a Brownian parti-
cle in the configuration space and is well described by the FP equation (Chandrasekhar 
1943). For conciseness, a six-dimensional vector X� ≡ (r� , v�) consisting of the posi-
tion vector r� and velocity vector v� is introduced for the � ( �, �, �… denote particle 
species) particle. Under the Markoffian hypothesis, the � particle distribution function 
f�(X� , t + Δt) at time t + Δt in the phase space X� can be determined from its value 
f�(X� , t) at time t by the following integral equation (Chandrasekhar 1943):

where p�(X� , t + Δt;X�0, t) is the transition probability giving the probability that 
the � particle is at X� at t + Δt when it is at X�0 at t, and satisfies the normalization 
condition

The time interval Δt should be chosen to be much larger than the correlation time �c 
of the fluctuations. For a quiescent plasma, �c is approximately of the order of the 

plasma oscillation period �−1
p�

=
√

�0m�∕(n�q
2
�
) with �0 being the permittivity of 

the vacuum and q� , m� , and n� the charge, mass, and density of the � particle, respec-
tively. By means of the variable substitution ΔX� = X� − X�0 , we get from Eq. (1)

Taylor expansion of both p�(X� , t + Δt;X� − ΔX� , t) and f�(X� − ΔX� , t) over ΔX� 
in the above equation and invoking Eq. (2), we obtain after some rearrangements

(1)f�(X� , t + Δt) = ∫ p�(X� , t + Δt;X�0, t)f�(X�0, t) d
6
X�0,

(2)∫ p�(X� , t + Δt;X�0, t) d
6
X� = 1.

(3)f�(X� , t + Δt) = ∫ p�(X� , t + Δt;X� − ΔX� , t)f�(X� − ΔX� , t) d
6ΔX� .
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where the summation convention over repeated indices in is assumed in the phase 
space and ⟨(ΔX�)

n⟩ defined by

is the nth order FP coefficient denoting the time and statistical average of (ΔX�)
n . 

When the characteristic time scale �s of change of f� is much larger than �c , one can 
find Δt satisfying 𝜏c ≪ Δt ≪ 𝜏s . In this case,

Eq. (4) thus becomes

The above equation includes all the moments of ΔX� . Recall that ΔX� ≡ (Δr� , Δv�) 
is a six-dimensional vector. Since the average of Δv� is much smaller than v� , Δr� is 
approximately given by

Assuming the collisions occur locally and neglecting the effects on the particles’ 
trajectories during the collision process of the macroscopic electric field E = ⟨EM⟩ 
which is the statistical average of the microscopic electric field EM , Δv� can be 
divided into two parts,

The first part represents the change of v� due to E which is treated as time inde-
pendent during the collision process. The second part represents the change of v� 
due to the fluctuating electric field �E = E

M − E and corresponds to the collisions. 
⟨(ΔX�)

n⟩ can be obtained using Eqs. (8) and (9). Keeping only the zeroth order 
terms in Δt , we get

Substituting the above two equations into Eq. (7) gives

(4)
f�(X� , t + Δt) − f�(X� , t)

Δt
=

∞�
n=1

(−1)n

n!

�n[⟨ΔX�i1
⋯ΔX�in

⟩f�(X� , t)]

�X�i1
⋯ �X�in

,

(5)⟨(ΔX�)
n⟩ ≡ 1

Δt � (ΔX�)
np�(X� + ΔX� , t + Δt;X� , t) d

6ΔX�

(6)
f�(X� , t + Δt) − f�(X� , t)

Δt
≈

�f�(X� , t)

�t
.

(7)
�f�

�t
=

∞�
n=1

(−1)n

n!

�n[⟨ΔX�i1
⋯ΔX�in

⟩f�]
�X�i1

⋯ �X�in

.

(8)Δr� ≈ v�Δt.

(9)Δv� =
q�

m�

EΔt + Δvc
�
.

(10)⟨ΔX�⟩ ≈
�
v� ,

q�

m�

E + ⟨Δvc
�
⟩
�
,

(11)⟨(ΔX�)
n⟩ ≈ ⟨(Δvc

�
)n⟩, n ≥ 2.
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where the summation over repeated indices jn is performed in the velocity space and 
the superscript c in Δvc

�
 is omitted without causing any ambiguity. For the weakly 

coupled plasmas with the Coulomb logarithm lnΛ ∼ ln(Γ−3∕2) larger than 10, usu-
ally only the terms involving the friction coefficient ⟨Δv�⟩ and diffusion coefficient 
⟨Δv�Δv�⟩ are retained within the logarithmic accuracy. In this case, Eq. (12) reduces 
to

This is the famous FP equation for unmagnetized plasmas. The right-hand side 
(RHS) is the FP collision term comprising a convective term and a diffusion term. 
⟨Δv�⟩ and ⟨Δv�Δv�⟩ can be calculated based either on the BC theory or on the wave 
theory. The detailed calculation procedures are reviewed below.

2.1.1 � Calculation of ⟨1v˛⟩ and ⟨1v˛1v˛⟩ based on the BC theory

In the BC theory, ⟨Δv�⟩ and ⟨Δv�Δv�⟩ result from the successive BCs and in a local 
approximation are given by

where Δv
��

 is the velocity change of the � particle during a BC specified by a rela-
tive velocity v�� ≡ v� − v� and a vector b with the � particle. v�� ≡ |v�� | . The length 
of b is the impact parameter b which is the distance of closet approach between 
the two colliding particles when their mutual interaction is not considered, and its 
direction is pointing from the � particle to the � particle when the distance of clos-
est approach is reached. d2b = bdbd� with � being the angle between b and a fixed 
plane containing v�� . Δv��  is directly related to the relative velocity change Δv�� by

where m�� ≡ m�m�∕(m� + m�) is the reduced mass. Expressed in terms of the scat-
tering angle � for v�� , Δv��  is given by

(12)
�f�

�t
+ v� ⋅

�f�

�r�
+

q�

m�

E ⋅

�f�

�v�
=

∞�
n=1

(−1)n

n!

�n[⟨Δv�j1 ⋯Δv�jn⟩f�]
�v�j1 ⋯ �v�jn

,

(13)

�f�

�t
+ v� ⋅

�f�

�r�
+

q�

m�

E ⋅

�f�

�v�
= −

�

�v�
⋅

�⟨Δv�⟩f�
�

+
1

2

�2

�v��v�
∶
�⟨Δv�Δv�⟩f�

�
.

(14)⟨Δv�⟩ =
�
�

∫ d
3
v� ∫ d

2
bΔv

��
v�� f�(v�),

(15)⟨Δv�Δv�⟩ =
�
�

∫ d
3
v� ∫ d

2
bΔv

��
Δv

��
v�� f�(v�),

(16)Δv
��

=
m��

m�

Δv�� ,
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where b̂ ≡ b∕b , v̂𝛼𝛽 ≡ v𝛼𝛽∕v𝛼𝛽 , and s�� = 1 for the repulsive interactions and −1 for 
the attractive interactions. Using the Rutherford scattering formula

for the bare Coulomb interaction, where b0 ≡ |q�q�|∕(4��0m��v
2

��
) is the impact 

parameter for which � = 90◦ , Δv
��

 can be expressed as

Substituting the above expression for Δv
��

 into Eqs. (14) and (15) and carrying out 
the integrals over � gives

where � is the unit dyadic. The integrals over b in the above two equations are diver-
gent as b → ∞ . The divergence arises from the neglect of collective interactions in 
the BC theory. To cure the divergence, an upper cutoff at �D = (

∑
� �

−2
D�
)−1∕2 is intro-

duced for b where �D� =
√

�0kBT�∕(n�q
2
�
) is the � particle Debye screening length 

with kB being the Boltzmann constant and T� the temperature of the � particle. Car-
rying out the integrals over b in Eqs. (20) and (21) thus gives

(17)Δv
𝛼𝛽

=
m𝛼𝛽

m𝛼

[
s𝛼𝛽v𝛼𝛽 sin 𝜃b̂ + v𝛼𝛽(cos 𝜃 − 1)v̂𝛼𝛽

]
,

(18)tan
�

2
=

b0

b

(19)Δv
��

=
2m��

m�

b0(s��v��b − b0v��)

b2 + b2
0

.

(20)⟨Δv�⟩ = −
�
�

4�m��

m�
∫ d

3
v� ∫

∞

0

db
b2
0
b

b2 + b2
0

v��v�� f�(v�),

(21)

⟨Δv𝛼Δv𝛼⟩ =
�
𝛽

4𝜋m2

𝛼𝛽

m2
𝛼

∫ d
3
v𝛽 ∫

∞

0

db
b2
0
b[v2

𝛼𝛽
b2(� − v̂𝛼𝛽 v̂𝛼𝛽) + 2b2

0
v𝛼𝛽v𝛼𝛽]

(b2 + b2
0
)2

× v𝛼𝛽 f𝛽(v𝛽),

(22)⟨Δv�⟩ = −
�
�

q2
�
q2
�

4��2
0
m�m��

∫ d
3
v� f�(v�)

v��

v3
��

ln

�����2
D

b2
0

+ 1,

(23)

⟨Δv𝛼Δv𝛼⟩ =
�
𝛽

q2
𝛼
q2
𝛽

4𝜋𝜀2
0
m2

𝛼
∫ d

3
v𝛽

f𝛽(v𝛽)

v𝛼𝛽

�
𝜆2
D

𝜆2
D
+ b2

0

v̂𝛼𝛽 v̂𝛼𝛽

+

⎛⎜⎜⎝
ln

����𝜆2
D

b2
0

+ 1 −
1

2

𝜆2
D

𝜆2
D
+ b2

0

⎞⎟⎟⎠
�
� − v̂𝛼𝛽 v̂𝛼𝛽

��
.
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Approximating �2
D
∕b2

0
+ 1 to be �2

D
∕b2

0
 and �2

D
∕(�2

D
+ b2

0
) to be 1, Eqs. (22) and (23) 

are identical with the results of Li and Petrasso (1993b). For the weakly coupled 
plasmas, the ratio of �D to the average value of b0 is a very large number in the sense 
that its logarithm is much larger than 1. Within the logarithmic accuracy, the terms 
of the order of unity can be neglected compared to the big logarithm and the weak 
dependence of the logarithm on v�� can be eliminated by choosing v2

��
∼ v2

th�
+ v2

th�
 

where vth�(�) ≡ √
kBT�(�)∕m�(�) is the � (�) particle thermal velocity. In this way, 

⟨Δv�⟩ and ⟨Δv�Δv�⟩ are simplified to

where Γ�� ≡ q2
�
q2
�
lnΛ∕(4��2

0
m2

�
) , lnΛ = ln(�D∕�L) , and �L = |q�q�|∕[4��0m��

(v2
th�

+ v2
th�
)] . It is clear that �L is approximately the average of b0 over the particle 

velocity distributions and inversely proportional to the plasma temperature. It is gen-
erally regarded as the impact parameter value that distinguishes the close and distant 
collisions.

In terms of the Rosenbluth-Trubnikov potentials (Rosenbluth et al. 1957; Trub-
nikov 1965):

⟨Δv�⟩ and ⟨Δv�Δv�⟩ can be rewritten as

which can be verified by directly substituting h� and g� given in Eqs. (26) and (27) 
into the above two equations and invoking the following two identities:

(24)⟨Δv�⟩ = −
�
�

Γ��

m�

m��
∫ d

3
v� f�(v�)

v��

v3
��

,

(25)⟨Δv𝛼Δv𝛼⟩ =
�
𝛽

Γ𝛼𝛽 ∫ d
3
v𝛽 f𝛽(v𝛽)

� − v̂𝛼𝛽 v̂𝛼𝛽

v𝛼𝛽
,

(26)h�(v) ≡ � d
3
v�

f�(v�)

|�� − v| ,

(27)g�(v) ≡ � d
3
v� f�(v�)|v� − v|,

(28)⟨Δv�⟩ =
�
�

Γ��

m�

m��

�h�(v�)

�v�
,

(29)⟨Δv�Δv�⟩ =
�
�

Γ��

�2g�(v�)

�v��v�
,
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h� and g� are called the potential functions as they satisfy the differential equations 
of similar form as the Poisson equation for the electrostatic potential,

Using ⟨Δv�⟩ and ⟨Δv�Δv�⟩ given in Eqs. (28) and (29), the collision term C� can be 
expressed in a very compact form:

Another very useful form of C� is the Landau form. Using the identity:

and ⟨Δv�Δv�⟩ in Eq. (25), ⟨Δv�⟩ in Eq. (24) can be re-expressed as

Noting that

and integrating by parts over v� , we find from Eq. (36)

(30)
�

�v�

1

v��
= −

v��

v3
��

,

(31)
𝜕2v𝛼𝛽

𝜕v𝛼𝜕v𝛼
=

� − v̂𝛼𝛽 v̂𝛼𝛽

v𝛼𝛽
.

(32)∇2

v
h�(v) = −4�f�(v),

(33)∇2

v
g�(v) = 2h�(v).

(34)C�(f�) = −
∑
�

Γ��

�

�v�
⋅

[
f�

m�

m��

�h�

�v�
−

1

2

�

�v�
⋅

(
f�

�2g�

�v��v�

)]
.

(35)
𝜕

𝜕v𝛼
⋅

� − v̂𝛼𝛽 v̂𝛼𝛽

v𝛼𝛽
= −

2v𝛼𝛽

v3
𝛼𝛽

(36)

⟨Δv𝛼⟩ =
�
𝛽

Γ𝛼𝛽

m𝛼

2m𝛽
∫ d

3
v𝛽 f𝛽(v𝛽)

𝜕

𝜕v𝛼
⋅

� − v̂𝛼𝛽 v̂𝛼𝛽

v𝛼𝛽
+

1

2

𝜕

𝜕v𝛼
⋅ ⟨Δv𝛼Δv𝛼⟩.

(37)
𝜕

𝜕v𝛼
⋅

� − v̂𝛼𝛽 v̂𝛼𝛽

v𝛼𝛽
= −

𝜕

𝜕v𝛽
⋅

� − v̂𝛼𝛽 v̂𝛼𝛽

v𝛼𝛽

(38)⟨Δv𝛼⟩ =
�
𝛽

Γ𝛼𝛽

m𝛼

2m𝛽
∫ d

3
v𝛽

� − v̂𝛼𝛽 v̂𝛼𝛽

v𝛼𝛽
⋅

𝜕f𝛽(v𝛽)

𝜕v𝛽
+

1

2

𝜕

𝜕v𝛼
⋅ ⟨Δv𝛼Δv𝛼⟩.
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Using the above equation for ⟨Δv�⟩ and Eq. (25) for ⟨Δv�Δv�⟩ , C� in the Landau 
form can be obtained,

C� in the above equation is identical to that obtained by Landau (1965), which dem-
onstrates the equivalence (Enoch 1960) of the Landau and FP collision terms on one 
hand and the correctness (Allis 1949; Landau 1950; Cohen et al. 1950) of the Lan-
dau collision term on the other hand.

2.1.2 � Calculation of 
⟨
1v˛

⟩
 and 

⟨
1v˛1v˛

⟩
 based on the wave theory

Using the BC theory to calculate the FP coefficients, it is necessary to truncate the 
integrals over b at an upper limit to remove the divergence due to the long-range 
nature of the Coulomb interactions. This issue naturally disappears when calculat-
ing the FP coefficients based on the wave theory which was originated by Thomp-
son and Hubbard (Thompson and Hubbard 1960; Hubbard 1961a, b) and treats the 
collective interactions in a proper way. Central to the wave theory is to derive the 
fluctuating electric field �E . In Thompson and Hubbard’s work, the spectral function 
(Thompson and Hubbard 1960) of �E or the dynamically screened potential (Hub-
bard 1961a) were employed directly. Here, we give the detailed derivation of �E . In 
the electrostatic approximation, �E is determined by the Poisson equation:

where �N� ≡ N� − f�,

is the well-known Klimontovich distribution function with X�j representing the 
phase space coordinate of the jth � particle, and �(x) is the delta function. As can be 
seen, N� depends on the microscopic motion states of all the � particles. Its statisti-
cal average is f�,

(39)

C𝛼(f𝛼) = −
𝜕

𝜕v𝛼
⋅

��
⟨Δv𝛼⟩ − 1

2

𝜕

𝜕v𝛼
⋅ ⟨Δv𝛼Δv𝛼⟩

�
f𝛼

�

+
1

2

𝜕

𝜕v𝛼
⋅

�
⟨Δv𝛼Δv𝛼⟩ ⋅

𝜕f𝛼

𝜕v𝛼

�

= −
𝜕

𝜕v𝛼
⋅

�
𝛽

Γ𝛼𝛽

m𝛼

2 ∫ d
3
v𝛽

� − v̂𝛼𝛽 v̂𝛼𝛽

v𝛼𝛽

⋅

�
1

m𝛽

𝜕

𝜕v𝛽
−

1

m𝛼

𝜕

𝜕v𝛼

�
f𝛼(v𝛼)f𝛽(v𝛽).

(40)∇ ⋅ �E(r, t) =
1

�0

∑
�

q� ∫ �N�(r, v, t) d
3
v,

(41)N�(X, t) ≡
∑
j

�
(
X − X�j(t)

)
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In the QL approximation, �N� obeys the following linearized Vlasov equation with-
out considering the influence of E:

Integrating the above equation along the unperturbed linear orbit:

we obtain

The first term on the RHS of the above equation is the spontaneous fluctuation 
denoted by �NS

�
 , arising from the random thermal motion of the discrete particles. It 

exists even in a fictitious noninteracting system. The second term is the induced 
fluctuation denoted by �NI

�
 , arising from the interactions between the particles. 

Since the characteristic spatio-temporal scales of change of f� is substantially greater 
than those of �N� and �E , f� can be viewed as uniform and time-independent as far 
as the fluctuating quantities are concerned. Substituting Eq. (45) into Eq. (40) and 
expressing �E in terms of the fluctuating electrostatic potential �� through 
�E = −∇�� yields

The above equation can be manipulated into a physically more intuitive form by 
making the Fourier transform with respect to r and Laplace transform with respect 
to t:

It follows that

(42)f�(X, t) = ⟨N�(X, t)⟩.

(43)
��N�

�t
+ v� ⋅

��N�

�r�
= −

q�

m�

�E ⋅

�f�

�v�
.

(44)v
(0)

�
(t) = v�(0), r

(0)

�
(t) = r�(0) + v�(0)t,

(45)

�N�(X� , t) = �N�(r� − v� t, v� , 0) −
q�

m�
∫

t

0

dt� �E(r� − v�(t − t�), t�) ⋅
�f�

�v�
.

(46)

∇2�� = −
1

�0

∑
�

q� ∫ d
3
v

[
�N�(r − vt, v, 0)

+
q�

m�
∫

t

0

dt� ∇��(r − v(t − t�), t�) ⋅
�f�(v)

�v

]
.

(47)Ã(k, v, 𝜔) =
1

(2𝜋)3 ∫
∞

0

dt ∫ d
3
rA(r, v, t)e−i(k⋅r−𝜔t).

(48)𝛿𝜙̃(k, 𝜔) =
1

𝜀0𝜀(k, 𝜔)k
2

∑
𝛽

q𝛽 ∫ 𝛿ÑS
𝛽
(k, v, 𝜔) d3v,
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where

is the Fourier-Laplace transform of �NS
�
 and

is the dielectric response function. �(k, �) is defined in the upper half � plane. It 
can be continued analytically to the real axis and lower half plane by deforming the 
vk integration contour in Eq. (50) to lie below the pole at vk = �∕k as that shown in 
Fig. 1, where vk ≡ k ⋅ v∕k is the component of v along the k direction. It can be seen 
clearly from Eq. (48) that the induced fluctuation leads to the dynamic screening of 
the fluctuating electrostatic potential generated by the spontaneous fluctuation.

Now, we are in a position to calculate ⟨Δv�⟩ and ⟨Δv�Δv�⟩ based on the wave the-
ory. Without considering the influence of E on the collisions, ⟨Δv�⟩ and ⟨Δv�Δv�⟩ can 
be calculated as if E were absent. Under this condition, the � particle motion equation 
is

Integrating the above equation over t gives the � particle’s trajectory,

Δv� ≡ v�(t + Δt) − v�(t) can be found from Eq. (52) to be

(49)𝛿ÑS
𝛽
(k, v, 𝜔) =

1

(2𝜋)3 ∫ d
3
r∫

∞

0

dt 𝛿N𝛽(r − vt, v, 0)e−i(k⋅r−𝜔t)

(50)�(k, �) = 1 −
∑
�

q2
�

�0m�k
2 ∫

k ⋅ �f�(v)∕�v

k ⋅ v − �
d
3
v

(51)
dv�(t)

dt
= −

q�

m�

∇��(r�(t), t).

(52)v�(t) = v�(0) −
q�

m�
∫

t

0

∇��(r�(t
�), t�) dt�,

(53)r�(t) = r
(0)
�
(t) −

q�

m�
∫

t

0

(t − t�)∇��(r�(t
�), t�) dt�.

Fig. 1   The contour of the vk ≡ k ⋅ v∕k integral in Eq. (50) for the cases: a Im𝜔 > 0; b Im� = 0 ; and c 
Im𝜔 < 0
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Substituting Eq. (53) for r�(t) into the above equation, expanding Δv� with respect 
to �� , and retaining terms up to the second order in �� yields

Using the Fourier-Laplace inversion transform:

where the integral over � is performed along a horizontal line in the upper half plane 
above all the poles of Ã(k, v, 𝜔) , Δv� can be re-expressed to be

Using Δv� given in the above equation, ⟨Δv�⟩ can be calculated according to its 
definition. ⟨Δv�⟩ can be separated into two parts, ⟨Δv�⟩ = ⟨Δv�⟩p + ⟨Δv�⟩c , where 
⟨Δv�⟩p and ⟨Δv�⟩c correspond, respectively, to the first and second terms on the 
RHS of Eq. (57). ⟨Δv�⟩p is given by

⟨𝛿𝜙̃⟩ in the above equation cannot be taken for granted to be 0 since the fluctuating 
electrostatic potential contributed by the � particle itself survives the statistical aver-
age (Chavanis 2012). Using Eqs. (48), (49), and (41), ⟨𝛿𝜙̃⟩ can be obtained,

(54)Δv� = −
q�

m�
∫

t+Δt

t

∇��(r�(t
�), t�) dt�.

(55)

Δv� = −
q�

m�
∫

t+Δt

t

∇��(r(0)
�
(t�), t�) dt�

+
q2
�

m2
�
∫

t+Δt

t

dt� ∫
t�

0

dt�� (t� − t��)∇��(r(0)
�
(t��), t��) ⋅ ∇∇��(r(0)

�
(t�), t�).

(56)A(r, v, t) =
1

2𝜋 ∫ d
3
k∫

C

d𝜔 Ã(k, v, 𝜔)ei(k⋅r−𝜔t),

(57)

Δv𝛼 = −
q𝛼

2𝜋m𝛼

i∫
t+Δt

t

dt� ∫ d
3
k
� ∫

C
�

d𝜔�
k
�𝛿𝜙̃(k�, 𝜔�)e

i

[
k
�
⋅r

(0)
𝛼 (t�)−𝜔�t�

]

−
q2
𝛼

(2𝜋)2m2
𝛼

i∫
t+Δt

t

dt� ∫
t�

0

dt�� ∫ d
3
k
� ∫

C
�

d𝜔� ∫ d
3
k
�� ∫

C
��

d𝜔�� (t� − t��)

× k
�
k
�
⋅ k

��𝛿𝜙̃(k�, 𝜔�)𝛿𝜙̃(k��, 𝜔��)e
i

[
k
�
⋅r

(0)
𝛼 (t�)−𝜔�t�+k��⋅r

(0)
𝛼 (t��)−𝜔��t��

]
.

(58)

⟨Δv𝛼⟩p = −
q𝛼

2𝜋m𝛼

i

Δt ∫
t+Δt

t

dt� ∫ d
3
k
� ∫

C
�

d𝜔�
k
�⟨𝛿𝜙̃(k�, 𝜔�)⟩ei

�
k
�
⋅r

(0)
𝛼 (t�)−𝜔�t�

�
.

(59)

⟨𝛿𝜙̃(k�, 𝜔�)⟩ = q𝛼

(2𝜋)3𝜀0𝜀(k
�
, 𝜔�)k�2 ∫ d

6
X∫

∞

0

dt�� 𝛿
�
X − X

(0)
𝛼
(t��)

�
e−i(k

�
⋅r−𝜔�t��)

=
q𝛼

(2𝜋)3𝜀0𝜀(k
�
, 𝜔�)k�2 ∫

∞

0

dt�� e
−i
�
k
�
⋅r

(0)
𝛼 (t��)−𝜔�t��

�
.
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This is precisely the electrostatic potential produced by the � particle itself including 
the dynamic screening effect of the plasma, implying that ⟨Δv�⟩p comes from the 
polarization. Substituting the above equation for ⟨𝛿𝜙̃⟩ into Eq. (58) gives

Carrying out the integral over t′′ , ⟨Δv�⟩p becomes

Assuming the system considered is Vlasov stable, i.e., all the zeros of �(k�, ��) lie 
in the lower half �′ plane, and displacing the contour of the �′ integral in the above 
equation into the lower half plane going around the pole at �� = k

�
⋅ v� and the poles 

��
k
(k = 1, 2,⋯) corresponding to the zeros of �(k�, ��) that are encountered in the 

manner shown in Fig. 2, it is readily to find that when t′ is very large the contribution 
from the residue of the pole at �� = k

�
⋅ v� independent of t′ is dominant, and the con-

tributions from the other parts of the contour including the horizontal lines and circles 
around the poles �′

k
 encountered decaying exponentially with t′ can be discarded. We 

thus have

(60)
⟨Δv�⟩p = −

q2
�

(2�)4�0m�

i

Δt ∫
t+Δt

t

dt� ∫ d
3
k
� ∫

C
�

d�� ∫
∞

0

dt��
k
�

�(k�, ��)k�2

× ei(k
�
⋅v�−�

�)(t�−t��).

(61)

⟨Δv�⟩p =
q2
�

(2�)4�0m�

1

Δt ∫
t+Δt

t

dt� ∫ d
3
k
� ∫

C
�

d�� k
�

�(k�, ��)k�2
ei(k

�
⋅v�−�

�)t�

�� − k
�
⋅ v�

.

Fig. 2   The contour C′ of the �′ integral in Eq. (61) is moved into the lower half plane going around the 
pole at �� = k

�
⋅ v� and the poles �′

k
 corresponding to the zeros of �(k�, ��) that are encountered clock-

wise



1 3

Reviews of Modern Plasma Physics (2023) 7:19	 Page 17 of 62  19

where �i(k, �) is the imaginary part of �(k, �) . From Eq. (50), it follows that

for real � . Substituting the above equation for �i into Eq. (62) gives

⟨Δv�⟩c can be obtained by substituting Eqs. (48) and (49) into the second term on 
the RHS of Eq. (57),

Carrying out the integrals over t1 and t2 yields

Moving the contours C′ and C′′ of the �′ and �′′ integrals in the above equation into 
the lower half planes in a similar manner as that shown in Fig. 2 and retaining only 
the contributions from the residues of the poles at �� = k

�
⋅ v

� and ��� = k
��
⋅ v

�� 
which do not decay with t′ and t′′ , ⟨Δv�⟩c becomes

(62)
⟨Δv�⟩p = −

q2
�

(2�)3�0m�

i∫ d
3
k

k

�(k, k ⋅ v�)k
2

= −
q2
�

(2�)3�0m�
∫ d

3
k

k�i(k, k ⋅ v�)

��(k, k ⋅ v�)�2k2
,

(63)�i(k, �) = −
∑
�

�q2
�

�0m�k
2 ∫ d

3
v k ⋅

�f�(v)

�v
�(k ⋅ v − �)

(64)

⟨Δv�⟩p =
�
�

q2
�
q2
�

8�2�2
0
m�m�

∫ d
3
k∫ d

3
v

kk ⋅ �f�(v)∕�v

��(k, k ⋅ v�)�2k4
�(k ⋅ v − k ⋅ v�).

(65)

⟨Δv�⟩c = −
�
�, �

q2
�
q�q�

(2�)8�2
0
m2

�

i

Δt ∫
t+Δt

t

dt� ∫
t�

0

dt�� ∫
∞

0

dt1 ∫
∞

0

dt2

× ∫ d
3
k
� ∫

C
�

d�� ∫ d
3
k
�� ∫

C
��

d��� ∫ d
6
X

� ∫ d
6
X

��

×
(t� − t��)k�k� ⋅ k��

�(k�, ��)�(k��, ���)k�2k��2
⟨�N�(X

�
, 0)�N� (X

��
, 0)⟩

× e−i[k
�
⋅r

�+(k�⋅v�−��)t1+k
��
⋅r

��+(k��⋅v��−���)t2]

× e
i

�
k
�
⋅r

(0)
� (t�)−��t�+k��⋅r

(0)
� (t��)−���t��

�
.

(66)

⟨Δv�⟩c =
�
�, �

q2
�
q�q�

(2�)8�2
0
m2

�

i

Δt ∫
t+Δt

t

dt� ∫
t�

0

dt�� ∫ d
3
k
� ∫

C
�

d�� ∫ d
3
k
�� ∫

C
��

d���

× ∫ d
6
X

� ∫ d
6
X

�� (t� − t��)k�k� ⋅ k��

�(k�, ��)�(k��, ���)k�2k��2
1

�� − k
�
⋅ v�

1

��� − k
��
⋅ v��

× ⟨�N�(X
�
, 0)�N� (X

��
, 0)⟩e−i(k�⋅r�+k��⋅r��)

× e
i

�
k
�
⋅r

(0)
� (t�)−��t�+k��⋅r

(0)
� (t��)−���t��

�
.
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Note that when neglecting the influence of the polarization force on the � particle’s 
trajectory

where g�� (X
�
, X

��
, t) is the pair correlation function and assumed to be smooth. 

Substituting the above equation into Eq. (67), the term corresponding to g�� can be 
neglected, which decays exponentially with t′ and t′′ when the integrals over v′ and 
v
′′ are carried out by recalling that all the zeros of �(k, �) lie in the lower half � 

plane. For the remaining part, carrying out the integral over X′′ , we obtain

The integral over r′ gives (2�)3�(k� + k
��) . Proceeding to carry out the integral over 

k
′′ yields

where 𝜀(−k, −k ⋅ v) = 𝜀⋆(k, k ⋅ v) is used with 𝜀⋆(k, k ⋅ v) being the complex con-
jugate of �(k, k ⋅ v) . Making variable substitution t�� → t� − t�� and noticing that the 
upper limit of the t′′ integral can be extended to ∞ since Δt is much larger than the 
correlation time, we have

(67)

⟨Δv�⟩c = −
�
�, �

q2
�
q�q�

(2�)6�2
0
m2

�

i

Δt ∫
t+Δt

t

dt� ∫
t�

0

dt�� ∫ d
3
k
� ∫ d

3
k
�� ∫ d

6
X

� ∫ d
6
X

��

×
(t� − t��)k�k� ⋅ k��

�(k�, k� ⋅ v�)�(k��, k�� ⋅ v��)k�2k��2
⟨�N�(X

�
, 0)�N� (X

��
, 0)⟩

× e−i(k
�
⋅r

�+k��⋅r��)e
i

�
k
�
⋅r

(0)
� (t�)−k�⋅v�t�+k��⋅r

(0)
� (t��)−k��⋅v��t��

�
.

(68)⟨�N�(X
�
, t)�N� (X

��
, t)⟩ =��� f�(v�, t)�(X� − X

��) + g�� (X
�
, X

��
, t),

(69)

⟨Δv�⟩c = −
�
�

q2
�
q2
�

(2�)6�2
0
m2

�

i

Δt ∫
t+Δt

t

dt� ∫
t�

0

dt�� ∫ d
3
k
� ∫ d

3
k
�� ∫ d

6
X

�

× f�(v
�)

(t� − t��)k�k� ⋅ k��

�(k�, k� ⋅ v�)�(k��, k�� ⋅ v�)k�2k��2
e−i(k

�+k��)⋅r�

× e
i

�
k
�
⋅r

(0)
� (t�)−k�⋅v�t�+k��⋅r

(0)
� (t��)−k��⋅v�t��

�
.

(70)
⟨Δv�⟩c =

�
�

q2
�
q2
�

(2�)3�2
0
m2

�

i

Δt ∫
t+Δt

t

dt� ∫
t�

0

dt�� ∫ d
3
k∫ d

3
v f�(v)

×
(t� − t��)k

��(k, k ⋅ v)�2k2 e
ik⋅(v�−v)(t�−t��),

(71)

⟨Δv�⟩c =
�
�

q2
�
q2
�

(2�)3�2
0
m2

�

i∫
∞

0

dt ∫ d
3
k∫ d

3
v f�(v)

tk

��(k, k ⋅ v)�2k2 e
ik⋅(v�−v)t

=
�

�v�
⋅

�
�

q2
�
q2
�

8�2�2
0
m2

�
∫ d

3
k∫ d

3
v f�(v)

kk

��(k, k ⋅ v)�2k4 �(k ⋅ v� − k ⋅ v).
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According to the definition of ⟨Δv�Δv�⟩ , we get from Eq. (57) by keeping terms up 
to the second order in 𝛿𝜙̃

Substituting Eqs. (48) and (49) into the above equation and ignoring the contribu-
tion fromthe polarizationforce as (⟨Δv𝛼⟩p)2Δt ≪ ⟨Δv𝛼Δv𝛼⟩ justified by Hubbard 
(1961a), we obtain through similar procedures as calculating ⟨v�⟩c

It is evident that both ⟨Δv�⟩c and ⟨Δv�Δv�⟩ result from the correlation of the fluc-
tuations at different phase space points. They satisfy the following relationship:

In this case, the form of the FP collision term is simplified to

As can be seen, the FP collision term consists of a convective term due to the polari-
zation and a diffusion term due to the correlation of the fluctuations. Inserting Eqs. 
(64) and (73) into the above equation, we obtain

This is the BLG collision term (Lenard 1960; Balescu 1960; Guernsey 1962). It 
automatically includes the Debye screening and the effects of plasma oscillations 
through introducing �(k, �) , and thus does not diverge as k → 0 corresponding to 
b → ∞ . However, as Δv� is calculated in a perturbative manner, the close colli-
sions are not considered appropriately. As a result, the integral over k is divergent as 
k → ∞ corresponding to b → 0 in the BLG collision term. Usually, an upper cutoff 
at 1∕�L is introduced for k to remove the divergence, corresponding to a lower cutoff 
at �L for b. In the approximation �(k, �) = 1 , the BLG collision term reduces to the 

(72)

⟨Δv𝛼Δv𝛼⟩ = −
q2
𝛼

(2𝜋)2m2
𝛼

1

Δt ∫
t+Δt

t

dt� ∫
t+Δt

t

dt�� ∫ d
3
k
� ∫

C
�

d𝜔�

× ∫ d
3
k
�� ∫

C
��

d𝜔��
k
�
k
��⟨𝛿𝜙̃(k�, 𝜔�)𝛿𝜙̃(k��, 𝜔��)⟩

× e
i

�
k
�
⋅r

(0)
𝛼 (t�)−𝜔�t�+k��⋅r

(0)
𝛼 (t��)−𝜔��t��

�
.

(73)

⟨Δv�Δv�⟩ =
�
�

q2
�
q2
�

4�2�2
0
m2

�
∫ d

3
k∫ d

3
v f�(v)

kk

��(k, k ⋅ v)�2k4 �(k ⋅ v� − k ⋅ v).

(74)⟨Δv�⟩c = 1

2

�

�v�
⋅ ⟨Δv�Δv�⟩.

(75)C�(f�) = −
�

�v�
⋅

�
⟨Δv�⟩pf�

�
+

1

2

�

�v�
⋅

�
⟨Δv�Δv�⟩ ⋅

�f�

�v�

�
.

(76)
C�(f�) = −

�

�v�
⋅

∑
�

q2
�
q2
�

8�2�2
0
m�

∫ d
3
k∫ d

3
v�

�(k ⋅ v� − k ⋅ v�)

|�(k, k ⋅ v�)|2k4

× kk ⋅

(
1

m�

�

�v�
−

1

m�

�

�v�

)
f�(v�)f�(v�).
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Landau collision term by carrying out the integral over k with a lower cutoff at 1∕�D
.

2.2 � The case with a uniform B

2.2.1 � The general form of the FP equation in the presence of a uniform magnetic 
field

This subsection deals with the case with a uniform B = Bêz along the z direction. For 
spatially homogeneous plasmas with E = 0 , the � particle obeys the following Newton 
motion equation:

where Ω� ≡ q�B∕m� is the gyro-frequency including the sign of the charge. From 
the above equation, it follows that

where

with

is the velocity change along the unperturbed helical orbit, i.e., when �E is absent, 
and

is the velocity change due to �E which also includes the magnetic field influence.
For weak magnetic field when all the particles’ gyration periods are much longer 

than �c , considering �c of the order of the plasma oscillation period that is the particles’ 
thermal gyro-radius �th� ≡ vth�∕|Ω�| much larger than �D� , it is easy to find Δt satisfy-
ing 𝜏c ≪ Δt ≪ 𝜏s, |Ω𝛼|−1 . In this case,

Furthermore, ��(t + Δt − t�) in Eq. (81) can be approximated by � and the magnetic 
field impact on the particles’ trajectories and �E is trivial, implying that the mag-
netic field effects on the collisions can be neglected. Under this condition, we have

(77)
dv𝛼(t)

dt
=

q𝛼

m𝛼

𝛿E
(
r𝛼(t), t

)
+ Ω𝛼v𝛼(t) × êz,

(78)Δv� = ΔvB
�
+ Δvc

�
,

(79)ΔvB
�
=
[
��(Δt) − �

]
⋅ v�(t)

(80)��(t) =

⎛⎜⎜⎝

cos(Ω�t) sin(Ω�t) 0

− sin(Ω�t) cos(Ω�t) 0

0 0 1

⎞⎟⎟⎠

(81)Δvc
�
=

q�

m�
∫

t+Δt

t

��(t + Δt − t�) ⋅ �E(r�(t
�), t�) dt�

(82)||ΔvB𝛼 || ≈ |Ω𝛼v𝛼 × êzΔt| ≪ |v𝛼|.



1 3

Reviews of Modern Plasma Physics (2023) 7:19	 Page 21 of 62  19

For ⟨(Δv�)n⟩ (n ≥ 2) , we use the binomial expansion

where Cm
n
= n!∕[m!(n − m)!] is the binomial coefficient. As a matter of fact, there 

are Cm
n

 different terms in the term Cm
n

⟨(
Δvc

�

)m⟩(
ΔvB

�

)n−m in the above equation 
according to different permutations of Δvc

�
 and ΔvB

�
 . Since they give rise to the same 

result when substituted into the FP equation, all these Cm
n

 terms are represented by ⟨(
Δvc

�

)m⟩(
ΔvB

�

)n−m in Eq. (84) for brevity. Retaining only the zeroth order terms in 
�t , we have

Substituting Eqs. (83) and (85) into the usual form of the FP equation, we find that 
the only change compared to the no magnetic field case is the appearance of the con-
vective term Ω𝛼v𝛼 × êz ⋅ 𝜕f𝛼∕𝜕v𝛼 due to the Lorentz force q�v� × B . The FP collision 
term can be calculated as if there were no magnetic field.

When the magnetic field becomes strong in the sense that |Ω𝛼|𝜏c > 1 , the situation 
is totally changed. In this case, Δt ≫ 𝜏c implies |Ω𝛼|Δt ≫ 1 . This indicates that during 
the collision process the � particle’s velocity and the Lorentz force q�v� × B acting on 
it vary notably due to the rapid gyration induced by the magnetic field. Consequently, 
ΔvB

�
 is comparable to v� itself and cannot be approximated as Ω𝛼v𝛼 × êzΔt any longer. 

In light of this, Eq. (83) does not hold any more and one is unable to obtain the term 
Ω𝛼v𝛼 × êz ⋅ 𝜕f𝛼∕𝜕v𝛼 from the term involving ⟨Δv�⟩ in the FP equation as the weak mag-
netic field case. What is worse, the second and higher order moments ⟨(Δv�)n⟩ (n ≥ 2) 
are more tricky. As ΔvB

�
∼ v� , every term in Eq. (84) cannot be ignored when required 

to retain the zeroth order terms in Δt . Even keeping terms only up to the second order 
in �E , the first three terms have to be retained. As a consequence, the terms involving 
the third and higher order moments ⟨(Δv�)n⟩ (n ≥ 3) cannot be discarded in the FP 
equation even for distant collisions. In addition, when f� is not gyrotropic there exists 
the possibility that 𝜏c > 𝜏s . In this case, one cannot find Δt satisfying 𝜏c ≪ Δt ≪ 𝜏s . 
In view of the above analyses, it is clear that the usual form of the FP equation without 
magnetic field is not applicable to strongly magnetized plasmas. The general form of 
the FP equation in the presence of a uniform magnetic field of arbitrary strength has to 
be found.

Newman (1973) has demonstrated that the difficulties resulting from the presence of 
a macroscopic field can be overcome by the coordinate transformation approach. For 
the case of a uniform magnetic field we are concerned with here, the transformation 
was found by Dong et al. (2016) to be

(83)⟨Δv𝛼⟩ ≈ Ω𝛼v𝛼 × êz +
�
Δvc

𝛼

�
.

(84)

⟨�Δv�
�n⟩ = 1

Δt

�
ΔvB

�

�n
+ C1

n

�
Δvc

�

��
ΔvB

�

�n−1
+ C2

n

��
Δvc

�

�2��
ΔvB

�

�n−2

+

n�
m=3

Cm
n

��
Δvc

�

�m��
ΔvB

�

�n−m
,

(85)⟨(Δv�)n⟩ ≈
��

Δvc
�

�n�
, (n ≥ 2).

(86)v� = ��(t − �) ⋅ V� .
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The parameter � is introduced into the transformation just to simplify the appearance 
of the resultant FP equation and will not change the final result. Inserting Eq. (86) 
into Eq. (77) yields the motion equation governing the evolution of V�(t):

where �−1
�
(t) is the inverse of ��(t) . Integrating the above equation over t, the change 

of V� during the time interval Δt can be obtained,

As �−1
�

 is orthonormal, it will not change the magnitude of �E when acting on it 
but just makes it rotate counterclockwise around the magnetic field with Ω� as 
the angular frequency. Under this condition, one can generally find Δt satisfy-
ing 𝜏c ≪ Δt ≪ 𝜏S and |ΔV𝛼| ≪ |V𝛼(t)| , where �S is the characteristic time scale of 
change of the � particle distribution function F�(V� , t) in the V� coordinate system. 
Using the relations:

where P�(V� , t + Δt;V�0, t) is the transition probability in the V� coordinate system 
satisfying the following normalization condition:

we can obtain from Eq. (1) that

In a similar way as deriving Eq. (13) from Eq. (1), the equation governing the evolu-
tion of F�(V� , t) can be obtained from Eq. (92),

where ⟨ΔV�⟩ and ⟨ΔV�ΔV�⟩ are, respectively, the first and second order magnetized 
FP coefficients defined by

(87)
dV�(t)

dt
=

q�

m�

�
−1
�
(t − �) ⋅ �E(r�(t), t),

(88)ΔV� ≡ V�(t + Δt) − V�(t) =
q�

m�
�

t+Δt

t

�
−1
�
(t� − �) ⋅ �E(r�(t

�), t�) dt�.

(89)F�(V� , t) = f�(v� , t),

(90)P�(V� , t + Δt;V�0, t) = ∫ p�(X� , t + Δt;X�0, t) d
3
r�0,

(91)∫ P�(V� , t + Δt;V�0, t) d
3
V� = 1,

(92)F�(V� , t + Δt) = ∫ P�(V� , t + Δt;V�0, t)F�(V�0, t) d
3
V�0.

(93)
�F�

�t
= −

�

�V�

⋅ [⟨ΔV�⟩F�] +
1

2

�2

�V��V�

∶ [⟨ΔV�ΔV�⟩F�],

(94)⟨ΔV�⟩ = 1

Δt ∫ ΔV�P�(V� + ΔV� , t + Δt;V� , t) d
3ΔV� ,
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⟨ΔV�⟩ and ⟨ΔV�ΔV�⟩ can be calculated based on Eq. (88). Using the inverse trans-
formation from V� to v� and taking the limit t → � , the general form of the FP equa-
tion in the presence of a uniform magnetic field can be obtained and reads (Dong 
et al. 2016)

To our surprise, the magnetized FP collision term on the RHS of the above equa-
tion has the same form as that of the usual FP collision term without magnetic field. 
However, it should be kept in mind that the magnetized FP coefficients have dif-
ferent physical implications since ΔV� is not the � particle’s velocity change in the 
laboratory frame.

2.2.2 � Calculation of ⟨1V˛⟩ and ⟨1V˛1V˛⟩ based on the wave theory

The BC theory is not a very satisfactory way to calculate ⟨ΔV�⟩ and ⟨ΔV�ΔV�⟩ . 
On one hand, the flux of the BCs is difficult to determine when a magnetic field 
is present, as the particles’ unperturbed trajectories are helical. When the thermal 
gyro-radii of the two types of particles involved in the BCs are both smaller than 
the collision scale, the relative velocity of the guiding centres along the magnetic 
field can be utilized to determine the flux of the BCs. However, in most cases, the 
magnetic field is not so strong that the guiding center approximation is appropriate 
for all the BCs. On the other hand, the problem of two charged particles’ interaction 
in the presence of a uniform magnetic field cannot be solved in a closed form. To 
calculate the particles’ velocity changes in a BC, the perturbation method (Geller 
and Weisheit 1997; Toepffer 2002; Nersisyan et al. 2003; Nersisyan 2003; Möllers 
et al. 2003; Nersisyan et al. 2007; Nersisyan and Zwicknagel 2009, 2010) is usually 
employed, making it necessary to introduce a lower cutoff for the impact param-
eter. In the work of Dong et al. (2016) using the BC theory to calculate the magnet-
ized FP coefficients, the � particle’s velocity change in a BC during the time inter-
val Δt was first calculated by use of the perturbation theory and then summed over 
all the BCs with the background plasma. This kind of BC theory is different from 
that without magnetic field (Rosenbluth et al. 1957), but resembles the wave theory 
except the collective interactions are not considered. Therefore, the magnetized FP 
coefficients are calculated based only on the wave theory here.

The procedure is very similar to that without magnetic field. To distinguish 
from the no magnetic field case, the physical quantities in the case with a uniform 

(95)⟨ΔV�ΔV�⟩ = 1

Δt ∫ ΔV�ΔV�P�(V� + ΔV� , t + Δt;V� , t) d
3ΔV� .

(96)

𝜕f𝛼

𝜕𝜏
+ Ω𝛼v𝛼 × êz ⋅

𝜕f𝛼

𝜕v𝛼
= −

𝜕

𝜕v𝛼
⋅ [⟨ΔV𝛼⟩f𝛼] + 1

2

𝜕2

𝜕v𝛼𝜕v𝛼
∶ [⟨ΔV𝛼ΔV𝛼⟩f𝛼].
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magnetic field are marked with the subscript (⋆) hereinafter. The distribution func-
tion fluctuation 𝛿N𝛽⋆ can be obtained by integrating the linearized Vlasov equation

along the unperturbed helical orbit:

where

The results are

Assuming f� is gyrotropic and neglecting its change due to the collisions in calculat-
ing the fluctuations, f�(�

−1
�
(t − t�) ⋅ v� , t

�) = f�(v� , �) in Eq. (102). 𝛿NI
𝛽⋆

 thus 
becomes

Substituting Eqs. (100), (101), and (103) into Eq. (40) and making the Fourier-
Laplace transform, we obtain

where

(97)
𝜕𝛿N𝛽⋆

𝜕t
+ v𝛽 ⋅

𝜕𝛿N𝛽⋆

𝜕r𝛽
+

q𝛽

m𝛽

v𝛽 × B ⋅

𝜕𝛿N𝛽⋆

𝜕v𝛽
= −

q𝛽

m𝛽

𝛿E⋆ ⋅

𝜕f𝛽

𝜕v𝛽

(98)v
(0)

𝛽⋆
(t) = �𝛽(t − 𝜏) ⋅ v𝛽(𝜏), r

(0)

𝛽⋆
(t) = r𝛽(𝜏) + [�𝛽(t − 𝜏) − �𝛽(0)] ⋅ v𝛽(𝜏),

(99)��(t) = ∫ ��(t) dt =
1

Ω�

⎛
⎜⎜⎝

sin(Ω� t) − cos(Ω� t) 0

cos(Ω� t) sin(Ω� t) 0

0 0 Ω� t

⎞
⎟⎟⎠
.

(100)𝛿N𝛽⋆ = 𝛿NS
𝛽⋆

+ 𝛿NI
𝛽⋆
,

(101)
𝛿NS

𝛽⋆
(r𝛽 , v𝛽 , t) = 𝛿N𝛽(r𝛽 − [�𝛽(0) − �𝛽(𝜏 − t)] ⋅ v𝛽 , �

−1
𝛽
(t − 𝜏) ⋅ v𝛽 , 𝜏),

(102)

𝛿NI
𝛽⋆
(r𝛽 , v𝛽 , t) = −

q𝛽

m𝛽
∫

t

𝜏

dt� 𝛿E⋆(r𝛽 − [�𝛽(0) − �𝛽(t
� − t)] ⋅ v𝛽 , t

�)

⋅ �
−1
𝛽
(t − t�) ⋅

𝜕f𝛽(�
−1
𝛽
(t − t�) ⋅ v𝛽 , t

�)

𝜕v𝛽
.

(103)

𝛿NI
𝛽⋆
(r𝛽 , v𝛽 , t) = −

q𝛽

m𝛽
∫

t

𝜏

dt� 𝛿E⋆(r𝛽 − [�𝛽(0) − �𝛽(t
� − t)] ⋅ v𝛽 , t

�)

⋅ �
−1
𝛽
(t − t�) ⋅

𝜕f𝛽(v𝛽 , 𝜏)

𝜕v𝛽
.

(104)𝛿𝜙̃⋆(k, 𝜔) =
1

𝜀0𝜀⋆(k,𝜔)k
2

∑
𝛽

q𝛽 ∫ 𝛿�NS
𝛽⋆
(k, v, 𝜔) d3v,
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is the Fourier-Laplace transform of 𝛿NS
𝛽⋆
(r, v, t) and

is the dielectric response function in the presence of a uniform magnetic field. 
𝜀⋆(k, 𝜔) is defined in the upper half � plane and can be continued analytically into 
the real axis and lower half plane as �(k, �) using the way shown in Fig. 1.

Keeping terms up to the second order in 𝛿𝜙⋆ in Eq. (88) yields

Based on ΔV� given in the above equation, ⟨ΔV�⟩ and ⟨ΔV�ΔV�⟩ can be calculated. 
Like the no magnetic field case, ⟨ΔV�⟩ consists of the part ⟨ΔV�⟩p due to the polari-
zation and the part ⟨ΔV�⟩c due to the correlation of the fluctuations, corresponding 
to the two terms on the RHS of the above equation. Substituting Eqs. (104) and 
(105) into the first term and noting that in its statistical average only the contribution 
from the � particle itself is not 0 as the no magnetic field case, we obtain after some 
variable substitutions

Carrying out the integrals over X , substituting r(0)𝛼⋆(t) from Eq. (98) into the above 
equation, and making the variable substitution k → 𝖳�(t

� − �) ⋅ k , Eq. (108) 
becomes

(105)
𝛿�NS

𝛽⋆
(k, v, 𝜔) =

1

(2𝜋)3 ∫
∞

𝜏

dt ∫ d
3
r e−i(k⋅r−𝜔t)

× 𝛿N𝛽(r − [�𝛽(0) − �𝛽(𝜏 − t)] ⋅ v, �−1
𝛽
(t − 𝜏) ⋅ v, 𝜏).

(106)

𝜀⋆(k, 𝜔) = 1 −
∑
𝛾

q2
𝛾

𝜀0m𝛾k
2
i∫

∞

0

dt ∫ d
3
v k ⋅

𝜕f𝛾 (v)

𝜕v
e−ik⋅[�𝛾 (t)−�𝛾 (0)]⋅v+i𝜔t

(107)

Δ�𝛼 = −
q𝛼

2𝜋m𝛼

i∫
𝜏+Δt

𝜏

dt ∫ d3�∫
C

d𝜔�
−1
𝛼
(t − 𝜏) ⋅ �𝛿𝜙̃⋆(�, 𝜔)e

i
[
�⋅�

(0)
𝛼⋆(t)−𝜔t

]

−
q2
𝛼

(2𝜋)2m2
𝛼

i∫
𝜏+Δt

𝜏

dt ∫
t

𝜏

dt� ∫ d3�∫
C

d𝜔∫ d3�� ∫
C
�

d𝜔�
�
−1
𝛼
(t − 𝜏) ⋅ �

× � ⋅

[
�𝛼(t − t�) − �𝛼(0)

]
⋅ ��𝛿𝜙̃⋆(�, 𝜔)𝛿𝜙̃⋆(�

�, 𝜔�)

× e
i
[
�⋅�

(0)
𝛼⋆(t)−𝜔t+�

�
⋅�

(0)
𝛼⋆(t

�)−𝜔�t�
]
.

(108)

⟨ΔV𝛼⟩p = −
q2
𝛼

(2𝜋)4𝜀0m𝛼

i

Δt ∫
𝜏+Δt

𝜏

dt ∫
∞

𝜏

dt� ∫ d
3
k∫

C

d𝜔∫ d
6
X 𝛿(X − X𝛼)

×
�
−1
𝛼
(t − 𝜏) ⋅ k

𝜀⋆(k, 𝜔)k
2

e
−ik⋅{r+[�𝛼 (t

�−𝜏)−�𝛼 (0)]⋅v}+i𝜔t�e
i

�
k⋅r

(0)
𝛼⋆(t)−𝜔t

�
.

(109)

⟨ΔV𝛼⟩p = −
q2
𝛼

(2𝜋)4𝜀0m𝛼

i

Δt ∫
𝜏+Δt

𝜏

dt ∫
∞

𝜏

dt� ∫ d
3
k∫

C

d𝜔
�
−1
𝛼
(t − t�) ⋅ k

𝜀⋆(k, 𝜔)k
2

× e
ik⋅[�𝛼 (t−t

�)−�𝛼(0)]⋅v𝛼−i𝜔(t−t�).
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From the Fourier-Bessel identity (Gradshteyn and Ryzhik 2007)

where Jl(x) is the Bessel function of the lth order, we have

where �� = v�⟂∕Ω� is the gyro-radius of the � particle; v�⟂ and v�∥ and �� are the 
perpendicular and parallel components and azimuthal angle of v� , respectively; k

⟂
 

and k∥ and �
k
 are the perpendicular and parallel components and azimuthal angle 

of k , respectively. Substituting Eq. (111) into Eq. (109), carrying out the integral 
over t′ , moving the contour of the � integral into the lower half plane in a similar 
way as that shown in Fig. 2, and using the residue theorem, it is found that for each 
term in the summation, when only the contribution that does not decay with t − � is 
retained, replacing ∫ ∞

�
dt� ∫

C
d� by ∫ ∞

−∞
dt� ∫ ∞

−∞
d� does not change its value. There-

fore, ⟨ΔV�⟩p can be re-expressed as

Making the variable substitution t� → t − t� and carrying out the integral over t gives

Inserting Eqs. (104) and (105) into the second term on the RHS of Eq. (107), we can 
obtain ⟨ΔV�⟩c,

(110)eia sin � =

∞∑
l=−∞

Jl(a)e
il� ,

(111)
eik⋅��(t−t�)⋅v� = ei[k⟂�� sin (Ω�(t−t�)+�k

−��)+k∥v�∥(t−t�)]

=

∞∑
l=−∞

Jl
(
k
⟂
��
)
ei[(lΩ�+k∥v�∥)(t−t�)+l(�k

−��)],

(112)

⟨ΔV𝛼⟩p = −
q2
𝛼

(2𝜋)4𝜀0m𝛼

i

Δt ∫
𝜏+Δt

𝜏

dt ∫
∞

−∞

dt� ∫ d
3
k∫

∞

−∞

d𝜔
�
−1
𝛼
(t − t�) ⋅ k

𝜀⋆(k, 𝜔)k
2

× e
ik⋅[�𝛼 (t−t

�)−�𝛼(0)]⋅v𝛼−i𝜔(t−t�).

(113)
⟨ΔV𝛼⟩p = −

q2
𝛼

(2𝜋)4𝜀0m𝛼

i∫
∞

−∞

dt� ∫ d
3
k∫

∞

−∞

d𝜔
�
−1
𝛼
(t�) ⋅ k

𝜀⋆(k, 𝜔)k
2

× e
ik⋅[�𝛼(t

�)−�𝛼 (0)]⋅v𝛼−i𝜔t� .

(114)

⟨ΔV𝛼⟩c = −
�
𝛽, 𝛾

q2
𝛼
q𝛽q𝛾

(2𝜋)8𝜀2
0
m2

𝛼

i

Δt ∫
𝜏+Δt

𝜏

dt ∫
t

𝜏

dt� ∫
∞

𝜏

dt1 ∫
∞

𝜏

dt2 ∫ d
3
k∫

C

d𝜔

× ∫ d
3
k
� ∫

C
�

d𝜔� ∫ d
6
X∫ d

6
X

�
�
−1
𝛼
(t − 𝜏) ⋅ k

×
k ⋅

�
�𝛼(t − t�) − �𝛼(0)

�
⋅ k

�

𝜀⋆(k,𝜔)𝜀⋆(k
�
,𝜔�)k2k�2

�
𝛿N𝛽(X, 𝜏)𝛿N𝛾 (X

�
, 𝜏)

�

× e
−ik⋅{r+[�𝛽 (t1−𝜏)−�𝛽 (0)]⋅v}+i𝜔t1e−ik

�
⋅{r�+[�𝛾 (t2−𝜏)−�𝛾 (0)]⋅v�}+i𝜔�t2

× e
i

�
k⋅r

(0)
𝛼⋆(t)+k

�
⋅r

(0)
𝛼⋆(t

�)−𝜔t−𝜔�t�
�
.
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Substituting Eqs. (68) and (111) into the above equation, carrying out the integrals 
over t1 and t2 , moving the contours C and C′ of the � and �′ integrals into the lower 
half planes in a similar way as that shown in Fig.  2, and using the residue theo-
rem, it is found that when only the contributions not decaying with t − � and t� − � 
are retained, the term corresponding to g�� can be ignored and for the remaining 
part ∫ ∞

�
dt1 ∫ ∞

�
dt2 ∫C d� ∫

C
� d�� can be replaced by ∫ ∞

−∞
dt1 ∫ ∞

−∞
dt2 ∫ ∞

−∞
d� ∫ ∞

−∞
d�� . 

After some further calculations, we get

For ⟨ΔV�ΔV�⟩ , we get from Eq. (107) by keeping terms up to the second order in 
𝛿𝜙̃⋆

Substituting Eqs. (104) and (105) into the above equation, we obtain through a simi-
lar procedure as calculating ⟨ΔV�⟩c

It can be readily verified that ⟨ΔV�⟩c and ⟨ΔV�ΔV�⟩ satisfy the following 
relationship:

from which it follows that

(115)

⟨ΔV𝛼⟩c =
�
𝛽

q2
𝛼
q2
𝛽

(2𝜋)4𝜀2
0
m2

𝛼

i∫
∞

0

dt� ∫
∞

−∞

dt1 ∫ d
3
k∫

∞

−∞

d𝜔∫ d
3
v f𝛽(v)

×
�
−1
𝛼
(t�) ⋅ k

�𝜀⋆(k, 𝜔)�2k4
k ⋅

�
�𝛼(t

�) − �𝛼(0)
�
⋅ k

× e
ik⋅[�𝛼 (t

�)−�𝛼 (0)]⋅v𝛼−ik⋅[�𝛽 (t1)−�𝛽 (0)]⋅v−i𝜔(t�−t1).

(116)

⟨ΔV𝛼ΔV𝛼⟩ = −
q2
𝛼

(2𝜋)2m2
𝛼

1

Δt ∫
𝜏+Δt

𝜏

dt ∫
𝜏+Δt

𝜏

dt� ∫ d
3
k∫

C

d𝜔∫ d
3
k
� ∫

C
�

d𝜔�

× �
−1
𝛼
(t� − 𝜏) ⋅ k��−1

𝛼
(t − 𝜏) ⋅ k

�
𝛿𝜙̃⋆(k, 𝜔)𝛿𝜙̃⋆(k

�
, 𝜔�)

�

× e
i

�
k⋅r

(0)
𝛼⋆(t)+k

�
⋅r

(0)
𝛼⋆(t

�)−𝜔t−𝜔�t�
�
.

(117)

⟨ΔV𝛼ΔV𝛼⟩ =
�
𝛽

q2
𝛼
q2
𝛽

(2𝜋)4𝜀2
0
m2

𝛼
∫

∞

−∞

dt ∫
∞

−∞

dt1 ∫ d
3
k∫

∞

−∞

d𝜔∫ d
3
v f𝛽(v)

×
k�

−1
𝛼
(t) ⋅ k

�𝜀⋆(k, 𝜔)�2k4
e
ik⋅[�𝛼(t)−�𝛼 (0)]⋅v𝛼−ik⋅[�𝛽 (t1)−�𝛽 (0)]⋅v−i𝜔(t−t1).

(118)
�

�v�
⋅

�⟨ΔV�⟩cf�
�
=

1

2

�

�v�
⋅

�
�

�v�
⋅ ⟨ΔV�ΔV�⟩f�

�
,

(119)
−

�

�v�
⋅

�⟨ΔV�⟩cf�
�
+

1

2

�2

�v��v�
∶
�⟨ΔV�ΔV�⟩f�

�

=
1

2

�

�v�
⋅

�
�f�

�v�
⋅ ⟨ΔV�ΔV�⟩

�
.



	 Reviews of Modern Plasma Physics (2023) 7:19

1 3

19  Page 28 of 62

This part of the magnetized collision term C𝛼⋆ is due to the correlation of the fluc-
tuations as the no magnetic field case. Adding the part due to the polarization, C𝛼⋆ 
can thus be expressed as

Inserting Eqs. (113) and (117) into the above equation, we obtain through some sim-
ple derivation

This is the magnetized BLG collision term (Rostoker and Rosenbluth 1960; Ros-
toker 1960; Hassan and Watson 1977; Klimontovich 1982; Yoon 2016; Dong et al. 
2017), which simultaneously takes into account the collective interactions and mag-
netic field effects on the collisions. When B = 0 , the usual BLG collision term with-
out magnetic field can be easily recovered by carrying out the integrals over � , t1 , 
and t in Eq. (121).

3 � Derivation of the collision term based on the BBGKY approach

3.1 � The case without B

The BBGKY hierarchy of equations, including all the relevant physics, can serve as a 
good starting point to derive the collision term. The first two equations Montgomery 
and Tidman (1964) of this hierarchy are written out in the following:

(120)C𝛼⋆(f𝛼) = −
𝜕

𝜕v𝛼
⋅

�
⟨ΔV𝛼⟩pf𝛼

�
+

1

2

𝜕

𝜕v𝛼
⋅

�
𝜕f𝛼

𝜕v𝛼
⋅ ⟨ΔV𝛼ΔV𝛼⟩

�
.

(121)

C𝛼⋆(f𝛼) =
𝜕

𝜕v𝛼
⋅

∑
𝛽

q2
𝛼
q2
𝛽

32𝜋4𝜀2
0
m𝛼

∫
∞

−∞

dt ∫
∞

−∞

dt1 ∫ d
3
k∫

∞

−∞

d𝜔∫ d
3
v𝛽

× eik⋅[�𝛼(t)−�𝛼 (0)]⋅v𝛼−ik⋅[�𝛽 (t1)−�𝛽 (0)]⋅v𝛽−i𝜔(t−t1)

×
�
−1
𝛼
(t) ⋅ k

|𝜀⋆(k, 𝜔)|2k4
k ⋅

(
1

m𝛼

𝜕

𝜕v𝛼
−

1

m𝛽

𝜕

𝜕v𝛽

)
f𝛼(v𝛼)f𝛽(v𝛽)

=
𝜕

𝜕v𝛼
⋅

∑
𝛽

q2
𝛼
q2
𝛽

32𝜋4𝜀2
0
m𝛼

∫
∞

−∞

dt ∫
∞

−∞

dt1 ∫ d
3
k∫

∞

−∞

d𝜔∫ d
3
v𝛽

× eik⋅[�𝛼(t)−�𝛼 (0)]⋅v𝛼+ik⋅[�𝛽 (t1)−�𝛽 (0)]⋅v𝛽−i𝜔(t+t1) k

|𝜀⋆(k, 𝜔)|2k4

×

[
k ⋅ �𝛼(t) ⋅

1

m𝛼

𝜕

𝜕v𝛼
− k ⋅ �𝛽(t1) ⋅

1

m𝛽

𝜕

𝜕v𝛽

]
f𝛼(v𝛼)f𝛽(v𝛽).

(122)

(
�

�t
+ v� ⋅

�

�r�

)
f�(X� , t) =

∑
�

q�q�

4��0m�
∫ d

6
X�

�

�r�

1

r��
⋅

�f��(X� , X� , t)

�v�
,
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where f�� and f��� are, respectively, the two-particle and three-particle distribu-
tion functions, and we use the symbol (� ↔ �) to mean the immediately preceding 
expression with � and � interchanged. As the evolution of f��� is governed by the 
third equation of the hierarchy, Eqs. (122) and (123) are not closed. Making use of 
the Mayer cluster expansion:

and neglecting the terms associated with the triplet correlation function g��� in the 
binary correlation approximation, Eqs. (122) and (123) become

where

As a result of the approximation made, Eqs. (126) and (127) constitute a closed sys-
tem for the one-particle distribution functions and pair correlation functions. The 
RHS of Eq. (126) is the collision term. To obtain it in a closed form, Eq. (127) has to 
be solved for g�� , which is exceedingly difficult without making any approximation. 
The impact of E on the particles’ trajectories is generally trivial during the collision 
process, so we do not carry it along in the following treatment. g�� is comparable 
to f�f� for the close collisions. For the weakly coupled plasmas we are concerned 

(123)

[
�

�t
+ v� ⋅

�

�r�
+ v� ⋅

�

�r�
−

q�q�

4��0m�

�

�r�

1

r��
⋅

�

�v�
− (� ↔ �)

]
f��(X� , X� , t)

=
∑
�

q�

4��0 ∫ d
6
X�

[
q�

m�

�

�r�

1

r��
⋅

�

�v�
+ (� ↔ �)

]
f��� (X� , X� , X� , t),

(124)f��(X� , X� , t) = f�(X� , t)f�(X� , t) + g��(X� , X� , t),

(125)

f��� (X� , X� , X� , t) = f�(X� , t)f�(X� , t)f� (X� , t) + f�(X� , t)g�� (X� , X� , t)

+ f�(X� , t)g�� (X� , X� , t) + f� (X� , t)g��(X� , X� , t)

+ g��� (X� , X� , X� , t),

(126)

(
�

�t
+ v� ⋅

�

�r�
+

q�E

m�

⋅

�

�v�

)
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∑
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4��0m�
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6
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1
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⋅
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−

1
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�
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)(
f�f� + g��

)
,

(128)E(r, t) = −
∑
�
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4��0 ∫ d
6
X�

�

�r

1

|r� − r| f�(X� , t).
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with, the collision term is mainly contributed by the distant collisions. As far as the 
distant collisions are concerned, g�� is much smaller than f�f� and the part involving 
g�� in the second term on the RHS of Eq. (127) can be neglected. In this polarization 
approximation, Eq. (127) is simplified to

where

The left-hand side (LHS) of Eq. (129) is homogeneous with respect to g�� . Its last 
two terms describe the polarization, which are absent in the BC model. S�� can be 
viewed as a driving term which acts to create the particle correlations through the 
Coulomb interactions.

There are many ways to solve Eq. (129). Here, we use the one based on the opera-
tor method due to Dupree (Dupree 1961; Montgomery and Tidman 1964), which 
is easily generalized to magnetized plasmas. We rewrite Eq. (129) in the following 
form:

where H� and H� are the linear operators acting, respectively, on the variables X� 
and X� . Since they act on different variables, they commute. When they act on an 
arbitrary function h��(X� , X�) , we have

Provided we can find an operator P��(t) satisfying

with the initial condition P��(0) = 1 and an inverse P
−1
��

 defined by 
P
−1
��
P�� = P��P

−1
��

= 1 , the solution to Eq. (131) is readily found to be

(129)

(
�

�t
+ v� ⋅

�

�r�
+ v� ⋅

�

�r�

)
g�� −

∑
�

q�

4��0 ∫ d
6
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[
q�
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�

�r�

1

r��
⋅

�f�

�v�
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+ (� ↔ �)

]
= S�� ,

(130)S�� =
q�q�

4��0

�

�r�

1

r��
⋅

(
1

m�

�

�v�
−

1

m�

�

�v�

)
f�f� .

(131)
�g��

�t
+
(
H� + H�

)
g�� = S�� ,

(132)H�h�� = v� ⋅
�h��

�r�
−

q�

m�

�f�

�v�
⋅

∑
�

q�

4��0 ∫ h��
�

�r�

1

r��
d
6
X� ,

(133)H�h�� = v� ⋅
�h��

�r�
−

q�

m�

�f�

�v�
⋅
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�
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4��0 ∫ h��
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d
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(134)
�P��

�t
+
(
H� + H�

)
P�� = 0
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which can be verified by direct substitution.
The solution to Eq. (134) can be written as

where

P�(t) and P�(t) satisfy the following equations:

with the initial conditions P�(0) = P�(0) = 1 . Using Eqs. (136)–(138), Eq. (135) 
can be re-expressed as

According to Bogoliubov’s hypothesis, during the relaxation of g�� , f� and f� can be 
regarded to be time-independent. Therefore, the time dependence of S�� in Eq. (141) 
can be ignored. g��(t) then becomes

The first term on the RHS of the above equation represents the component of g�� 
produced by the Coulomb interactions and will be denoted by gI

��
 while the second 

term represents the component of g�� associated with its initial value and will be 
denoted by gS

��
 . From Eq. (126), the part of the collision term corresponding to gI

��
 

is

(135)g��(t) = P��(t)∫
t

0

P
−1
��
(t�)S��(t

�) dt� + P��(t)g��(t = 0),

(136)P��(t) = P�(t)P�(t),

(137)P�(t) = e−H� t,

(138)P�(t) = e−H� t.

(139)
�P�

�t
+ H�P� = 0,

(140)
�P�

�t
+ H�P� = 0
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P�(t − t�)P�(t − t�)S��(t
�) dt� + P�(t)P�(t)g��(t = 0)

= ∫
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�)P�(t
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�)S�� dt
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and the part of the collision term corresponding to gS
��

 is

Applying P�(t1) to h��(X� , X�) gives a function h��(X� , t1, X�):

Using Eq. (139), it is easy to prove that h��(X� , t1, X�) satisfies the following 
equation:

which becomes by invoking Eq. (132)

The above equation has the same form as the linearized Vlasov equation as given by 
Eq. (43). Its solution can be readily obtained through the Fourier-Laplace transform 
and is

where h̄𝛼𝛽(k1, v𝛼 , X𝛽) is the Fourier transform of h��(X� , X�) with respect to r�,

Similarly, we have

(144)C
S
�
(f�) =

�

�v�
⋅

∑
�

q�q�

4��0m�
∫ d

6
X� P�(t)P�(t)g��(t = 0)

�

�r�

1

r��
.

(145)h��(X� , t1, X�) ≡ P�(t1)h��(X� , X�).

(146)
�h��(X� , t1, X�)

�t1
+ H�h��(X� , t1, X�) = 0,

(147)

�h��(X� , t1, X�)

�t1
+ v� ⋅

�h��(X� , t1, X�)

�r�

−
q�

m�

�f�

�v�
⋅

∑
�

q�

4��0 ∫ h��(X� , t1, X�)
�

�r�

1

r��
d
6
X� = 0.

(148)

h𝛼𝛽(X𝛼 , t1, X𝛽) =
1

2𝜋 ∫ d
3
k1 ∫

C1

d𝜔1

i

𝜔1 − k1 ⋅ v𝛼

[
h̄𝛼𝛽(k1, v𝛼 , X𝛽)

−
q𝛼

𝜀0m𝛼

k1 ⋅ 𝜕f𝛼∕𝜕v𝛼

𝜀(k1, 𝜔1)k
2

1

∑
𝛾

q𝛾 ∫
h̄𝛾𝛽(k1, v𝛾 , X𝛽)

𝜔1 − k1 ⋅ v𝛾

d
3
v𝛾

]
ei(k1⋅r𝛼−𝜔1t1),

(149)h̄𝛼𝛽(k1, v𝛼 , X𝛽) =
1

(2𝜋)3 ∫ h𝛼𝛽(X𝛼 , X𝛽)e
−ik1⋅r𝛼 d

3
r𝛼 .
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where ̄̄h�� (k1, k2, v� , v� ) is the Fourier transform of h��(X� , X�) with respect to both r� 
and r�,

Replacing ̄̄h𝛼𝛽(k1, k2, v𝛼 , v𝛽) in Eq. (150) by ̄̄g𝛼𝛽(k1, k2, v𝛼 , v𝛽 , 0) and then substi-
tuting the equation into Eq. (144), CS

�
 can be obtained,

As the one-particle distribution functions are regarded to be homogeneous during 
the relaxation of the pair correlation functions, g�� depends only on the relative 
position vector r�� = r� − r� . In this case, ̄̄g𝛼𝛽(k1, k2, v𝛼 , v𝛽 , 0) assumes the follow-
ing form:

(150)

P𝛼(t1)P𝛽(t2)h𝛼𝛽(X𝛼 , X𝛽)

= −
1

(2𝜋)2 ∫ d
3
k1 ∫

C1

d𝜔1 ∫ d
3
k2 ∫

C2

d𝜔2

1

𝜔1 − k1 ⋅ v𝛼

1

𝜔2 − k2 ⋅ v𝛽

× e
i(k1⋅r𝛼−𝜔1t1+k2⋅r𝛽−𝜔2t2)

{
̄̄h𝛼𝛽(k1, k2, v𝛼 , v𝛽)

−
q𝛽

𝜀0m𝛽

k2 ⋅ 𝜕f𝛽∕𝜕v𝛽

𝜀(k2, 𝜔2)k
2

2

∑
𝛾

q𝛾 ∫ d
3
v𝛾

̄̄h𝛼𝛾 (k1, k2, v𝛼 , v𝛾 )

𝜔2 − k2 ⋅ v𝛾

−
q𝛼

𝜀0m𝛼

k1 ⋅ 𝜕f𝛼∕𝜕v𝛼

𝜀(k1, 𝜔1)k
2

1

∑
𝛾

q𝛾 ∫ d
3
v𝛾

1

𝜔1 − k1 ⋅ v𝛾

[
̄̄h𝛾𝛽(k1, k2, v𝛾 , v𝛽)

−
q𝛽

𝜀0m𝛽

k2 ⋅ 𝜕f𝛽∕𝜕v𝛽

𝜀(k2, 𝜔2)k
2

2

∑
𝜎

q𝜎 ∫ d
3
v𝜎

̄̄h𝛾𝜎(k1, k2, v𝛾 , v𝜎)

𝜔2 − k2 ⋅ v𝜎

]}
,

(151)̄̄h𝛼𝛽(k1, k2, v𝛼 , v𝛽) =
1

(2𝜋)6 ∫ d
3
r𝛼 ∫ d

3
r𝛽 h𝛼𝛽(X𝛼 , X𝛽)e

i(k1⋅r𝛼+k2⋅r𝛽).

(152)

C
S
𝛼
(f𝛼) = −

𝜕

𝜕v𝛼
⋅

∑
𝛽

q𝛼q𝛽

16𝜋3𝜀0m𝛼
∫ d

3
k1 ∫

C1

d𝜔1 ∫ d
3
k2 ∫

C2

d𝜔2 ∫ d
6
X𝛽

×
1

𝜔1 − k1 ⋅ v𝛼

1

𝜔2 − k2 ⋅ v𝛽

ei[k1⋅r𝛼+k2⋅r𝛽−(𝜔1+𝜔2)t] 𝜕

𝜕r𝛼

1

r𝛼𝛽

×

{
̄̄g𝛼𝛽(k1, k2, v𝛼 , v𝛽 , 0)

−
q𝛽

𝜀0m𝛽

k2 ⋅ 𝜕f𝛽∕𝜕v𝛽

𝜀(k2, 𝜔2)k
2

2

∑
𝛾

q𝛾 ∫ d
3
v𝛾

̄̄g𝛼𝛾 (k1, k2, v𝛼 , v𝛾 , 0)

𝜔2 − k2 ⋅ v𝛾

−
q𝛼

𝜀0m𝛼

k1 ⋅ 𝜕f𝛼∕𝜕v𝛼

𝜀(k1, 𝜔1)k
2

1

∑
𝛾

q𝛾 ∫ d
3
v𝛾

1

𝜔1 − k1 ⋅ v𝛾

[
̄̄g𝛾𝛽(k1, k2, v𝛾 , v𝛽 , 0)

−
q𝛽

𝜀0m𝛽

k2 ⋅ 𝜕f𝛽∕𝜕v𝛽

𝜀(k2, 𝜔2)k
2

2

∑
𝜎

q𝜎 ∫ d
3
v𝜎

̄̄g𝛾𝜎(k1, k2, v𝛾 , v𝜎 , 0)

𝜔2 − k2 ⋅ v𝜎

]}
.
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where

Inserting Eq. (153) into Eq. (152) and carrying out the integrals over k2 and r� gives

Interchanging the order of the summations over � and � and using the definition of 
�(k, �) in Eq. (50), the above equation can be simplified to

Since ḡ
𝛼𝛽
(k1, v𝛼 , v𝛽 , 0) is smooth, by deforming the contour of the �2 integral to 

the lower half plane in a similar way as that shown in Fig. 2 and using the residue 
theorem, CS

�
 is readily found to decay exponentially with t when the integrals over �2 

and v� are carried out and can thus be neglected for large t.
Proceeding in a similar way as calculating CS

�
 , CI

�
 can be obtained,

(153)̄̄g𝛼𝛽(k1, k2, v𝛼 , v𝛽 , 0) = ḡ
𝛼𝛽
(k1, v𝛼 , v𝛽 , 0)𝛿(k1 + k2),

(154)ḡ
𝛼𝛽
(k1, v𝛼 , v𝛽 , 0) =

1

(2𝜋)3 ∫ g𝛼𝛽(r𝛼𝛽 , v𝛼 , v𝛽 , 0)e
−ik1⋅r𝛼𝛽 d

3
r𝛼𝛽 .

(155)

C
S
𝛼
(f𝛼) =

𝜕

𝜕v𝛼
⋅

∑
𝛽

q𝛼q𝛽

4𝜋2𝜀0m𝛼

i∫ d
3
k1 ∫

C1

d𝜔1 ∫
C2

d𝜔2 ∫ d
3
v𝛽

×
1

𝜔1 − k1 ⋅ v𝛼

1

𝜔2 + k1 ⋅ v𝛽

k1

k2
1

e−i(𝜔1+𝜔2)t
{
ḡ
𝛼𝛽
(k1, v𝛼 , v𝛽 , 0)

+
q𝛽

𝜀0m𝛽

k1 ⋅ 𝜕f𝛽∕𝜕v𝛽

𝜀(−k1, 𝜔2)k
2

1

∑
𝛾

q𝛾 ∫ d
3
v𝛾

ḡ𝛼𝛾 (k1, v𝛼 , v𝛾 , 0)

𝜔2 + k1 ⋅ v𝛾

−
q𝛼

𝜀0m𝛼

k1 ⋅ 𝜕f𝛼∕𝜕v𝛼

𝜀(k1, 𝜔1)k
2

1

∑
𝛾

q𝛾 ∫ d
3
v𝛾

1

𝜔1 − k1 ⋅ v𝛾

[
ḡ
𝛾𝛽
(k1, v𝛾 , v𝛽 , 0)

+
q𝛽

𝜀0m𝛽

k1 ⋅ 𝜕f𝛽∕𝜕v𝛽

𝜀(−k1, 𝜔2)k
2

1

∑
𝜎

q𝜎 ∫ d
3
v𝜎

ḡ𝛾𝜎(k1, v𝛾 , v𝜎 , 0)

𝜔2 + k1 ⋅ v𝜎

]}
.

(156)

C
S
𝛼
(f𝛼) =

𝜕

𝜕v𝛼
⋅

∑
𝛽

q𝛼q𝛽

4𝜋2𝜀0m𝛼

i∫ d
3
k1 ∫

C1

d𝜔1 ∫
C2

d𝜔2 ∫ d
3
v𝛽

1

𝜔1 − k1 ⋅ v𝛼

×
1

𝜔2 + k1 ⋅ v𝛽

k1

𝜀(−k1, 𝜔2)k
2

1

e
−i(𝜔1+𝜔2)t

{
ḡ
𝛼𝛽
(k1, v𝛼 , v𝛽 , 0)

−
q𝛼

𝜀0m𝛼

k1 ⋅ 𝜕f𝛼∕𝜕v𝛼

𝜀(k1, 𝜔1)k
2

1

∑
𝛾

q𝛾 ∫ d
3
v𝛾

ḡ
𝛾𝛽
(k1, v𝛾 , v𝛽 , 0)

𝜔1 − k1 ⋅ v𝛾

}
.
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where

Carrying out the integral over t1 , Eq. (157) becomes

The integrand corresponding to −1 in the factor e−i(�1+�2)t − 1 in the above equa-
tion is analytic in the upper half �1(2) plane and proportional to 1∕|�1(2)|2 there as 
|�1(2)| → ∞ . Hence, the contour of the �1(2) integral for this part of the integrand can 
be closed around the upper half plane, i.e., adding the semi-circle at Im�1(2) = ∞ 
which contributes nothing, and the integral gives 0. Inserting Eq. (158) into the 
remaining term proportional to e−i(�1+�2)t in Eq. (159), CI

�
 can be separated into two 

parts: CI
�
= C

IP
�
+ C

IC
�

 . CIP
�

 corresponds to the part proportional to f� and CIC
�

 to the 
part proportional to �f�∕�v� . C

IP
�

 is given by

where Eq. (50) for �(k, �) has been used. The �1 integral in the above equation is 
equal to −2�i times the sum of the residues of the poles at �1 = −�2 and �1 = k ⋅ v� 

(157)

C
I
𝛼
(f𝛼) =

𝜕

𝜕v𝛼
⋅

∑
𝛽

q𝛼q𝛽

4𝜋2𝜀0m𝛼

i∫
t

0

dt1 ∫ d
3
k1 ∫

C1

d𝜔1 ∫
C2

d𝜔2 ∫ d
3
v𝛽

1

𝜔1 − k1 ⋅ v𝛼

×
1

𝜔2 + k1 ⋅ v𝛽

k1

𝜀(−k1, 𝜔2)k
2

1

e−i(𝜔1+𝜔2)t1

{
S̄
𝛼𝛽
(k1, v𝛼 , v𝛽)

−
q𝛼

𝜀0m𝛼

k1 ⋅ 𝜕f𝛼∕𝜕v𝛼

𝜀(k1, 𝜔1)k
2

1

∑
𝛾

q𝛾 ∫ d
3
v𝛾

S̄
𝛾𝛽
(k1, v𝛾 , v𝛽)

𝜔1 − k1 ⋅ v𝛾

}
,

(158)

S̄
𝛼𝛽
(k1, v𝛼 , v𝛽) =

1

(2𝜋)3 ∫ d
3
r𝛼𝛽

q𝛼q𝛽

4𝜋𝜀0

𝜕

𝜕r𝛼

1

r𝛼𝛽
⋅

(
1

m𝛼

𝜕

𝜕v𝛼
−

1

m𝛽

𝜕

𝜕v𝛽

)
f𝛼f𝛽

× e−ik1⋅r𝛼𝛽

= i
q𝛼q𝛽

(2𝜋)3𝜀0

k1

k2
1

⋅

(
1

m𝛼

𝜕

𝜕v𝛼
−

1

m𝛽

𝜕

𝜕v𝛽

)
f𝛼f𝛽 .

(159)

C
I
𝛼
(f𝛼) = −

𝜕

𝜕v𝛼
⋅

∑
𝛽

q𝛼q𝛽

4𝜋2𝜀0m𝛼
∫ d

3
k1 ∫

C1

d𝜔1 ∫
C2

d𝜔2 ∫ d
3
v𝛽

1

𝜔1 − k1 ⋅ v𝛼

×
1

𝜔2 + k1 ⋅ v𝛽

e−i(𝜔1+𝜔2)t − 1

𝜔1 + 𝜔2

k1

𝜀(−k1, 𝜔2)k
2

1

[
S̄
𝛼𝛽
(k1, v𝛼 , v𝛽)

−
q𝛼

𝜀0m𝛼

k1 ⋅ 𝜕f𝛼∕𝜕v𝛼

𝜀(k1, 𝜔1)k
2

1

∑
𝛾

q𝛾 ∫ d
3
v𝛾

S̄
𝛾𝛽
(k1, v𝛾 , v𝛽)

𝜔1 − k1 ⋅ v𝛾

]
.

(160)
C
IP
�
(f�) =

�

�v�
⋅

q2
�

(2�)5�0m�

i∫ d
3
k∫

C1

d�1 ∫
C2

d�2

k

k2

[
1

�(−k, �2)
− 1

]

×
1

�1 − k ⋅ v�

e−i(�1+�2)t

�1 + �2

f� ,
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by closing the integration contour around the lower half plane, i.e., adding the semi-
circle at Im�1 = −∞ which contributes nothing, and using the residue theorem. 
Equation (160) thus becomes

The integrand corresponding to −1 in the factor e−i(�2+k⋅v�)t − 1 in the above equation 
is analytic in the upper half �2 plane and proportional to 1∕|�2|2 there as |�2| → ∞ , 
so its integral over �2 gives 0 by closing the integration contour around the upper 
half plane.For the integrandcorresponding to e−i(�2+k⋅v�)t , deforming the contour of 
the �2 integral to the lower half plane in a similar way as that shown in Fig. 2 and 
retaining only the contribution from the residue of the pole at �2 = −k ⋅ v� which 
does not decay with t, we obtain

Compared with the results obtained based on the FP approach, it can be seen that CIP
�

 
is due to the polarization.

For CIC
�

 , interchanging the order of the summations over � and � in Eq. (159) and 
using Eq. (50), we have

where

u(k, �) is defined in the upper half � plane and can be continued analytically into 
the real axis and lower half plane as �(k, �) by using the way shown in Fig. 1. Leav-
ing Im�1 fixed and moving the contour of the �2 integral in Eq. (163) to the lower 
half plane below the pole at �2 = −�1 in a similar way as that shown in Fig. 2, we 

(161)
C
IP
�
(f�) =

�

�v�
⋅

q2
�

(2�)4�0m�
∫ d

3
k∫

C2

d�2

k

k2

[
1

�(−k, �2)
− 1

]

×
e−i(�2+k⋅v�)t − 1

�2 + k ⋅ v�

f� .

(162)

C
IP
�
(f�) = −

�

�v�
⋅

q2
�

(2�)3�0m�

i∫ d
3
k
k

k2

�
1

�(−k, −k ⋅ v�)
− 1

�
f�

=
�

�v�
⋅

q2
�

(2�)3�0m�
∫ d

3
k

k�i(k, k ⋅ v�)

k2��(k, k ⋅ v�)�2
f�

= −
�

�v�
⋅

�
⟨Δv�⟩pf�

�
.

(163)

C
IC
�
(f�) = −

�

�v�
⋅

q2
�

(2�)5�2
0
m2

�

i∫ d
3
k∫

C1

d�1 ∫
C2

d�2

kk ⋅ �f�∕�v�

k4
1

�1 − k ⋅ v�

×
e−i(�1+�2)t

�1 + �2

[
−
u(k, �1) + u(−k, �2)

�(k, �1)�(−k, �2)
+

u(k, �1)

�(k, �1)

]
,

(164)u(k, �) ≡ ∑
�

q2
� �

f�(v)

k ⋅ v − �
d
3
v.
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obtain by retaining only the contribution from the residue of the pole at �2 = −�1 
which does not decay with t

The integrand corresponding to the second term in the square brackets on the RHS 
of the above equation is analytic in the upper half �1 plane and proportional to 
1∕|�1|2 there as |�1| → ∞ , so its integral over �1 gives 0 by closing the integration 
contour around the upper half plane. For the remaining term, moving the contour of 
the �1 integral to the real axis and using the following relation for this case:

we obtain

Substituting the Plemelj formula

into the above equation where P denotes the principal value, noting that the term 
corresponding to P∕(�1 − k ⋅ v�) is 0 as the integrand becomes to its opposite when 
�1 and k are, respectively, changed to −�1 and −k , and carrying out the integral over 
�1 yields

Compared with the results obtained based on the FP approach, it is clear that CIC
�

 is 
due to the correlation of the fluctuations. Combining Eqs. (162) and (169) gives the 
BLG collision tern.

(165)
C
IC
�
(f�) = −

�

�v�
⋅

q2
�

(2�)4�2
0
m2

�
∫ d

3
k∫

C1

d�1

kk ⋅ �f�∕�v�

k4
1

�1 − k ⋅ v�

×

[
−
u(k, �1) + u(−k, −�1)

�(k, �1)�(−k, −�1)
+

u(k, �1)

�(k, �1)

]
.

(166)u(k, �1) + u(−k, −�1) = i2�
∑
�

q2
� ∫ f�(v)�(�1 − k ⋅ v) d3v,

(167)
C
IC
�
(f�) =

�

�v�
⋅

∑
�

q2
�
q2
�

(2�)3�2
0
m2

�

i∫ d
3
k∫

∞

−∞

d�1 ∫ d
3
v f�(v)

×
kk ⋅ �f�(v�)∕�v�

|�(k, �1)|2k4
�(�1 − k ⋅ v)

�1 − k ⋅ v� + i0+
.

(168)
1

�1 − k ⋅ v� + i0+
=

P

�1 − k ⋅ v�

− i��(�1 − k ⋅ v�),

(169)

C
IC
�
(f�) =

�

�v�
⋅

�
�

q2
�
q2
�

8�2�2
0
m2

�
∫ d

3
k∫ d

3
v f�(v)

kk ⋅ �f�(v�)∕�v�

��(k, k ⋅ v)�2k4
× �(k ⋅ v − k ⋅ v�)

=
1

2

�

�v�
⋅

�
⟨Δv�Δv�⟩ ⋅

�f�

�v�

�
.
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3.2 � The case with a uniform B

In the presence of a uniform magnetic field, the collision term C𝛼⋆ is still given by the 
RHS of Eq. (126),

where g𝛼𝛽⋆ satisfies the following evolution equation:

As in the no magnetic field case, C𝛼⋆ can be expressed as the sum of two terms:

where

represent the part produced by the Coulomb interactions and that associated with the 
initial pair correlation, respectively. For simplicity, g��(t = 0) = 0 is assumed here, 

so CS
𝛼⋆

= 0 . As a matter of fact, it can be easily proven that CS
𝛼⋆

 decays exponentially 
with t when g��(t = 0) ≠ 0 like the no magnetic field case and can thus be neglected 

for large t. To calculate CI
𝛼⋆

 , P𝛼⋆(t
�)P𝛽⋆(t

�)S𝛼𝛽 has to be determined first.

Acting P𝛼⋆(t) on h��(X� , X�) gives a function 

h𝛼𝛽⋆(X𝛼 , t, X𝛽) ≡ P𝛼⋆(t)h𝛼𝛽(X𝛼 , X𝛽) which satisfies the following equation:

By the Fourier-Laplace transform, the solution of the above equation is found to be

(170)C𝛼⋆(f𝛼) =
∑
𝛽

q𝛼q𝛽

4𝜋𝜀0m𝛼
∫ d

6
X𝛽

𝜕

𝜕r𝛼

1

r𝛼𝛽
⋅

𝜕g𝛼𝛽⋆

𝜕v𝛼
,

(171)

(
𝜕

𝜕t
+ v𝛼 ⋅

𝜕

𝜕r𝛼
+ v𝛽 ⋅

𝜕

𝜕r𝛽
+

q𝛼

m𝛼

v𝛼 × B ⋅

𝜕

𝜕v𝛼
+

q𝛽

m𝛽

v𝛽 × B ⋅

𝜕

𝜕v𝛽

)
g𝛼𝛽⋆

−
∑
𝛾

q𝛾

4𝜋𝜀0 ∫ d
6
X𝛾

[
q𝛼

m𝛼

𝜕

𝜕r𝛼

1

r𝛼𝛾
⋅

𝜕f𝛼

𝜕v𝛼
g𝛽𝛾⋆ + (𝛼 ↔ 𝛽)

]
= S𝛼𝛽 .

(172)C𝛼⋆(f𝛼) = C
S
𝛼⋆
(f𝛼) + C

I
𝛼⋆
(f𝛼),

(173)C
I
𝛼⋆
(f𝛼) =

𝜕

𝜕v𝛼
⋅

∑
𝛽

q𝛼q𝛽

4𝜋𝜀0m𝛼
∫

t

0

dt� ∫ d
6
X𝛽 P𝛼⋆(t

�)P𝛽⋆(t
�)S𝛼𝛽

𝜕

𝜕r𝛼

1

r𝛼𝛽
,

(174)C
S
𝛼⋆
(f𝛼) =

𝜕

𝜕v𝛼
⋅

∑
𝛽

q𝛼q𝛽

4𝜋𝜀0m𝛼
∫ d

6
X𝛽 P𝛼⋆(t)P𝛽⋆(t)g𝛼𝛽(t = 0)

𝜕

𝜕r𝛼

1

r𝛼𝛽

(175)

𝜕h𝛼𝛽⋆(X𝛼 , t, X𝛽)

𝜕t
+ v𝛼 ⋅

𝜕h𝛼𝛽⋆(X𝛼 , t, X𝛽)

𝜕r𝛼
+

q𝛼

m𝛼

v𝛼 × B ⋅

𝜕h𝛼𝛽⋆(X𝛼 , t, X𝛽)

𝜕v𝛼

−
q𝛼

m𝛼

𝜕f𝛼

𝜕v𝛼
⋅

∑
𝛾

q𝛾

4𝜋𝜀0 ∫ h𝛾𝛽⋆(X𝛾 , t, X𝛽)
𝜕

𝜕r𝛼

1

r𝛼𝛾
d
6
X𝛾 = 0.
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Similarly, we obtain

Replacing ̄̄h𝛼𝛽 in the above equation by ̄̄S𝛼𝛽 = S̄
𝛼𝛽
𝛿(k1 + k2) and then substituting 

the equation into Eq. (173), we obtain through some similar manipulations as those 
in the no magnetic field case

(176)

h𝛼𝛽⋆(X𝛼 , 𝜏1, X𝛽)

=
1

2𝜋 ∫
∞

0

dt1 ∫ d
3
k∫

C

d𝜔 eik⋅{r𝛼−[�𝛼(0)−�𝛼 (−t1)]⋅v𝛼}+i𝜔(t1−𝜏1)

×

{
h̄𝛼𝛽

(
k, �−1

𝛼
(t1) ⋅ v𝛼 , X𝛽

)
+ i

q𝛼

𝜀0m𝛼

k ⋅ �
−1
𝛼
(t1) ⋅ 𝜕f𝛼∕𝜕v𝛼

𝜀⋆(k, 𝜔)k
2

×
∑
𝛾

q𝛾 ∫
∞

0

dt2 ∫ d
3
v𝛾 h̄𝛾𝛽(k, v𝛾 , X𝛽)e

−ik⋅[�𝛾 (t2)−�𝛾 (0)]⋅v𝛾+i𝜔t2

}
.

(177)

P𝛼⋆(𝜏1)P𝛽⋆(𝜏2)h𝛼𝛽(X𝛼 , X𝛽)

=
1

(2𝜋)2 ∫
∞

0

dt1 ∫
∞

0

dt3 ∫ d
3
k1 ∫

C1

d𝜔1 ∫ d
3
k2 ∫

C2

d𝜔2

× eik1⋅{r𝛼−[�𝛼 (0)−�𝛼 (−t1)]⋅v𝛼}+i𝜔1(t1−𝜏1)eik2⋅{r𝛽−[�𝛽 (0)−�𝛽 (−t3)]⋅v𝛽}+i𝜔2(t3−𝜏2)

×

{
̄̄h𝛼𝛽

(
k1, k2, �

−1
𝛼
(t1) ⋅ v𝛼 , �

−1
𝛽
(t3) ⋅ v𝛽

)
+ i

q𝛽

𝜀0m𝛽

k2 ⋅ �
−1
𝛽
(t3) ⋅ 𝜕f𝛽∕𝜕v𝛽

𝜀⋆(k2, 𝜔2)k
2

2

×
∑
𝛾

q𝛾 ∫
∞

0

dt4 ∫ d
3
v𝛾

̄̄h𝛼𝛾
(
k1, k2, �

−1
𝛼
(t1) ⋅ v𝛼 , v𝛾

)
e−ik2⋅[�𝛾 (t4)−�𝛾 (0)]⋅v𝛾+i𝜔2t4

+ i
q𝛼

𝜀0m𝛼

k1 ⋅ �
−1
𝛼
(t1) ⋅ 𝜕f𝛼∕𝜕v𝛼

𝜀⋆(k1, 𝜔1)k
2

1

∑
𝛾

q𝛾 ∫
∞

0

dt2 ∫ d
3
v𝛾 e

−ik1⋅[�𝛾 (t2)−�𝛾 (0)]⋅v𝛾+i𝜔1t2

×

[
̄̄h𝛾𝛽

(
k1, k2, v𝛾 , �

−1
𝛽
(t3) ⋅ v𝛽

)
+ i

q𝛽

𝜀0m𝛽

k2 ⋅ �
−1
𝛽
(t3) ⋅ 𝜕f𝛽∕𝜕v𝛽

𝜀⋆(k2, 𝜔2)k
2

2

×
∑
𝜎

q𝜎 ∫
∞

0

dt4 ∫ d
3
v𝜎

̄̄h𝛾𝜎(k1, k2, v𝛾 , v𝜎)e
−ik2⋅[�𝜎 (t4)−�𝜎 (0)]⋅v𝜎+i𝜔2t4

]}
.
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The integral over t′ of e−i(�1+�2)t
� in the above equation gives 

i
[
e−i(�1+�2)t − 1

]
∕(�1 + �2) . Carrying out the integrals over t1 and t2 , the inte-

grand corresponding to the factor −i∕(�1 + �2) in Eq. (178) is found to be ana-
lytic in the upper half �1(2) plane and approaches 1∕|�1(2)|2 there as |�1(2)| → ∞ . 
Therefore, its integral over �1(2) is 0 by closing the integration contour around the 
upper half plane. Substituting S̄

𝛼𝛽
 in Eq. (158), the remaining termproportional to 

ie−i(�1+�2)t∕(�1 + �2) in Eq. (178) is separated into two parts CIP
𝛼⋆

 and CIC
𝛼⋆

 like the 
no magnetic field case, corresponding to the parts involving f� and �f�∕�v� , respec-
tively. Using 𝜀⋆(k, 𝜔) in Eq. (106), CIP

𝛼⋆
 can be expressed as

Expanding eik⋅�� (−t1)⋅v� in the above equation into a series of Bessel functions using 
Eq. (111) and carrying out the integral over t1 yields

Carrying out the integral over �1 by closing the integration contour around the lower 
half plane, the result is equal to −2�i times the sum of the residues of the poles at 
�1 = −�2 and �1 = mΩ� + k∥v�∥ . Therefore, Eq. (180) becomes

(178)

C
I
𝛼⋆
(f𝛼) = −

𝜕

𝜕v𝛼
⋅

∑
𝛽

q𝛼q𝛽

(2𝜋)2𝜀0m𝛼

i∫
t

0

dt� ∫
∞

0

dt1 ∫
∞

0

dt2 ∫ d
3
k1 ∫

C1

d𝜔1

× ∫
C2

d𝜔2 ∫ d
3
v𝛽

k1

𝜀⋆(−k1, 𝜔2)k
2

1

e−i(𝜔1+𝜔2)t�

× e−ik1⋅[�𝛼 (0)−�𝛼(−t1)]⋅v𝛼+i𝜔1t1eik1⋅[�𝛽 (t2)−�𝛽 (0)]⋅v𝛽+i𝜔2t2

×

{
S̄
𝛼𝛽

(
k1, �

−1
𝛼
(t1) ⋅ v𝛼 , v𝛽

)
+ i

q𝛼

𝜀0m𝛼

k1 ⋅ �
−1
𝛼
(t1) ⋅ 𝜕f𝛼∕𝜕v𝛼

𝜀⋆(k1, 𝜔1)k
2

1

×
∑
𝛾

q𝛾 ∫
∞

0

dt3 ∫ d
3
v𝛾 S̄𝛾𝛽(k1, v𝛾 , v𝛽)e

−ik1⋅[�𝛾 (t3)−�𝛾 (0)]⋅v𝛾+i𝜔1t3

}
.

(179)

C
IP
𝛼⋆
(f𝛼) =

𝜕

𝜕v𝛼
⋅

q2
𝛼

(2𝜋)5𝜀0m𝛼
∫

∞

0

dt1 ∫ d
3
k∫

C1

d𝜔1 ∫
C2

d𝜔2

e−i(𝜔1+𝜔2)t

𝜔1 + 𝜔2

k

k2

×

[
1

𝜀⋆(−k, 𝜔2)
− 1

]
e−ik⋅[�𝛼(0)−�𝛼 (−t1)]⋅v𝛼+i𝜔1t1 f𝛼 .

(180)

C
IP
𝛼⋆
(f𝛼) =

𝜕

𝜕v𝛼
⋅

q2
𝛼

(2𝜋)5𝜀0m𝛼

i∫ d
3
k∫

C1

d𝜔1 ∫
C2

d𝜔2

∞∑
m=−∞

Jm(k⟂𝜌𝛼)e
im(𝜑k

−𝜑𝛼)

𝜔1 − mΩ𝛼 − k∥v𝛼∥

×
e−i(𝜔1+𝜔2)t

𝜔1 + 𝜔2

k

k2

[
1

𝜀⋆(−k, 𝜔2)
− 1

]
e−ik⋅�𝛼 (0)⋅v𝛼 f𝛼 .
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The integrand corresponding to −1 in the factor e−i(�2+mΩ�+k∥v�∥)t − 1 in the above 
equation is analytic in the upper half �2 plane and approaches 1∕|�2|2 there as 
|�2| → ∞ , so its integral over �2 is 0 by closing the integration contour around the 
upper half plane. For the remaining term proportional to e−i(�2+mΩ�+k∥v�∥)t , mov-
ing the contour of the �2 integral into the lower half plane in a similar way as that 
shown in Fig. 2 and retaining only the contributions from the residues of the poles at 
�2 = −mΩ� − k∥v�∥ not decaying with t, we get

The integrand corresponding to the term −1 in the square brackets on the RHS of the 
above equation is an odd function of k by noting that

so its integral over k gives 0. Then CIP
𝛼⋆

 becomes

Using Eq. (111), CIP
𝛼⋆

 can also be expressed as

Making the variable substitution k → −𝖳−1
�
(t1) ⋅ k , the above equation becomes

(181)
C
IP
𝛼⋆
(f𝛼) =

𝜕

𝜕v𝛼
⋅

q2
𝛼

(2𝜋)4𝜀0m𝛼
∫ d

3
k∫

C2

d𝜔2

∞∑
m=−∞

Jm(k⟂𝜌𝛼)e
im(𝜑k

−𝜑𝛼)

𝜔2 + mΩ𝛼 + k∥v𝛼∥

×
[
e−i(𝜔2+mΩ𝛼+k∥v𝛼∥)t − 1

][
1

𝜀⋆(−k, 𝜔2)
− 1

]
k

k2
e−ik⋅�𝛼 (0)⋅v𝛼 f𝛼 .

(182)
C
IP
𝛼⋆
(f𝛼) = −

𝜕

𝜕v𝛼
⋅

q2
𝛼

(2𝜋)3𝜀0m𝛼

i∫ d
3
k

∞∑
m=−∞

Jm(k⟂𝜌𝛼)e
im(𝜑k

−𝜑𝛼)

×

[
1

𝜀⋆(−k, −mΩ𝛼 − k∥v𝛼∥)
− 1

]
k

k2
e−ik⋅�𝛼 (0)⋅v𝛼 f𝛼 .

(183)
∞∑

m=−∞

Jm(k⟂��)e
im(�k

−��) = eik⋅�� (0)⋅v� ,

(184)
C
IP
𝛼⋆
(f𝛼) = −

𝜕

𝜕v𝛼
⋅

q2
𝛼

(2𝜋)3𝜀0m𝛼

i∫ d
3
k

∞∑
m=−∞

Jm(k⟂𝜌𝛼)e
im(𝜑k

−𝜑𝛼)

𝜀⋆(−k, −mΩ𝛼 − k∥v𝛼∥)

k

k2

× e−ik⋅�𝛼 (0)⋅v𝛼 f𝛼 .

(185)
C
IP
𝛼⋆
(f𝛼) = −

𝜕

𝜕v𝛼
⋅

q2
𝛼

(2𝜋)4𝜀0m𝛼

i∫
∞

−∞

dt1 ∫ d
3
k∫

∞

−∞

d𝜔2

k

𝜀⋆(−k, 𝜔2)k
2

× e
ik⋅[�𝛼(−t1)−�𝛼(0)]⋅v𝛼−i𝜔2t1 f𝛼 .

(186)

C
IP
𝛼⋆
(f𝛼) =

𝜕

𝜕v𝛼
⋅

q2
𝛼

(2𝜋)4𝜀0m𝛼

i∫
∞

−∞

dt1 ∫ d
3
k∫

∞

−∞

d𝜔2

�
−1
𝛼
(t1) ⋅ k

𝜀⋆(k, 𝜔2)k
2

× e
ik⋅[�𝛼 (t1)−�𝛼 (0)]⋅v𝛼−i𝜔2t1 f𝛼

= −
𝜕

𝜕v𝛼
⋅

�
⟨ΔV𝛼⟩pf𝛼

�
.



	 Reviews of Modern Plasma Physics (2023) 7:19

1 3

19  Page 42 of 62

Compared with the results obtained based on the FP approach, it is found that CIP
𝛼⋆

 is 
due to the polarization.

Interchanging the order of the summations over � and � in Eq. (178) and using 
Eq. (106), we obtain the expression for CIC

𝛼⋆

where

u⋆(k, 𝜔) is defined in the upper half � plane and can be continued analytically into 
the real axis and lower half plane as �(k, �) using the way shown in Fig. 1. Carrying 
out the �2 integral by moving the integration contour into the lower half plane below 
the pole at �2 = −�1 in a similar way as that shown in Fig. 2 and retaining only the 
contribution from the residue of the pole at �2 = −�1 which does not decay with t, 
we have

The integrand corresponding to the second term in the square brackets on the RHS 
of the above equation is analytic in the upper half �1 plane and found to approach 
1∕|�1|2 there as |�1| → ∞ by carrying out the integral over t1 , so its integral over �1 
is 0 by closing the integration contour around the upper half plane. For the remain-
ing term, pushing the contour of the �1 integral to the real axis, and noting that in 
this case

(187)

C
IC
𝛼⋆
(f𝛼) =

𝜕

𝜕v𝛼
⋅

q2
𝛼

(2𝜋)5𝜀2
0
m2

𝛼
∫

∞

0

dt1 ∫ d
3
k∫

C1

d𝜔1 ∫
C2

d𝜔2

×
kk ⋅ �

−1
𝛼
(t1) ⋅ 𝜕f𝛼∕𝜕v𝛼

k4
e−i(𝜔1+𝜔2)t

𝜔1 + 𝜔2

e−ik⋅[�𝛼 (0)−�𝛼(−t1)]⋅v𝛼+i𝜔1t1

×

[
u⋆(−k, 𝜔2) + u⋆(k, 𝜔1)

𝜀⋆(−k, 𝜔2)𝜀⋆(k, 𝜔1)
−

u⋆(k, 𝜔1)

𝜀⋆(k, 𝜔1)

]
,

(188)u⋆(k, 𝜔) ≡
∑
𝛽

q2
𝛽
i�

∞

0

dt � d
3
v𝛽 f𝛽(v𝛽)e

−ik⋅[�𝛽 (t)−�𝛽 (0)]⋅v𝛽+i𝜔t.

(189)

C
IC
𝛼⋆
(f𝛼) = −

𝜕

𝜕v𝛼
⋅

q2
𝛼

(2𝜋)4𝜀2
0
m2

𝛼

i∫
∞

0

dt1 ∫ d
3
k∫

C1

d𝜔1

×
kk ⋅ �

−1
𝛼
(t1) ⋅ 𝜕f𝛼∕𝜕v𝛼

k4
e−ik⋅[�𝛼(0)−�𝛼 (−t1)]⋅v𝛼+i𝜔1t1

×

[
u⋆(−k, −𝜔1) + u⋆(k, 𝜔1)

𝜀⋆(−k, −𝜔1)𝜀⋆(k, 𝜔1)
−

u⋆(k, 𝜔1)

𝜀⋆(k, 𝜔1)

]
.

(190)
u⋆(−k, −𝜔1) + u⋆(k, 𝜔1) =

∑
𝛽

q2
𝛽
i∫

∞

−∞

dt ∫ d
3
v𝛽 f𝛽(v𝛽)

× e−ik⋅[�𝛽 (t)−�𝛽 (0)]⋅v𝛽+i𝜔1t,
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we have

Making the variable substitutions �1 → −�1 , t2 → −t2 , and k → −𝖳−1
�
(t1) ⋅ k , CIC

𝛼⋆
 

becomes

Compared with the results obtained based on the FP approach, it is clear that CIC
𝛼⋆

 is 
due to the correlation of the fluctuations. Combining Eqs. (186) and (192) yields the 
magnetized BLG collision term.

4 � Derivation of the collision term based on the QL approach

4.1 � The case without B

Besides the FP and BBGKY approaches described in the preceding two sections, the 
QL approach is also an elegant way to derive the collision term. It is as systematic as 
the BBGKY approach but much simpler in the derivation process. The starting point is 
the Klimontovich (1982) equation:

Statistical average of the above equation yields the kinetic equation:

It is clear that the RHS of the above equation represents the collision term C� with 
which we are concerned. In the QL approximation, �E and �N� are determined by 

(191)

C
IC
𝛼⋆
(f𝛼) =

𝜕

𝜕v𝛼
⋅

∑
𝛽

q2
𝛼
q2
𝛽

(2𝜋)4𝜀2
0
m2

𝛼
∫

∞

0

dt1 ∫
∞

−∞

dt2 ∫ d
3
k∫

C1

d𝜔1

× ∫ d
3
v𝛽 f𝛽(v𝛽)

kk ⋅ �
−1
𝛼
(t1) ⋅ 𝜕f𝛼∕𝜕v𝛼

|𝜀⋆(k, 𝜔1)|2k4
× e−ik⋅[�𝛼 (0)−�𝛼 (−t1)]⋅v𝛼−ik⋅[�𝛽 (t2)−�𝛽 (0)]⋅v𝛽+i𝜔1(t1+t2).

(192)

C
IC
𝛼⋆
(f𝛼) =

𝜕

𝜕v𝛼
⋅

�
𝛽

q2
𝛼
q2
𝛽

(2𝜋)4𝜀2
0
m2

𝛼
∫

∞

0

dt1 ∫
∞

−∞

dt2 ∫ d
3
k∫

C1

d𝜔1

× ∫ d
3
v𝛽 f𝛽(v𝛽)

�
−1
𝛼
(t1) ⋅ kk ⋅ 𝜕f𝛼∕𝜕v𝛼

�𝜀⋆(k, 𝜔1)�2k4
× e

ik⋅[�𝛼(t1)−�𝛼(0)]⋅v𝛼−ik⋅[�𝛽 (t2)−�𝛽 (0)]⋅v𝛽−i𝜔1(t1−t2)

=
1

2

𝜕

𝜕v𝛼
⋅

�
𝜕f𝛼

𝜕v𝛼
⋅ ⟨ΔV𝛼ΔV𝛼⟩

�
.

(193)
�N�

�t
+ v� ⋅

�N�

�r�
+

q�

m�

E
M
⋅

�N�

�v�
= 0.

(194)
�f�

�t
+ v� ⋅

�f�

�r�
+

q�

m�

E ⋅

�f�

�v�
= −

q�

m�

�

�v�
⋅ ⟨�E�N�⟩.
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Eqs. (40) and (43) (Chavanis 2012). Recalling that �N� = �NS
�
+ �NI

�
 , C� can be for-

mally separated into two parts:

These two parts will be considered separately in the following.
The relevant results in Sec. II can be used directly. Using 

�NS
�
(r� , v� , t) = �N�(r� − v�t, v� , 0) , expressing �E = −∇�� in terms of 𝛿𝜙̃ through 

the inverse Fourier-Laplace transform, and substituting Eq. (48) for 𝛿𝜙̃ and Eq. (49) for 
𝛿ÑS

𝛼
 , we have

Making the variable substitution r → r + vt1 and carrying out the integral over t1 , 
the above equation becomes

Moving the contour of the � integral in the above equation into the lower half plane 
in a similar way as that shown in Fig. 2 and noting that the contribution not decaying 
with t comes only from the residue of the pole at � = k ⋅ v as all the zeros of �(k, �) 
are assumed to lie in the lower half � plane, we have for large t

Substituting Eq. (68) into the above equation, neglecting the term corresponding to 
g�� as it decays exponentially with t when the integral over v is performed, and car-
rying out the integral over X for the remaining term, we obtain

(195)C�(f�) = −
q�

m�

�

�v�
⋅

⟨
�E�NS

�

⟩
−

q�

m�

�

�v�
⋅

⟨
�E�NI

�

⟩
.

(196)

−
q�

m�

�

�v�
⋅

�
�E�NS

�

�

=
�

�v�
⋅

�
�

q�q�

(2�)4�0m�

i∫
∞

0

dt1 ∫ d
3
k∫

C

d�∫ d
6
X

k

�(k, �)k2

× ⟨�N�(r� − v�t, v� , 0)�N�(r − vt1, v, 0)⟩ei[k⋅(r�−r)−�(t−t1)].

(197)

−
q�

m�

�

�v�
⋅

�
�E�NS

�

�

= −
�

�v�
⋅

�
�

q�q�

(2�)4�0m�
∫ d

3
k∫

C

d�∫ d
6
X

k

�(k, �)k2
1

� − k ⋅ v

× ⟨�N�(r� − v�t, v� , 0)�N�(r, v, 0)⟩ei[k⋅(r�−r)−�t].

(198)

−
q�

m�

�

�v�
⋅

�
�E�NS

�

�

=
�

�v�
⋅

�
�

q�q�

(2�)3�0m�

i∫ d
3
k∫ d

6
X

k

�(k, k ⋅ v)k2

× ⟨�N�(r� − v�t, v� , 0)�N�(r, v, 0)⟩eik⋅(r�−r−vt).
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Compared with the results obtained based on the FP approach, this part of C� can be 
considered to result from the polarization.

Expressing �E and �NI
�
 through the inverse Fourier-Laplace transform, the sec-

ond part of the collision term can be written as

𝛿ÑI
𝛼
 can be obtained by directly taking the Fourier-Laplace transform on the second 

term on the RHS of Eq. (45),

Inserting the above equation and Eqs. (48) and (49) into Eq. (200), we obtain

Making the variable substitutions r → r + vt1 and r� → r
� + v

�t2 and carrying out the 
integrals over t1 and t2 in the above equation yields

(199)
−
q�

m�

�

�v�
⋅

�
�E�NS

�

�
=

�

�v�
⋅

q2
�

(2�)3�0m�

i∫ d
3
k

k

�(k, k ⋅ v�)k
2
f�

= −
�

�v�
⋅

�
⟨Δv�⟩pf�

�
.

(200)

−
q𝛼

m𝛼

𝜕

𝜕v𝛼
⋅

⟨
𝛿E𝛿NI

𝛼

⟩

=
𝜕

𝜕v𝛼
⋅

q𝛼

(2𝜋)2m𝛼

i∫ d
3
k∫

C

d𝜔∫ d
3
k
� ∫

C
�

d𝜔�
k
⟨
𝛿𝜙̃(k, 𝜔)𝛿ÑI

𝛼
(k�, v𝛼 , 𝜔

�)
⟩

× ei[(k+k
�)⋅r𝛼−(𝜔+𝜔�)t].

(201)𝛿ÑI
𝛼
(k�, v𝛼 , 𝜔

�) = −
q𝛼

m𝛼

k
�
⋅ 𝜕f𝛼∕𝜕v𝛼

𝜔� − k
�
⋅ v𝛼

𝛿𝜙̃(k�, 𝜔�).

(202)

−
q�

m�

�

�v�
⋅

⟨
�E�NI

�

⟩

= −
�

�v�
⋅

∑
�, �

q2
�
q�q�

(2�)8�2
0
m2

�

i∫
∞

0

dt1 ∫
∞

0

dt2 ∫ d
3
k∫

C

d�∫ d
3
k
� ∫

C
�

d��

× ∫ d
6
X∫ d

6
X

� kk
�
⋅ �f�∕�v�

�(k, �)�(k�, ��)k2k�2
1

�� − k
�
⋅ v�

×
⟨
�N�(r − vt1, v, 0)�N� (r

� − v
�t2, v

�, 0)
⟩
e−i(k⋅r−�t1+k

�
⋅r

�−��t2)

× ei[(k+k
�)⋅r�−(�+��)t].
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Moving the contours of the � and �′ integrals in the above equation into the lower 
half planes in a similar way as that shown in Fig. 2 and retaining only the contribu-
tions from the residues of the poles at � = k ⋅ v , �� = k

�
⋅ v

� , and �� = k
�
⋅ v� which 

do not decay with t, we obtain

Substituting Eq. (68) into the above equation, neglecting the term corresponding to 
g�� as it decays exponentially with t when the integral over v is performed, and car-
rying out the integrals over X′ , r , and k′ for the remaining term, we get

As can be seen, k ⋅ v = k ⋅ v� is the pole of both the two terms in the square brackets 
on the RHS of the above equation, but is not the pole of their sum. Therefore, we can 
change 1∕(k ⋅ v − k ⋅ v�) to 1∕(k ⋅ v − k ⋅ v� + i0+) in Eq. (205) without changing its 

(203)

−
q�

m�

�

�v�
⋅

⟨
�E�NI

�

⟩

=
�

�v�
⋅

∑
�, �

q2
�
q�q�

(2�)8�2
0
m2

�

i∫ d
3
k∫

C

d�∫ d
3
k
� ∫

C
�

d�� ∫ d
6
X∫ d

6
X

�

×
kk

�
⋅ �f�∕�v�

�(k, �)�(k�, ��)k2k�2
1

� − k ⋅ v

1

�� − k
�
⋅ v�

1

�� − k
�
⋅ v�

×
⟨
�N�(X, 0)�N� (X

�
, 0)

⟩
e−i(k⋅r+k

�
⋅r

�)ei[(k+k
�)⋅r�−(�+��)t].

(204)

−
q�

m�

�

�v�
⋅

⟨
�E�NI

�

⟩

=
�

�v�
⋅

∑
�, �

q2
�
q�q�

(2�)6�2
0
m2

�

i∫ d
3
k∫ d

3
k
� ∫ d

6
X∫ d

6
X

� kk
�
⋅ �f�∕�v�

�(k, k ⋅ v)k2k�2

×
e−ik⋅vt

k
�
⋅ v� − k

�
⋅ v�

[
e−ik

�
⋅v

�t

�(k�, k� ⋅ v�)
−

e−ik
�
⋅v� t

�(k�, k� ⋅ v�)

]

×
⟨
�N�(X, 0)�N� (X

�
, 0)

⟩
e−i(k⋅r+k

�
⋅r

�)ei(k+k
�)⋅r� .

(205)

−
q�

m�

�

�v�
⋅

⟨
�E�NI

�

⟩

=
�

�v�
⋅

∑
�

q2
�
q2
�

(2�)3�2
0
m2

�

i∫ d
3
k∫ d

3
v f�(v)

kk ⋅ �f�(v�)∕�v�

�(k, k ⋅ v)k4

×

[
1

�(−k, −k ⋅ v�)

1

k ⋅ v − k ⋅ v�

e
−i(k⋅v−k⋅v�)t

−
1

�(−k, −k ⋅ v)

1

k ⋅ v − k ⋅ v�

]
.
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value, i.e., bypassing the point k ⋅ v = k ⋅ v� from above. Retaining only the contri-
bution from the residue of the pole at k ⋅ v = k ⋅ v� to the v integral for the first term 
in the square brackets on the RHS of Eq. (205), which does not decay with t, and 
using the Plemelj formula for the second term,

we obtain

The integrand corresponding to P∕(k ⋅ v − k ⋅ v�) in the above equation is an odd 
function of k , so its integral over k is 0. We then have

Compared with the results obtained based on the FP approach, this part of C� can be 
thought to come from the correlation of the electric field fluctuations. Combining 
Eqs. (199) and (208) produces the BLG collision term.

4.2 � The case with a uniform B

When a uniform magnetic field is present, the magnetized collision term can still be 
separated into the following two parts as the no magnetic field case:

Expressing 𝛿E⋆ = −∇𝛿𝜙⋆ in terms of 𝛿𝜙̃⋆ through the inverse Fourier-Laplace 
transform and substituting Eqs. (101), (104) and (105), we obtain

(206)
1

k ⋅ v − k ⋅ v� + i0+
=

P

k ⋅ v − k ⋅ v�

− i��(k ⋅ v − k ⋅ v�),

(207)

−
q�

m�

�

�v�
⋅

⟨
�E�NI

�

⟩

= −
�

�v�
⋅

∑
�

q2
�
q2
�

(2�)3�2
0
m2

�

i∫ d
3
k∫ d

3
v f�(v)

kk ⋅ �f�(v�)∕�v�

|�(k, k ⋅ v)|2k4

×

[
i��(k ⋅ v − k ⋅ v�) +

P

k ⋅ v − k ⋅ v�

]
.

(208)

−
q�

m�

�

�v�
⋅

�
�E�NI

�

�

=
�

�v�
⋅

�
�

q2
�
q2
�

8�2�2
0
m2

�
∫ d

3
k∫ d

3
v f�(v)

kk ⋅ �f�(v�)∕�v�

��(k, k ⋅ v)�2k4 �(k ⋅ v − k ⋅ v�)

=
1

2

�

�v�
⋅

�
⟨Δv�Δv�⟩ ⋅

�f�

�v�

�
.

(209)C𝛼⋆(f𝛼) = −
q𝛼

m𝛼

𝜕

𝜕v𝛼
⋅

⟨
𝛿E⋆𝛿N

S
𝛼⋆

⟩
−

q𝛼

m𝛼

𝜕

𝜕v𝛼
⋅

⟨
𝛿E⋆𝛿N

I
𝛼⋆

⟩
.
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Making the variable substitutions r� → r� + [𝖧�(0) − 𝖧�(−t1)] ⋅ v� and 
v� → 𝖳�(t1) ⋅ v� , the above equation becomes

Expanding e−ik⋅�� (t1)⋅v� in the above equation into a series of Bessel functions using 
Eq. (111) and carrying out the integral over t1 yields

Moving the contour of the � integral in the above equation into the lower half plane 
in a similar way as that shown in Fig. 2 and retaining only the contributions from the 
residues of the poles at � = mΩ� + k∥v�∥ which do not decay with t, we obtain

(210)

−
q𝛼

m𝛼

𝜕

𝜕v𝛼
⋅

⟨
𝛿E⋆𝛿N

S
𝛼⋆

⟩

=
𝜕

𝜕v𝛼
⋅

∑
𝛽

q𝛼q𝛽

(2𝜋)4𝜀0m𝛼

i∫
∞

0

dt1 ∫ d
3
k∫

C

d𝜔∫ d
6
X𝛽

k

𝜀⋆(k, 𝜔)k
2

× ei[k⋅(r𝛼−r𝛽 )−𝜔(t−t1)]
⟨
𝛿N𝛼(r𝛼 − [�𝛼(0) − �𝛼(−t)] ⋅ v𝛼 , �

−1
𝛼
(t) ⋅ v𝛼 , 0)

× 𝛿N𝛽(r𝛽 − [�𝛽(0) − �𝛽(−t1)] ⋅ v𝛽 , �
−1
𝛽
(t1) ⋅ v𝛽 , 0)

⟩
.

(211)

−
q𝛼

m𝛼

𝜕

𝜕v𝛼
⋅

⟨
𝛿E⋆𝛿N

S
𝛼⋆

⟩

=
𝜕

𝜕v𝛼
⋅

∑
𝛽

q𝛼q𝛽

(2𝜋)4𝜀0m𝛼

i∫
∞

0

dt1 ∫ d
3
k∫

C

d𝜔∫ d
6
X𝛽

k

𝜀⋆(k, 𝜔)k
2

× ei[k⋅(r𝛼−r𝛽 )−𝜔(t−t1)]e−ik⋅[�𝛽 (t1)−�𝛽 (0)]⋅v𝛽

×
⟨
𝛿N𝛼(r𝛼 − [�𝛼(0) − �𝛼(−t)] ⋅ v𝛼 , �

−1
𝛼
(t) ⋅ v𝛼 , 0)𝛿N𝛽(r𝛽 , v𝛽 , 0)

⟩
.

(212)

−
q𝛼

m𝛼

𝜕

𝜕v𝛼
⋅

⟨
𝛿E⋆𝛿N

S
𝛼⋆

⟩

= −
𝜕

𝜕v𝛼
⋅

∑
𝛽

q𝛼q𝛽

(2𝜋)4𝜀0m𝛼
∫ d

3
k∫

C

d𝜔∫ d
6
X𝛽

∞∑
m=−∞

Jm(k⟂𝜌𝛽)e
−im(𝜑

k
−𝜑𝛽 )

𝜔 − mΩ𝛽 − k∥v𝛽∥

×
k

𝜀⋆(k, 𝜔)k
2
ei[k⋅(r𝛼−r𝛽 )−𝜔t]eik⋅�𝛽 (0)⋅v𝛽

×
⟨
𝛿N𝛼(r𝛼 − [�𝛼(0) − �𝛼(−t)] ⋅ v𝛼 , �

−1
𝛼
(t) ⋅ v𝛼 , 0)𝛿N𝛽(r𝛽 , v𝛽 , 0)

⟩
.

(213)

−
q𝛼

m𝛼

𝜕

𝜕v𝛼
⋅

⟨
𝛿E⋆𝛿N

S
𝛼⋆

⟩

=
𝜕

𝜕v𝛼
⋅

∑
𝛽

q𝛼q𝛽

(2𝜋)3𝜀0m𝛼

i∫ d
3
k∫ d

6
X𝛽

∞∑
m=−∞

Jm(k⟂𝜌𝛽)e
−im(Ω𝛽 t+𝜑k

−𝜑𝛽 )

𝜀⋆(k, mΩ𝛽 + k∥v𝛽∥)

×
k

k2
ei[k⋅(r𝛼−r𝛽 )−k∥v𝛽∥t]eik⋅�𝛽 (0)⋅v𝛽

×
⟨
𝛿N𝛼(r𝛼 − [�𝛼(0) − �𝛼(−t)] ⋅ v𝛼 , �

−1
𝛼
(t) ⋅ v𝛼 , 0)𝛿N𝛽(r𝛽 , v𝛽 , 0)

⟩
.
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Inserting Eq. (68) into the above equation, neglecting the term corresponding to g�� 
as it decays exponentially with t when the integral over v�∥ is performed, and carry-
ing out the integral over X� for the remaining term gives

Using Eq. (111), the above equation can be rewritten as

Making the variable substitution k → 𝖳
−1
�
(t1) ⋅ k , the above equation becomes

Compared with the results obtained based on the FP approach, this part of C𝛼⋆ is 
found to stem from the polarization.

By use of the inverse Fourier-Laplace transform, the second term on the RHS of 
Eq. (209) can be expressed as

𝛿ÑI
𝛼⋆
(k�, v𝛼 , 𝜔

�) can be got by taking the Fourier-Laplace transform of Eq. (103),

(214)

−
q𝛼

m𝛼

𝜕

𝜕v𝛼
⋅

⟨
𝛿E⋆𝛿N

S
𝛼⋆

⟩

=
𝜕

𝜕v𝛼
⋅

q2
𝛼

(2𝜋)3𝜀0m𝛼

i∫ d
3
k

∞∑
m=−∞

Jm(k⟂𝜌𝛼)e
−im(𝜑

k
−𝜑𝛼 )

𝜀⋆(k, mΩ𝛼 + k∥v𝛼∥)

k

k2
eik⋅�𝛼 (0)⋅v𝛼 f𝛼 .

(215)

−
q𝛼

m𝛼

𝜕

𝜕v𝛼
⋅

⟨
𝛿E⋆𝛿N

S
𝛼⋆

⟩

=
𝜕

𝜕v𝛼
⋅

q2
𝛼

(2𝜋)4𝜀0m𝛼

i∫
∞

−∞

dt1 ∫ d
3
k∫

∞

−∞

d𝜔
k

𝜀⋆(k, 𝜔)k
2

× eik⋅[�𝛼 (0)−�𝛼 (−t1)]⋅v𝛼−i𝜔t1 f𝛼 .

(216)

−
q𝛼

m𝛼

𝜕

𝜕v𝛼
⋅

�
𝛿E⋆𝛿N

S
𝛼⋆

�

=
𝜕

𝜕v𝛼
⋅

q2
𝛼

(2𝜋)4𝜀0m𝛼

i∫
∞

−∞

dt1 ∫ d
3
k∫

∞

−∞

d𝜔
�
−1
𝛼
(t1) ⋅ k

𝜀⋆(k, 𝜔)k
2

× e
ik⋅[�𝛼 (t1)−�𝛼(0)]⋅v𝛼−i𝜔t1 f𝛼

= −
𝜕

𝜕v𝛼
⋅

�
⟨ΔV𝛼⟩pf𝛼

�
.

(217)

−
q𝛼

m𝛼

𝜕

𝜕v𝛼
⋅

⟨
𝛿E⋆𝛿N

I
𝛼⋆

⟩

=
𝜕

𝜕v𝛼
⋅

q𝛼

(2𝜋)2m𝛼

i∫ d
3
k∫

C

d𝜔∫ d
3
k
� ∫

C
�

d𝜔�
k
⟨
𝛿𝜙̃⋆(k, 𝜔)𝛿Ñ

I
𝛼⋆
(k�, v𝛼 , 𝜔

�)
⟩

× ei[(k+k
�)⋅r𝛼−(𝜔+𝜔�)t].

(218)
𝛿ÑI

𝛼⋆
(k�, v𝛼 , 𝜔

�) = i
q𝛼

m𝛼
∫

∞

0

dt� k� ⋅ �−1
𝛼
(t�) ⋅

𝜕f𝛼

𝜕v𝛼
𝛿𝜙̃⋆(k

�
, 𝜔�)

× e−ik
�
⋅[�𝛼 (0)−�𝛼(−t

�)]⋅v𝛼+i𝜔�t� .
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Inserting the above equation and Eqs. (104) and (105) into Eq. (217) yields

Making the variable substitutions r → r + [𝖧�(0) − 𝖧�(−t1)] ⋅ v , 
r
�
→ r

� + [𝖧� (0) − 𝖧� (−t2)] ⋅ v
� , v → 𝖳�(t1) ⋅ v , and v

�
→ 𝖳� (t2) ⋅ v

� , the above 
equation becomes

Substituting Eq. (68) into the above equation and taking similar procedures as 
deriving Eq. (215) from Eq. (211), it is found that the term corresponding to g�� is 
negligible as it decays exponentially with t and ∫ ∞

0
dt1 ∫ ∞

0
dt2 ∫C d� ∫

C
� d�� can be 

replaced by ∫ ∞

−∞
dt1 ∫ ∞

−∞
dt2 ∫ ∞

−∞
d� ∫ ∞

−∞
d�� for the remaining term. Under this con-

dition, carrying out the integrals over X′ , r , k′ , t2 , and �′ , we obtain

Making the variable substitution k → 𝖳
−1
�
(t�) ⋅ k , the above equation becomes

(219)

−
q𝛼

m𝛼

𝜕

𝜕v𝛼
⋅

⟨
𝛿E⋆𝛿N

I
𝛼⋆

⟩

= −
𝜕

𝜕v𝛼
⋅

∑
𝛽, 𝛾

q2
𝛼
q𝛽q𝛾

(2𝜋)8𝜀2
0
m2

𝛼
∫

∞

0

dt1 ∫
∞

0

dt2 ∫
∞

0

dt� ∫ d
3
k∫

C

d𝜔∫ d
3
k
� ∫

C
�

d𝜔�

× ∫ d
6
X∫ d

6
X

�
kk

�
⋅ �

−1
𝛼
(t�) ⋅ 𝜕f𝛼∕𝜕v𝛼

𝜀⋆(k, 𝜔)𝜀⋆(k
�
, 𝜔�)k2k�2

e−i(k⋅r−𝜔t1)e−i(k
�
⋅r

�−𝜔�t2)

× e−ik
�
⋅[�𝛼 (0)−�𝛼(−t

�)]⋅v𝛼+i𝜔�t�ei[(k+k
�)⋅r𝛼−(𝜔+𝜔�)t]

×
⟨
𝛿N𝛽(r − [�𝛽(0) − �𝛽(−t1)] ⋅ v, �

−1
𝛽
(t1) ⋅ v, 0)

× 𝛿N𝛾 (r
� − [�𝛾 (0) − �𝛾 (−t2)] ⋅ v

�, �−1
𝛾
(t2) ⋅ v

�, 0)
⟩
.

(220)

−
q𝛼

m𝛼

𝜕

𝜕v𝛼
⋅

⟨
𝛿E⋆𝛿N

I
𝛼⋆

⟩

= −
𝜕

𝜕v𝛼
⋅

∑
𝛽, 𝛾

q2
𝛼
q𝛽q𝛾

(2𝜋)8𝜀2
0
m2

𝛼
∫

∞

0

dt1 ∫
∞

0

dt2 ∫
∞

0

dt� ∫ d
3
k∫

C

d𝜔∫ d
3
k
� ∫

C
�

d𝜔�

× ∫ d
6
X∫ d

6
X

�
kk

�
⋅ �

−1
𝛼
(t�) ⋅ 𝜕f𝛼∕𝜕v𝛼

𝜀⋆(k, 𝜔)𝜀⋆(k
�
, 𝜔�)k2k�2

⟨
𝛿N𝛽(X, 0)𝛿N𝛾 (X

�
, 0)

⟩

× e−ik⋅{r+[�𝛽 (t1)−�𝛽 (0)]⋅v}+i𝜔t1e−ik
�
⋅{r�+[�𝛾 (t2)−�𝛾 (0)]⋅v�}+i𝜔�t2

× e−ik
�
⋅[�𝛼 (0)−�𝛼(−t

�)]⋅v𝛼+i𝜔�t�ei[(k+k
�)⋅r𝛼−(𝜔+𝜔�)t].

(221)

−
q𝛼

m𝛼

𝜕

𝜕v𝛼
⋅

⟨
𝛿E⋆𝛿N

I
𝛼⋆

⟩

=
𝜕

𝜕v𝛼
⋅

∑
𝛽

q2
𝛼
q2
𝛽

(2𝜋)4𝜀2
0
m2

𝛼
∫

∞

−∞

dt1 ∫
∞

0

dt� ∫ d
3
k∫

∞

−∞

d𝜔∫ d
3
v f𝛽(v)

×
kk ⋅ �

−1
𝛼
(t�) ⋅ 𝜕f𝛼∕𝜕v𝛼

|𝜀⋆(k, 𝜔)|2k4
eik⋅[�𝛼 (0)−�𝛼 (−t

�)]⋅v𝛼−ik⋅[�𝛽 (t1)−�𝛽 (0)]⋅v−i𝜔(t�−t1).
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Compared with the results obtained based on the FP approach, this part of C𝛼⋆ can 
be considered to result from the correlation of the electric field fluctuations. Com-
bining Eqs. (216) and (222) produces the magnetized BLG collision term.

5 � Properties of the collision term

In this section, conservation of particles, momentum, and energy by the collision 
term will be proven. We will also show that the collision term satisfies the H theo-
rem and ensures f� ≥ 0 for all time if f� ≥ 0 initially. Since the proof process is 
similar for the magnetized and unmagnetized cases, only the magnetized case is 
considered here.

Equation (121) shows that C𝛼⋆ can be expressed as the divergence of a vector 
which approaches 0 for |v�| → ∞ , upon using the divergence theorem we can imme-
diately obtain

implying that C𝛼⋆ conserves the particles.
The time rate of change of the momentum P =

∑
� ∫ m�v�f� d

3
v� in a unit vol-

ume of the system due to the collisions is

Substituting Eq. (121) for C𝛼⋆ into the above equation and integrating by parts over 
v� gives

(222)

−
q𝛼

m𝛼

𝜕

𝜕v𝛼
⋅

�
𝛿E⋆𝛿N

I
𝛼⋆

�

=
𝜕

𝜕v𝛼
⋅

�
𝛽

q2
𝛼
q2
𝛽

32𝜋4𝜀2
0
m2

𝛼
∫

∞

−∞

dt1 ∫
∞

−∞

dt� ∫ d
3
k∫

∞

−∞

d𝜔∫ d
3
v f𝛽(v)

×
�
−1
𝛼
(t�) ⋅ kk ⋅ 𝜕f𝛼∕𝜕v𝛼

�𝜀⋆(k, 𝜔)�2k4
e
ik⋅[�𝛼 (t

�)−�𝛼(0)]⋅v𝛼−ik⋅[�𝛽 (t1)−�𝛽 (0)]⋅v−i𝜔(t�−t1)

=
1

2

𝜕

𝜕v𝛼
⋅

�
𝜕f𝛼

𝜕v𝛼
⋅ ⟨ΔV𝛼ΔV𝛼⟩

�
.

(223)∫ C𝛼⋆(f𝛼) d
3
v𝛼 = 0,

(224)
(
𝜕P

𝜕t

)
c
=
∑
𝛼

∫ m𝛼v𝛼C𝛼⋆(f𝛼) d
3
v𝛼 .
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which is obviously equal to its own negative upon the interchanges � ↔ � and 
t1 ↔ t2 . Therefore,

indicating that C𝛼⋆ conserves the total momentum.
Similarly, the time rate of change of the kinetic energy E =

∑
� ∫ m�v

2
�
∕2f� d

3
v� in 

a unit volume of the system due to the collisions is

Making the interchanges � ↔ � and t1 ↔ t2 and variable substitutions � → −� and 
k → −k , adding the resulting equivalent expressions, and dividing by 2 yields

Integrating by parts over t1 for the term involving k ⋅ ��(t1) ⋅ v� and over t2 for the 
term involving k ⋅ ��(t2) ⋅ v� in the above equation, we find that the two terms yield 
the opposite results with the sum being 0. We thus have

(225)

(
𝜕P

𝜕t

)
c
= −

∑
𝛼, 𝛽

q2
𝛼
q2
𝛽

32𝜋4𝜀2
0
∫

∞

−∞

dt1 ∫
∞

−∞

dt2 ∫ d
3
k∫

∞

−∞

d𝜔∫ d
3
v𝛼 ∫ d

3
v𝛽

× ei{k⋅[�𝛼 (t1)−�𝛼 (0)]⋅v𝛼+k⋅[�𝛽 (t2)−�𝛽 (0)]⋅v𝛽−𝜔(t1+t2)} k

|𝜀⋆(k, 𝜔)|2k4

×

[
k ⋅ �𝛼(t1) ⋅

1

m𝛼

𝜕

𝜕v𝛼
− k ⋅ �𝛽(t2) ⋅

1

m𝛽

𝜕

𝜕v𝛽

]
f𝛼(v𝛼)f𝛽(v𝛽),

(226)
(
�P

�t

)
c
= 0,

(227)

(
𝜕E

𝜕t

)
c
=
∑
𝛼

∫
1

2
m𝛼v

2

𝛼
C𝛼⋆(f𝛼) d

3
v𝛼

= −
∑
𝛼, 𝛽

q2
𝛼
q2
𝛽

32𝜋4𝜀2
0
∫

∞

−∞

dt1 ∫
∞

−∞

dt2 ∫ d
3
k∫

∞

−∞

d𝜔∫ d
3
v𝛽

× ei{k⋅[�𝛼(t1)−�𝛼(0)]⋅v𝛼−k⋅[�𝛽 (t2)−�𝛽 (0)]⋅v𝛽−𝜔(t1−t2)}

×
k ⋅ �𝛼(t1) ⋅ v𝛼

|𝜀⋆(k, 𝜔)|2k4
k ⋅

(
1

m𝛼

𝜕

𝜕v𝛼
−

1

m𝛽

𝜕

𝜕v𝛽

)
f𝛼(v𝛼)f𝛽(v𝛽).

(228)

(
𝜕E

𝜕t

)
c
= −

∑
𝛼, 𝛽

q2
𝛼
q2
𝛽

64𝜋4𝜀2
0
∫

∞

−∞

dt1 ∫
∞

−∞

dt2 ∫ d
3
k∫

∞

−∞

d𝜔∫ d
3
v𝛽

× ei{k⋅[�𝛼(t1)−�𝛼(0)]⋅v𝛼−k⋅[�𝛽 (t2)−�𝛽 (0)]⋅v𝛽−𝜔(t1−t2)}

×
k ⋅ �𝛼(t1) ⋅ v𝛼 − k ⋅ �𝛽(t2) ⋅ v𝛽

|𝜀⋆(k, 𝜔)|2k4

× k ⋅

(
1

m𝛼

𝜕

𝜕v𝛼
−

1

m𝛽

𝜕

𝜕v𝛽

)
f𝛼(v𝛼)f𝛽(v𝛽).
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indicating that C𝛼⋆ conserves the total kinetic energy.
To prove the remaining two properties of C𝛼⋆ , we rewrite C𝛼⋆ in Eq. (121) by 

expanding the exponential functions into series of the Bessel functions using Eq. (111). 
Proceeding to carry out the integrals over t and t1 and retaining the terms surviving the 
�
k
 and �� integration, C𝛼⋆ becomes

We employ proof by contradiction to prove that C𝛼⋆ ensures f� ≥ 0 for all time if 
f� ≥ 0 initially. Assuming f� ≥ 0 at t = 0 and becomes negative at some time later, 
there must be an instant at which its minimum value first becomes negative. At such 
a point, the following four conditions must be satisfied: (i) f� = 0 , (ii) �f�∕�v� = 0 , 
(iii) �2f�∕�v��v� is a non-negative tensor, and (iv) 𝜕f𝛼∕𝜕t < 0 . When conditions (i) 
and (ii) apply, C𝛼⋆ in Eq. (230) becomes

Using condition (iii), it is easy to find that C𝛼⋆(f𝛼) ≥ 0 . This is incompatible with 
condition (iv). Therefore, conditions (i)-(iv) cannot be met at the same time. In other 
words, C𝛼⋆ will ensure f� ≥ 0 for all t if f� ≥ 0 at t = 0.

(229)
(
�E

�t

)
c
= 0,

(230)

C𝛼⋆(f𝛼) =

∞∑
n=−∞

∞∑
n�=−∞

∑
𝛽

q2
𝛼
q2
𝛽

8𝜋2𝜀2
0
m𝛼

∫ d
3
k∫ d

3
v𝛽

(
n

𝜌𝛼

𝜕

𝜕v𝛼⟂
+ k∥

𝜕

𝜕v𝛼∥

)

×
𝛿
(
k∥v𝛼∥ + nΩ𝛼 − k∥v𝛽∥ − n�Ω𝛽

)
|𝜀⋆(k, k∥v𝛼∥ + nΩ𝛼)|2k4

J2
n
(k

⟂
𝜌𝛼)J

2

n�
(k

⟂
𝜌𝛽)

×

[
1

m𝛼

(
n

𝜌𝛼

𝜕

𝜕v𝛼⟂
+ k∥

𝜕

𝜕v𝛼∥

)
−

1

m𝛽

(
n�

𝜌𝛽

𝜕

𝜕v𝛽⟂
+ k∥

𝜕

𝜕v𝛽∥

)]

× f𝛼(v𝛼)f𝛽(v𝛽).

(231)

C𝛼⋆(f𝛼) =

∞∑
n=−∞

∞∑
n�=−∞

∑
𝛽

q2
𝛼
q2
𝛽

8𝜋2𝜀2
0
m2

𝛼
∫ d

3
k∫ d

3
v𝛽 f𝛽(v𝛽)

×
𝛿
(
k∥v𝛼∥ + nΩ𝛼 − k∥v𝛽∥ − n�Ω𝛽

)
|𝜀⋆(k, k∥v𝛼∥ + nΩ𝛼)|2k4

J2
n
(k

⟂
𝜌𝛼)J

2

n�
(k

⟂
𝜌𝛽)

×

(
n

𝜌𝛼

𝜕

𝜕v𝛼⟂
+ k∥

𝜕

𝜕v𝛼∥

)2

f𝛼(v𝛼)

=

∞∑
n=−∞

∞∑
n�=−∞

∑
𝛽

q2
𝛼
q2
𝛽

8𝜋2𝜀2
0
m2

𝛼
∫ d

3
k∫ d

3
v𝛽 f𝛽(v𝛽)

×
𝛿
(
k∥v𝛼∥ + nΩ𝛼 − k∥v𝛽∥ − n�Ω𝛽

)
|𝜀⋆(k, k∥v𝛼∥ + nΩ𝛼)|2k4

J2
n
(k

⟂
𝜌𝛼)J

2

n�
(k

⟂
𝜌𝛽)

×

(
n

𝜌𝛼

v𝛼⟂

v𝛼⟂
+ k∥b̂

)
⋅

𝜕2f𝛼(v𝛼)

𝜕v𝛼𝜕v𝛼
⋅

(
n

𝜌𝛼

v𝛼⟂

v𝛼⟂
+ k∥b̂

)
.



	 Reviews of Modern Plasma Physics (2023) 7:19

1 3

19  Page 54 of 62

Consider the quantity H, defined by

Its time rate of change due to the collisions is

Substituting Eq. (230) for C𝛼⋆(f𝛼) into the above equation, integrating by parts over 
v�⟂ and v�∥ , making the interchanges � ↔ � and n ↔ n′ , adding the resulting equiva-
lent expressions, and dividing by 2, we obtain

The equality holds if and only if

As n and n′ are arbitrary, the above equation is equivalent to

The subtraction of the above two equations yields

(232)H ≡ ∑
�

� f�(v�) ln f�(v�) d
3
v� .

(233)
(
dH

dt

)
c
=
∑
𝛼

∫
(
1 + ln f𝛼

)
C𝛼⋆(f𝛼) d

3
v𝛼 .

(234)

(
dH

dt

)
c
= −

∞∑
n=−∞

∞∑
n�=−∞

∑
𝛼, 𝛽

q2
𝛼
q2
𝛽

16𝜋2𝜀2
0
� d

3
k� d

3
v𝛼 � d

3
v𝛽 f𝛼f𝛽

×
𝛿
(
k∥v𝛼∥ + nΩ𝛼 − k∥v𝛽∥ − n�Ω𝛽

)
|𝜀⋆(k, k∥v𝛼∥ + nΩ𝛼)|2k4

J2
n

(
k
⟂
𝜌𝛼
)
J2
n�

(
k
⟂
𝜌𝛽
)

×

{
nΩ𝛼

[
1

m𝛼v𝛼⟂

𝜕 ln f𝛼

𝜕v𝛼⟂
−

1

v𝛼∥ − v𝛽∥

(
1

m𝛼

𝜕 ln f𝛼

𝜕v𝛼∥
−

1

m𝛽

𝜕 ln f𝛽

𝜕v𝛽∥

)]

− n�Ω𝛽

[
1

m𝛽v𝛽⟂

𝜕 ln f𝛽

𝜕v𝛽⟂
−

1

v𝛼∥ − v𝛽∥

(
1

m𝛼

𝜕 ln f𝛼

𝜕v𝛼∥
−

1

m𝛽

𝜕 ln f𝛽

𝜕v𝛽∥

)]}2

≦ 0.

(235)
nΩ�

[
1

m�v�⟂

� ln f�

�v�⟂
−

1

v�∥ − v�∥

(
1

m�

� ln f�

�v�∥
−

1

m�

� ln f�

�v�∥

)]

− n�Ω�

[
1

m�v�⟂

� ln f�

�v�⟂
−

1

v�∥ − v�∥

(
1

m�

� ln f�

�v�∥
−

1

m�

� ln f�

�v�∥

)]
= 0.

(236)
1

m�v�⟂

� ln f�

�v�⟂
−

1

v�∥ − v�∥

(
1

m�

� ln f�

�v�∥
−

1

m�

� ln f�

�v�∥

)
= 0,

(237)
1

m�v�⟂

� ln f�

�v�⟂
−

1

v�∥ − v�∥

(
1

m�

� ln f�

�v�∥
−

1

m�

� ln f�

�v�∥

)
= 0.
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Since v� and v� are independent, the solution of the above equation is

which implies

where T is the common temperature. Substituting the above equation into Eq. (236), 
we can obtain in a similar way

where U∥ is the common parallel fluid velocity. We thus have

It is easy to verify that the distribution function of the above form satisfies 
C𝛼⋆(f𝛼) = 0 . Therefore, the magnetized collision term will relax the system to a 
Maxwellian state with different species of particles having the same temperature and 
parallel velocity. Due to the assumption of gyrotropic distributions we have made in 
deriving the magnetized collision term, the system finally relaxes to a state with no 
perpendicular fluid velocity.

6 � Conclusion

The FP, BBGKY, and QL approaches to deriving the collision terms in the elec-
trostatic approximation for plasmas without and with a uniform magnetic field 
are reviewed in this paper. All the derivations involved are based on the perturba-
tion theory except the calculation of the FP coefficients within the BC model in 
the no magnetic field case. It is shown that the three approaches are equivalent 
in deriving the (magnetized) BLG collision term which has all the desired fea-
tures connected with conservation laws and entropy production. For completeness 
and the convenience of readers interested in only one of the unmagnetized and 
magnetized collision terms, some similar derivation processes are repeated. Due 

(238)
1

m�v�⟂

� ln f�

�v�⟂
−

1

m�v�⟂

� ln f�

�v�⟂
= 0.

(239)
1

m�v�⟂

� ln f�

�v�⟂
=

1

m�v�⟂

� ln f�

�v�⟂
= const,

(240)
f� (v� ) = C� (v�∥)e

−
m�v

2

�⟂

2kBT ,

(241)
C� (v�∥) =

n�

(2�kBT∕m� )
3∕2

e

−

m�

(
v�∥ − U∥

)2
2kBT ,

(242)
f� (v� ) =

n�

(2�kBT∕m� )
3∕2

e

−

m�

[
v2
�⟂

+
(
v�∥ − U∥

)2]

2kBT .



	 Reviews of Modern Plasma Physics (2023) 7:19

1 3

19  Page 56 of 62

Ta
bl

e 
1  

C
om

pa
ris

on
 o

f t
he

 c
ha

ra
ct

er
ist

ic
s o

f t
he

 th
re

e 
ap

pr
oa

ch
es

 to
 d

er
iv

in
g 

th
e 

co
lli

si
on

 te
rm

†  
Re

pl
ac

in
g 
⟨Δ

v
�
⟩ b

y 
⟨Δ

V
�
⟩ a

nd
 ⟨Δ

v
�
Δ
v
�
⟩ b

y 
⟨Δ

V
�
Δ
V

�
⟩ g

iv
es

 th
e 

in
iti

al
 fo

rm
 o

f C
𝛼
⋆

In
iti

al
 fo

rm
 o

f C
𝛼
(⋆

)
A

dv
an

ta
ge

s
D

is
ad

va
nt

ag
es

FP
−

�

�
v
�

⋅
[⟨Δ

v
�
⟩f �

]

+
1 2

�
2

�
v
�
�
v
�

∶
[⟨Δ

v
�
Δ
v
�
⟩f �

]†

St
ra

ig
ht

fo
rw

ar
d,

 se
pa

ra
tin

g 
C
𝛼
(⋆

) i
nt

o 
th

e 
pa

rt 
fro

m
 p

ol
ar

iz
at

io
n 

an
d 

th
e 

pa
rt 

fro
m

 c
or

re
la

tio
n 

of
 th

e 
flu

ct
ua

tio
ns

 n
at

ur
al

ly
So

m
ew

ha
t p

he
no

m
en

ol
og

ic
al

B
B

G
K

Y
∑ 𝛽

q
𝛼
q
𝛽

4
𝜋
𝜀
0
m

𝛼

∫ d
6
X

𝛽

×
𝜕 𝜕
r
𝛼

1 r 𝛼
𝛽

⋅

𝜕
g
𝛼
𝛽
(⋆

)

𝜕
v
𝛼

Sy
ste

m
at

ic
, e

as
y 

to
 id

en
tif

y 
th

e 
ph

ys
ic

al
 b

as
is

 o
f v

ar
io

us
 a

pp
ro

xi
m

at
io

ns
C

om
pl

ex
 d

er
iv

at
io

n

Q
L

−
q
𝛼

m
𝛼

𝜕

𝜕
v
𝛼

⋅

⟨ 𝛿
E
(⋆

)𝛿
N
𝛼
(⋆

)⟩
Sy

ste
m

at
ic

, r
el

at
iv

el
y 

si
m

pl
e 

de
riv

at
io

n
U

na
bl

e 
to

 h
an

dl
e 

cl
os

e 
co

lli
si

on
s



1 3

Reviews of Modern Plasma Physics (2023) 7:19	 Page 57 of 62  19

to the use of the perturbation theory in the derivation process, the (magnetized) 
BLG collision term is valid in the weak coupling approximation. When collec-
tive effects are neglected it reduces to the (magnetized) Landau collision term. 
Besides the plasmas interacting through the inverse square Coulomb forces, the 
BLG collision term can be readily transposed to other systems with long-range 
interactions.

Relatively speaking, the BBGKY and QL approaches are more systematic and 
it is generally accepted that the derivation process of the QL approach is sim-
pler. The BBGKY approach is based on the BBGKY hierarchy of equations 
which include all the relevant physics. One can make approximations as needed 
and know exactly which physics is kept and which physics is ignored. The FP 
approach is rather straightforward in the no magnetic field case. In addition, it 
has the advantage of directly separating the collision term into the part from the 
polarization and the part from the correlation of the electric field fluctuations. 
The main features of the three approaches are summarized in Table 1.

The topic of the paper is very focused and most of the results presented are 
very old. As more and more plasmas (Fajans and Surko 2020; Anderegg et  al. 
1997; Hollmann et al. 1999; Affolter et al. 2016, 2018; Zhang et al. 2008; Gor-
man et al. 2021; Greenwald et al. 2014; Creely et al. 2020; Harding and Lai 2006; 
Valyavin et  al. 2014; Wilks et  al. 1992; Mason and Tabak 1998; Kennedy and 
Helander 2021a, b) are found to satisfy the condition of strong magnetization, 
the strong magnetic field effects on the collision process and associated transport 
have aroused some interest recently. Considering this, the magnetized collision 
term sporadically discussed in the literature is reviewed in a great detail in this 
paper for the spatially homogeneous magnetized plasmas. For the unmagnetized 
and weakly magnetized plasmas, the collisions can be viewed to occur locally, 
implying that the collision term derived for the uniform case applies directly to 
the nonuniform case. For the strongly magnetized nonuniform plasmas, however, 
the nonlocality of the collision process cannot be ignored since the collisions with 
impact parameters larger than the particles’ gyro-radii occur on scales larger than 
the step length of the perpendicular classical transport. Research in this respect 
is relatively rare (Ichimaru and Tange 1974; Øien 1995) and more relevant stud-
ies are need to be performed. For the nonuniformly magnetized plasmas, Mynick 
(1988) has employed the FP approach to generalize the standard BLG collision 
term to its electromagnetic counterpart in the action-angle formalism initially 
developed by Kaufman (1972) to study the quasilinear diffusion of tokamak plas-
mas. The UCSD group found that the reflection and "collisional caging" due to 
velocity diffusion in guiding center collisions could greatly enhance the trans-
port of particles, momentum, and energy in the presence of a strong magnetic 
field. The theoretical results they obtained (Dubin 1997; Dubin and O’Neil 1997; 
Dubin 2014) can successfully explain the experimental findings (Anderegg et al. 
1997; Hollmann et al. 1999; Affolter et al. 2016, 2018). However, these relevant 
works are beyond the scope of the perturbation theory and were not described by 
a collision term. In our opinion, they still need to be improved and further veri-
fied by experiments and are thus not included in the present paper. There is no 
doubt that it is an important research direction.
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This paper is essentially pedagogical and aim to help everyone to adopt the appro-
priate collision term in the study of magnetized plasmas. We hope the results, ideas, 
and methods presented in this paper will be useful to readers working in this field.
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