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Abstract
Intermittent turbulence is key for understanding the stochastic nonlinear dynam-
ics of space, astrophysical, and laboratory plasmas. We review the theory of deter-
ministic and stochastic temporal chaos in plasmas and discuss its link to intermit-
tent turbulence observed in space plasmas. First, we discuss the theory of chaos, 
intermittency, and complexity for nonlinear Alfvén waves, and parametric decay 
and modulational wave–wave interactions, in the absence/presence of noise. The 
transition from order to chaos is studied using the bifurcation diagram. The follow-
ing two types of deterministic intermittent chaos in plasmas are considered: type-
I Pomeau–Manneville intermittency and crisis-induced intermittency. The role of 
structures known as chaotic saddles in deterministic and stochastic chaos in plas-
mas is investigated. Alfvén complexity associated with noise-induced intermittency, 
in the presence of multistability, is studied. Next, we present evidence of magnetic 
reconnection and intermittent magnetic turbulence in coronal mass ejections in the 
solar corona and solar wind via remote and in situ observations. The signatures of 
turbulent magnetic reconnection, i.e., bifurcated current sheet, reconnecting jet, 
parallel/anti-parallel Alfvénic waves, and spiky dynamical pressure pulse, as well 
as fully developed turbulence, are detected at the leading edge of an interplanetary 
coronal mass ejection and the interface region of two merging interplanetary mag-
netic flux ropes. Methods for quantifying the degree of coherence, amplitude–phase 
synchronization, and multifractality of nonlinear multiscale fluctuations are dis-
cussed. The stochastic chaotic nature of Alfvénic intermittent structures driven by 
magnetic reconnection is determined by a complexity–entropy analysis. Finally, we 
discuss the relation of nonlinear dynamics and intermittent turbulence in space plas-
mas to similar phenomena observed in astrophysical and laboratory plasmas, e.g., 
coronal mass ejections and flares in the stellar-exoplanetary environment and Galac-
tic Center, as well as chaos, magnetic reconnection, and intermittent turbulence in 
laser-plasma and nuclear fusion experiments.
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1 Introduction

Solar-terrestrial environment is an electrodynamically coupled system dominated 
by stochastic nonlinear dynamical interactions (Clemmow and Dougherty 1969; 
Chian et  al. 2006; Kamide and Chian 2007; Rempel et  al. 2008; Chang 2015; 
Echim et al. 2021; Miranda et al. 2021). The complex dynamics of solar-terres-
trial plasmas, e.g., coronal mass ejections, solar flares, and geomagnetic storms, 
are an indication that the space plasma system is in a state far from equilibrium 
whereby instabilities, nonlinear waves, chaos, and turbulence play fundamental 
roles in the system dynamics. One of the ubiquitous features of space plasmas 
is the occurrence of intermittency and stochastic chaos in solar dynamo, solar 
corona, solar wind, and planetary magnetosphere–ionosphere–atmosphere.

Turbulence in fluids and plasmas exhibits randomness both in space and time 
where anomalous scaling laws due to nonlinearities and chaos can be observed 
(Carbone et al. 2004). The role of the magnetic field needs to be taken into con-
sideration in the study of plasma turbulence. Turbulent flows are characterized by 
the presence of strong fluctuations associated with coherent structures localized 
in space. This breakdown of self-similarity is called intermittency which is evi-
denced by the scale-dependence of the fourth-order structure function, kurtosis, 
of the fluctuation statistics. Chaos is characterized by aperiodicity in time and/or 
irregularity in space. Chaotic dynamical systems are sensitive to small changes in 
the initial conditions and system parameters such as noise (Ott 1993). The word 
“intermittency” describes a variety of phenomena in different physical systems 
(Carbone et al. 2004)as follows: (1) Intermittency in fully developed turbulence 
refers to the departure from a global self-similarity in fluids or plasmas (Frisch 
and Kolmogorov 1995) where chaos appears owing to the effect of energy cas-
cade in the inertial range associated with nonlinear wave interactions (Bohr et al. 
1998). (2) Intermittency in temporal chaos refers to the temporal evolution of 
the system following a transition to chaos, showing random alternation between 
laminar and bursty periods of fluctuations (Manneville and Pomeau 1979). (3) 
Intermittency in self-organized systems refers to an impulsive burst of activities 
generated by an ensemble of avalanches in a self-similar system at the border-
line of chaos in a self-organized critical state, exemplified by the sandpile model 
(Bak et  al. 1987). (4) On-off intermittency refers to chaotic systems externally 
driven by stochastic perturbations when the system in a laminar state is occasion-
ally pushed away from this state, generating stochastic bursts (Platt et al. 1993). 
It is plausible that the intermittent phenomena observed in space and laboratory 
plasmas are a combination of different intermittent mechanisms where chaos is 
ubiquitous. Hence, there is a close link between intermittency and chaos.

Intermittency in turbulence implies that the statistics of fluctuations evolves 
from a Gaussian distribution at large scales to a non-Gaussian distribution (e.g., 
leptokurtic or Lévy shapes with long-tails) at small scales. This is due to the lack 
of a global scale invariant shape for the distribution in the inertial range. Chang 
and Wu (2008) proposed the rank-order multifractal analysis (ROMA) to clar-
ify the multifractal characteristics of intermittency related to the lack of a global 
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scale invariance in 2D simulations of MHD intermittent turbulence. The ROMA 
analysis provides a unique procedure to explain physically and quantify accu-
rately the multifractal properties of intermittency, and can be applied to study 
processes associated with Lévy distributions that show global scale-invariance 
and a non-Gaussian statistics at the same time (Podobnik et al. 2000). For general 
reviews of plasma turbulence and solar wind turbulence, the readers are referred 
to Carbone et  al. (2004), Bruno and Carbone (2013), Matthaeus et  al. (2015), 
and Oughton and Engelbrecht (2021) which contain comprehensive discussions 
of space and laboratory observations and the fundamental problems of magne-
tohydrodynamic turbulence such as anisotropy in solar wind turbulence, occur-
rence/absence of Iroshnikov–Kraichnan turbulence, and weak and strong models 
of critical balance turbulence. For an introduction to space plasma complexity 
which contains discussions on self-organized criticality, ROMA, and renormali-
zation technique the reader is referred to Chang (2015).

Magnetic reconnection is a major physical mechanism that destabilizes solar cor-
onal magnetic flux rope structures (Keppens et al. 2019). Since the solar atmosphere 
is permeated by myriads of magnetic coronal loops, the interaction of multiple mag-
netic flux ropes can lead to thin current sheets that are susceptible to magnetic recon-
nection, resulting in coronal mass ejections, solar flares, and electromagnetic emis-
sions such as coherent radio bursts driven by particle acceleration (Melrose 2017). 
Multiscale nonlinear dynamics of solar prominences, associated with the magnetic 
Rayleigh–Taylor instability, can be responsible for plumes and prominence eruption 
(Hillier 2018). The near-Earth space is a unique laboratory for investigating the role 
of small-scale coherent structures in energy dissipation processes in plasma turbu-
lence at magnetohydrodynamics (MHD) and sub-ion (kinetic) scales in magnetized 
plasmas, thanks to the availability of high-quality spacecraft data (Sahraoui et  al. 
2020). Solar wind particles reflected from the Earth’s bow shock produce waves 
and instabilities that can heat plasma and accelerate particles, resulting in complex 
upstream structures such as Short Large Amplitude Magnetic Structures (SLAMS), 
hot flow anomalies, and density holes (Parks et  al. 2017). Solitary structures can 
evolve from nonlinear ion-acoustic waves generated by field-aligned shear ion flow 
and parallel current in auroral ionospheric plasmas (Saleem and Shan 2020). Equa-
torial plasma depletions in the ionosphere (Farley et  al. 1970; Booker 1956) that 
have significant impact on space weather, causing rapid fluctuations in radio sig-
nals used in telecommunications, show complex characteristics of intermittent tur-
bulence, e.g., non-Gaussianity, intermittency, multifractality, and amplitude–phase 
synchronization in multiscale interactions (Chian et al. 2018).

Nonlinear wave–wave interactions have been observed in laser-plasma experi-
ments; above certain threshold of laser power, nonlinear processes such as paramet-
ric decay, stimulated scattering and filamentation are excited (Kaw 2017). Super-
nonlinear periodic waves and solitons in the shear Alfvén and ion-acoustic modes 
have been observed in multi-species plasma experiments in the laboratory; these 
large-amplitude and long-period waves correspond to the outermost phase trajecto-
ries enveloping the separatrix whose total energy is above a certain Sagdeev pseudo-
potential barrier height and the amplitude cannot be smaller than that of the separa-
trix (Dubinov and Kolotkov 2018). Various types of vortices in magnetized partially 
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ionized plasmas have been observed in laboratory experiments, including plasma 
hole (vortex with a density hole), spiral vortex, tripolar vortex, and counter � × � 
vortex. Theoretical, numerical simulation, and observational evidence of nonlinear 
processes of kinetic Alfvén waves formulated by nonlinear gyrokinetic theory have 
been obtained (Chen et  al. 2021), e.g., three-wave parametric decay instabilities, 
modulational instabilities associated with the spontaneous generation of convective 
cells, and the quasi-linear phase-space transport induced by kinetic Alfvén waves. 
Interaction between a magnetic island and turbulence has been studied in various 
plasma experiment devices. Plasma turbulence becomes strongly inhomogeneous 
around a magnetic island due to the combined effect of the pressure gradient and 
flow shear modifications by the island (Choi 2021); complex turbulence phenomena 
can affect the island stability in fusion plasmas as well as the underlying magnetic 
reconnection process, e.g., turbulence spreading, nonlinear mode coupling, and tur-
bulence-driven flow; thus turbulence can either suppress or facilitate the growth of 
magnetic islands.

The aim of this paper is to review the theory of deterministic and stochastic tem-
poral chaos in plasmas and apply it to understand some observations of intermittent 
turbulence in space plasmas, based mainly on our published works and relate to the 
important works of other authors on chaos, complexity, and intermittent turbulence 
in fluids and plasmas. The outline of this paper is as follows. In Sect.  2, we dis-
cuss the basic concepts of chaos, complexity, and intermittent turbulence. In Sect. 3, 
we apply the chaos theory to explain crisis-induced intermittency in the absence of 
noise and noise-induced intermittency in the presence of noise. The crucial role of 
chaotic saddles in generating both types of intermittency is clarified. In Sect. 4, we 
discuss magnetic reconnection and intermittent turbulence in a coronal mass ejec-
tion associated with an erupting solar flare observed in the solar corona remotely by 
radio and EUV images, and in interplanetary coronal mass ejections observed in situ 
by multi-spacecraft in the solar wind at 1 AU and at the Earth’s bow shock. By com-
puting the complexity–entropy index, we demonstrate that a higher degree of inter-
mittency in magnetic turbulence associated with magnetic reconnection exhausts 
in the solar wind is related to lower entropy and higher complexity in the inertial 
range. In Sect.  5, we discuss the relation between stochastic nonlinear dynamical 
phenomena observed in solar-terrestrial plasmas and similar phenomena observed in 
astrophysical and laboratory plasmas.

2  Basic concepts

2.1  Chaos

The first observation of transition from order to chaos in the solar wind was reported 
by Burlaga (1988), who identified the formation of ordered large structures from 
irregular small structures as well as the period-doubling of the period of the corotat-
ing interaction regions in the outer heliosphere. Chian et  al. (1998) demonstrated 
that Alfvén intermittency can be driven by chaos in the solar wind. Chian et  al. 
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(2006) studied the chaotic nature of the solar-terrestrial environment. Hanslmeier 
(2020) discussed the chaotic behavior of solar cycles.

Chaotic systems exhibit various types of intermittency (e.g., Ott 1993; Chian 
2007). The intermittent route to chaos was discovered by Manneville and Pomeau 
(1979) who showed that the type-I Pomeau–Manneville intermittency, related to epi-
sodic regime switching between periodic and chaotic behaviors, occurs via a local 
bifurcation termed saddle-node bifurcation. Another chaotic scenario that leads to 
intermittency occurs when the system undergoes a global bifurcation termed crisis, 
whereby a chaotic attractor in the state space suddenly changes in size (interior cri-
sis), disappears (boundary crisis) or two or more chaotic attractors merge to form 
a large chaotic attractor (attractor merging crisis) (Borotto et al. 2004; Chian et al. 
2005). After an interior crisis, crisis-induced intermittency appears involving epi-
sodic regime switching between periods of weakly and strongly chaotic behaviors. 
Intermittency also takes place after an attractor merging crisis (Rempel and Chian 
2005).

Stable and unstable periodic orbits are the building blocks of dynamical systems, 
and are key to understand the origin of intermittency. A dissipative dynamical sys-
tem consists of order and chaos; order is characterized by a maximum Lyapunov 
exponent smaller than or equal to zero (Wolf et  al. 1985) and governed by stable 
equilibrium points, stable periodic orbits (limit cycles) and quasiperiodic attrac-
tors, whereas chaos is characterized by a positive maximum Lyapunov exponent 
and governed by a chaotic set composed by an infinity of unstable periodic orbits. 
Unstable periodic orbits are the building blocks of chaotic attractors and chaotic sad-
dles. Chaotic saddles (Lai and Tél 2011) are non-attracting chaotic sets responsible 
for the chaotic transient inside a periodic window and for chaos and intermittency 
in the chaotic regions outside a periodic window, e.g., after a saddle-node bifurca-
tion (type-I Pomeau–Manneville intermittency) and after an interior crisis (crisis-
induced intermittency). Chaotic saddles are given by the intersections of stable and 
unstable manifolds, which have been observed in solar supergranular turbulence 
(Chian et  al. 2020). In practice, the observation of space plasma turbulence con-
tains an admixture of chaos and noise. Noise can have contributions from other 
plasma processes and/or instruments. For example, in the presence of noise, Alfvén 
extrinsic intermittency can be driven (Rempel et al. 2006, 2008). Hence, in order to 
give a proper interpretation of the complex behaviour of space plasma turbulence, 
the chaos theory needs to be modified to take into account the effects of noise to 
describe accurately the observation of stochastic chaotic fluctuations (Miranda et al. 
2021).

Traveling wave solution provides a convenient way to obtain an insight of non-
linear waves in plasmas (Chian and Clemmow 1975). In this paper, we will adopt 
the low-dimensional deterministic and stochastic chaos approach to discuss the non-
linear dynamics of Alfvén waves and nonlinear wave–wave interactions by seeking 
traveling wave solutions which transform a nonlinear partial differential equation to 
a set of nonlinearly coupled ordinary differential equations (Hada et al. 1990; Chian 
et  al. 2000; Miranda et  al. 2013). This approach allows us to interpret the obser-
vation of stochastic chaotic fluctuations in intermittent turbulence in space plas-
mas in terms of crisis-induced intermittency (Chian et  al. 1998) or noise-induced 
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intermittency (Rempel et al. 2008). The information gained from low-dimensional 
chaos is the basis for understanding high-dimensional chaotic phenomena described 
by extended spatiotemporal dynamical systems, e.g., laminar-turbulent transition 
and edge of chaos (He and Chian 2003; Rempel and Chian 2007; Chian et al. 2010a, 
2013).

2.2  Complexity

Quantification of the complex dynamics of space plasma turbulence can be carried 
out by measuring the degree of simplicity–complexity (Rempel et al. 2008), coher-
ence–incoherence (Pikovsky et al. 2003; He and Chian 2003; Chian et al. 2010a), 
order-randomness (Aschwanden et  al. 2018), and complexity–entropy (Bandt and 
Pompe 2002; Rosso et al. 2007; Miranda et al. 2021).

The term “complexity” has different meanings in distinct scientific disciplines. 
In this paper, we adopt the definition of complexity frequently used in nonlinear 
dynamics (Crutchfield and Young 1989; Poon and Grebogi 1995; Feudel 2008) for 
complex systems that exhibit the presence of the following: (1) many parts that are 
related in a complicated manner, (2) coexistence of simple (ordered) and complex 
(disordered) behaviors, and (3) structures with different temporal and/or spatial 
scales (multiscale systems). Rempel et al. (2008) showed that these characteristics 
of complexity are found in nonlinear Alfvén waves modelled by the derivative non-
linear Schrödinger equation subject to external noise. Complexity is closely related 
to multistability due to the simultaneous presence of more than one attractor for a 
given value of the system control parameter, and it can be an obstacle for predic-
tion, since the asymptotic state may depend crucially on the initial condition. The 
complex behavior is the consequence of the interaction between multiple attractors 
as well as the effect of noise which can lead to complex hopping between attractors 
(Feudel 2008; Rempel et al. 2008). Hence, information about the coexisting attrac-
tors and their respective basins of attraction is crucial for understanding the complex 
dynamics of multistable systems such as the noise-induced Alfvén intermittency to 
be discussed in Sect. 3.1.4.

Self-organization is a characteristic of dissipative nonlinear processes governed 
by a global driving force and a local positive feedback mechanism, which generate 
regular geometric and/or temporal patterns, and increase the degree of order locally 
by decreasing entropy, in contrast to random processes (Aschwanden et al. 2018). 
Hence, self-organizing systems create spontaneous order out of randomness during 
the evolution from an initially disordered system to an ordered quasi-stationary sys-
tem, mostly by quasi-periodic dynamics or harmonic resonances. Various types of 
global driving force can induce self-organization, e.g., mechanical forces of rota-
tion such as accretion discs or differential rotation such as stellar dynamo, while 
the positive feedback mechanism is often an instability, e.g., the magnetoconvec-
tive Rayleigh–Bénard instability or turbulent magnetic reconnection. Chang (1992) 
showed that the self-organized critical approach can describe spontaneous evolu-
tion of a complex system to critical states modelled by low-dimensional stochastic 
dynamical systems. The occurrence of self-organized criticality in space plasmas 
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proposed by Chang (1992) was successively validated by Consolini (1997), Chap-
man et al. (1998), Uritsky and Pudovkin (1998), Consolini and Lui (1999), Klimas 
et al. (2000), Valdivia et al. (2003) and Pulkkinen et al. (2006). For example, Kli-
mas et al. (2000) proposed a simple MHD model for the nonlinear dynamics of the 
magnetospheric central plasma sheet capable of capturing the bursty behavior of the 
plasma dynamics during substorms. This approach provides a better representation 
for describing the complexity of magnetospheric systems than the low-dimensional 
deterministic chaotic approach.

Synchronization is a physical mechanism by which nonlinear multiscale fluctua-
tions self-organize to exhibit varying degrees of coherence–incoherence in space 
and/or time (Pikovsky et  al. 2003). Hada et  al. (2003) developed a surrogate data 
technique and introduced a phase coherence index to quantify the degree of phase 
synchronization in plasma turbulence. He and Chian (2003) identified a new phe-
nomenon of phase synchronization in a type of on-off spatiotemporal intermittency 
in a well-developed drift-wave plasma turbulence; in “on” stages, the oscillators in 
different spatial scales adjust themselves to collective imperfect phase synchroniza-
tion, inducing spiky soliton-like phase-coherent bursts in the wave energy. Chian 
et  al. (2010a) demonstrated the duality of amplitude and phase synchronization 
related to spatiotemporal multiscale interactions in chaotic saddles at the onset of 
permanent spatiotemporal chaos in a nonlinear model of drift plasma waves using 
the Fourier–Lyapunov representation; the computed time-averaged Fourier power 
and phase spectral entropy showed that the laminar (bursty) state in the on–off spa-
tiotemporal intermittency, after the laminar-turbulent transition via an interior crisis, 
corresponds to weak (strong) chaotic saddle with higher (lower) degree of ampli-
tude–phase synchronization across spatial scales.

Chaotic systems share some common properties with stochastic processes such 
as wide-band power spectrum, a delta-like autocorrelation function, and irregular 
behavior of the measured signal that make them difficult to be distinguished (Maggs 
and Morales 2013). Rosso et  al. (2007) introduced the Jensen–Shannon complex-
ity–entropy plane to allow the distinction of chaos from noise. The vertical and hori-
zontal axis in the complexity–entropy plane are suitable functionals of the pertinent 
probability distribution, namely, an appropriate statistical complexity measure and 
entropy of the system, respectively. The statistical characteristics of a time series 
can be determined by obtaining its statistical complexity and permutation entropy, 
which can be computed from a probability distribution introduced by Bandt and 
Pompe (2002). This complexity–entropy technique has been applied to laboratory 
and space plasma turbulence (Maggs and Morales 2013; Maggs et al. 2015; Miranda 
et al. 2021).

2.3  Intermittent turbulence

As mentioned in Sect.  1, the lack of global self-similarity arising from the inho-
mogeneity in fluids and plasmas is the evidence for the occurrence of intermittent 
turbulence. The effect of intermittency due to the presence of strong fluctuations 
(patchiness) related to coherent structures localized in space can be quantified by 
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the statistical properties of the increments of fluctuations in turbulent flows. Hence, 
the hypothesis of homogeneity with a constant energy transfer rate assumed by the 
model of turbulence formulated in 1941 by Kolmogorov (1991) needs to be modi-
fied to allow the energy transfer rate to be a function of the position (Carbone et al. 
2004). Since the field increments in turbulent flows are highly stochastic variables, 
it is useful to compute the probability distributions of increments as a function of 
the scale in order to obtain information about the scaling features of turbulence. For 
spatial intermittency, the increment (or two-point differences) of a field variable u(r) 
is given by

where � is the position, l is the separation in space (spatial scale), and e(l) is the unit 
vector in the direction of increments. For temporal intermittency, the increment can 
be defined likewise for two-point differences in the separation in time (timescale).

The probability distribution functions (PDFs) of intermittent fluctuations at large 
scales are nearly Gaussian, but as the scale decreases, the PDFs become non-Gauss-
ian displaying sharper peaks and thicker tails which are an indicative of extreme 
events associated with large-amplitude fluctuations. Non-Gaussian PDFs at small-
scales have been reported using field increments within the inertial range in turbu-
lent fluids and plasmas (Frisch and Kolmogorov 1995; Chian and Miranda 2009; 
Bruno and Carbone 2013). Nonetheless, it is worth pointing out that non-Gaussian-
ity does not necessarily imply the breakdown of self-similarity, i.e., the occurrence 
of anomalous scaling features. For example, it was shown that the distributions of 
fluctuations at sub-ion scales in solar wind turbulence are non-Gaussian but the 
system displays global-scale invariance (Sundkvist et al. 2007; Kiyani et al. 2009; 
Alberti et al. 2021; Chhiber et al. 2021; Benella et al. 2022). For example, Benella 
et al. (2022) investigated the Markovian character of the magnetic field fluctuations 
at subproton scales by using high-resolution measurements detected by Parker Solar 
Probe in the near-Sun solar wind to reveal basic information about the nature of 
the energy transfer across different scales. They showed that while large-scale fluc-
tuations display the universal character of fully-developed turbulence with a well-
defined Kolmogorov-like inertial range, small-scale fluctuations in the sub-proton 
range display the features of a Markovian process with Probability Density Func-
tions modelled via a Fokker–Planck equation. In particular, they showed that the 
shape of the PDFs is globally scale-invariant and similar to the one obtained from 
the stationary solution of the Fokker–Planck equation at different scales.

The statistical properties of turbulent flows can be represented by the p-th order 
structure functions Sp(�) (e.g., variance, skewness, kurtosis) defined as the moments 
of field differences,

where p is the moment, �u(�)� is the field increment, and the brackets denote the 
statistical average. For temporal intermittency, the structure function can be defined 
likewise for the separation in time. Structure functions can be used to characterize 
multifractality and anomalous scaling. Although the terms “multifractality” and 

(1)�u(�)� = [�(� + �) − �(�)] ⋅ �(�),

(2)Sp(�) = ⟨�u(�)
p

�
⟩
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“anomalous scaling” are used to describe intermittent turbulence, the link between 
them is not straightforward. Multifractality refers to how a measure is distributed in 
space due to different local scaling properties of the system (Consolini et al. 1996); 
whereas, anomalous scaling and intermittency refer to a scale-dependent kurtosis 
(fourth-order structure function) of fluctuation statistics (Carbone et al. 2004). Bur-
laga (1991) was the first to report the evidence of intermittent turbulence in solar 
wind by identifying the existence of multifractal structures in the velocity fluctua-
tions associated with recurrent streams at 1 AU and near 6 AU.

Magnetic reconnection involving topological changes in magnetic fields is a 
fundamental process in intermittent magnetic turbulence in space and laboratory 
plasmas, that can lead to energy release in regions of magnetic field annihilation; 
in strong turbulence, magnetic field lines constantly reconnect everywhere and on 
all scales, thus making magnetic reconnection an intrinsic part of turbulent cascade 
(Lazarian et al. 2020). Lazarian and Vishniac (1999) showed that turbulence leads 
to fast magnetic reconnection, thus magnetic reconnection and turbulence are intrin-
sically connected. Wei et  al. (2003) reported observational evidence of magnetic 
reconnection in various solar wind structures such as at magnetic cloud boundary 
layers, heliospheric current sheet, and small-scale turbulent structures; the basic 
characteristics of magnetic reconnection in interplanetary plasmas include multiple 
X-line reconnection, vortex velocity structures, filament current systems, splitting, 
collapse of bulk plasma, and merging of magnetic islands. Magnetic reconnection 
exhausts, at thin current sheets with moderate to large changes in magnetic field 
orientation, were detected by Gosling et  al. (2005) in the interior of an interplan-
etary coronal mass ejection (ICME) and at the interface between two ICMEs; the 
prime evidence is the acceleration of ion flow within magnetic field reversal region 
which was consistent with the Walén relationship relating changes in flow veloc-
ity to density-weighted changes in the magnetic field vector; pairs of proton beams 
along the magnetic field were observed near the center of the accelerated flow event; 
the resulting reconnecting jets occurred within a Petschek-type reconnection exhaust 
region bounded by Alfvénic waves. The discovery of reconnection exhausts in the 
solar wind introduces a new laboratory where magnetic reconnection can be investi-
gated by in situ measurements using widely separated multi-spacecraft, which ena-
bled the observation of a magnetic reconnection X-line extending more than 390 
Earth radii in the solar wind (Phan et al. 2006); the abrupt changes in the magnetic 
field Bz at the two edges and a plateau in the Bz profile in the middle of the current 
sheet indicate that the current sheet is bifurcated; the plasma density and tempera-
ture were sharply enhanced at the edges of the current sheet while the magnetic field 
strength was reduced. Chian and Muñoz (2011) and Chian et  al. (2016) obtained 
observational evidence of fully-developed intermittent magnetic turbulence in the 
region of bifurcated current sheets associated with magnetic reconnection exhausts 
at the leading edge of an ICME and at the interface of two merging interplanetary 
magnetic flux ropes, respectively. Chian et al. (2016) showed that the condition for 
occurrence of magnetic reconnection derived by Swisdak et al. (2010), relating the 
jump in the plasma parameter across the current layer and the shear angle between 
the reconnecting magnetic fields, can be applied to identify the most likely site of 
magnetic reconnection in a region of multiple magnetic flux ropes in solar wind.
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Magnetic flux ropes are bundles of helical, current-carrying, magnetic field lines 
writhing about each other and spiraling around a common axis. These coherent 
structures are a key element of heliospheric dynamics, contributing to the accelera-
tion and transport of suprathermal particles in the expanding turbulent solar wind 
(Ruffolo et  al. 2013). Magnetic flux ropes and current sheets are commonly used 
as tracers of magnetic reconnection. Such structures can be reconstructed by the 
Grad–Shafranov method which models the magnetic field structure traversed by 
a spacecraft (Hu et  al. 2004) and are useful for studying CME–CME merger and 
interplanetary rope–rope magnetic reconnection (Hu et al. 2004; Chian et al. 2016). 
Khabarova et al. (2016) showed that magnetic reconnection due to small-scale mag-
netic island merging and contraction can provide an effective mechanism for particle 
acceleration in solar wind. Li (2008) developed a method of detecting current sheets 
formed from intermittent energy dissipation in nonlinear interactions in the multi-
fractal solar wind turbulence, by studying the integrated distribution function of the 
angle between two-point correlation of the magnetic field; it is plausible that these 
current sheets are the magnetic walls of adjacent magnetic flux ropes in solar wind. 
Chian and Muñoz (2011) applied the method of Li (2008) to detect a large number 
of small-scale current sheets at the shock-sheath region of an ICME.

Data from new space missions have significant impact in improving our concepts of 
space plasma complexity. Parker Solar Probe showed that large-amplitude, Alfvénic 
magnetic-field reversals known as magnetic switchbacks (Bale et al. 2021) are preva-
lent in the inner heliospheric plasmas; these spiky fluctuations occur over a range of 
timescales and in patches separated by intervals of quiet, radial magnetic field, typical 
of intermittent turbulence. Switchbacks are localized within the extensions of plasma 
structures originating at the coronal base; these structures are accompanied by an 
increase in alpha particle abundance, Mach number, plasma � and pressure, and by 
decreases in the magnetic field magnitude and electron temperature; these intervals 
are in pressure balance, implying stationary spatial structure, and the magnetic-field 
decreases are in agreement with overexpanded magnetic flux tubes. In particular, these 
structures are separated in longitude by supergranular scales, which suggests that 
switchbacks originate near the leading edge of the diverging magnetic field funnels 
associated with the network magnetic field at supergranular junctions, namely, the pri-
mary sources of solar wind. The above observations enabled Bale et al. (2021) to pro-
pose that switchbacks are driven by interchange magnetic reconnection events (with the 
footpoints of reconnecting closed and open magnetic flux ropes rooted at supergranular 
junctions) just above the solar transition region and the spacecraft measurements rep-
resent the extended regions of a turbulent outflow of magnetic reconnection exhaust. 
Fargette et  al. (2021) concluded that switchbacks are formed in the low corona and 
modulated by the solar surface convection patterns of supergranulation and granula-
tion; the large scales detected for switchback patches are compatible with supergranu-
lation scales and the smaller scales are compatible with granulation scales. Eastwood 
et al. (2021) observed an ion-scale magnetic flux rope confined to a bifurcated current 
sheet within a magnetic reconnection exhaust in the solar wind using Solar Orbiter and 
Wind data, thus demonstrating that reconnection signatures can be found separated by 
as much as ∼ 2000 Earth radii, or 0.08 AU. Froment et al. (2021) reported evidence 
of magnetic reconnection occurring at the boundaries of three switchbacks crossed by 
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Parker Solar Probe at a distance of 45–48 solar radii to the Sun during its first encoun-
ter. Fedorov et  al. (2021) used Parker Solar Probe and Solar Orbiter data, when the 
two spacecraft were located around the same Carrington longitude and their latitudinal 
separation was very small, to study switchbacks in the solar wind originating from the 
same coronal hole region; Solar Orbiter observed bent magnetic field lines that recon-
nect with each other, producing flux ropes, which suggests that the observed magnetic 
flux ropes might be the surviving and modified remnants of the switchbacks created 
near Sun observed by Parker Solar Probe. Telloni et  al. (2021) used the first radial 
alignment data of Solar Orbiter–Parker Solar Probe to investigate the radial evolution 
of solar wind turbulence in the inner heliosphere; two 1.5 h intervals of the magnetic 
field data were used to compute the power spectral density, flatness, and high-order 
moment scaling law; the results show that solar wind plasma evolves from a highly 
Alfvénic, less-developed turbulence state near the Sun, to fully-developed intermittent 
turbulence at 1 AU.

3  Theory

3.1  Alfvén chaos, intermittency, and complexity

Nonlinear dynamics of Alfvén waves can be modelled by the derivative nonlinear 
Schrödinger equation (DNLS) (Hada et al. 1990; Chian et al. 1998; Borotto et al. 2004; 
Rempel et al. 2006)

where the wave is propagating along an ambient magnetic field B0 in the x-direc-
tion, b = by + ibz is the complex transverse wave magnetic field normalized to the 
constant ambient magnetic field, � is the dispersive parameter, � is a characteris-
tic scale length, time t is normalized to the inverse of the ion cyclotron frequency 
�ci = eB0∕mi, space x is normalized to cA∕�ci, cA = B0∕(�0�0)

1∕2 is the Alfvén 
velocity, cS = (�P0∕�0)

1∕2 is the acoustic velocity, � = 1∕[4(1 − �)], and � = c2
S
∕c2

A
. 

The external forcing S(b, x, t) = A exp(i k�) is a monochromatic left-hand circularly 
polarized wave with a wave phase � = x − V t, where V is a constant wave velocity, 
A is the driver amplitude, and k is the driver wave number. Equation (3) allows cer-
tain arbitrariness for choosing the signs of its various parameters (Ghosh and Papa-
dopoulos 1987; Chian et al. 2007) and has been extensively used to study nonlinear 
MHD phenomena. We investigate the low-dimensional model of nonlinear Alfvén 
waves (Hada et al. 1990; Chian et al. 2007) by seeking traveling wave solutions of 
Eq. (3) with b = b(�), whose first integral reduces to the following set of three non-
linearly coupled ordinary differential equations describing the transverse wave mag-
netic fields and the wave phase of nonlinear Alfvén waves

(3)�tb + ��x(|b|
2b) − i(� + i�)�2

x
b = S(b, x, t),

(4)ḃy − 𝜈ḃz = 𝜕H∕𝜕bz + a cos 𝜃,
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and

where b → b∕b0 (where b0 is an integration constant), � = (by, bz), w = b∕b0, the 
normalized driver amplitude parameter a = A∕�b2 k, the normalized damping 
parameter � = �∕�, the overdot denotes derivative with respect to the wave phase 
� = �b2

0
�∕�, � = Ω�, Ω = � k∕�b2

0
 , and � = −1 + V∕�b2

0
. We assume 𝛽 < 1 and � is 

positive. Equations (4)–(7) can be regarded as a model of nonlinear driven-damped 
oscillator containing two control parameters, a and �.

3.1.1  Alfvén nonlinear waves, solitons, and shocks

In the absence of driving and dissipation, a = � = 0, the number of dimensions of 
Eqs.  (4)–(7) reduces to two. In this case, the solutions of Eqs.  (4)–(7) are regular 
lying on constant potential energy (equipotential) surface contours of h(w) = e, 

(5)bz + 𝜈ḃy = −𝜕H∕𝜕by + a sin 𝜃,

(6)�̇� = Ω,

(7)H = (�2 − 1)2∕4 − (𝜆∕2)(� − �̂)2,

Fig. 1  Alfvén nonlinear waves and solitons. The potential ( � ) level contours in the ( by, bz ) phase space 
of stationary nonlinear Alfvén waves in the absence of a driver and dissipation. The potential has a local 
maximum (labelled 1), a local minimum (labelled 3), and a saddle point (labelled 2). In this case, all 
solutions are regular. The solid lines denote the zero-energy soliton separatrices; the inner separatrix is 
the phase-space trajectory of the right-hand polarized (RHP, fast MHD mode) dark soliton when � is 
positive; the outer separatrix is the phase-space trajectory of the left-hand circularly polarized (LHP) 
bright soliton, which is in the intermediate MHD mode when � is positive. The soliton separatrices 
divide this phase space into three parts, so that there are three types of periodic nonlinear traveling 
waves. The dashed constant-energy contours denote purely left-handed waves; the dotted contours inside 
the dark soliton separatrix correspond to purely right-handed waves, and the dot-dashed contours inside 
the shaded region denote a wave that can have mixed right–left polarization, when its contour is near the 
soliton separatrices. [Reproduced from Hada et al. (1990)]
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where the value of e is given by the initial conditions. Figure 1 shows the poten-
tial level contours for � = 1∕4 and � positive in the ( by, bz ) phase space appropriate 
to the problem. The potential has a local maximum (1), a local minimum (3), and 
a saddle point (2), such that h(1) > h(2) > h(3), and h(2) = 0. The shaded region 
shows where the potential h is negative; the heavy solid lines threading the sad-
dle point indicate where the potential is zero, and the potential approaches positive 
infinity as |w| → ∞. Each contour line of constant e corresponds to one obliquely 
propagating elliptically polarized Alfvén wave, whose form and spatial period may 
be expressed in terms of elliptical integrals. The two infinite period orbits on the 
h = 0 separatrices that connect to the saddle point have been called “bright” and 
“dark” solitons. The magnitude of the magnetic field increases in the bright soliton 
and decreases in the dark soliton. When � is positive, these solitons correspond to 
intermediate and fast MHD mode, respectively, as indicated in Fig.  1. The bright 
soliton is left-hand elliptically polarized, and the dark soliton is right-hand polar-
ized when � is positive. The two soliton separatrices divide the phase space into 
three regions, hence there are three types of nonlinear periodic Alfvén waves. In the 
regions of positive potential, one of the waves is purely left-hand polarized (dashed 
h = e contours beyond the bright soliton separatrix) and one is purely right-hand 
polarized (dotted contours inside the dark soliton separatrix). In the region of nega-
tive potential, the wave can have mixed right-left polarization (dot-dashed contours 
between the two soliton separatrices). Strictly speaking, this wave is mixed polar-
ized only if its phase space contour lies close to the two soliton separatrices; if its 
contour closely encircles the potential minimum, it will be purely left-hand polar-
ized. Since the average of the transverse field does not vanish in general, Alfvén 
nonlinear waves and solitons propagate obliquely to the ambient magnetic field.

In the presence of dissipation, the solutions can cross contours of constant h. 
The orbits then describe irreversible shock transitions connecting two out of three 
stationary points, corresponding, if 𝛼 > 0, to fast and intermediate MHD shocks, 
respectively. Figure 2 shows shock solutions computed numerically for � positive, 
� = 1∕4, and � = 0.4. The unique fast shock solution (Fig. 2a), which connects the 
stationary points 1 and 2, starts upstream at the potential high, and ends on the sad-
dle point 2. Two types of nonunique intermediate shock solutions connect to the 
local minimum point 3. Figure 2b shows the pair of so-called intermediate shock 
solutions, which start upstream at the saddle point 2 and end downstream at the 
potential minimum point 3. Figure 2c shows one member of the one-parameter fam-
ily of 1–3 intermediate shocks, which start at the potential high and end at the poten-
tial minimum.

3.1.2  Hamiltonian chaos

In the presence of driving and absence of dissipation, the number of dimensions of 
Eqs. (4)–(7) becomes three, which is the minimum degree of freedom required for 
chaos to occur. Hence, in this case the solutions of Eqs. (4)–(7) can be chaotic. The 
phenomenon of Alfvén Hamiltonian chaos is illustrated in Fig. 3, which shows the 
solutions of Eqs. (4)–(7) in the Poincaré map by projecting the solutions on the ( wy, wz )  



 Reviews of Modern Plasma Physics (2022) 6:34

1 3

34 Page 14 of 56

phase space once for each period 2�∕Ω of the wave phase �, i.e,, defining a Poincaré 
plane as

where T = 2�∕Ω is the driver period. Figure 3a shows the regular solutions in the 
absence of driving (a = 0), when the entire set of Poincaré points originating from a 
given initial point remains on the potential contour containing that initial point, since 
the contour is the cross section of a torus whose surface contains the solution orbit. 
For a small-amplitude driver (a = 0.002), Fig. 3b shows one of the sets of Poincaré 
points near the “bright” soliton separatrix starts to scatter in a limited region of the 
phase, indicating the onset of Hamiltonian chaos. It is well known that perturbation 
of a generic Hamiltonian system first yields chaotic motion in a layer surrounding a 
separatrix, because the perturbed manifolds of trajectories coming into and out of 

P ∶ [by(�), bz(�)] → [by(� + T), bz(� + T)],

Fig. 2  Alfvén fast and inter-
mediate shocks. The potential 
level contours in the ( by, bz ) 
phase space of stationary Alfvén 
shock waves in the presence of 
dissipation without a driver: a 
the 1–2 fast shock, b the pair of 
2–3 intermediate shocks, c one 
member of the family of 1–3 
intermediate shocks. [Repro-
duced from Hada et al. (1990)]
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the saddle point (hyperbolic point) start to cross each other and making infinitely 
many intersections (homoclinic points). As a result, the trajectories near the saddle 
point become enormously complicated and the corresponding chaotic Alfvén wave-
forms exhibit sudden, unpredictable jumps in the wave phase as well as sense of 
polarization. In addition, Fig. 3b shows that chaotic orbits can result from higher-
order resonances, e.g., one of the orbits near the local minimum of the potential 
breaks up into three resonance islands, indicating that there exist three hyperbolic 
points between these islands. Orbits starting sufficiently close to any of these hyper-
bolic points will be chaotic. Note, however, most of the area in the phase space of 
Fig. 3b remain regular. The chaotic regions are separated from the regular regions by 
KAM tori (Lichtenberg and Lieberman 1983). Figure 3c, d shows that as the driver 
amplitude a increases further, the chaotic region expands in the phase space which is 
an evidence of strong chaos. At a = 0.2, Fig. 3d shows that most of the phase space 
is chaotic except a few small islands, reaching a state of global stochasticity. Note 
that the region of right-hand polarization inside the dark soliton separatrix remains 
regular in Fig. 3d, even when almost all the remainder phase space is chaotic. This 
is because the left-hand driver can induce stochasticity only in the regions where the 

Fig. 3  Alfvén Hamiltonian chaos. Poincaré points in the ( wy, wz ) Poincaré plane of stationary driven 
Alfvén Hamiltonian system in the absence of dissipation: a a = 0, b a = 0.002, c a = 0.02, d a = 0.2. 
The set of Poincaré points in a repeat the equicontour lines of Fig. 1 with a local maximum (A), a local 
minimum (B), and a saddle point (c). In a there is no chaos, only periodic nonlinear waves and soli-
tons as seen in Fig. 1. Chaos appears even at the small driver amplitude in b, evidenced by a chaotic 
orbit near the soliton separatrices. At the same time, one of the dark wave trajectory separates into three 
islands which yields another group of chaotic orbits near the separatrices surrounding these islands. As 
the driver amplitudes increases, the area including chaotic orbits expands, as seen in c and d. [Repro-
duced from Hada et al. (1990)]
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polarizations of the unperturbed periodic waves are also left-hand polarized, or have 
a mixed left- and right-hand polarization.

3.1.3  Dissipative chaos: crisis‑induced intermittency

In the presence of driving and dissipation, the solutions of Eqs.  (4)–(7) admit 
chaotic attractors as well as chaotic saddles, both consisted of an infinite set of 
unstable periodic orbits. A bifurcation diagram, providing an overview of the 
system dynamics and its sensitive dependence on small variations in a system 
parameter, can be constructed from the numerical solutions of Eqs.  (4)–(7) by 
varying the driver amplitude a while keeping other systems parameters fixed 

Fig. 4  Alfvén bifurcation dia-
gram and maximum Lyapunov 
exponent: periodic attractor, 
chaotic attractor, and chaotic 
saddle. Limit point diagram and 
maximum Lyapunov exponent: 
period-3 periodic window. a 
Limit point diagram, bz as a 
function of the driver amplitude 
a,  for attractors A1 and A2, 
superimposed by the surround-
ing chaotic saddle (blue); b the 
same as a, showing the conver-
sion of the pre-crisis banded 
chaotic attractor (black) into the 
post-crisis banded chaotic sad-
dle (red); c maximum Lyapunov 
exponent, �max as a function 
of a,  for the attractor A1. SNB 
denotes saddle-node bifurcation, 
and IC denotes interior crisis. 
[Reproduced from Chian et al. 
(2007)]
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(� = 0.02,Ω = −1, � = 1∕4,� = 1∕2). Figure  4a gives an example of bifurca-
tion diagram of nonlinear Alfvén waves, showing a periodic window where two 
attractors A1 and A2 are found. For a given a,   Fig. 4a plots the asymptotic val-
ues (black dots) of the Poincaré points of bz. This periodic window begins with a 
saddle-node bifurcation (SNB), where a pair of period-3 stable and unstable peri-
odic orbits appear. The period-3 stable periodic orbit (A1) undergoes a cascade 
of period-doubling bifurcations as a increases and turns eventually into a banded 
chaotic attractor with three bands. This periodic window ends with an interior 
crisis (IC). Moreover, two chaotic saddles (blue and red) are shown in Fig.  4a, 
b by plotting a straddle trajectory close to a chaotic saddle computed from the 
PIM triple algorithm (Nusse and Yorke 1989; Rempel and Chian 2004). The blue 
region inside the periodic window denotes the surrounding chaotic saddle (SCS) 
which extends to the chaotic regions outside the periodic window, to the left of 
SNB and to the right of IC, where it becomes a subset of the chaotic attractor. 
This chaotic saddle is called a surrounding chaotic saddle because it “surrounds” 
the phase space occupied by the attractors within the periodic window as well as 
the phase space occupied by the banded chaotic saddle after the interior crisis. 
After the interior crisis, the banded chaotic attractor loses its stability and is con-
verted into a banded chaotic saddle (red) as seen in Fig. 4b. The maximum Lya-
punov exponent of the attractor A1 is shown in Fig. 4c.

Interior crisis is a global bifurcation that involves the conversion of a weak 
(banded) chaotic attractor into a strong chaotic attractor (Grebogi et al. 1983; Boro-
tto et al. 2004), characterized by an abrupt increase of the maximum Lyapunov expo-
nent as seen in Fig. 4c. Figure 5a shows the coexistence of the weak chaotic attractor 
(WCA, black) and the surrounding chaotic saddles (SCS, blue) just prior to IC in the 
Poincaré plane. The interior crisis is driven by the collision of a weak chaotic attrac-
tor with a surrounding chaotic saddle (Fig. 5b, c), mediated by a period-9 unstable 
periodic orbit created by a saddle-node bifurcation responsible for the appearance 
of the attractor A2. The phenomenon of interior crisis depicted in Fig. 5b is similar 
to the phenomenon of edge of chaos in the laminar-turbulent transition (Chian et al. 
2013), where the mediating unstable periodic orbit (cross) plays the role of the edge 
state, and its stable manifold (SM) plays the role of the edge of chaos. As the result 
of chaotic attractor-chaotic saddle collision, a strong chaotic attractor appears after 
the onset of interior crisis as the result of the coupling between weak and strong 
chaotic saddles as well as a set of coupling unstable periodic orbits newly created by 
the phenomenon of explosion at the gap regions (seen in Fig. 5b) of chaotic saddles 
after the onset of interior crisis.

Alfvén intermittency can be generated by a saddle-node bifurcation responsi-
ble for type-I Pomeau–Manneville intermittency (Chian et  al. 1998, 2006), or by 
an interior crisis responsible for crisis-induced intermittency. Figure 6a, b show the 
time series of Alfvén crisis-induced intermittency after the interior crisis described 
in Fig. 5, whereby episodic regime switching between laminar and bursty phases of 
the magnetic field fluctuations are observed. The laminar (bursty) phase corresponds 
to the trajectory traversing near the weak (strong) chaotic saddle, respectively. This 
intermittent regime switching between small-amplitude fluctuations and spiky bursts 
as well as the power-law behaviour of the power spectrum (Fig. 6c) reproduce the 
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Fig. 5  Alfvén interior crisis: 
chaotic attractor-chaotic saddle 
collision at interior crisis for 
aIC = 0.330248. a Pre-IC sur-
rounding chaotic saddle (SCS, 
blue) and weak (banded) chaotic 
attractor (WCA, black); b a 
zoom of a showing the collision 
of the weak chaotic attractor 
(WCA) with the mediating 
period-9 unstable periodic orbit 
(cross), its stable manifold (SM) 
and the surrounding chaotic 
saddle (SCS); c same as b show-
ing the collision of the weak 
chaotic attractor (WCA) with 
the stable manifold (green) of 
the surrounding chaotic saddle. 
[Reproduced from Chian et al. 
(2007)]
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temporal dynamics of Alfvénic intermittent turbulence observed in the solar wind, 
to be discussed in Sect. 4.

3.1.4  Noise‑induced intermittency

Up to now we have only considered deterministic Alfvén systems. In reality, Alfvén 
intermittent turbulence in space and laboratory plasmas is an admixture of deter-
ministic and stochastic systems. The complex dynamics of nonlinear Alfvén waves 
described by the driven-dissipative DNLS was investigated by Rempel et al. (2006, 
2008) by introducing additive Gaussian and non-Gaussian noise, respectively, in 
the governing equations Eqs. (4)–(7). Multistability is a common property of com-
plex systems. As mentioned in Sect. 2.2, it can be an obstacle for prediction, since 

Fig. 6  Alfvén crisis-induced 
intermittency. Alfvén crisis-
induced intermittency. a Times 
series bz as a function of � for 
a = 0.3310, b same time series 
as a plotted as a function of 
driver cycles, c power spectrum 
of a. SCS denotes surrounding 
chaotic saddle and BCS denotes 
banded chaotic saddle. [Repro-
duced from Chian et al. (2007)]
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the asymptotic state may depend crucially on the initial condition. The bifurcation 
diagram in Fig. 4a shows that there is coexistence of two attractors. Rempel et al. 
(2008) studied a region of the bifurcation diagram of Eqs. (4)–(7) where five attrac-
tors are found. The complexity of this multistable region is best depicted in Fig. 7a, 
which shows the Poincaré map of three out five coexisting periodic attractors A1 (cir-
cle, period-1), A2 (triangles, period-3), and A4 (squares, period-6) and their basins of 
attraction at � = 0.01746. The basin of attraction is the set of initial conditions in the 
( by, bz ) phase plane which converge to a given attractor. The blue region in Fig. 7a 
is the basin of A1, red represents the basin of A2 and white the basin of A4. The 
basin boundaries display a complex structure where coherent regions are observed 

Fig. 7  Alfvén chaotic saddle, basins of attraction, and noise. Basins of attraction and Poincaré points of 
periodic attractors (a) and chaotic saddle (b) in the absence of noise; basins of attraction and Poincaré 
points in the presence of noise (c and d). a Periodic attractors A1 (circle), A2 (triangles) and A4 (squares) 
and their basins of attraction in blue ( A1 ), red ( A2 ) and white ( A4 ), at � = 0.01746 ; b chaotic saddle on 
the boundary separating the basins of attraction at � = 0.01746. Basins of attraction and Poincaré points 
of the intermittent noisy trajectories at � = 0.01746 for Gaussian noise q = 1 (c); and for non-Gaussian 
noise q = 1.6 (d). In both cases, �q = 0.064. Triangles are plotted whenever the orbit is in the vicinity of 
attractor A2 ; squares refer to the vicinity of attractor A4 ; black circles represent points in the vicinity of 
attractor A1 or the surrounding chaotic saddle. [Reproduced from Rempel et al. (2008)]
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around the periodic attractors and incoherent regions permeate the surrounding 
phase space, where the three basins seem to mingle. This complex structure is scale 
invariant, a typical property of fractal sets. Rempel et al. (2008) numerically found a 
chaotic saddle embedded in the fractal basin boundary. The chaotic saddle in Fig. 7b 
detected by the sprinkler method (Hsu et al. 1988) plays an important role in attrac-
tor hopping and Alfvén noise-induced intermittency. In order to model the stochastic 
dynamical system to interpret the observation of space plasma turbulence, Rempel 
et  al. (2008) introduced an external stochastic source in Eqs.  (4)–(7) by adding a 
non-Gaussian noise based on the Tsallis nonextensive statistical mechanics (Tsal-
lis 1988). Figure 8 illustrates the effect of noise on the Poincaré time series of bz 
at � = 0.01746. Figure 8a shows the noise-free time-2� time series of the period-1 
attractor A1 in terms of the driver cycles. As shown by Rempel et al. (2006), in the 
presence of noise A1 resembles a chaotic attractor, stretching along directions for 

Fig. 8  Alfvén noise-induced 
intermittency. a Time-2� time 
series of bz in terms of the driver 
cycles for period-1 attractor A1 
at � = 0.01746. b Intermittency 
induced by Gaussian noise, for 
�q = 0.064 and q = 1. Triangles 
are plotted whenever the orbit 
is in the vicinity of attractor A2 
and squares refer to the vicinity 
of A4. Black circles represent 
points in the vicinity of A1 or 
the surrounding chaotic saddle. 
c Intermittency induced by non-
Gaussian noise for �q = 0.064 
and q = 1.6.  [Reproduced from 
Rempel et al. (2008)]
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which the attraction is weakest. For a small-amplitude noise, the perturbed trajecto-
ries stay confined to the vicinity of A1. If the noise level is strong enough to stretch 
A1 beyond its basin boundary, the Alfvén wave “escapes” from the basin, wanders 
for a certain amount of time in the complex boundary region before settling to a 
different attractor, leading to the occurrence of attractor hopping (Arecchi and Lisi 
1982). For a Gaussian noise with zero mean and standard deviation �, the trajecto-
ries can escape from the basin of attraction of A1 when � ⩾ 0.064. The noise will 
then trigger attractor hopping until the trajectory eventually is reinjected into the 
basin of A1. This process repeats intermittently, generating the noise-induced inter-
mittency (Gwinn and Westervelt 1985), shown in Fig. 8b. Most of the time the value 
of the bz component of the Alfvén magnetic field oscillates around 0.78, in the vicin-
ity of A1. There are several intermittent “bursts” to lower values of bz, indicating 
an excursion of the trajectory through a different region of the ( by, bz ) phase space. 
The triangles and squares indicate when the trajectory is in the vicinity of attrac-
tors A2 and A4, respectively. We consider a vicinity defined as the disk with radius 
equal to � around the fixed points of the periodic attractors in the Poincaré map. 
Each attractor has an associated time scale, i.e., a mean escape time for a trajectory 
to leave its neighbourhood. Figure  8c shows the intermittent time series obtained 
with a non-Gaussian noise, with a q-standard deviation �q = 0.064 and an arbitrar-
ily chosen nonextensivity parameter q = 1.6. The occurrence of intermittent bursts 
is greatly increased due to the fat tails of the non-Gaussian PDF. Note that in every 
burst in Fig. 8b, c there are some points which are not in the vicinity of either A2 or 
A4. Those points represent the time the trajectory spends around the complex basin 
boundary region associated with the chaotic saddle, before converging to the vicin-
ity of an attractor. This dynamics is shown in Poincaré maps in Fig. 7c, d, which 
plot the noisy basins of attraction and the Poincaré points corresponding to the time 
series of Fig.  8b, c. For a Gaussian noise (Fig.  7c), most points concentrate in a 
stretched region around A1 and the scattered points represent the intermittent bursts. 
For a non-Gaussian noise (Fig. 7d), the stochastic component seems to dominate the 
system dynamics. However, a comparison between Fig.  7c, d and Fig.  7b reveals 
that in each burst the trajectory visits the neighbourhood of the chaotic saddle. This 
occurs because, although the chaotic saddle is not attracting, it possesses a stable 
manifold, which is a zero measure set in the phase plane whose points display trajec-
tories which converge to the chaotic saddle (Nusse and Yorke 1989).

3.2  Chaos in parametric wave–wave interaction

As an example of parametric wave–wave interaction, we consider three-wave para-
metric decay of a Langmuir wave (L) into a whistler wave (W) and an Alfvén wave 
(A), all traveling along the ambient magnetic field B = Boẑ, which meet the follow-
ing phase-matching conditions:

where a frequency mismatch and a perfect wave vector match are assumed. In addi-
tion to the wave frequency and wavevector matching conditions of Eq. (8), the wave 

(8)�L ≈ �W + �A, �L = �W + �A,
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triplet must also satisfy the conservation of wave helicity. Since the electromagnetic 
whistler wave is right-hand circularly polarized, the Alfvén wave is left-hand circu-
larly polarized (i.e., shear Alfvén mode). If we look for traveling wave solutions, the 
nonlinear system of three coupled wave equations can be written in the normalized 
form

where AL, AW, and AA are the wave amplitude of Langmuir, whistler, and Alfvén 
wave, respectively; the dot denotes differentiation with respect to the phase variable 
� = k(z − Vt), V and k are arbitrary wave velocity and wave vector, respectively; �L is 
the linear growth parameter representing unstable Langmuir wave driven by an elec-
tron beam-plasma instability, �W(�A) is the damping parameter of whistler (Alfvén) 
wave and we assume 𝜈W = 𝜈A ≡ −𝜈 < 0 ; � is the frequency mismatch parameter.

A bifurcation diagram for the solutions of Eqs.  (9)–(11) is shown in Fig.  9 
by varying the control parameter � (wave growth) and keeping other parameters 
fixed, which contains a wealth of dynamical behaviours including divergence, 
fixed point, limit cycle (periodic attractor), and chaotic attractor (Wersinger et al. 
1980; Meunier et al. 1982). Five periodic windows are indicated in Fig. 9, where 
(A, B, C, D, E) denote the beginning of each periodic window characterized by a 

(9)ȦL = 𝜈LAL + AWAA,

(10)ȦW = 𝜈WAW − ALA
∗
A
,

(11)ȦA = i𝛿AA + 𝜈AAA − ALA
∗
W
,

Fig. 9  Bifurcation diagram: parametric wave–wave interaction. Bifurcation diagram of |AW| as a function 
of � for � = 2. Type-I Pomeau–Manneville intermittency occurs at � ∼ 13.81 (A), 15.21 (B), 16.82 (C), 
20.64 (D) and 29.56 (E). [Reproduced from Chian et al. (2000)]
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saddle-node bifurcation, responsible for the route to chaos when a periodic attrac-
tor loses its stability and is converted into a chaotic attractor. After a transition to 
chaos via saddle-node bifurcation, the system retains the memory of the periodic 
attractor, hence the chaotic system exhibits an episodic regime switching between 
periods of laminar and bursty fluctuations. The laminar regime corresponds to the 
trajectory at the vicinity of the periodic attractor prior to the saddle-node bifurca-
tion, whereas the bursty regime corresponds to the surrounding chaotic saddle 
(similar to Fig.  8). Figure  10b, c show time series of the type-I Pomeau–Man-
neville intermittency resulting from the saddle-node bifurcation that occurs at the 
control parameter � = 29.56 (E) in Fig. 9. Figure 10a shows the periodic attractor 
with period-2 prior to the saddle-node bifurcation; Fig.  10b shows the chaotic 
attractor just after the saddle-node bifurcation; and Fig.  10c shows the chaotic 
attractor further away from the saddle-node bifurcation. It is worth mention-
ing that the results discussed in this section can be applied to other three-wave 

Fig. 10  Type-I Pomeau–Man-
neville intermittency: parametric 
wave–wave interaction. Time 
series of |AW| of the type-I 
Pomeau–Manneville intermit-
tency for � = a 29.57, b 29.56 
and c 29.55. [Reproduced from 
Chian et al. (2000)]
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parametric decay interactions if they are governed by the same set of nonlinearly 
coupled quadratic equations Eqs. (9)–(11).

3.3  Chaos in modulational wave–wave interaction

Modulational wave–wave interaction (Miranda et al. 2012) can be described by the 
nonlinear Schrödinger equation governing the evolution of the slow-varying enve-
lope of the wave field

where �̂� denotes the linear growth/damping rate of E. We look for traveling wave 
solutions for the three-wave truncation of Eq. (12) that satisfy the resonant condition

where the subscript 0 denotes a linearly growing pump wave, 1 and 2 denote linearly 
damped Stokes and anti-Stokes daughter waves, respectively. By assuming linear 
dispersion relations for the waves, we obtain the following nonlinear system of cou-
pled wave equations

where the dot denotes derivative with respect to the normalized time, 
�(t) = 2�0 − �1 − �2 − 2�t, 𝜈0 = −�̂�(k0), �̂�1,2 = �̂�(k1,2). Equations  (14)–(17) can 
describe modulational wave–wave interaction in Alfvén turbulence (Ghosh and 
Papadopoulos 1987) and Langmuir turbulence (Miranda et  al. 2012). In terms of 
quantum mechanics, Eqs. (14)–(17) describe the nonlinear temporal evolution of a 
4-quanta system wherein a pair of pump quanta interact with a pair of Stokes and 
anti-Stokes daughter quanta. We analyze a period-3 periodic window of the bifur-
cation diagram of Fig. 11a. Similar to Fig. 4a this periodic window is created by a 
saddle-node bifurcation at �2 = �SNB ∼ 6.4845, where an order-to-chaos transition 
occurs and a pair of period-3 stable and unstable orbits are created. The period-3 
stable periodic orbit undergoes a cascade of period-doubling bifurcation lead-
ing to onset of chaos when the maximum Lyapunov exponent becomes positive as 
shown in Fig. 11b. The three-banded chaotic attractor undergoes an interior crisis at 
�2 ∼ 6.5025 when it collides with the surrounding chaotic saddle given by Fig. 11d 
and the mediating period-3 unstable periodic orbit created at the saddle-node bifur-
cation as seen in Fig. 11a, and turns into a strong chaotic attractor. Figure 11b shows 

(12)i(𝜕tE + �̂�E + 𝜕
2
z
E + |E|2E) = 0,

(13)2k0 = k1 + k2,

(14)ȧ0 = 𝜈0a0 + 2a0a1a2 sin𝜙,

(15)ȧ1 = −𝜈1a1 − a2
0
a2 sin𝜙,

(16)ȧ2 = −𝜈2a2 − a2
0
a1 sin𝜙,

(17)�̇� = −2𝛿 + a2
1
+ a2

2
− 2a2

0
+

[

4a1a2 − a2
0

(
a2

a1
+

a1

a2

)]

cos𝜙,
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that there is a sudden increase in the value of the maximum Lyapunov exponent at 
interior crisis. After the interior crisis, the weak chaotic attractor loses stability and 
turns into a banded chaotic saddle shown in Fig. 11c, confined to the same banded 
region as the pre-crisis weak chaotic attractor. Furthermore, there is a surrounding 
chaotic saddle for the entire bifurcation diagram as shown in Fig. 11d. The chaotic 
saddles are obtained using the PIM-triple algorithm (Nusse and Yorke 1989). Both 
banded and surrounding chaotic saddles in Fig. 11c, d contain empty regions called 
“gaps” that widen as the control parameter increases. After the interior crisis, the 
gap regions are densely filled with newly created coupling unstable periodic orbits 
that have components of Poincaré points located in both banded and surrounding 
chaotic saddles (Chian et al. 2007; Miranda et al. 2012). This process of gap filling 
is an example of a bifurcation phenomenon called “explosion”.

Type-I Pomeau–Manneville intermittency appears to the left of saddle-node bifurca-
tion and crisis-induced intermittency appears to the right of interior crisis, are illustrated 
by the Poincaré time series in Fig.  12. Both types of intermittency display episodic 
switching between laminar regime of small-amplitude fluctuations and bursty regime 
of large-amplitude fluctuations. The laminar regime corresponds to the trajectory of 

Fig. 11  Bifurcation diagram and maximum Lyapunov exponent: modulational wave–wave interaction. a 
Bifurcation diagram for a1 as a function of �2. The dashed lines represent the evolution of the period-3 
unstable periodic orbit, SNB denotes a saddle-node bifurcation and IC denotes an interior crisis. b Maxi-
mum non-zero Lyapunov exponent �MAX as a function of �2. c Bifurcation diagram showing the con-
version of the weak chaotic attractor (black) to a banded chaotic saddle (gray) and its evolution after 
crisis. d Bifurcation diagram showing the evolution of the surrounding chaotic saddle. [Reproduced from 
Miranda et al. (2012)]
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wave solution passing by the vicinity of the period-3 unstable periodic orbit (banded 
chaotic saddle) for type-I Pomeau–Manneville intermittency (crisis-induced intermit-
tency). The bursty regime corresponds to the trajectory passing by the vicinity of the 
surrounding chaotic saddle for both types of intermittency. The gap filling is respon-
sible for the crisis-induced intermittency shown in Fig. 12c, d, because the trajectory 
can escape from the gap region of a chaotic saddle to the gap region of the other cha-
otic saddle via the unstable manifolds of a coupling unstable periodic orbit. It is worth 
pointing out that the results discussed in this section can be applied to other four-wave 
modulational interactions if they are governed by the same set of nonlinearly coupled 
cubic equations (Eqs. (14)–(17)).

Fig. 12  Type-I Pomeau–Manneville intermittency and crisis-induced intermittency: modulational 
wave–wave interaction. a Time series of the Poincaré points of a1 at �2 = 6.4844, showing the char-
acteristics of type-I Pomeau–Manneville intermittency. b Time series of the Poincaré points of a1 at 
𝜈2 = 6.4845 > 𝜈SNB, showing the dynamics of a periodic attractor with period-3. c Time series of pre-
crisis weak chaos represented by the Poincaré points of a1 at 𝜈

2

= 6.5074 ≲ 𝜈
IC
. d Time series of a1 at 

𝜈
2

= 6.5075 ≳ 𝜈
IC

 represented by the Poincaré points, showing a crisis-induced intermittency alternating 
episodically between periods of weak and strong chaos. [Reproduced from Miranda et al. (2012)]
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4  Observation

4.1  Coronal mass ejection and interplanetary coronal mass ejection

4.1.1  Coronal mass ejection

A coronal mass ejection (CME) erupting from the solar limb was observed 
(Zimovets et al. 2012) by ground and space instruments on 2010 November 3, fol-
lowing a C4.9 class flare peaking at 12:15:09 UT in active region AR 11121. Fig-
ure  13a shows a composite image at 12:15:36 UT of type-II radio bursts at four 
different frequencies detected by the Nançay Radioheliograph (NRH) and EUV 
viewing of the erupting multithermal plasmas detected at 131 Å and 211 Å by the 
Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory 
(SDO). All four high-frequency component (HFC) and low-frequency component 

Fig. 13  Radio bursts, magnetic reconnection and turbulence ahead of the leading edge of an erupting 
solar magnetic flux rope. Observation of a coronal mass ejection associated with an eruptive flare near 
the Sun’s limb at 12:15:36 UT on 2010 November 3. Composite base-difference EUV images captured 
by SDO/AIA in 131 Å (turquoise) and 211 Å (purple). The yellow dotted parabola denotes the approxi-
mate front boundary layer of the erupting plasmas seen by AIA at 211 Å ahead of a magnetic flux rope. 
Solid lines of various colors denote the NRH contours (95% of the peak flux), marking the locations 
of centroids of the source regions of type-II radio bursts at different frequencies. The red dashed line 
denotes a projection of the radius-vector passing through the X-ray flare on the image plane. b Sketch of 
the eruptive event of a viewed from the heliographic north pole. The number notations denote, respec-
tively, the: (1) hypothetical shock wave, (2) LFC of type-II radio bursts, (3) HFC of type-II radio bursts, 
(4) turbulent shock-sheath, (5) erupting warm (T ∼ 1−2 MK) plasma rim, (6) leading edge, (7) erupting 
magnetic flux rope with hot (T ∼ 10 MK) plasma, (8) photosphere. The black thick arrow denotes the 
direction to the Earth. The black thin arrows denote, respectively, the direction of: erupting magnetic 
flux rope, erupting warm plasma rim, shock wave, source motion of LFC/HFC sources. The lengths of 
arrows are proportional to the corresponding velocity of motions. The black dashed arc-lines denote the 
background electron plasma density: n1 > n2 > n3. Magnetic reconnections can accelerate electrons at 
the shock-sheath and generate radio bursts via Langmuir turbulence. [Reproduced from Zimovets et al. 
(2012)]
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(LFC) radio sources, with frequencies decreasing upwards, are located above the 
leading edge of ejecta canopy (Foullon et al. 2011) of the erupting plasma seen at 
131  Å. This observation suggests that HFC (LFC) radio bursts are emitted at the 
downstream (upstream) regions of the shock, respectively, thus rendering support 
for the split-band model of type-II radio bursts proposed by Smerd et  al. (1975). 
Figure 13b shows a sketch of different regions of this erupting CME. Coronal vor-
tices driven by the magnetic Kelvin–Helmholtz instability were detected (Foullon 
et al. 2011) at the leading edge of this erupting CME plasma seen at 131 Å, which 
can induce magnetic reconnection. Small-scale current sheets and magnet flux ropes 
embedded in the intermittent plasma turbulence at the downstream shock-sheath and 
the leading edge of ejecta can drive magnetic reconnection that accelerates electron 
beams, resulting in the generation of the HFC radio emissions via a beam-plasma 
instability and Langmuir turbulence (Chian and Alves 1988). The LFC source, situ-
ated in the upstream region, can be explained in the frame of some standard shock 
wave theories, e.g., the shock drift acceleration mechanism, and/or upstream beam-
plasma instability and Langmuir turbulence.

4.1.2  Interplanetary coronal mass ejection

An interplanetary coronal mass ejection (ICME) was observed (Foullon et al. 2007) 
by multi-spacecraft at near-Earth solar wind and the Earth’s magnetosheath on 2005 
January 21–22. The probable source of this ICME was a halo CME associated with 
an X7.1 flare from AR 10720. Figure 14a shows the time series of the modulus of 
magnetic field at the ICME turbulent shock-sheath measured by Cluster-1 (Chian and 
Muñoz 2011), where SA denotes the shock arrival, SB denotes the leading edge of 
ICME ejecta, and the interval between SA and SB denotes the turbulent shock-sheath 
embedded by a large number of small-scale current sheets and magnetic flux ropes. 
Two current sheets SB1 and SB2 are seen at an enlarged view given by Fig. 14b of 
the leading edge region marked by a horizontal bar in Fig. 14a. The power spectral 
density of the time series of Fig. 14b shows in Fig. 14c that the magnetic turbulence at 
the leading edge of ejecta is fully developed, exhibiting a spectral index of −5∕3 in the 
inertial range and a spectral index of −2.71 at the dissipative range.

The normalized two-point differences (increments) of |B| of Fig. 14b for three dif-
ferent timescales ( � = 2 s, 20 s, 200 s) shown in Fig. 15a demonstrate that the mag-
netic field fluctuations at the leading edge of ICME ejecta become more intermittent 
as the scale becomes smaller, evidenced by spiky bursts (intermittent structures) in 
the vicinity of two current sheets SB1 and SB2. Figure 15b shows that the corre-
sponding PDF displays non-Gaussian fat-tails at small scales which is a signature 
of the intermittent structures. Moreover, Fig. 15c shows that the scaling exponent 
� displays a noticeable departure from self-similarity and monofractality at higher 
orders of the structure function, indicative of a multifractal behavior. The intermit-
tency, non-Gaussianity, and multifractality of intermittent magnetic turbulence seen 
in Fig. 15 are the manifestation of coherent structures such as small-scale current 
sheets and magnetic flux ropes which can induce magnetic reconnection.

The evidence of magnetic reconnection related to the two current sheets SB1 
and SB2 is given in Fig.  16, which shows that the modulus of the ion velocity 
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Fig. 14  Current sheets and turbulence at an interplanetary shock-sheath. Observation of current sheets 
and magnetic turbulence by Cluster-1 at the turbulent shock-sheath (the time interval between SA and 
SB) of ICME of 2005 January 21. a Time series of |B| (nT) superposed by small-scale current sheets 
found by the Li (2008) method, for the critical angle � = 60◦ and the timescale � = 120 s. Magenta dots 
denote the points associated with a current sheet. SA indicates the shock arrival. b An enlarged view 
of the time interval at the leading edge of ejecta indicated by a bar in a. SB1 and SB2 indicate the two 
current sheets detected at the leading edge (SB) of the ICME ejecta. c Power spectral density (PSD, 
nT2 Hz−1 ) of |B| for the time interval (b) of magnetic intermittent turbulence; straight lines denote the 
inertial and dissipative subranges, respectively. The spectral indices are computed by a linear regression 
of the log–log PSD data. [Reproduced from Chian and Muñoz (2011)]
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measured by Cluster-1 is close to the modulus of the reconnecting-jet velocity 
predicted by the magnetic reconnection theory of Sonnerup et al. (1981). Local-
ized large-amplitude current densities are seen at the locations of SB1 and SB2. 
The signature of bifurcated current sheets is seen in |J| and the plateau in BL. 
In particular, Fig. 16 shows that VL is anti-correlated (correlated) with BL at the 

Fig. 15  Intermittency, non-Gaussianity, and multifractality at a shock-sheath: interplanetary coronal 
mass ejection of 2005 January 21. Scale dependence for three different timescales ( � = 2  s, 20  s, and 
200 s) of the time series of Fig. 14b. a The time series of two-point differences of normalized magnetic-
field ΔB, showing spiky bursts of intermittent structures at small timescales ( � = 2  s and 20  s) at the 
vicinity of two current sheets SB1 and SB2. b The probability density function (PDF) of ΔB superposed 
by a Gaussian PDF (orange line), showing non-Gaussian fat-tails at small-scales ( � = 2  s and 20 s). c 
Scaling exponent � of the pth-order structure function for magnetic fluctuations (red diamonds), super-
posed by the K41 self-similar scaling (black dashed line), and the multifractal prediction (She and Lev-
eque 1994; Müller and Biskamp 2000) of the She–Leveque model of magnetic turbulence (blue curve). 
The departure of the scaling exponent from self-similarity is an indicative of multifractal turbulence due 
to its embedded intermittent structures. [Reproduced from Chian and Muñoz (2011)]



 Reviews of Modern Plasma Physics (2022) 6:34

1 3

34 Page 32 of 56

leading (trailing) boundary of SB1, and VL is correlated (anti-correlated) with BL 
at the leading (trailing) boundary of SB2. This provides the evidence of Alfvénic 
waves propagating parallel/anti-parallel to the ambient magnetic field, associated 

Fig. 16  Magnetic reconnection at the leading edge of a magnetic flux rope: interplanetary coronal mass 
ejection of 2005 January 21. Observation of magnetic reconnection related to the current sheets SB1 and 
SB2 (magenta) at the leading edge of ICME. a The modulus of magnetic field |B| (nT) (an enlarged view 
of Fig. 14b); the modulus of the plasma velocity |V| (km s−1 ) (black) and the plasma velocity (orange) 
predicted by the magnetic reconnection theory of Sonnerup et al. (1981); the modulus of the current den-
sity |J| (nA m−2 ) calculated by the multi-spacecraft curlometer technique of Dunlop et al. (2002). b The 
components of magnetic field BL (red), BM (green), and BN (blue) in the LMN coordinates measured by 
Cluster-1; the components of the plasma velocity VL (red), VM (green), and VN (blue). The observational 
evidence of bifurcated current sheets SB1 and SB2 are given by a plateau at BL in the middle of each 
bifurcated current sheet, parallel/anti-parallel Alfvénic waves at two edges of the current sheets, and jets 
are the signatures of magnetic reconnection. [Reproduced from Chian and Muñoz (2011)]
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with magnetic reconnection exhausts (Wei et al. 2003; Gosling et al. 2005; Phan 
et al. 2006).

4.2  Interplanetary rope–rope magnetic reconnection

4.2.1  ICME–ICME merger

Multiple coronal mass ejections can merge with each other in the solar atmosphere 
and solar wind. For example, Kozyra et al. (2013) detected two interacting CMEs 
behind the ICME shock-sheath of 2005 January 21–22 discussed in Sect.  4.1.2. 

Fig. 17  Interplanetary rope–rope magnetic reconnection: merger of multiple coronal mass ejections. 
Observation of multiple interplanetary magnetic flux ropes and current sheets on 2002 February 1–2. 
a Time series of the ACE magnetic field and plasma parameters. The horizontal bar marks the interval 
of each magnetic flux rope. The vertical dotted lines mark the front and rear boundary layers of triple-
IMFR, respectively. From top to bottom: the modulus of magnetic field |B| (nT); three components of B 
(nT) in the GSE coordinates; azimuth angle ΦB ( ◦ ); latitude angle Θ ( ◦ ); modulus of ion bulk velocity |Vi| 
(km s−1 ); three components of ion bulk velocity Vi (km s−1 ) in the GSE coordinates, where Vx has been 
shifted by +350 km s−1 ; ion number density ni (cm−3) ; ion temperature Ti (K); and ion plasma beta �i. b 
Current sheets (magenta dots) detected by the method of magnetic shear angle, superposed on the time 
series of |B| of ACE, Wind, and Cluster-1. Two purple vertical dashed lines mark the site of rope–rope 
magnetic reconnection at the interface region of IMFR-2 and IMFR-3, where a spike in |Vi|, ni, Ti, and �bi 
are seen in Fig. 17a and a current sheet is seen in Fig. 17b. In addition, a current sheet is seen at the front 
boundary layers of IMFR-1 (marked by arrow) by ACE and Cluster-1. [Reproduced from Chian et  al. 
(2016)]
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Chian et  al. (2016) used multi-spacecraft solar wind data at the Lagrangian point 
L1 and the Earth’s foreshock on 2002 February 1–2 to investigate the interaction 
of three interplanetary magnetic flux ropes (IMFRs), and show that the magnetic 
reconnection exhaust event studied by Phan et  al. (2006) takes place at the inter-
face region between IMFR-2 and IMFR-3 shown in Fig.  17. Figure  17a gives an 
overview of ACE plasma data where the front and rear boundary layers of three 
IMFRs are identified. Figure 17b shows the small-scale current sheets detected by 
Wind, and Cluster-1 using the method of magnetic shear angle (Li 2008). The ACE 
suprathermal electron pitch angle spectrograms present evidence of accelerated 
energetic electrons at the site of ICME–ICME merger where an intense small-scale 
current sheet is found. Magnetic flux ropes are bundles of helical, current-carrying, 
magnetic field lines writhing about each other and spiralling around a common axis 
as discussed in Sect. 2. The structures of IMFR-1 and IMFR-2 can be reconstructed 
by the Grad–Shafranov method (Hu et al. 2004; Chian et al. 2016); the reconstruc-
tion of IMFR-3 is difficult since the spacecraft path is far away from the center of the 
magnetic flux rope.

Interplanetary magnetic flux ropes can erode a substantial amount of outer mag-
netic flux via magnetic reconnection at their boundary layers as they propagate away 
from the Sun through the heliosphere. In fact, the boundary layers of IMFRs can be 
recognized (Wei et al. 2003; Chian et al. 2016) by noting the plasma characteristics 
of prior or ongoing magnetic reconnection with enhanced variations in the magnetic 
field strength, plasma speed, plasma density, plasma temperature, and ion plasma �i, 
as seen in Figs. 16 and 17. The following condition for magnetic reconnection was 
derived by Swisdak et al. (2010):

where Δ� denotes the jump in plasma � across a boundary layer, � denotes the shear 
angle between the reconnecting fields, Lp denotes a typical pressure scale length near 
the X-line, and di denotes the ion skin depth. Figure 18a illustrates the condition for 
magnetic reconnection using the ACE solar wind data of 2002 February 1–2, super-
posed by the values of ( �, Δ� ) of the front and rear boundary layers of triple-IMFR, 
which shows that during this event the interface region of IMFR-2 and IMFR-3 is 
the most likely site for magnetic reconnection. Figure 18b provides an overview of 
Cluster-1 observational evidence of rope–rope magnetic reconnection at this event. 
Note that the large-amplitude dynamic pressure pulse Pdy driven by the interplane-
tary magnetic reconnection, seen in Fig. 18b, can compress the magnetosphere, raise 
the dayside magnetospheric magnetic field strength, and initiate resonant magnetic 
field perturbations in high-latitude ground magnetometers (Sibeck et al. 1989).

Solar wind intermittent turbulence, consisted of nonlinear Alfvénic fluctuations 
and coherent structures such as magnetic flux ropes and current sheets, is one of 
main drivers of geomagnetic and auroral activities (D’Amicis et  al. 2010, 2020). 
Other main drivers of geomagnetic activity are: interplanetary dynamic pressure 
pulses, magnetic reconnection at the dayside magnetopause, sporadic magnetic 
reconnection processes in the central plasma sheet of the magnetotail of nightside 
magnetosphere, and current-disruption mechanisms (Kamide and Chian 2007). Note 

(18)Δ𝛽 < 2(Lp∕di) tan(𝜃∕2),
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that Alfvénic fluctuations in the solar wind are fluctuations with a high degree of 
Alfvénic correlation between the plasma velocity and the magnetic field, which are 
not representative of the occurrence of Alfvén waves that propagate on magnetic 
energy constant surfaces.

A geomagnetic storm on 2002 February 2 was driven by the long-duration neg-
ative Bz in the IMFR-3 seen in Fig. 17a. The onset of this storm was triggered by 
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the dynamic pressure pulse seen in Fig. 18b. Based on the observation of a geo-
magnetic storm driven by an ICME, Piersanti et al. (2021) proposed that the solar 
wind pressure impulsive variation may trigger an eastward prompt penetrating 
electric field that propagates from high to equatorial latitudes, overlapping in the 
nightside region to the zonal westward electric field, causing equatorial plasma 
density depletions in the ionosphere which can impact telecommunication (Chian 
et al. 2018). Hence, the study of the genesis of solar wind intermittent turbulence 
is crucial for space weather forecasting. The degree of intermittency in turbu-
lence can be quantified by kurtosis and phase coherence index (Hada et al. 2003) 
of the fluctuations, which measure the degree of amplitude and phase synchroni-
zation in multiscale interactions (Chian et al. 2016), respectively. Moreover, the 
degree of multifractality in turbulence can be quantified by the scaling exponent 
�(p) of pth-order structure functions. A comparative study of five regions of the 
triple-IMFR event of 2002 February 2 using Cluster-1 |B| data demonstrates in 
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Fig. 19  Genesis of intermittent turbulence: interplanetary rope–rope magnetic reconnection of 2002 Feb-
ruary 1–2. Observation of interplanetary intermittent magnetic turbulence by Cluster-1 on 2002 February 
2. a Time series of the modulus of magnetic field |B| (nT) detected by Cluster-1 divided into five regions 
of 30 min each: IMFR-1 interior (black), interface region of IMFR-1 and IMFR-2 (green), IMFR-2 inte-
rior (red), interface region of IMFR-2 and IMFR-3 (purple), and IMFR-3 interior (blue); the interval of 
each IMFR is denoted by a horizontal bar. The two purple vertical dashed lines indicate the interface 
region of IMFR-2 and IMFR-3. b Quantification of amplitude–phase synchronization by kurtosis and 
phase coherence index of |B| as a function of the timescale �. c Scaling exponents � (p) of the pth-order 
structure function of two-point differences of B (with error bars), superposed by the K41 self-similar 
scaling (gray dashed line). [Reproduced from Chian et al. (2016)]
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Fig. 19 that the degree of intermittency and multifractality is highest at the inter-
face region of IMFR-2 and IMFR-3. Hence, the interplanetary rope–rope mag-
netic reconnection related to ICME–ICME merger provides a key source for the 
genesis of solar wind intermittent turbulence.

4.2.2  Kurtosis–skewness relation

A unique parabolic relation linking skewness to kurtosis, i.e., third- and fourth-
order structure functions, respectively, have been observed in solar wind turbu-
lence near interplanetary shocks (Vörös et al. 2006) and drift-interchange turbu-
lence in a toroidal plasma device (Labit et al. 2007). This relation can elucidate 
the universal statistical properties of intermittent turbulence. Miranda et  al. 
(2018) investigated the kurtosis–skewness relation of the triple interplanetary 
magnetic flux rope event studied by Chian et al. (2016). Figure 20 shows the time 

Fig. 20  Times series of kurtosis and skewness of intermittent turbulence: interplanetary rope–rope mag-
netic reconnection of 2002 February 1–2. a Time series of �B ( � = 100 s) from 00:00 to 04:00 UT on 
2 February 2002. Five regions of 30 min each are marked by different colours: interior of IMFR-1 (R1, 
black), interface region of IMFR-1 and IMFR-2 ( I12, green), the interior of IMFR-2 (R2, red), the inter-
face of IMFR-2 and IMFR-3 ( I23, violet), and the interior of IMFR-3 (R3, blue). Time series of skew-
ness S (b) and kurtosis K (c) calculated using a sliding overlapping window. The gray area represents 
the standard deviation calculated in each window. The bifurcated current sheets associated with rope–
rope magnetic reconnection at the interface region of IMFR-2 and IMFR-3 are detected by the two sharp 
spikes in |�B|, S, and K. [Reproduced from Miranda et al. (2018)]
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series of two-point differences (� = 100 s) of the modulus of magnetic field meas-
ured by Cluster-1 and the corresponding skewness and kurtosis, where the five 
regions of 30 min each are the same as specified in Fig. 19a. It is evident from 
Fig. 20 that the interface region of IMFR-2 and IMFR3, where rope–rope mag-
netic reconnection occurs, is readily identified by the sharp spike in �|B|, skew-
ness, and kurtosis.

The plot of kurtosis as a function of skewness ( � = 10 s) for five regions of Figs. 19 
and  20 is shown in Fig.  21. With the exception of the region R2 in the interior of 
IMFR-2 (Fig.  21c) where the magnetic fluctuations are nearly Gaussian as seen in 
Fig. 19, the kurtosis–skewness relation for all other regions show a parabolic shape, 
confirming the non-Gaussian, intermittent and multifractal nature of magnetic fluctua-
tions in these regions as seen in Fig. 19. The functional relation between kurtosis and 
skewness for each region can be described by the quadratic equation

Fig. 21  Kurtosis–skewness relation of intermittent turbulence: Interplanetary rope–rope magnetic recon-
nection of 2002 February 1–2. Kurtosis K as a function of skewness S calculated from the time series of 
|�B(�)|), where � = 10 s, for five regions marked in Fig. 20: a the interior of IMFR-1, b the interface of 
IMFR-1 and IMFR-2, c the interior of IMFR-2, d the interface of IMFR-2 and IMFR-3, and e the inte-
rior of IMFR-3. The dashed line in each panel indicates the least-square fit with the parabolic function 
K = �S2 + �.  [Reproduced from Miranda et al. (2018)]
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where � and � are the coefficients that characterize a parabolic curve which can be 
computed by applying a least-square fit between the values of kurtosis and skew-
ness obtained from the observational data and Eq.  (19), following the Leven-
berg–Marquardt algorithm (Miranda et al. 2018). A correlation index r can be com-
puted to measure the degree of correlation between the value of observed K and 
the value of K obtained empirically from Eq. (19). Figure 21 shows that the para-
bolic kurtosis–skewness relation of the magnetic intermittent turbulence is enhanced 
(with r = 0.99 ) at the interface region of IMFR-2 and IMFR-3 (Fig.  21e with 
� = 1.36, � = 0.72 ) due to nonlinear Alfvénic waves and coherent structures such 
as small-scale current sheets and magnetic flux ropes related to the interplanetary 
rope–rope magnetic reconnection discussed in Sect. 4.2.1. The studies of the kurto-
sis–skewness relation of Vörös et al. (2006) and Miranda et al. (2018) show that the 
solar wind intermittent turbulence can be induced by cross-scale interactions.

4.2.3  Complexity–entropy relation

The link between chaos, complexity, and intermittent turbulence can be clari-
fied by computing the Jensen–Shannon complexity–entropy index, which is a sta-
tistical tool capable of distinguishing noise from chaos (Bandt and Pompe 2002; 

(19)K = � S2 + �,

Fig. 22  Complexity–entropy relation of intermittent turbulence: interplanetary rope–rope magnetic 
reconnection of 2002 February 1–2. The complexity–entropy relation for BL (red plus), BM (green cross), 
and BN (blue asterisk) components of the Cluster-1 magnetic field during the reconnection exhaust event 
of the interplanetary rope–rope magnetic reconnection on 2002 February 2. The full black circle, open 
red triangle, and full gray triangle denote the chaotic time series of the logistic map, the skew tent map, 
and the Hénon map, respectively, using the same parameter values of the chaotic maps as Rosso et al. 
(2007) and Weck et al. (2015). The dotted line denotes stochastic fractional Brownian motions (fBm). 
This curve was computed by generating a time series of fBm with a Hurst exponent varying within the 
interval [0.025, 0.925] (Maggs and Morales 2013). The crescent-shaped curves denote the maximum and 
minimum values of the complexity CS

J
 for a given value of the normalized Shannon entropy H,  respec-

tively. [Reproduced from Miranda et al. (2021)]
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Rosso et  al. 2007) and has been applied to characterize chaos in laboratory plas-
mas (Maggs and Morales 2013; Gekelman et al. 2014; Onchi et al. 2017; Zhu et al. 
2017) and stochasticity in space plasmas (Weck et  al. 2015; Osmane et  al. 2019; 
Weygand and Kivelson 2019; Good et  al. 2020). Miranda et  al. (2021) used this 
tool to study the complexity–entropy of the LMN components of magnetic field of 
four magnetic reconnection exhaust events in solar wind. Figure 22 shows the results 
obtained by Miranda et al. (2021) for the interplanetary rope–rope magnetic recon-
nection event observed by Cluster-1 on 2002 February 2 (Chian et al. 2016). The 
complexity–entropy plane can be separated into three regions: (1) a low-entropy and 
low-complexity region corresponding to highly predictable systems (e.g., periodic 
attractor), (2) an intermediate-entropy and high-complexity region corresponding to 
unpredictable systems (e.g., chaotic attractor), and (3) a high-entropy and low-com-
plexity region corresponding to stochastic systems (e.g., stochastic attractor) (Rosso 
et al. 2007). For the sake of comparison, some examples of chaotic and stochastic 
time series are given in Fig. 22 to mark the regions 2 and 3, respectively. Figure 22 
shows that the ( CS

J
, H) values of all the LMN components of B lie close to the bot-

tom-right region of the complexity–entropy plane, indicating that the interplanetary 
magnetic fluctuations in this event are stochastic in nature, confirming the results 
of interplanetary turbulence obtained by Weck et  al. (2015), Weygand and Kivel-
son (2019), and Good et al. (2020). The BL component displays a lower degree of 
entropy and higher degree of complexity than the BM component, which in turn dis-
plays a lower degree of entropy and a higher degree of complexity than the BN com-
ponent. All four events studied by Miranda et al. (2021) obtained this same result. 
One event observed by Wind on 1997 December 30 has a long exhaust duration with 
sufficient data points to determine the universal scaling exponent �(p) of magnetic 
fluctuations, which shows that BL is more intermittent (multifractal) than BM, which 
in turn is more intermittent (multifractal) than BN. Hence, Miranda et al. (2021) con-
cluded for this event that a higher degree of intermittency (multifractality) is related 
to a lower degree of the normalized Shannon entropy (H) and a higher degree of 
the Jensen–Shannon complexity ( CS

J
 ) in the inertial range of interplanetary magnetic 

intermittent turbulence at the magnetic reconnection exhaust.
Apart from the aforementioned papers there are other investigations of complex-

ity in space plasma dynamics. For example, Consolini et al. (2009) studied the spa-
tiotemporal complexity in solar cycles by analyzing the total sunspot area butterfly 
diagram using the natural orthogonal composition technique and information theory 
approach. Their study identified two different dynamical regimes with different spec-
tral properties in the complex evolution of solar cycles. Coco et al. (2011) applied 
the information theory and complex systems approach to study the reconfiguration 
of ionospheric convection by quantifying the degree of complexity associated with 
the Polar Cap Potential structure on a global scale. This study obtained evidence of a 
dynamical phase transition of the ionospheric convection pattern topology as a func-
tion of the configuration of the interplanetary magnetic field. The Bandt and Pompe 
approach of permutation entropy has been applied to study the complex magneto-
spheric dynamics by Consolini and De  Michelis (2014) and Gopinath and Prince 
(2016). Consolini and De Michelis (2014) conjectured that the observed changes of 
the Markovian nature of SYM-H fluctuations just prior to and during geomagnetic 
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storms might result from a dynamic phase transition taking place in the topology of 
equatorial magnetospheric current system and/or in the overall global plasma con-
vection triggered by the solar wind changes. Gopinath and Prince (2016) found that 
the entropy values of auroral and polar cap indices decrease during geomagnetic 
storm which reveals an increase in temporal correlations as the magnetosphere sys-
tem gradually shifts to a more orderly state, thus confirming the findings of Con-
solini and De Michelis (2014). Klimontovich (1995) introduced a criterion, known 
as S-theorem, to quantify the degree of order/disorder in far-from-equilibrium open 
systems; when this criterion is applied to hydrodynamic turbulence it was shown that 
turbulence flows are more organized than laminar ones (Consolini and De Michelis 
2011). Consolini and De Michelis (2011) applied the S-theorem to measure the vari-
ation of the degree of self-organization in both Alfvénic and non-Alfvénic fluctua-
tions in a slow solar wind, which showed that the radial evolution of turbulent fluc-
tuations is accompanied by a decrease in the degree of order, suggesting that the 
solar wind turbulence decays with radial distance. Recent Parker Solar Probe data 
indicated that solar wind magnetic field fluctuations in the inertial range exhibit a 
clear transition near 0.4 AU, both in terms of spectral and multifractal properties. 
This breakdown of the scaling features has been interpreted as the evidence of a 
dynamical phase transition. Stumpo et al. (2021) applied the S-theorem to investi-
gate how solar wind undergoes self-organization through the inner heliosphere by 
characterizing the dynamical phase transition using entropic-based measures.

4.3  Earth’s bow shock

The scenario of erupting CME in solar corona sketched by Fig. 13b, consisting of 
CME shock-CME turbulent sheath-Leading edge of CME, is similar to another 
key region of the Sun–Earth system consisting of the Earth’s bow shock-Turbulent 
magnetosheath-Magnetopause (Foullon et  al. 2011), where vortices driven by the 
magnetic Kelvin–Helmholtz instability at the Earth’s dayside magnetopause can 
induce magnetic flux ropes and magnetic reconnections that mediate the solar wind-
magnetosphere coupling (Kieokaew et al. 2020). Hence, solar wind turbulence near 
the Earth’s bow shock plays a key role in the transport of solar wind plasma to the 
Earth’s magnetosphere and ionosphere.

4.3.1  Far and near upstream of the Earth’s bow shock

Chian and Miranda (2009) carried out a comparative study of the degree of inter-
mittency (multifractality) and amplitude–phase synchronization of solar wind tur-
bulence far and near upstream of the Earth’s bow shock. This analysis is based 
on the magnetic-field data measured simultaneously from 1 to 3 February 2002 
by ACE and Cluster-1, respectively, during the time interval between the cross-
ing of Cluster-1 departing from the quasi-perpendicular shock to the crossing of 
Cluster-1 entering into the quasi-parallel shock. Note that the magnetic recon-
nection exhaust event studied by Phan et al. (2006) and the triple interplanetary 
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magnetic flux rope event studied by Chian et  al. (2016) occur within this time 
interval. The computed scaling exponent �(p) in Fig. 23a shows that the degree 
of intermittency (multifractality) of the solar wind turbulence far upstream of 
the Earth’s bow shock measured by ACE at the Lagrangian point L1 is higher 
than near upstream of the Earth’s bow shock measured by B. This result is con-
firmed by kurtosis and phase coherence index in Fig.  23b, which demonstrates 
that the degree of amplitude–phase synchronization in multiscale interactions 
measured by ACE is higher than Cluster-1. During this time interval Cluster-1 
is located at the Earth’s foreshock where the solar wind ions reflected from the 
Earth’s bow shock can intensify the dissipation of interplanetary Alfvénic waves 
via ion-cyclotron damping and other kinetic effects (Howes et al. 2008), leading 
to a decrease of amplitude–phase synchronization in multi-scale interactions.

4.3.2  Upstream and downstream of the Earth’s bow shock

Koga et  al. (2007) performed a comparative study of the degree of intermittency 
(multifractality) and amplitude–phase synchronization of solar wind turbulence 
upstream and downstream of the Earth’s bow shock. This study is based on the mag-
netic-field data of Geotail from 18:00 UT 8 October to 04:00 UT 9 October 1995. 
In order to separate the data into upstream and downstream regions, the velocity and 
density data of Geotail are used in conjunction with the bow shock model of Fair-
field (1971). The computed scaling exponent �(p) in Fig. 24a shows that the degree 
of intermittency (multifractality) downstream of the Earth’s bow shock is higher 

Fig. 23  Amplitude-phase synchronization of intermittent turbulence: a comparison of L1 and the Earth’s 
foreshock. a Scaling exponent � of the pth-order structure function determined by ESS fitting for Clus-
ter-1 and ACE magnetic field fluctuations. The dashed line corresponds to Kolmogorov self-similar 
scaling. b Quantification of amplitude–phase synchronization by kurtosis and phase coherence index 
of |B| measured by Cluster-1 (red) and ACE (blue). Letters a, b, and c denote scales � = 10, 100 and 
1000 s, respectively. The bars denote the inertial subrange. The inverse of the ion cyclotron frequency 
fci ∼ 0.12Hz in the solar wind frame is � ∼ 8.3 s, which is near the peak regions of kurtosis and phase 
coherence index. [Reproduced from Chian and Miranda (2009)]
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than upstream of the Earth’s bow shock. This result is confirmed by kurtosis and 
phase coherence index in Fig.  24b, which demonstrates that the degree of ampli-
tude–phase synchronization in multiscale interactions downstream of the Earth’s 
bow shock is higher than upstream of the Earth’s bow shock. In addition, kurtosis 
and phase coherence index in Fig. 24b show that for large timescales the magnetic 
fluctuations are nearly Gaussian. For both upstream and downstream regions, the 
degree of amplitude–phase synchronization increases as the timescale decreases. 
This indicates the presence of coherent structures in the intermittent magnetic turbu-
lence at both upstream and downstream of the Earth’s bow shock.

Fig. 24  Amplitude-phase 
synchronization of intermit-
tent turbulence at the Earth’s 
bow shock: a comparison of 
upstream and downstream. 
a Scaling exponent � of the 
pth-order structure function 
obtained by Extended Self-Simi-
larity fitting for the upstream 
and downstream Geotail 
datasets. The dashed line cor-
responds to K41 q = q∕3 self-
similar scaling. The error of the 
least-squares fitting is marked 
by the bars. b Quantification of 
amplitude–phase synchroniza-
tion by kurtosis (top panel) and 
phase coherence index (bottom 
panel) for the upstream and 
downstream regions of the 
Earth’s bow shock. The arrows 
a, b, and c correspond to scales 
� = 1, 4, and 16 s, respectively. 
[Reproduced from Koga et al. 
(2007)]
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5  Discussion and conclusion

Space, astrophysical, and laboratory plasmas are governed by ubiquitous and uni-
versal stochastic and nonlinear dynamical processes. Many chaotic, complex, and 
intermittent turbulence phenomena observed in space plasmas are also observable 
in astrophysical and laboratory plasmas. For example, flares and coronal mass ejec-
tions have been detected in stars and the Galactic Center of Milky Way. There is a 
growing interest in stellar coronal mass ejections and flares due to their potential 
impact on stellar evolution and the exoplanet habitability. Flares in our nearest stel-
lar neighbour Proxima Centauri (Davenport and et al 2016) and superflares in solar-
type stars (Notsu et al. 2019) have been observed. Evidence of an eruptive filament 
from a superflare in a young solar-type star (Namekata et al. 2021) and coronal mass 
ejections through coronal dimming of a cool star (Veronig and et al 2021) have been 
reported. The nonlinear methods discussed in Sect. 4 for investigating space obser-
vations of magnetic reconnection and intermittent turbulence in coronal mass ejec-
tions in solar atmosphere, solar wind, and at the Earth’s bow shock, can be applied 
to study extra-solar coronal mass ejections and their impact on the exoplanets 
(Chian et al. 2010b). Very Large Array (VLA) centimeter-wavelength radio imag-
ing of Galactic Center in the region near the supermassive black hole Sagittarius A* 
(Sgr A*) identified a variety of filamentary and coherent structures (LaRosa et al. 
2000), e.g., thread, mouse, snake, and tornado, which indicates that the plasma envi-
ronment surrounding Sgr A* is in a turbulent state dominated by intermittent mag-
netic structures, likely related to coherent structures such as magnetic flux ropes and 
current sheets prevalent in space plasma turbulence discussed in Sect. 4. X-ray and 
infrared observations of Sgr A* display highly-variable intermittent behavior, with 
X-ray flares rising above a quiescent thermal background about once per day (Boyce 
et al. 2019). Atacama Large Millimeter/submillimeter Array (ALMA) observations 
of light curve of Galactic Center in 2019 June, when Sgr A* underwent strong flar-
ing activity in the near-infrared brightening by up to a factor of 100 compared to 
quiescent values, suggest that the brightest near-infrared flares of Sgr A* are likely 
caused by magnetic reconnection (Murchikova and Witzel 2021). General-relativ-
istic MHD simulations (Ripperda et  al. 2022) confirmed that plasmoid-mediated 
magnetic reconnection can power flares originating from the inner magnetosphere of 
accreting black holes; magnetic reconnection near the event horizon produces suffi-
ciently energetic plasma to explain flares from accreting black holes such as the TeV 
emission observed from M87, the giant elliptical galaxy whose nucleus contains the 
first supermassive black hole ever directly imaged.

Jets and current sheets have been observed in the region of magnetic reconnec-
tion in laser-produced plasma experiments using the OMEGA facility (Rosenberg 
et al. 2015). Spiky electric and magnetic fields resulting from magnetic reconnection 
of multiple magnetic flux ropes were seen in the experiments performed in the large 
plasma device (LAPD); a Jensen–Shannon complexity–entropy analysis discussed 
in Sect. 4.2.3 shows that the spiky nonlinear structures are chaotic (Gekelman et al. 
2019). Choi et al. (2021) investigated the effects of edge plasma turbulence on the 
nonlinear evolution of magnetic island in the Korea Superconducting Tokamak 
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Advanced Research (KSTAR) experiment. The uncontrolled magnetic island is a 
serious problem in tokamak devices since it often leads to plasma disruption. The 
turbulence and shear flow developed around a magnetic island produce complex 
transport behaviour at the boundary layers of the magnetic island. Moreover, turbu-
lence spreading into the magnetic island can enhance the turbulence level at mag-
netic reconnection site which can either retard or facilitate magnetic reconnection. 
The observations of Choi et al. (2021) render support for the theoretical model of 
Alfvén Hamiltonian chaos (Hada et al. 1990) depicted in Fig. 3, which shows that 
the onset of chaos (turbulence) appears at the magnetic soliton separatrices (cor-
responding to the magnetic island boundary layers). In particular, it elucidates the 
symbiotic relationship between magnetic reconnection and intermittent turbulence 
at the boundary layers of a magnetic flux rope (e.g., CME) and the interface region 
of multiple magnetic flux ropes (CME–CME merger) discussed in Sect. 4. This con-
firms the ubiquitousness of turbulent magnetic reconnection (Lazarian et al. 2020) 
that plays a key role in energizing space, astrophysical, and laboratory plasmas.

In addition to the laboratory experiment on magnetic reconnection reported by 
Gekelman et al. (2019), a number of other plasma laboratory experiments have also 
obtained evidence of chaos based on the Jensen–Shannon complexity–entropy anal-
ysis discussed in Sect. 4.2.3. Maggs and Morales (2013) performed a basic experi-
ment on electron heat transport in a magnetized afterglow plasma which established 
the chaotic nature of the underlying dynamics that causes anomalous transport. 
Maggs et  al. (2015) showed that plasma density fluctuations in low confinement 
(L-mode) plasmas in the DIII-D tokamak are chaotic. In an experiment on inter-
mittent magnetic turbulence in Swarthmore Spheromak that exhibits a 5/3 scaling, 
Schaffner et al. (2016) found that the dissipation mechanism in plasma is chaotic. In 
the turbulent plasma of a reversed-field pinch RELAX, Onchi et al. (2017) showed 
that the complexity–entropy of soft-X ray and UV emissions and magnetic fluctua-
tions depends on the conditions of plasma confinement; in the high-density regime 
it is close to the stochastic region, whereas in the low-density regime it approaches 
the chaotic region. Time series analysis by Zhu et al. (2017) of the Alcator C-Mod 
tokamak revealed that the turbulent edge density fluctuations are chaotic which is 
supported by observation of exponential power spectra associated with Lorentzian-
shaped pulses in the time series. The aforementioned papers show that the chaos 
theory discussed in Sect. 3 can be applied to interpret chaotic phenomena observed 
in laboratory plasmas.

In contrast to the observation of chaos in laboratory plasma turbulence, several 
studies have concluded that fluctuations in space plasma turbulence are stochastic 
in nature as shown in the complexity–entropy analysis by Miranda et al. (2021) of 
magnetic fluctuations in interplanetary rope–rope magnetic reconnection discussed 
in Sect. 4.2.3. Weck et al. (2015) and Olivier et al. (2019) showed that solar wind 
magnetic fluctuations for both fast and slow streams measured by Wind and ACE 
at 1 AU are stochastic with complexity–entropy values close to pure white noise 
and more random than even classical Brownian motion; the fast solar stream sig-
nal exhibits slightly more entropy and less complexity than the slow solar stream 
signal. The complexity–entropy study by Osmane et al. (2019) showed that the AL 
geomagnetic auroral index, that provides an estimate of the maximum westward 
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auroral electrojet intensity, is indistinguishable from stochastic processes from time 
scales ranging from a few minutes to 10  h. A comprehensive statistical analysis 
of solar wind magnetic structures by Weygand and Kivelson (2019) that includes 
interplanetary coronal mass ejections, co-rotating interaction regions, and turbulent 
magnetic fluctuation intervals found that the turbulent intervals observed by Helios, 
Wind, and Ulysses lie within the stochastic region of the complexity–entropy maps 
and that their complexity decreases while their normalized entropy increases with 
distance from the Sun. Good et  al. (2020) performed a complexity–entropy anal-
ysis of the magnetic field time series in shock-sheath and upstream solar wind of 
an ICME event at MESSENGER at 0.47  AU and subsequently by STEREO-B at 
1.08 AU while the two spacecraft were radially aligned. Their results show a trend 
of reducing complexity with radial distance, and an increased complexity in the 
shock-sheath intervals relative to the upstream solar wind, thus confirming the frac-
tal dimension analysis of Muñoz et al. (2018) which indicates that the shock-sheaths 
in two ICME events are more complex than upstream solar wind and the magnetic 
flux rope of ICME driver, and is in agreement with the study of the Earth’s bow 
shock by Koga et al. (2007) discussed in Sect. 4.3.2 which shows that the degree of 
amplitude–phase synchronization and multifractality downstream (magnetosheath) 
is higher than upstream. This finding is also consistent with an increased complex-
ity in the stream interaction regions relative to the unperturbed solar wind found by 
Weygand and Kivelson (2019). A greater complexity in ICME shock-sheaths com-
pared to the upstream solar wind is in-line with our understanding of shock-sheath 
plasmas being dominated by a large number of coherent magnetic structures such as 
small-scale current sheets and magnetic flux ropes. Note that space plasma turbu-
lence can behave as a dynamical system that is very sensitive to small variations of 
system parameters such as noise, hence the noise-induced intermittency discussed 
in Sect. 3.1.4 can readily appear in space plasmas even for a low level of noise. It is 
plausible that the fluctuations of space plasma turbulence are a combination of sto-
chastic and chaotic dynamics.

The dynamical systems approach to turbulence, such as chaotic saddles and 
Lagrangian coherent structures, provides powerful tools to unravel the complex 
dynamics of fluids and plasmas (Bohr et  al. 1998; Chian et  al. 2003; Lai and Tél 
2011; Haller 2015). Unstable and stable manifolds, discussed in Sect. 3, of fluid and 
plasma particles constitute distinguished material lines or surfaces that act as trans-
port barriers in turbulence. These distinguished lines are the hyperbolic Lagrangian 
coherent structures that attract or repel the neighbouring material, both retarding 
and facilitating transport fluxes through chaotic mixing (Haller 2015). Hence, they 
are responsible for organizing and mediating the transport and interaction of mat-
ter and energy in turbulent fluid and plasma flows. In particular, the attracting and 
repelling hyperbolic Lagrangian coherent structures act as transport barriers that 
enable the formation of the elliptic Lagrangian coherent structures (e.g., vortices, 
magnetic islands, magnetic flux ropes). da Silva et  al. (2002) showed that chaotic 
saddles can account for the appearance of chaos at ergodic magnetic limiters in the 
plasma-wall interaction region of tokamaks, which creates channels for fast escape 
of chaotic magnetic field lines. Padberg et  al. (2007) demonstrated that the heter-
oclinic tangles formed by the intersections of attracting and repelling Lagrangian 
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coherent structures may explain the turbulent transport in magnetized fusion plas-
mas. Pegoraro et al. (2019) discussed the application of Lagrangian coherent struc-
tures in the evolution of magnetic reconnection and showed that in the linear phase 
two independent magnetic island chains are formed at their resonant surfaces; as the 
reconnection instability grows the dynamics of the magnetic configuration becomes 
nonlinear, leading to the expansion of these chains; when the magnetic islands start 
to interact the regions where magnetic field lines are chaotic spread, similar to the 
Alfvén Hamiltonian chaos scenario illustrated in Fig.  3 and the KSTAR observa-
tion of Choi et  al. (2021). Di  Giannatale et  al. (2021) confirmed that Lagrangian 
coherent structures are useful for identifying the hidden paths governing the chaotic 
motion of magnetic field lines and predicting the location of temperature gradients 
in reversed field pinch experiments; inside the chaotic region, the motion of mag-
netic field lines is far from stochastic.

Démoulin et al. (1996) showed that quasi-separatrix layers, related to stable man-
ifolds (for finite-time) discussed in Sect. 3, are thin layers of magnetic reconnection 
sites where the gradient of the mapping of magnetic field lines from one part of a 
boundary to another is very large; the relative thickness of the quasi-separatrix layers 
depends on the maximum twist of the magnetic flux tubes; the shape of the quasi-
separatrix layers is typical of the two ribbons observed in two-ribbon solar flares, 
confirming that the accompanying prominence eruption involves the reconnection 
of twisted magnetic structures. Rempel et al. (2011, 2017) showed that the dynamo 
turbulence in an MHD simulation is dominated by chaotic entanglement of attract-
ing and repelling hyperbolic Lagrangian coherent structures, detected by comput-
ing the backward and forward finite-time Lyapunov exponent, respectively; elliptical 
Lagrangian coherent structures (i.e., vortices), detected by the technique of Lagran-
gian averaged vorticity deviation (Rempel et  al. 2017), are surrounded by separa-
trices given with the intersections of attracting and repelling Lagrangian coherent 
structures. Yeates et al. (2012) showed how the build-up of magnetic gradients in 
the solar corona may be inferred directly from a 12 h Hinode dataset of the horizon-
tal photospheric velocity in a plage region of AR 10930, by computing the repelling 
Lagrangian coherent structure which corresponds to a network of quasi-separatrix 
layers in the magnetic field. Chian et al. (2014) established the correspondence of 
the network of high magnetic flux concentration to the attracting Lagrangian coher-
ent structures in the photospheric velocity based on the same Hinode dataset used by 
Yeates et al. (2012) and numerical simulations. Silva et al. (2018) showed that the 
technique of Lagrangian averaged vorticity deviation (Rempel et al. 2017) can detect 
vortices accurately in a 15  min time interval of Hinode images of the quiet-Sun 
photosphere. Chian et al. (2019) used a 7 h Hinode dataset of the quiet-Sun photo-
sphere to show that the Lagrangian centers and boundaries of solar supergranular 
cells are given by the local maximum of the forward and backward finite-time Lya-
punov exponent, respectively. The attracting Lagrangian coherent structures expose 
the location of the sinks of photospheric flows at supergranular junctions, whereas 
the repelling Lagrangian coherent structures interconnect the Lagrangian centers of 
neighbouring supergranular cells. Lagrangian transport barriers are found within a 
supergranular cell and from one magnetoconvective cell to other cells, which play 
a key role in the dynamics of internetwork and network magnetic elements. Such 
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barriers favour the formation of persistent (recurrent) vortices in the complex mixed-
polarity regions of supergranular junctions, at the footpoints of magnetic flux tubes/
ropes that can lead to flares and coronal mass ejections via magnetic reconnection 
(Attie et  al. 2016; Chian et  al. 2020). The magnetic field distribution in the quiet 
Sun is determined by the combined action of attracting and repelling Lagrangian 
coherent structures and vortices. Chian et al. (2020) used a 22 h Hinode dataset of 
the quiet-Sun photosphere to report observational evidence of Lagrangian chaotic 
saddles in plasmas. A set of 29 persistent objective vortices with lifetimes varying 
from 28.5 to 298.3 min are detected by computing the Lagrangian averaged vorticity 
deviation. The unstable manifold of the Lagrangian chaotic saddles computed for 
≈ 11 h exhibits twisted folding motions indicative of recurring vortices in a complex 
magnetic mixed-polarity region. In particular, it was shown that the persistent objec-
tive vortices are formed in the gap regions of Lagrangian chaotic saddles at super-
granular junctions.

In conclusion, space plasmas provide a natural laboratory for understanding 
the fundamental characteristics of chaos, complexity, and intermittent turbulence 
in nature. In this paper, we have shown in Sect. 3 that the theory of deterministic 
and stochastic temporal chaos is capable of describing the origin and evolution of 
type-I Pomeau–Manneville intermittency and crisis-induced intermittency as well 
as noise-induced intermittency, respectively. In particular, chaotic saddles (Fig. 7) 
play an important role in nonlinear dynamical processes that give rise to stochas-
tic chaotic fluctuations in plasmas, resulting from the complexity related to multi-
stability and multi-attractor hopping in the presence of noise. Moreover, we have 
shown in Sect.  4 that intermittent turbulence is ubiquitous in space plasmas, e.g., 
interplanetary coronal mass ejection, interplanetary rope–rope magnetic reconnec-
tion, and upstream and downstream of the Earth’s bow shock. We showed that the 
relation between chaos, complexity, and intermittent turbulence can be elucidated 
by applying the Jensen–Shannon complexity–entropy analysis to spacecraft data of 
magnetic-field fluctuations associated with magnetic reconnection exhausts in the 
interplanetary intermittent turbulence. Our results demonstrated that the nonlinear 
dynamics of these Alfvénic fluctuations observed in the solar wind are located in the 
stochastic chaotic regime in the complexity–entropy plane given by Fig. 22, which 
can be explained by the theoretical model of Alfvén noise-induced intermittency 
(Fig. 8) discussed in Sect. 3.1.4. Future studies of chaos, complexity, and intermit-
tent turbulence in space plasmas can be improved by extending the temporal dynam-
ical systems approach to the spatiotemporal dynamical systems approach (Chian 
et al. 2010a, 2013, 2020), and making use of other powerful nonlinear dynamical 
tools such as the rank-order multifractal analysis (ROMA) (Chang and Wu 2008; 
Chang 2015; Echim et al. 2021) and the S-theorem (Klimontovich 1995; Consolini 
and De Michelis 2014; Stumpo et al. 2021). Knowledge on the formation and evolu-
tion of coherent structures such as soliton, vortex, magnetic island, magnetic flux 
rope, current sheet, and their interaction with turbulence via magnetic reconnection 
or merger of magnetic flux tubes in space plasmas can help us to probe similar sto-
chastic nonlinear dynamical processes in astrophysical and laboratory plasmas.
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