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Abstract
The transverse shear Alfvén wave (SAW) is a fundamental anisotropic electromag-
netic oscillation in plasmas with a finite background magnetic field. In realistic plas-
mas with spatial inhomogeneities, SAW exhibits the interesting spectral feature of 
a continuous spectrum. That is, the SAW oscillation frequency varies in the non-
uniform (radial) direction. This continuum spectral feature then naturally leads to 
the phase-mixing process; i.e., time asymptotically, the effective radial wave-number 
increases with time. Any initial perturbation of SAW structures will, thus, evolve 
eventually into short-wavelength structures; termed as kinetic Alfvén wave (KAW). 
Obviously, one needs to employ kinetic theory approach to properly describe the 
dynamics of KAW; including effects such as finite ion-Larmor radius (FILR) and/or 
wave–particle interactions. When KAW was first discovered and discussed in 1975–
1976, it was before the introduction of the linear electromagnetic gyrokinetic theory 
(1978) and nonlinear electromagnetic gyrokinetic theory (1982). Kinetic treatments 
then often involved the complicated procedures of taking the low-frequency limit of 
the Vlasov kinetic theory and/or employing the drift-kinetic theory approach; for-
saking, thus, the FILR effects. In recent years, the powerful nonlinear gyrokinetic 
theory has been employed to re-examine both the linear and nonlinear physics of 
KAWs. This brief review will cover results of linear and nonlinear analytical theo-
ries, simulations, as well as observational evidences. We emphasize, in particular, 
that due to the enhanced electron–ion de-coupling in the short-wavelength regime, 
KAWs possess significantly enhanced nonlinear coupling coefficients and, thereby, 
play important roles in the heating, acceleration, and transport processes of charged 
particles in magnetized plasmas.
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1 Introduction

In 1942 (Alfvén 1942), Hannes Alfvén discovered that if a perfectly conducting 
medium (e.g., a fully ionized gas; i.e., a plasma) is immersed in a finite background 
magnetic field B0 ; electromagnetic waves can then propagate within it. The reason is 
that, while the free electron mobility remains extremely large along B0 , its mobility 
perpendicular to B0 is inhibited. That is, a magnetized plasma is an anisotropic con-
ducting medium with an extremely large parallel (to B0 ) and finite perpendicular (to 
B0 ) conductivities. Thus, correspondingly, these propagating electromagnetic waves, 
called Alfvén waves, have nearly vanishing parallel (to B0 ) and finite perpendicular 
(to B0 ) electric fields.

There are two types of Alfvén waves; the compressional (fast) and shear Alfvén 
waves (Jackson 1998). The compressional Alfvén wave (CAW) compresses the 
magnetic field as well as plasma and its group velocity propagates almost isotropi-
cally. The shear Alfvén wave (SAW), meanwhile, is nearly incompressible and, thus, 
more readily excitable by either external perturbations (e.g., solar wind, antenna) or 
intrinsic collective instabilities (Chen and Zonca 2016). This brief review is focused 
on the SAW or, more specifically, its kinetic extension; i.e., the kinetic Alfvén wave 
(KAW).

In a uniform plasma immersed in a uniform background magnetic field, B0 = B0ẑ , 
and adopting the ideal magnetohydrodynamic (MHD) fluid description, it is well 
known that the SAW satisfies the following linear dispersion relation:

Here, � and k = k
⟂
+ k∥b0 are, respectively, the wave angular frequency and wave-

vector, b0 = B0∕B0 , k⟂ is the perpendicular (to B0 ) component of k , k∥ = k ⋅ b0 , 
vA = B0∕(4��m)

1∕2 is the Alfvén speed with �m ≃ n0mi being the mass density, and 
mi ≫ me . The corresponding wave polarization is:

with �E
⟂
 and �B

⟂
 denoting, respectively, the fluctuating components of electric 

and magnetic field perpendicular to B0 . Equation (1) indicates that SAW is an ani-
sotropic electromagnetic wave; i.e., while its phase velocity can propagate in any 
direction, its group velocity, vg = vAb0 , propagates only along B0 . This property, 
of course, has the direct bearing on the feature of Alfvén wave resonant absorp-
tion (Gajevski and Winterberg 1965; Pridmore-Brown 1966; Grad 1969; Chen and 
Hasegawa 1974a, b).

In a non-uniform plasma, SAW attains the interesting property of a continuous 
spectrum. To illustrate this feature, let us consider the simplified slab model of a cold 
plasma with a non-uniform density, �m = �m(x) , and a uniform B0 = B0ẑ . Assum-
ing at t = 0 a localized initial perturbation 𝛿By(x, t = 0) = 𝛿B̂y(x, 0) = exp(−x2∕𝛥2

x
) , 

|ky𝛥x| ≪ 1 , and ��By∕�t = 0 , the perturbation then evolves according to the follow-
ing wave equation:

(1)�2 = k2
∥
v2
A
.

(2)
||||
c�E

⟂

�B
⟂

|||| = vA,
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Here, �2
A
(x) = k2

z
v2
A
(x) and the solution is:

Equation (4) shows that every point in x oscillates at a different frequency, �A(x) . 
With a continuously varying �A(x) ; the wave frequency, thus, constitutes a continuous 
spectrum. While the above result is based on a model with a one-dimensional non-
uniformity in x, this general feature of SAW continuous spectrum also holds in mag-
netized plasmas with two- or three-dimensional non-uniformities (Grad 1969; Chen 
and Cowley 1989; Schulze-Berge et al. 1991; Chen and Zonca 2016). A good example 
is geomagnetic pulsations in the Earth’s magnetosphere. Figure 1 shows the oscilla-
tions in the Earths’ magnetic field as observed by the satellite AMPTE CCE (Engebret-
son 2011; Engebretson et al. 1987), illustrating the three-component dynamic power 

(3)
[
�2
t
+ �2

A
(x)

]
�By(x, t) = 0.

(4)𝛿By(x, t) = 𝛿B̂y(x, 0) cos
[
𝜔A(x)t

]
.

Fig. 1  Three-component dynamic power spectrum of magnetic field data from AMPTE CCE satellite 
[From original figure in Ref. Engebretson (2011), Engebretson et al. (1987)]. The geomagnetic BR , radi-
ally outward from the center of the Earth; BE , magnetically Eastward; and BN , approximately along local 
magnetic field lines correspond to, respectively, �Bx, �By, and �Bz . L, MLT, and MLAT correspond, 
respectively, to the equatorial distance of the magnetic field line (in unit of the Earth radius), magnetic 
local time, and magnetic latitude
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spectrum of magnetic field data from a full orbit from 02:30 to 17:30 UT March 6, 
1987. Apogee is at the center of the figure. As the satellite moved outward from the 
morning side, �A should decrease due to the decreasing |B0| and |k∥| (increasing field-
line length), and this was clearly exhibited in the wave frequency of BE , the azimuthal 
(East–West) component of �B (i.e., the effective �By ). BE also shows that the wave fre-
quency increases as the satellite moved inward toward the dusk side; consistent, again, 
with �A . Furthermore, the observed wave frequency consisted of several bands, which 
could be understood as harmonics of standing waves along the field line; i.e., different 
|k∥|.

�By(x, t) given by Eq. (4) also indicates an unique and important property of SAW 
continuous spectrum; i.e., the spatial structure evolves with time. Specifically, the 
wave-number in the non-uniformity direction is, time asymptotically, given by:

That |kx| increases with t is significant, since it implies that any initially long-scale 
perturbations will evolve into short scales. This point is illustrated in Fig. 2; showing 
the evolution of a smooth �By at t = 0 to a spatially fast varying �By at a later t (Qiu 
2010; Qiu et al. 2011).

Another consequence of |kx| increasing with t is the temporal decay of �Bx . From 
� ⋅ �B ≃ �

⟂
⋅ �B

⟂
= 0 , we can readily derive that, for |𝜔′

A
t| ≫ |ky|:

That is, �Bx decays temporally due to the phase mixing of increasingly more rap-
idly varying neighboring perturbations. This property also explains why, in Fig. 1, 
the radial component of �B , BR , is much weaker than BE . We remark that, while 

(5)
|kx| =|||� ln �By∕�x

|||
≃|d�A(x)∕dx|t ≡ |��

A
|t.

(6)𝛿Bx(x, t) ≃
ky

𝜔�
A
(x)t

𝛿B̂y(x, 0)e
−i𝜔A(x)t

[
1 +O

(
ky

|𝜔�
A
t|
)
+⋯

]
.

Fig. 2  Snapshots of �By(x, t) spatial structure vs. x at different times, illustrating the formation of shorter 
scales at later times [from original figure in Refs. Qiu (2010), Qiu et al. (2011)]
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we focus in this paper on the formation of SAW continuous spectrum due to non-
uniform �A , similar effects can be expected due to flow shear, which often exists in 
laboratory and astrophysical plasmas (Kim 2007; Maiorano et al. 2020).

Noting that, as t → ∞ , |kx| → ∞ , it, thus, suggests that the perturbation will 
develop singular structures toward the steady state. Indeed, taking �t = −i� , the 
SAW governing wave equation for the cold-plasma becomes (Chen and Hasegawa 
1974a, b):

�Bx , thus, exhibits a logarithmic singularity at the Alfvén resonant point (layer), x0 , 
where �2 = �2

A
(x0) along with a finite resonant wave-energy absorption rate. Note 

that at the isolated extrema of the SAW continuum, |��
A
| = 0 , phase mixing van-

ishes; consequently, perturbation remains regular and experiences no damping via 
resonant absorption. This feature has important implications to Alfvén instabilities 
in laboratory plasmas (Chen and Zonca 2016).

That the solution exhibits singularities naturally suggests that the microscopic 
length-scale physics neglected in the ideal MHD fluid description should be 
included in the long-time-scale dynamics of SAWs. For low-frequency SAWs, 
one can readily recognize the relevant perpendicular (to B0 ) microscopic scales 
are either the ion-Larmor radius, �i = vti∕�i with vti and �i being, respectively, 
the ion thermal speed and ion cyclotron frequency, and/or �s = cS∕�i with 
c2
S
= Te∕mi and Te being the electron temperature. Including the effects of finite �i 

and/or �s in the SAW dynamics then led to the discovery of the so-called kinetic 
Alfvén wave (KAW) (Hasegawa and Chen 1975, 1976).

The pioneering discovery of KAW was carried out before the introduction of 
linear electromagnetic gyrokinetic theory (Catto 1978; Antonsen and Lane 1980) 
and, later, nonlinear electromagnetic gyrokinetic theory (Frieman and Chen 
1982). The analyses employed, therefore, involved taking the low-frequency 
( |𝜔| ≪ |𝛺i| ) limit of the Vlasov dynamics. This makes theoretical analysis of 
KAW dynamics in non-uniform plasmas with realistic B0(x) intractable; espe-
cially when dealing with the nonlinear physics. Indeed, previous nonlinear anal-
yses adopted either the drift-kinetic or the two-fluid description (Mikhailovskii 
et al. 2007; Onishchenko et al. 2004a, b; Pokhotelov et al. 2003, 2004; Zhao et al. 
2011). As our later discussions will show, such approximations not only are inad-
equate for treating realistic plasma regimes; but also often leave out important 
physics. The above discussions have, thus, motivated us (Chen and Zonca 2011, 
2013; Zonca et al. 2015) to re-visit and explore further the KAW physics employ-
ing the powerful gyrokinetic theories.

Section 2 presents a brief review of the linear gyrokinetic theory (cf. Sect. 2.1) 
and its applications to KAW (cf. Sects. 2.2 and 2.3 ) along with KAW observa-
tions by satellites (cf. Sect. 2.4). The nonlinear gyrokinetic theory is then briefly 
reviewed in Sect. 3.1. It is then applied to examine the physics of the three-wave 
parametric decay instabilities, the modulational instabilities associated with the 
spontaneous generation of convective cells, and the quasi-linear phase-space 

(7)
{

d

dx

[
�2 − �2

A
(x)

] d
dx

− k2
y

[
�2 − �2

A
(x)

]}
�Bx(x) = 0.
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transport induced by KAW (cf. Sects. 3.2, 3.3 and 3.4 ). Results from correspond-
ing numerical simulations are also presented. Final conclusions and discussions 
are given in Sect. 4.

2  Linear KAW physics

Here, we first introduce the foundation of the linear gyrokinetic formalism in 
Sect. 2.1. Linear KAW properties are then derived in Sect. 2.2 for uniform plasmas. 
Section 2.3 contains brief discussions of KAW in non-uniform plasmas; including 
the resonant mode conversion process. Observational evidences of KAWs by satel-
lites are presented in Sect. 2.4.

2.1  Linear gyrokinetic theory

In magnetically confined plasmas, there exists a natural smallness parameter, 
� = �∕a with � and a being, respectively, the charged particle’s Larmor radius and 
the macroscopic system scale length. Typically, we have 𝜖 ≲ O(10−2) ≪ 1 . Since 
low-frequency but short-wavelength fluctuations are of interest here, one, thus, 
adopts the following linear gyrokinetic orderings (Catto 1978; Antonsen and Lane 
1980; Frieman and Chen 1982; Sugama 2000; Brizard and Hahm 2007; Sugama 
2017):

and to include Landau resonance:

Noting, furthermore, for ||k⟂�i|| ∼ O(1) and 𝛽i ≲ O(1) , with �i = 8�P0i∕B
2
0
 the ratio 

of plasma ion pressure to the background magnetic field energy density:

compressional Alfvén (fast) waves are systematically suppressed in the gyrokinetic 
orderings.

In the next step, linear gyrokinetic theories perform the following coordinate 
transformation from the charged particle’s phase space (x, v) to the corresponding 
guiding-center phase space (X,V) , where:

(8)
||||
�

�i

|||| ∼ O(�), ||k⟂�i|| ∼ O(1),

(9)k∥v∥ ∼ �, or
|||||
k∥

k
⟂

|||||
∼
||||
�

�i

|||| ∼ O(�).

(10)
||||

𝜔

k
⟂
vA

|||| ∼
||||
𝜔

𝛺i

||||
||||

1

k
⟂
𝜌i

||||𝛽
1∕2

i
≲ O(𝜖),

(11)X =X
⟂
+ X∥b0, X

⟂
= x

⟂
+ �, � = v × b0∕�c,

(12)V =
[
E = v2∕2,� = v2

⟂
∕2B0, � = sgn(v∥)

]
.
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Here, b0 = B0∕B0 , � is the gyroradius vector, v∥ = v ⋅ b0 , � is the magnetic moment 
adiabatic invariant ( � = v2

⟂
∕2B0 at the leading order) and, assuming there is no equi-

librium electrostatic potential, E is an equilibrium constant of motion.
In the guiding-center phase space, charged particle dynamics is naturally sepa-

rated into the fast cyclotron motion and the slow guiding-center motion. One can 
then apply the gyrokinetic orderings and systematically average out the fast cyclo-
tron motion (i.e., the gyrophase averaging) and obtain the asymptotically dominant 
(in terms of the smallness parameter � ) perturbed distribution function response. 
This perturbed distribution function in the guiding-center phase space can then be 
inversely transformed back to the charged particle phase space and applied toward 
the field equations (i.e., Maxwell’s equations) for a self-consistent kinetic descrip-
tion (Catto 1978; Antonsen and Lane 1980).

For the purpose of the present review, we shall limit our considerations to that 
of a simple uniform plasma with an isotropic Maxwellian equilibrium distribution 
function. Readers interested in the detailed analyses and/or broader applications may 
consult References (Antonsen and Lane 1980; Chen and Hasegawa 1991). Assum-
ing, furthermore, � (ratio between the plasma and magnetic pressures) ≪ 1 , such 
that there is negligible magnetic compression, the particle velocity distribution is 
then given by:

where FM(E) = n0∕(�
3∕2v3

t
) exp(−E∕v2

t
) is the Maxwellian distribution function, vt is 

the thermal speed:

T = mv2
t
∕2 , �g satisfies the following linear gyrokinetic equation:

and ⟨…⟩� denotes averaging over the gyrophase angle, � . Here, the field vari-
ables are the scalar and vector potentials, �� and �A , with �A∥ = �A ⋅ b0 and the 
� ⋅ �A = 0 Coulomb gauge. The operator e�⋅� , meanwhile, represents the transfor-
mation between the particle and guiding center positions.

The corresponding field equations are the Poisson’s equation and the parallel 
Ampère’s law, ∇2�A∥ = −4��J∥∕c . In the low-frequency and |k𝜆D|2 ≪ 1 limit with �D 
being the Debye length, Poisson’s equation can be approximated as the quasi-neutral-
ity condition; 

∑
j n0jqj

�
�fj

�
v
≃ 0 . Here, ⟨…⟩v = ∫ d3v(…) is the velocity-space inte-

gral, and subscript j runs over the particle species. Meanwhile, substituting the paral-
lel Ampère’s law into the � ⋅ �J ≃ 0 quasi-neutrality condition as derived by Eq. (15) 

(13)f (x, v, t) = FM(E) + �f (x, v, t),

(14)�f =
q

T
FM(E)�� + e−�⋅��g ,

(15)
(
�

�t
+ v∥b0 ⋅ �

)
�g =

q

T
FM(E)

�

�t

⟨
�Lg

⟩
�
,

(16)�Lg =e
�⋅��L ,

(17)�L =�� − v∥�A∥∕c,
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yields a generalized linear gyrokinetic vorticity equation, which is often convenient to 
use in studying SAW/KAW dynamics (Chen and Hasegawa 1991; Chen and Zonca 
2011, 2016; Zonca et al. 2015).

2.2  Linear KAW properties

For plane-wave (�, k) perturbations, Eq. (15) gives:

Note, here, that J0 is the Bessel function and J0(k⟂�) corresponds to the gyro-averag-
ing of the coordinate transformation, that is:

In SAW/KAW analyses, it is sometimes convenient to introduce an effective induced 
parallel potential defined by b0 ⋅ ��� = −�t�A∥∕c or:

�� , thus, gives rise to the induced parallel electric field; that is, the net parallel elec-
tric field is given by:

The quasi-neutrality condition then straightforwardly yields: (Chen and Hasegawa 
1991)

Here, �kj = �∕|k∥|vtj , Zkj = Z(�kj) with Z being the well-known plasma dispersion 
function, and �0kj = I0(bkj) exp(−bkj) with I0 the modified Bessel function and 
bkj = k2

⟂
�2
j
∕2 = k2

⟂
(Tj∕mj)∕�

2
j
 . The linear gyrokinetic vorticity equation, mean-

while, is given by: Chen and Hasegawa (1991)

Noting that, for KAW, |k
⟂
�i| ∼ O(1) and |k

⟂
𝜌e| ≪ 1 and, thus, �0ke ≃ 1 , Eqs. (22) 

and (23) then become:

(18)�gk = −
q

T
FMJ0(k⟂�)

�

k∥v∥ − �

(
�� −

v∥

c
�A∥

)

k

.

(19)⟨exp (−� ⋅ �)⟩� = J0(k⟂�).

(20)��k = ��A∥k∕(ck∥).

(21)
�E∥ = − b0 ⋅ �(�� − ��); or

�E∥k = − ik∥(�� − ��)k.

(22)
∑
j

(
n0q

2

T0

)

j

{
��k + �0kj

[
�kjZkj��k − (1 + �kjZkj)��k

]}
= 0.

(23)i
c2

4��
k2
∥
k2
⟂
��k − i

∑
j

(
n0q

2

T0

)

j

(1 − �0kj)���k = 0.

(24)
�sk��k =

[
1 + �keZke + �

(
1 + �k�kiZki

)]
��k

=
[
1 + �keZke + ��k

(
1 + �kiZki

)]
��k,
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and

Here, � = T0e∕T0i , bk = bki , �k = �0ki , and �sk is the dielectric constant for the slow-
sound (ion-acoustic) wave (SSW).

It is also instructive, as done in some literatures, to define the effective parallel 
potential, ��∥k = ��k − ��k , and rewrite Eqs. (24) and (25) as:

and

Equations (26) and (27) demonstrate the coupling between SAW and SSW via the 
finite |k

⟂
�s| term. In the |k

⟂
�i| ∼ O(1) short-wavelength limit, SAW evolves into 

KAW due to both the finite |k
⟂
�i| and |k

⟂
�s| effects. More specifically, the coupled 

KAW–SSW dispersion relation becomes:

Let us concentrate on the KAW branch and, to further simplify the anal-
ysis, assume 1 ≫ 𝛽i ∼ 𝛽e ≫ me∕mi . With |�| ∼ |k∥vA| , we then have 
|𝜉ki| = |𝜔∕k∥vti| ∼ 𝛽

−1∕2

i
≫ 1 ≫ |𝜉ke| ∼ (me∕mi𝛽e)

1∕2 , and, keeping only the lowest 
order O(1) terms:

From Eq. (28), we then have:

A sketch of (�kr∕k∥vA)
2 versus b1∕2

k
 for different � values is given in Fig. (3).

As to wave polarizations, which are useful for wave identification in observa-
tions, we can readily derive:

and

(25)�2��k = k2
∥
v2
A

bk

1 − �k

��k.

(26)�sk��∥k = −�
(
1 − �k

)
��k,

(27)
[
�2 − k2

∥
v2
A

bk

1 − �k

]
��k = −�2��∥k.

(28)�2
k

[
1 −

�
(
1 − �k

)
�sk

]
= k2

∥
v2
A

bk

1 − �k

.

(29)�sk ≃ 1 + �
(
1 − �k

) ≡ �k.

(30)�2
kr
≃ k2

∥
v2
A

�kbk

1 − �k

.

(31)
||||
c�E

⟂

�B
⟂

|||| = vA

[
bk

�k
(
1 − �k

)
]1∕2

,
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Sketches of |c�E
⟂
∕vA�B⟂

| and |c�E∥k⟂∕vA�B⟂
k∥�| are given in, respectively, Figs. 4 

and 5.
Equation (32) and Fig. 5 show that, for a fixed |k∥∕k⟂| , |�E∥∕�B⟂

| increases with bk . 
Since wave–particle energy and momentum exchanges are proportional to |�E∥| , short-
wavelength KAW are, thus, expected to play crucial roles in the heating, acceleration, 
and transport of charged particles.

In addition to having a significant �E∥ , another important property of KAW, in con-
trast to SAW, is that KAW has a finite perpendicular (to B0 ) group velocity, vg⟂ . 
Assuming |k

⟂
𝜌i|2 ≪ 1 , we have, letting �2

A
≡ k2

∥
v2
A
:

where

Thus:

(32)
|||||
c�E∥

�B
⟂

|||||
= vA

|||||
k∥

k
⟂

|||||
�

[
bk
(
1 − �k

)
�k

]1∕2

.

(33)𝜔2
k
≃ 𝜔2

A

(
1 + k2

⟂
�̂�2
)
,

(34)�̂�2 = (3∕4 + 𝜏)𝜌2
i
.

(35)vg⟂ ≃
𝜔2
A

𝜔k

�̂�2k
⟂
.

Fig. 3  Dispersion curves illustrating (�
kr∕k∥vA)

2 versus b1∕2
k

 for different � values



1 3

Reviews of Modern Plasma Physics (2021) 5:1 Page 11 of 37 1

Fig. 4  Polarization curves illustrating |c�E
⟂
∕vA�B⟂

| versus b1∕2
k

 for different � values

Fig. 5  Polarization curves illustrating |c�E∥k⟂∕vA�B⟂
k∥�| versus b1∕2

k
 for different � values
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2.3  Linear mode conversion of KAW

Equation (33) has a significant implication in non-uniform plasmas. Consider, again, a 
slab plasma with a non-uniform �2

A
(x) and k2

⟂
= k2

x
(x) being the WKB wave-number in 

the non-uniformity direction, x. Equation (33) then indicates that KAW is propagating 
( k2

x
> 0 ) in the 𝜔2

k
> 𝜔2

A
(x) region, and it is cutoff ( k2

x
< 0 ) in the 𝜔2

k
< 𝜔2

A
(x) region. 

That vg⟂ is finite also suggests that, in contrast to SAW, an initial smooth perturba-
tion will not only evolve into short wavelengths, but also propagate toward the lower—
�2
A
(x) region. These features are illustrated in Fig. 6b; where the spatial–temporal evo-

lution of KAW is solved explicitly according to the following wave equation:

Note that Eq. (36) can be readily derived by letting �k = i�∕�t and k
⟂
= −i�∕�x 

in Eq. (33). The spatial profile of �2
A
(x)∕�2 = 1∕(1 + x2∕L2) is shown in Fig.  6a, 

with L indicating the profile length-scale, so that the KAW wave-packet frequency 
is assumed to be consistent with the SAW frequency at x = 0 . Figure 6b shows the 
propagation of the KAW wave-packet in the direction of radial non-uniformity, con-
sistent with Eq. (35).

That there exists a finite perpendicular group velocity also implies, in the steady 
state, the removal of “singular” resonance and linear mode conversion process 
(Hasegawa and Chen 1976). More specifically, the corresponding wave equation is 
given by:

Here, �0 is the external driving frequency. In the ideal SAW ( ̂𝜌 → 0+ ) limit, there 
is the resonance singularity at x0 , where �2

0
= �2

A
(x0) . Noting that, near x = x0 , 

(36)

[
�̂�2

𝜕2

𝜕x2
− 1 −

1

𝜔2
A
(x)

𝜕2

𝜕t2

]
𝛿By(x, t) = 0.

(37)

{
�̂�2

𝜕2

𝜕x2
+

[
𝜔2
0

𝜔2
A
(x)

− 1

]}
𝛿B̂y(x) = 𝛿B̂y0.

Fig. 6  a Spatial dependence of �2
A
 . b Propagation of the KAW wave-packet in the non-uniformity direc-

tion
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�2
A
(x) ≃ �2

0
+
(
�2
A

)�
(x0)(x − x0) ≡ �2

0
− (�2

0
∕LA)(x − x0) , Eq. (37) can be approxi-

mated as an inhomogeneous Airy equation and solved analytically. Equation (37) 
can then be solved, with appropriate boundary conditions, by connecting the solu-
tions valid away from the x = x0 resonance layer via the analytic solution of the 
inhomogeneous Airy equation valid near x = x0 (Hasegawa and Chen 1975, 1976). 
The solutions away from the singular layer are given by:

where

The corresponding numerical solutions are plotted in Fig. 7.
Both the analytical results and mode conversion process exhibit two impor-

tant features. One is, instead of being singular, the amplitude at x = x0 (where 
�A(x0) = �0 ) is amplified by the Airy swelling factor; (LA∕�̂�)2∕3 . Here, we recall LA 
is the scale length of �A and �̂� , from Eq. (34), is of O(�i) , and, hence, |LA∕�̂�| ≫ 1 . 
The other is the singularity at x = x0 is being replaced by the Airy scale length; 
𝛥0 = (�̂�2LA)

1∕3 . Recalling, from Eq. (5), |kx| ≃ |��
A
|t ≃ (�0∕LA)t , there then exists 

a KAW formation time scale given by (�0∕LA)t0 ≃ 1∕�0 ; i.e., 𝜔0t0 ≃ (LA∕�̂�)
2∕3 . 

Taking, for an example, a typical laboratory plasma, LA∕�̂� ≃ O(103) , we have 
�0t0 ≃ O(102) , suggesting that it is reasonable to anticipate, in the presence of SAW 
continuous spectrum, the appearance of KAW in such plasmas.

2.4  Satellite observations of KAWs

Due to the diagnostics constraints in laboratory plasmas, most of the KAW observa-
tions were made by satellites in the Sun–Earth space plasma environments. Shear 
Alfvénic oscillations in the magnetosphere have been linked to drivers from the 
upstream solar wind. Due to the collisionless nature of space plasmas, kinetic effects 
create large-amplitude waves and pressure pulses in the foreshock region upstream 
from the quasi-parallel bow shock. The foreshock is found to be an important source 
of (magnetic) pulsating continuous (Pc) magnetospheric waves in the Pc3 (period 
10–45 s), Pc4 (period 45–150 s), and Pc5 (period 150–600 s) ranges (Fairfield et al. 
1990; Engebretson et  al. 1991; Chi et  al. 1994; Clausen et  al. 2009; Wang et  al. 
2019). The mode conversion process associated with the compressional modes of 

(38)

𝛿B̂y(x) =

⎧
⎪⎪⎨⎪⎪⎩

𝛿B̂y0

𝜖A(x)
, for 𝜔2

0
< 𝜔2

A
(x);

𝛿B̂y0

𝜖A(x)
−

√
𝜋𝛿B̂y0

(�̂�2∕LA)
1∕2

�
�̂�2

𝜖A(x)

�1∕4

× exp

�
i∫

x

x0

�
𝜖A(x

�)

�̂�2

�1∕2

dx� + i
𝜋

4

�
, for 𝜔2

0
> 𝜔2

A
(x),

(39)�A(x) =
�2
0

�2
A
(x)

− 1.
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the foreshock waves has been suggested as a directly driven mechanism for the gen-
eration of the frequently observed discrete harmonic frequencies of shear Alfvénic 
field-line resonances (see Fig. 1) (Hasegawa et al. 1979; Hasegawa and Chen 1975; 
Lee et al. 1994). Indeed, near the magnetopause boundary, a sharp transition is fre-
quently found in wave polarization from predominantly compressional waves in the 
magnetosheath to transverse in the boundary layer (Song et al. 1993; Rezeau et al. 
1989; Chaston et  al. 2008). THEMIS observations by Chaston et  al. (2008) show 
a direct evidence of a turbulent spectrum of KAWs at the magnetopause with suf-
ficient power to provide massive particle transport. Using coordinated observations 
in the foreshock and the magnetosphere, Wang et al. (2019) found direct evidence 
of Pc5 field line resonances driven by the foreshock perturbations. As remarked ear-
lier, the main mode identification method for KAWs is based on the measurement of 
the wave polarization, |c�E

⟂
∕vA�B⟂

| . Two cases are illustrated here. One is obser-
vation by the Van Allen Probes in the Earth’s inner magnetosphere (Chaston et al. 
2014) (cf. Fig. 8); the other is observations by the Cluster satellites in the solar wind 
(Salem et al. 2012) (cf. Fig. 9). Both observations showed the measured polariza-
tions, |c�E

⟂
∕vA�B⟂

| , agree qualitatively and/or quantitatively with those theoreti-
cally predicted for KAWs.

Finally, we remark that KAW physics has also been applied theoretically in lab-
oratory fusion plasmas (Hasegawa and Chen 1975, 1976; Chen and Zonca 2013, 
2016). Realistic plasma non-uniformities and magnetic field geometries often play 
crucially important roles in determining SAW/KAW mode structures and stability 
properties in such plasmas (see, e.g., Ref. Chen and Zonca (2016)). For example, in 

Fig. 7  Illustration of ideal MHD (dashed blue line) and KAW (red line) solutions, which asymptotically 
match Eq. (38) for |x − x0|∕𝛥0 ≫ 1 . The Airy swelling factor is evident from the normalization of the 
ordinate
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Fig. 8  a The time-averaged ratio EYFAC∕BXFAC in field-aligned coordinates (MKS units). Red line shows 
the fit of the local KAW dispersion relation (cf. Fig. 4) [reproduced from Ref. Chaston et  al. (2014)]. 
b Relative phase and coherency (red) between EYFAC and BXFAC [reproduced from Ref. Chaston et  al. 
(2014)]

Fig. 9  a Prediction of |�E∕�B|s∕c for kinetic Alfvén waves (red curves) or whistler waves (black and 
blue curves) with specified angle � . Cluster measurements of |�Ey∕�Bz| up to 2 Hz, or 12 fci , are pre-
sented without (green solid) and with (green dashed) the EFW noise floor removed [reproduced from 
Ref. Salem et al. (2012)]. b Prediction of |�B∥|∕|�B|s∕c for kinetic Alfvén waves (red) or whistler waves 
(black/blue) with specified angle � . Cluster FGM measurements up to 2 Hz, or 12 fci , are shown in green 
[reproduced from Ref. Salem et al. (2012)]
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toroidal fusion plasmas, the Kinetic Toroidal Alfvén Eigenmodes (KTAEs) (Mett 
and Mahajan 1992) may exist within the SAW continuum and their dynamics are 
intrinsically related to those of KAWs. Furthermore, laboratory plasma experiments 
have shown evidence of coupling between SAW eigenmodes and KAWs (Wong 
et al. 1996) that may also be externally driven by mode conversion of fast modes 
(Fasoli et  al. 1996). Since KAW carries significant implications to plasma heat-
ing and transport, it will be interesting to see more focused investigations on KAW 
physics in laboratory plasma experiments and/or simulations.

3  Nonlinear KAW physics

In this section, we first discuss the nonlinear gyrokinetic orderings and present the 
corresponding equations. We then apply the nonlinear gyrokinetic equations to the 
fundamental three-wave parametric decay instabilities. Here, we emphasize the 
qualitative and quantitative differences between the results of nonlinear gyrokinetic 
theory and those based on the ideal MHD theory. Corresponding simulations not 
only support the gyrokinetic theory results, but also suggest the excitation of k∥ ≃ 0 
fluctuations; i.e., convective cells. This motivated the studies on the spontaneous 
excitations of convective cells by KAWs. The results demonstrate the significant 
effects of finite ion-Larmor radius; and, thus, the nonlinear gyrokinetic theory as 
a powerful theoretical tool. Finally, we present a quasi-linear description of plasma 
transport due to KAWs.

3.1  Nonlinear gyrokinetic theory

In extending the linear gyrokinetic theory to the nonlinear regime, one allows the 
fluctuations to be of finite amplitudes with, however, the constraint that the corre-
sponding nonlinear frequencies, �n� , be much less than the cyclotron frequency. In 
other words, consistent with the linear gyrokinetic orderings:

Here, �u
⟂
 represents the fluctuation-induced particle (guiding-center) jiggling veloc-

ity. Taking, for example, �u
⟂
≃ v∥�B⟂

∕B0 due to magnetic fluctuation, �B
⟂
 , v∥ ∼ vt , 

and |�
⟂
| ∼ 1∕�i , we then obtain the following nonlinear gyrokinetic orderings (Frie-

man and Chen 1982):

Again, let us consider the case of a uniform plasma to simplify the presentation and 
highlight the important underlying physics. In a uniform case, the perturbed distri-
bution function, �f  as in the linear case, can be de-composed into an adiabatic and a 
non-adiabatic components, that is:

(40)||�n𝓁
|| ∼ ||�u⟂ ⋅ �

⟂
|| ∼ |�| ∼ O(�)||�i

||.

(41)||�f∕F0
|| ∼ ||�B∕B0

|| ∼ ||c�E⟂
∕(B0vt)

|| ∼ O(�).
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Here, we have taken the background distribution to be Maxwellian, and �g satisfies 
the following nonlinear gyrokinetic equation (Frieman and Chen 1982):

�Lg given by Eqs. (16) and (17), and:

Expanding in terms of plane-wave solutions, Eq. (43) yields:

where Jk ≡ J0(k⟂v⟂∕�) , J0 is the Bessel function:

and (�k, k) satisfy frequency and wave-vector matching conditions; i.e., 
�k = �k� + �k�� and k = k� + k��.

The field equations remain the same; i.e., the Poisson’s equation or the quasi-neu-
trality condition and the parallel Ampère’s Law or the generalized nonlinear gyroki-
netic vorticity equation. The quasi-neutrality condition is formally the same as in the 
linear theory, that is:

with � ≡ Te∕Ti , consistent with the definition introduced below Eq. (25) and where 
we dropped the subscript “0” on equilibrium temperature; and Jk = Jki for brevity. 
The nonlinear gyrokinetic vorticity equation (Chen and Zonca 2016; Chen et  al. 
2001; Zonca and Chen 2014a, b), meanwhile, is given by:

where bk = k2
⟂
�2
i
∕2 , �k = I0(bk) exp(−bk) , consistent with the definitions introduced 

below Eq. (22):

(42)�f = −
q

T
FM�� + exp (−� ⋅ �)�g.

(43)
[
�

�t
+ v∥b0 ⋅ � +

⟨
�u

⟂g

⟩
�
⋅ �

]
�g =

q

T
FM

�

�t

⟨
�Lg

⟩
�
,

(44)

⟨
�u

⟂g

⟩
�
=(c∕B0)b0 × �

⟨
�Lg

⟩
�

=(c∕B0)
⟨
�E

⟂g

⟩
�
× b0 + v∥

⟨
�B

⟂g

⟩
�
∕B0.

(45)
i
(
k∥v∥ − �k

)
�gk = − i�k

q

T
Jk�LkFM

+
c

B0

�k��

k�

[
Jk��Lk��gk�� − Jk���Lk���gk�

]
,

(46)�k��

k�
=b0 ⋅

(
k�
⟂
× k��

⟂

)
,

(47)�Lk =��k − v∥�A∥k∕c,

(48)(1 + �)e��k∕Te = ⟨Jk�gki − �gke⟩v,

(49)ik∥�J∥k − i
c

4�

�k

v2
A

k2
⟂

bk

(
1 − �k

)
��k = (NL)A + (NL)�,

(50)(NL)A = −�k��

k�

(
�A∥k��J∥k�� − �A∥k���J∥k�

)
∕B0,
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and

We remark that (NL)A corresponds to the Maxwell stress term due to the �J∥b0 × �B
⟂
 

force with �J∥ mainly carried by electrons due to me ≪ mi . (NL)� , meanwhile, is the 
gyrokinetic stress tensor, which is dominated by ions and reduces to the well-known 
fluid Reynolds stress in the k2

⟂
𝜌2
i
≪ 1 limit (Chen and Zonca 2016; Chen et al. 2001).

3.2  Parametric decay instabilities

Parametric decay instability (PDI) is a fundamental nonlinear process involving 
three nonlinear coupled waves/oscillators (Jackson 1967; Liu and Rosenbluth 1976). 
One is the pump (“mother”) wave and the other two are the decay (“daughter”) 
waves. The PDI can be either resonant if both decay waves are marginally stable or 
weakly damped normal modes, or non-resonant if one of the decay waves is a heav-
ily damped quasi-mode. Since the pump wave can be either spontaneously or exter-
nally excited, PDI, thus, is an important channel for wave energy transfer along with 
its associated consequences on plasma heating, acceleration, and transports.

Interested readers may refer to the original work (Chen and Zonca 2011) for the 
detailed derivations of the KAW PDI dispersion relations. Here, we will just pre-
sent the key points and results. Let the three interacting waves be the pump wave 
�0 = (�0, k0) , the low-frequency daughter SSW �s = (�s, ks) , and the daughter 
KAW �− = (�−, k−) with �− = �s − �0 and k− = ks − k0 ; consistent with fre-
quency and wave-vector matching conditions. Let the small but finite pump wave 
amplitude be denoted as �0 = e��0∕Te . As �s could be a quasi-mode, we then need 
to retain O(|�0|2) terms to properly account for non-resonant PDI. Carrying on the 
straightforward algebra (Chen and Zonca 2011), we then derive the KAW PDI dis-
persion relation:

Here:

and

are the linear dielectric constants of, respectively, the �s-SSW and �−-KAW decay 
waves. Meanwhile, again, bk = k2

⟂
�2
i
∕2 , �k = I0(bk) exp(−bk) , and, from Eq. (29), 

�k = 1 + �(1 − �k) . �
(2)

A−
 , as will be further discussed later, corresponds to nonlinear 

ion Compton scattering:

(51)
(NL)� =

(
ec∕B0

)
�k��

k�

⟨(
JkJk� − Jk��

)
�Lk��gk��

−
(
JkJk�� − Jk�

)
�Lk���gk�

⟩
i,v
.

(52)�sk

(
�Ak− + �

(2)

A−

)
= Ck

||�0
||2.

(53)�sk = 1 + � + ��s�sZ(�s)

(54)�Ak− =
��
1 − �−

�
∕b− −

�
k2‖v

2
A
∕�2

�
−
�−

�
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and

where �2
s
= ��2

i
 and bs− = �b− . Note that G ≥ 0 from Schwartz inequality. Ck on the 

right-hand side of Eq. (52) represents the nonlinear coupling coefficient between �s 
and �− daughter waves via the pump wave |�0| , and:

with

Furthermore, in the PDI dispersion relation, Eq. (52), we have dropped the term 
associated with nonlinear frequency shift to focus on the stability property (Chen 
and Zonca 2011).

Let us first consider the resonant decay, which occurs when both decay daugh-
ter waves, �s and �− , are weakly damped normal modes. This generally requires 
𝜏 ≡ Te∕Ti ≳ 5 (Hasegawa and Chen 1975, 1976) to minimize the ion-Landau damp-
ing of the �s (SSW) mode. In this case, letting, �s = �sr + i� as well as noting 
�skr(�sr) = 0 and �Ak−r(�A−r) = �Ak−r(�sr − �0) = 0 , Eq. (52) reduces to:

where �dA− and �ds are, respectively, the linear damping rates of the KAW and SSW 
daughter waves. We also note that, to have a parametric growth ( 𝛾 > 0 ), the square 
bracket term on the right-hand side of Eq. (61) must be positive; which can be shown 
to dictate 𝜔sr𝜔0 > 0 . Thus, the KAW decay wave has its normal-mode real frequency 
lower than that of the KAW pump frequency, �0 , by the amount of the SSW nor-
mal-mode frequency, �sr . Noting that, for 𝛽 ≪ 1 , we have |𝜔0| ∼ |k∥0vA| ≫ |k∥0cS| 
and |𝜔A−r| ∼ |k∥A−vA| ≫ |k∥A−cS| . Thus, to satisfy the frequency and wave-number 
matching conditions for the resonant decay, |�sr| ∼ |k∥scS| , we must have k∥A− ≃ k∥0 
or k∥s ≃ 2k∥0 . Consequently, we have (𝜔0∕k∥0)(𝜔A−r∕k∥A−) < 0 ; i.e., the decay KAW 
daughter wave, �− , has parallel (to B0 ) group velocity opposite to that of the pump 
wave. In other words, �− can be understood as a KAW due to backscattering of the 
�0 pump wave by �s fluctuations. Finally, |�0| must be over a threshold value set by 
�ds and �dA− to achieve 𝛾 > 0.

(55)�
(2)

A−
=�sk

(
�2∕�s

)
G||�0

||2,

(56)�2 =
(
�i∕�0

)2(
�2
s
�s

0

)2
∕
(
�−bs−

)
,

(57)G =
⟨
J2
0
J2
−
F0i

⟩
v
∕n0 − F2

1
∕�s,

(58)F1 = ⟨JsJ0J−F0i⟩v∕n0,

(59)Ck = (�H)2,

(60)H =
(
�0�− − F1�s∕�s

)
.

(61)
(
� + �dA−

)(
� + �ds

)
=
(
�H||�0

||
)2[

−
��skr

��sr

��Ak−r

��A−r

]−1
,
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For 𝜏 ≡ Te∕Ti ≲ 5 , the �s SSW mode is, in general, heavily ion-Landau 
damped; i.e., it becomes a quasi-mode. The �− KAW mode, meanwhile, remains 
a weakly damped normal mode. The PDI growth rate, � , is then determined by 
the imaginary part of the dispersion relation [Eq. (52)]:

where, again, G ≥ 0 , H is given by Eq. (60),

and �s = �sr∕|k∥s|vti = (�0 + �A−r)∕|k∥0 + k∥A−|vti . Since �m�sk maxi-
mizes around �s ∼ O(1) or �sr ∼ |k∥0 + k∥A−|vti , and, again, we have 
|𝜔0| ∼ |𝜔A−r| ≫ |k∥0|vti ∼ |k∥A−|vti , the �− KAW mode is, again, a backscattered 
KAW normal mode with frequency lower than the pump wave frequency �0.

Note, from Eqs. (61) and (62), that the parametric decay instability growth 
rates increase with the nonlinear coupling coefficient, ||Ck|�0|2|| of Eq. (52), 
which can be readily shown to scale with |k

⟂
�i|4|�B⟂0∕B0|2 for |k

⟂
𝜌i|2 ≪ 1 and 

|�B
⟂0∕B0|2∕|k⟂�i| for |k

⟂
𝜌i|2 ≫ 1 . The decay instabilities are, thus, strongest 

when |k
⟂
�i| ∼ O(1) ; and it clearly demonstrates the necessity of keeping FILR 

kinetic effects in dealing with the decay instabilities of KAW.
Finally, it is illuminating to compare the decay instabilities of KAWs versus 

those of SAWs in the MHD regime (Sagdeev and Galeev 1969). In a nutshell, 
employing the ideal MHD fluid theory, the PDI dispersion relation takes the form 
similar to the KAW PDI dispersion relation, Eq. (52), with KAW terms replaced 
by corresponding SAW terms; e.g., �Ak− by �A− etc. The more fundamental change 
lies in the nonlinear coupling term; that is, Ck is replaced by CI given as:

Here, �0 is the angle between k
⟂0 and k

⟂− , and �i is the ion ratio of specific heats. 
Ck , meanwhile, can be expressed as:

We then have:

which becomes, noting H given by Eq. (60):

and

(62)

(
� + �dA−

)(
−
��Ak−r

��A−r

)
=�m

[
�
(2)

A−
−

Ck

�sk

||�0
||2
]

=||��0
||2
[
G∕�s + H2∕||�sk||2

]
�m�sk,

(63)�m�sk = ��s�m[�sZ(�s)],

(64)
CI =

||k⟂0�s ⋅ k⟂−�s||2∕
[
bs−(1 + �iTi∕Te)

]

=
[
bs0∕(1 + �iTi∕Te)

]
cos2 �0.

(65)Ck = (�i∕�0)
2(bs0∕�−)H

2 sin2 �0.

(66)|Ck|∕|CI| ∼ O(|�iH∕�0|2),

(67)|Ck|∕|CI| ∼ O(|𝛺i∕𝜔0|2)|k⟂𝜌i|4; for |k
⟂
𝜌i|2 ≪ 1,
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Equation (67) indicates that, for 1 > |k
⟂
𝜌i|2 > |𝜔0∕𝛺i| , nonlinear couplings via 

kinetic effects dominate. Noting that |�0∕�i| ∼ O(10−3) in typical laboratory 
plasmas, the validity regime of MHD fluid theory for the SAW nonlinear physics 
is rather limited. Furthermore, at the |k

⟂
�i| ∼ O(1) regime where KAW nonlinear 

effects maximize, we have |H| ∼ O(1) and |Ck|∕|CI| ∼ O(|�i∕�0|2) ∼ O(106) for 
typical parameters.

In addition to the significantly enhanced PDI growth rates, there is, perhaps, more 
significant qualitative difference between KAW and SAW PDI in terms of the wave-
vector of the scattered daughter wave with respect to that of the pump wave. Note, 
from Eq. (64), CI ∝ cos2 �0 and, thus, the SAW scattering maximizes around �0 = 0 
and � ; i.e., when k

⟂− is parallel or anti-parallel to k
⟂0 ; or k0 and k− are co-planar. 

In contrast, we have, from Eq. (65), Ck ∝ sin2 �0 and, thus, the KAW scattering 
maximizes around �0 = ±�∕2 ; i.e., k

⟂0 and k
⟂− are orthogonal. This difference not 

only affects, as might be expected, the nonlinear evolution of KAW turbulence, but 
also, as we will argue further below and perhaps more significantly, charged particle 
transports induced by the KAW decay processes.

Let us consider the pump wave be the mode-converted KAW at the Earth’s day-
side magnetopause; thus, k

⟂0 = k
⟂0r̂ with r̂ being in the Sun-Earth radial direction. 

Now, according to the ideal MHD theory, the decay wave tends to have k
⟂− = k

⟂−r̂ 
and, thus, the East–West azimuthal symmetry is in general kept. In other words, 
charged particle’s East–West azimuthal generalized momentum, P� , is conserved, 
which implies no or little radial transport (Chen 1999). On the other hand, in the 
KAW regime, the decay wave would have wave-vector in the East-West azimuthal 
direction; i.e., k

⟂− = k
⟂−�̂ and, hence, the East–West azimuthal symmetry is broken 

by the daughter wave and, consequently, P� is no longer conserved and finite radial 
transports could occur (Chen 1999). These features are observed in the numerical 
simulations to be discussed below. In addition, the MHD fluid theory would suggest 
that the turbulence in the perpendicular to B0 plane to be preferentially anisotropic 
in the r̂ direction, while KAW turbulence would tend to be more isotropic.

Insights to the above qualitative and quantitative transitions in the nonlinear cou-
pling coefficient between the long-wavelength MHD fluid and the short-wavelength 
KAW regimes can be also gained by examining the responsible nonlinear coupling 
mechanisms. More specifically, while in the MHD regime, slow-sound fluctuations 
are nonlinearly generated by the (�J

⟂
× �B

⟂
) ⋅ b0∕c parallel (to B0 ) force; in the 

KAW regime, the nonlinear force is due to the mini(�u ⋅ �)�u∥ convective nonlin-
ear term. Similarly, while in the MHD regime, scatterings of the SAW by the slow-
sound fluctuations occur via the �ns(��u0∕�t) nonlinear ion density modulation; 
scatterings of the KAW occur, again, via the ni(�u ⋅ �)�u0 convective nonlinearity.

Numerical simulations on the linear mode conversion of KAW and the ensu-
ing nonlinear wave generations were carried out by Lin et al. (2012) using a three-
dimensional hybrid model, in which ions are treated as fully kinetic particles and 
electrons are treated as a massless fluid. Readers are referred to the original work for 
details. Here, we summarize and discuss the essentials. Specifically, consider a slab 
plasma with B0 = B0ẑ and non-uniformities in the x (radial) direction. Simulations 

(68)|Ck|∕|CI| ∼ O(|�i∕�0|2); for |k
⟂
�i| ∼ O(1).
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demonstrated that an incoming fast compressional Alfvén wave mode converted 
into a short-wavelength KAW with |kx�i| ∼ O(1) localized about the Alfvén reso-
nance point. This mode-converted KAW then serves as a pump KAW and nonlin-
early excited secondary KAWs with, preferentially, short azimuthal wavelengths; 
i.e., |k

⟂
�i| ∼ |ky�i| ∼ O(1) . To analyze the nonlinear wave generation mechanism in 

more details, Lin et al. (2012) further carried out dedicated simulations with a pre-
scribed pump KAW in a uniform plasma. The resultant (k∥,�) spectra of �Bx and �E∥ 
are shown in Fig. 10.

In the right plot of �E∥ , we can see the pump KAW at �0 = (k∥0 = 0.2,�0 = 0.6) 
and the slow-sound wave at �s = (k∥s ≃ 2k∥0 = 0.4,�s = 0.2) . Correspond-
ingly, in the left plot of �Bx , we see the backscattered decay KAW with 
�− = (k∥− = −0.2,�0 = 0.4) . Note, since Te∕Ti ≃ 0.4 , the slow-sound wave, �s , is 
a heavily ion-Landau damped quasi-mode, and the PDI corresponds to the nonlinear 
ion-induced scattering. Both the �− and �s modes have preferentially short wave-
lengths in the ŷ direction; i.e., |k

⟂s�i| ∼ |kys�i| ∼ |ky−�i| ∼ O(1) . The simulation 
results are, thus, consistent with analytical theories discussed above.

As noted by Lin et al. (2012), the �Bx spectrum also showed excitations around 
(k∥ ≈ 0,� ≈ 0) with |ky�i| ∼ O(1) short wavelengths; which, as suggested, cor-
respond to magnetostatic convective cells (Chu et al. 1978). The nonlinear excita-
tions of convective cells also explain the appearance of �Bx fluctuations at k∥0 and 
�0 , since the pump KAW with ky0 ≃ 0 has �Bx0 ≃ 0 . These interesting simulation 
results, thus, naturally lead to the following gyrokinetic analytic theory on excita-
tions of convective cells via the modulational instabilities of a KAW pump wave.

3.3  Nonlinear excitations of convective cells

Convective cells have been of theoretical interests since the 1970s (Chu et al. 1978; 
Lin et al. 1978; Okuda and Dawson 1973; Taylor and McNamara 1971), since they 
lead to vortex dynamics perpendicular to the confining magnetic field and, conse-
quently, carry significant implications to the cross-field transport (Sagdeev et  al. 
1978). Historically, convective cells have been classified into two categories, the 
electrostatic convective cells (ESCC) with �E = �E

⟂
 (Okuda and Dawson 1973; 

Taylor and McNamara 1971) and the magnetostatic convective cells (MSCC) with 

Fig. 10  k∥-� spectra of �Bx and �E∥ obtained from the simulation of decay of an initial pump KAW in a 
uniform plasma. The solid black line indicates the dispersion relation of the MHD shear Alfvén mode for 
reference. Multiples of the parallel pump KAW wave-number, k∥0 (indicated here as k∥p , consistent with 
the original figure), are also shown [reproduced from Ref. Lin et al. (2012)]
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�B = �B
⟂
 (Chu et al. 1978). In recent years, there has been renewed interest in con-

vective cells since they may be regarded as paradigms of the so-called zonal struc-
tures in laboratory fusion plasmas (Chen and Zonca 2013; Zonca et al. 2015). Zonal 
structures are fluctuations with k ⋅ B0 = 0 and varying only in the radial direction 
(Hasegawa et al. 1979). Zonal structures may have frequencies either around � = 0 
or a finite frequency (i.e., the so-called geodesic acoustic mode (Winsor et al. 1968)). 
The � = 0 zero-frequency zonal structures could be either zonal flow or zonal field/
current; corresponding, respectively, to ESCC and MSCC. In this respect, zonal 
structures may be regarded as subset of convective cells.

Since convective cells have � ≈ 0 , they are nominally damped by either vis-
cosity and/or resistivity; and, thus, generally require nonlinear excitations in order 
to achieve finite intensities. In laboratory fusion plasmas, nonlinear excitations of 
convective cells (i.e., zonal structures) usually occur via mode–mode couplings of 
ambient drift-wave and/or Alfvén-wave instabilities. In this respect, zonal structures 
may be regarded as spontaneous growth of corrugations of the radial equilibrium 
profiles, which, in turn, scatter the ambient instabilities into the radially short-wave-
length stable domain. Zonal structures, therefore, provide self-regulatory mecha-
nisms for the ambient turbulences and the associated transports. We refer to the 
recent review (Chen and Zonca 2016) for readers interested in this important topic.

In the present review, we will focus on nonlinear excitations of convective cells 
by KAWs in uniform plasmas to explore in sufficient details the underlying phys-
ics mechanisms. Since convective cells have k ⋅ B0 = 0 , their nonlinear excitations 
involve couplings between co-propagating SAWs with the same k∥ ; which vanishes 
in the ideal MHD limit due to the cancelation between the Reynolds and Maxwell 
stresses; i.e., the pure Alfvénic state (Alfvén 1942, 1950; Walén 1944). It, thus, has 
long been recognized that only non-ideal MHD fluctuations, such as KAW, can non-
linearly excite convective cells (Chen and Zonca 2013; Mikhailovskii et  al. 2007; 
Onishchenko et al. 2004a, b; Pokhotelov et al. 2003, 2004; Zhao et al. 2011). Fur-
thermore, since having � = 0 , it is also recognized that it takes the form of modu-
lational instabilities for the spontaneous excitations of convective cells by KAWs; 
that is, deviation from the wave periodic behavior is further reinforced by nonlinear-
ity, which may lead to spectral sidebands and possibly to breaking of the periodic 
fluctuation into modulated pulses (Benjamin and Feir 1967; Chen and Zonca 2013; 
Zonca et al. 2015). Previous theoretical studies, however, suffer from two limiting 
considerations; (1) employing two-fluid or drift-kinetic descriptions, and (2) assum-
ing that ESCC and MSCC are de-coupled. By (1), effects due to finite ion-Larmor 
radii (FILR) are ignored. Both limiting considerations have been adopted to simplify 
the theoretical analysis and, as will be shown here, lead to erroneous conclusions 
on the nonlinear excitation mechanisms. Here, we will employ the nonlinear gyro-
kinetic equation and demonstrate that both the FILR as well as the finite coupling 
between ESCC and MSCC play qualitatively crucial roles in the dynamics of the 
modulational excitations of convective cells. Only key points of the theoretical anal-
ysis and results will be highlighted here. Readers are referred to the original works 
for details.

We consider a uniform Maxwellian plasma immersed in a confining magnetic field, 
B0 = B0ẑ . Furthermore, we assume 1 ≫ 𝛽e, 𝛽i ≫ me∕mi and ignore the compressional 
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Alfvén wave; i.e., �B∥ ≈ 0 . Denoting �0 = (�0, k0) as the finite-amplitude pump KAW 
and �z = (�z, kz) as the convective cell (CC) mode, four-wave modulational instability 
then involves couplings with the upper and lower KAW sidebands denoted, respectively, 
as �+ = (�+ = �z + �0, k+ = kz + k0) and �− = (�− = �z − �0, k− = kz − k0) . 
With compressional Alfvén wave suppressed due to frequency separation, the field var-
iables are ��k and �A∥k with k = 0, z, ± corresponding to the �0 , �z and �± fluctua-
tions. The governing equations, meanwhile, are the nonlinear gyrokinetic equation, Eq. 
(45), the quasi-neutrality condition, Eq. (48), and the nonlinear gyrokinetic vorticity 
equation, Eq. (49).

Carrying out the standard perturbative analysis to O(|��0|2) , we then derive, after 
some straightforward but lengthy algebra (Zonca et  al. 2015), the following coupled 
equations between ��z and ��z ≡ �0�A∥z∕(k∥0c):

Here, we have let �z = i�z and kz ⟂ k0 to maximize the nonlinear couplings:

is the frequency mismatch between the normal-mode frequency of KAW at k± and 
�0 , 𝛥 > 0 , and we have noted that b− = b+ as well as �− = �+ for kz ⋅ k0 = 0 , and 
applied the KAW dispersion relation, Eq. (30). Furthermore:

(69)

[
�2
z
+

�2

1 + �∕�0

]
��z = − ��(��z − ��z) + ����z,

[
�2
z
+

�2

1 + �∕�0

]
��z = − �� (��z − ��z) + ����z.

(70)
�

�0

=
b+�+(1 − �0) − b0�0(1 − �+)

2b0�0(1 − �+)

(71)

�� =
||||
c

B0

kzk⟂0��0

||||
2

1

1 − �+

[
�0 − �+

1 − �z

(
�0 − �z

−
b+

b0

1 − �0

1 + �∕�0

)
+

bz(1 − �0)

b0(1 − �z)

((
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)
�0

−

(
�0 − �z
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B0
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||||
2
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1 − �+

[
bz(1 − �0)
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1 + �∕�0

−
�0 − �+

1 − �z

](
1 − �z − bz

1 − �0

b0

)
,

(73)
�� =

||||
c

B0

kzk⟂0��0

||||
2 �0

1 − �+

�∕�0

1 + �∕�0

×
[(
1 − �+

)
�0 −

(
�0 − �z

)
�+

]
,
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and

Equation (69) clearly indicates that ��z (ESCC) and ��z ∝ �A∥z (MSCC) are intrin-
sically coupled. From Eq. (69), one readily obtains the following modulational insta-
bility dispersion relation for the spontaneous excitations of the CCs by the �0 pump 
KAW:

where

Equation (75), in general, needs to be solved numerically and the numerical results 
will be presented later (cf. also Appendix 1 for further details). It is, however, 
instructive to examine the stability properties in two limiting cases. First, let us con-
sider the long wavelength limit, where |bk| ≪ 1 . Straightforward algebra then readily 
shows that the unstable (or least stable) branch of the modulational instability dis-
persion relation, Eq. (75), is given by:

where we have applied the |bk| ≪ 1 limits of Eqs. (71)–(74). Equation (77) indi-
cates that a necessary condition for instability is bz < b0 and that the corresponding 
threshold condition is:

Here, we have noted ��0 = ��0∕�0 ≃ �0�A∥0∕(k∥0c) , k
⟂0�A∥0 = �B

⟂0 , and 
expressed the amplitude in terms of �B

⟂0 , which is more convenient for comparisons 
with simulations. Equation (78) indicates that, as |k

⟂
𝜌i|2 ≪ 1 , |�B

⟂0∕B0|th rapidly 
increases as |k

⟂0�i|−2 and, hence, finite |k
⟂
�i| effects are necessary of the instability 

to set in. Well above the threshold condition, we have:

(74)
�� =

||||
c

B0

kzk⟂0��0

||||
2 �0

1 − �+

�∕�0

1 + �∕�0

× �+

(
1 − �z − bz

1 − �0

b0

)
.

(75)Y2 + Y(�� − �� − �� ) + (���� − ���� ) = 0,

(76)Y = �2
z
+ �2∕(1 + �∕�0).

(77)
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2
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Furthermore, since

ESCC and MSCC are, indeed, strongly coupled, and arbitrary de-coupling assump-
tions could lead to erroneous conclusions on the stability. It is readily seen that the 
threshold in Eq. (78) is minimized for b0 =

√
2bz that yields 

|�B
⟂0∕B0|2th,min

= (32∕3)k2
∥0
�2
i
∕b2

0
 . Thus, b2

0
= (32∕3)k2

∥0
𝜌2
i
∕|𝛿B

⟂0∕B0|2th,min
≪ 1 for 

effective mode excitation, which is hard to meet at long wavelength. For this reason, 
in the original works on CC nonlinear excitation by KAW via modulational instabil-
ity (Chen and Zonca 2013; Zonca et al. 2015), it was noted that nonlinear excitations 
of convective cells by KAW are always suppressed in the long-wavelength limit, 
although only the Y ≃ (𝛼𝜓 − 𝛼𝜙) < 0 root was discussed therein and in the recent 
review on this subject (Chen and Zonca 2016).

The other limit is the short-wavelength limit; i.e., |bk| ≫ 1 , where FILR effects 
exhibit distinctively. Taking this limit and, to further simplify the analysis, assuming 
bz ≪ b0 ; we can readily show that Eq. (75) yields the following unstable solution:

where

Equation (81) indicates that, in this |bk| ≫ 1 short-wavelength limit, convective cells 
can be modulationally excited when the pump KAW amplitude exceeds the follow-
ing threshold value, noting ��0 ≃ ��0∕(1 + �):

Well above the threshold value, we have:

Meanwhile, ESCC and MSCC remain strongly coupled:

We emphasize that the above two limiting analyses clearly demonstrate that finite 
|k

⟂
�i| effects are necessary for the modulational excitations of convective cells, and 

that ESCC and MSCC are intrinsically coupled. Taking k
⟂0 = x̂kx , k⟂z = ŷky and 
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≃ ���,

(82)�� ≃ ||(c∕B0)kzk⟂0��0
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𝛿B
⟂0 = ŷ𝛿By sin(𝜔0t − kxx − k∥0z) , we shall assume �By∕B0 = 2�B

⟂0∕B0 in the 
comparison of numerical simulation results with theoretical predictions discussed 
above. The complete dispersion relation is numerically solved in the (kx�i, ky�i)-
plane for fixed k∥0�i = 0.02 , � = 1 and �e = �i = 0.2 and different values of �By∕B0.

Figure 11 shows the marginal stability curves. It clearly demonstrates, consistent 
with the above analytical predictions, the crucial roles of the finite k

⟂
�i effects in the 

stability properties. Marginal stability curves demonstrate the existence of a neces-
sary condition for instability, bz > k2

y�
𝜌2
i
≡ bz� , given by: Zonca et al. (2015)

where �z� ≡ �z(bz = bz�) , which holds for b0 ≫ 1 and arbitrary bz� . Figure  12, 
meanwhile, plots the calculated growth rates vs. �By∕B0 for (kx�i, ky�i) = (0.8, 0.6) 
and (kx�i, ky�i) = (1.0, 0.8) . Corresponding hybrid simulations have also been car-
ried out to investigate the nonlinear excitations of convective cells by a pump KAW 
(Zonca et al. 2015).

The observed growth rates, as shown in Fig. 12, agree reasonably well with the 
theoretically predicted values. Meanwhile, simulations also show that, for kz = ŷky , 
the ESCC ( �Eyz ) and MSCC ( �Bxz ) are coupled and both are spontaneously excited; 
consistent, again, with the theoretical predictions. For �z∕�0 = O(1) , in general, it is 
necessary to solve for CC dispersion relation and polarization from Eq. (120) in the 

(86)
bz�

�
1 − �z�

�

2�z� − �
�
1 − �z�

� =
4k2‖0�

2
i

����By∕B0
���
2
,

Fig. 11  Marginal stability curves in the (kx�i, ky�i)-plane as a function of the pump KAW amplitude 
�By∕B0 . Fixed parameters are k∥0�i = 0.02 , � = 1 , and �e = �i = 0.2 [from original figure in Ref. Zonca 
et al. (2015)]
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Appendix 1, which allows determining both CC magnetic perturbation as well as the 
corresponding inductive electric field, that is:

Finally, we remark, as noted above, nonlinear excitations of CC by KAWs may be 
regarded as breaking up the pure Alfvénic states in uniform plasmas via the non-
ideal FILR effects. The counterparts of CC in laboratory fusion plasmas are termed 
as zonal flows and currents, or zonal field structures. There, however, effects due 
to realistic plasma non-uniformities and magnetic field geometries can often break 
up the pure Alfvénic states more efficiently and render excitations of the zonal field 
structures possible at a lower pump threshold; |�B∕B0| ∼ O(10−3) or less (Chen and 
Zonca 2012).

3.4  Quasi‑linear transports induced by KAWs

In the presence of finite �E∥ , KAWs can exchange energy and generalized 
momenta with charged particles when the wave–particle resonance condition is 

(87)
|||||
�Bxz

�By0

|||||
=

|ky�i|
2�0|kx�i|

|��z|
|��0| ,

(88)
�����
c�E∥z

vA�By0

�����
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√
�i∕2

2�0�kx�i�
����
�z

�i

����
���z�
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Fig. 12  Modulational instability growth rates (continuous lines), including finite �z∕�0 (cf. Appendix 1) 
vs. �By∕B0 are compared with hybrid simulation results (circles: error bars are a measure of discrete 
particle noise) for (kx�i, ky�i) = (0.8, 0.6) (ble) and (kx�i, ky�i) = (1.0, 0.8) (red). Fixed parameters are the 
same as in Fig. 11 [from original figure in Ref. Zonca et al. (2015)]
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satisfied. Such energy–momentum exchanges, thus, could lead to efficient acceler-
ation/heating, current/flow, as well as cross-field transports; that is, wave-induced 
collisionless transports in the charged particle’s phase space. The self-consist-
ent analysis of charged particle’s phase-space dynamics and the corresponding 
dynamics of collective electromagnetic fluctuations represents, indeed, funda-
mental and complex investigations on the frontier of plasma physics research. 
Such complexities, in one aspect, are associated with the complexities of phase-
space dynamics of charged particles in the presence of electromagnetic fluctu-
ations that vary, self-consistently, in space and time. Detailed analyses on this 
topic are beyond the intended scope of this review. Interested readers are referred 
Ref. Chen and Zonca (2016) for further discussions. In this review, we assume 
the fluctuations have sufficiently broad spectral widths and finite but small inten-
sities, such that charged particles diffuse stochastically in the phase space and we 
may employ the quasi-linear description. Furthermore, we will limit our consid-
erations to KAWs in a slab plasma. More general analyses in realistic geometries 
can be found in Chen (1999).

Let x be the non-uniformity (radial) direction and �0 = B0(x)ẑ . Assuming 𝛽 ≪ 1 , 
B0 is then approximately constant. The particle distribution function, f, can be de-
coupled into an “equilibrium” component, F0 , and a fluctuating component, �f  , that 
is:

where �t with 𝜖 ≪ 1 denotes that F0 is slowly varying in time and vary spatially only 
in the non-uniformity x direction. �f  , meanwhile, is given by the linear gyrokinetic 
equations, Eqs. (14) and (15) with, however, FM and (−qFM∕T) replaced, respec-
tively, by F0 and (q∕mv∥)(�F0∕�v∥) . Employing the nonlinear gyrokinetic equations 
(Frieman and Chen 1982; Brizard 1995), it is then straightforward to show that F0 
satisfies the following quasi-linear gyrokinetic equations (Chen 1999):

where

�Lg is given by Eqs. (16) and (17), that is:

and � = ẑ.
Meanwhile, �Gres in Eq. (90) represents the contribution of resonant particles to 

�f  (Chen 1999), i.e., from Eq. (15):

(89)f = F0(x,�, v∥, �t) + �f (�, t),
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and

Finally, in Eq. (90) , (… ) denotes averaging over the (fast) wave periods.
Taking perturbations to be of the following form:

with � = kyŷ + k∥� , and ŷ corresponds to the azimuthal (east-west) direction. We 
then have:

and

Note that, for resonant particles:

and, hence:

Here, we recall Eq. (20), 𝛿�̂�k = (𝜔𝛿Â∥∕ck∥)k , and Eq. (21), 𝛿Ê∥k = −ik∥𝛿�̂�∥k . �Gres 
can then be expressed, correspondingly, as:

where
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Substituting Eqs. (98), (101), and (102) into Eq. (90), we can readily derive the 
expression of the quasi-linear gyrokinetic equation in terms of 𝛿�̂�∥k . More specifi-
cally, we have:

and, similarly, obtain:

Taking the various moments of Eq. (90), we then obtain the transport equations for 
density, parallel momentum/current, and energy. Specifically, defining the slowly 
varying “equilibrium” density, N(x, �t) , as:

Eq. (90) along with Eq. (105) then yields the following particle transport equation 
(Chen 1999; Hasegawa and Mima 1978; Lee et al. 1994):

where

Equations (109)–(111) demonstrate that the particle flux, �x , intrinsically consists of 
a convective, �xc , and a diffusive, �xd component, even though charged particles dif-
fuse stochastically in the phase space. Note also that ||�xc

|| and ||�xd
|| scale, respec-

tively, with ky and k2
y
 . Thus, no transport occurs if ky = 0 . This, of course, is 

expected, since for ky = 0 , Py = mvy + qAy∕c is conserved. As ⟨Py⟩� = qAy(Xgc)∕c 
with Xgc being the guiding-center position in x, long-time transport will occur only 
if Py conservation is broken by finite-ky symmetry-breaking perturbations. Equations 
(110) and (111) also indicate that the relative magnitudes between �xc and �xd 
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depend on the detailed spectral properties of |||𝛿�̂�∥k
|||
2

 . We can also employ Eq. (90) to 
derive the equation for energy transport and heating. Letting K = ⟨mv2F0∕2⟩v , it is 
then straightforward to show (Chen 1999):

where qx = qxc + qxd is the energy flux with:

and S is the local heating rate:

Similarly, we can derive the following equation for parallel momentum transport 
and generation (Chen 1999):

where P∥ = ⟨mv∥F0⟩v , �x = �xc +�xd is the parallel momentum flux:

and

is the local effective parallel force due to KAWs. Multiplying Eq. (116) by (q/m) 
naturally leads to the equation of current transport and generation.

As noted in Chen (1999), the transport equations derived above have the appeal-
ing physical pictures that transports as well as acceleration/heating may be viewed 
as “collisions” between charged particles of energy = mE = mv2∕2 and generalized 
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momentum = � = m� + q�∕c with wave packets or quasi-particles of energy = � 
and momentum = � . The transport equations also clearly demonstrated that, in col-
lisionless plasmas, wave–particle resonances are responsible for phase-space trans-
ports, and the transports consist of both convective and diffusive components with 
coefficients depending critically on the spectral properties of, in this case, KAWs.

4  Conclusions and discussion

In this paper, we argue that short-wavelength KAWs are ubiquitous in realistic non-
uniform magnetized plasmas due to the very existence of SAW continuous spectra. 
Employing the powerful theoretical tool of gyrokinetic equations, we then re-exam-
ine and explore further the linear and nonlinear physics of KAWs. Our analyses 
clearly demonstrate that kinetic effects due to, e.g., finite ion-Larmor radii, can 
qualitatively and quantitatively modify the nonlinear processes. More specifically, 
we show that in contrast to the MHD fluid description, the FILR effects lead to the 
significantly enhanced electron–ion de-coupling, which, in turn, leads to signifi-
cantly enhanced nonlinear coupling coefficients. Our analyses, furthermore, suggest 
that the KAW turbulence spectra will be more isotropic than those according to the 
MHD description. In addition, convective cells could be nonlinearly excited only in 
the short-wavelength regime. These spectral properties obviously carry important 
implications to the symmetry-breaking wave-induced transports of charged particles. 
In other words, based on our theoretical studies, we submit that one needs to employ 
first-principle-based self-consistent kinetic or gyrokinetic theories to develop a reli-
able and accurate understanding of KAW physics; especially, when effects associ-
ated with nonlinearities, realistic non-uniformities, and geometries are considered.

Since the primary aim of the present paper is to illuminate physics of KAWs 
based on the gyrokinetic theory approach, our focus, therefore, has been on the 
fundamental processes. This paper, thus, is not, and, indeed, never intends to be 
a comprehensive review of all aspects of the rich KAW physics. For complimen-
tary readings, we refer to the monograph by Wu (2012), the review article by Chen 
and Zonca (2016), and the recent works by Qiu et al. (2019) for KAWs in fusion 
tokamak plasmas.

As we, hopefully, have demonstrated, there are many interesting issues; espe-
cially, in the nonlinear regime, associated with the KAW physics. Some of them 
remain little explored; for example, the phase-space dynamics of nonlinear 
wave–particle interactions as well as the physics of the fully developed KAW tur-
bulence, including frequency/wave-number cascading and, possibly, filamentary 
structures via nonlinear excitations of convective cells. Obviously, careful studies of 
these physics issues employing the powerful gyrokinetic approach analytically and/
or via numerical simulation will make significant impacts to our deep understand-
ings of the charged particle dynamics and Alfvenén wave turbulences in nature and 
laboratory plasmas.
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Appendix 1: Equations for strongly excited convective cells

The equations for coupled ESCC and MSCC excitations derived in Sect. 3.3, that is 
Eqs. (69), give only the leading order terms in �2

z
∕�2

0
 , for simplicity, and are adopted 

for computing marginal stability curves of the modulational instability, as shown in 
Fig. 11. Exact equations, i.e., including higher order corrections in �2

z
∕�2

0
 , are given 

below for interested readers and are used for computing the finite growth rate of the 
modulational instability (cf. Fig. 12) away from marginal stability (Zonca et al. 2015). 
The complete equations for coupled ESCC and MSCC excitations can be cast as 
follows:
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