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Abstract
This article is a tutorial review of the interaction between energetic particles and 
Alfvén eigenmodes (AEs) which is one of the important research issues for fusion 
burning plasmas. The destabilization mechanism of AEs is a kind of inverse Lan-
dau damping through the resonant interaction with energetic particles. The impor-
tant properties of the AE instability, such as resonance condition, conserved vari-
able during the interaction, and particle trapping by the AE, are explained. The time 
evolution of AEs is classified into various types, steady state, frequency splitting, 
frequency chirping, and recurrent bursts. Berk and Breizman presented both a one-
dimensional weakly nonlinear theory for marginal stability and a reduced simulation 
model that qualitatively explain the various types of time evolution. Berk–Breiz-
man’s theory and reduced simulation model are introduced, and their limitations and 
the future works are discussed in this article. In addition, energetic particle transport 
by AEs is illustrated with surface-of-section plots. The particle trapping by the AE 
creates phase space islands and leads to the local flattening of the energetic particle 
spatial profile. The resonance overlap of multiple AEs and the overlap of higher-
order resonances of a single AE lead to the emergence of stochasticity in phase 
space and the global transport of energetic particles.
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1  Introduction

Alpha particles born from the deuterium–tritium (D–T) reaction with energy 3.5 
MeV are expected to heat the fusion burning plasmas to maintain the high tem-
perature that is needed for the D–T reaction. Magnetohydrodynamics (MHD) is a 
theoretical framework of plasmas that combines the fluid equations, the induction 
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equation for the magnetic field, and the Ohm’s law for the electric field. MHD 
explains well the macroscopic behaviors of fusion plasmas. Three types of wave 
exist in MHD, namely, shear Alfvén wave, slow magnetosonic wave, and fast mag-
netosonic wave. Shear Alfvén wave is an incompressible wave whose restoring force 
is the magnetic tension, while the slow and fast magnetosonic waves are compres-
sional waves with variations of the magnetic pressure and the plasma pressure.

Alfvén eigenmodes (AEs) are magnetohydrodynamic oscillations of the nonu-
niform magnetically confined plasmas. The spatial profile of AE peaks at the 
extremum of the shear Alfvén wave continuous frequency spectrum. AEs are clas-
sified on the basis of the extremum. For example, global Alfvén eigenmode (GAE) 
(Appert et al. 1982) and reversed shear Alfvén eigenmode (RSAE) (Fukuyama and 
Akutsu 2002) are located at the extrema of the safety factor which is an index of the 
torsion of the magnetic field, and toroidal Alfvén eigenmode (TAE) (Cheng et  al. 
1985; Cheng and Chance 1986) and beta-induced Alfvén eigenmode (BAE) (Hei-
dbrink et al. 1993) appear at the gaps of the Alfvén continuous spectra, which are 
created by toroidicity and finite plasma pressure, respectively.

The speed of alpha particle with energy 3.5 MeV exceeds the phase velocities of 
shear Alfvén wave and magnetosonic waves. The alpha particles can resonate with 
AEs in the collisional slowing-down process, and may destabilize and amplify the 
AEs. The alpha particle transport by the amplified AEs flattens the alpha particle 
spatial profile and leads to alpha particle losses. This will reduce the alpha parti-
cle heating efficiency and deteriorate the fusion reactor performance. Alpha parti-
cle driven AEs are one of the major concerns of burning plasmas. The interactions 
between energetic particles and AEs have been extensively studied using energetic 
ions generated by the neutral beam injection (NBI) and ion-cyclotron-range-of-fre-
quency (ICRF) wave heating in tokamak and stellarator/heliotron plasmas (Fasoli 
et al. 2007; Heidbrink 2008; Toi et al. 2011; Sharapov et al. 2013; Gorelenkov et al. 
2014). When the energetic particle drive is so strong that the drive overcomes the 
continuum damping (Rosenbluth et al. 1992; Zonca and Chen 1992), energetic par-
ticle mode (EPM) can be destabilized (Chen 1994). The spatial peak of EPM is 
located on the shear Alfvén continuous spectrum.

In this article, we give a tutorial review of the interaction between energetic particles 
and AEs. The basics of the interaction is explained in Sect. 2. Section 3 is devoted to 
the Berk–Breizman’s theory. Berk and Breizman presented a one-dimensional weakly 
nonlinear theory for marginal bump-on-tail instabilities. It has been demonstrated that 
the theory can be applied to the AE instabilities. Berk and Breizman also constructed 
a reduced simulation model for the nonlinear evolution of the bump-on-tail instabil-
ity. The reduced simulation model can be applied to AE instabilities. An elementary 
derivation of the reduced simulation model and the simulation results are presented in 
section 4. The AEs show various types of time evolution, steady state, frequency split-
ting, frequency chirping, and recurrent bursts. Berk–Breizman’s theory and reduced 
simulation model qualitatively explain the various types of time evolution of AEs. Sec-
tion 5 is devoted to the energetic particle transport by AEs. Energetic particle transport 
is illustrated with surface-of-section plots. The resonance overlap of multiple AEs and 
the overlap of higher-order resonances leads to the emergence of stochasticity in phase 
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space and the global transport of energetic particles. The limitations of the reduced 
simulation model and the future works are discussed in Sect. 6.

2 � Basics of interaction between energetic particles and Alfvén 
eigenmodes

2.1 � Interaction with Alfvén eigenmodes

The parallel electric field to the magnetic field is zero in the ideal MHD. The energy 
transfer between charged particles and Alfvén eigenmodes (AEs) take place through 
the magnetic (grad-B and curvature) drifts and the perpendicular electric field. For 
the interaction with most of the AEs, the magnetic moment is an adiabatic invariant 
because the AE frequency is sufficiently lower than the ion Larmor frequency. The 
energetic particle transport is brought about by the E × B drift ( � E ) and the pertur-
bative magnetic field. For parallel particle velocity v∥ , the transport velocity by the 
perturbative magnetic field ( �� ) is given by v∥��∕B . The ratio of E × B velocity to 
the Alfvén velocity ( v A ) is comparable to the ratio of the perturbative magnetic field 
to the equilibrium field for shear Alfvén wave ( v E ∕v A ∼ �B∕B ). Since the paral-
lel particle velocity is comparable to the Alfvén velocity v∥ ∼ v A for the resonant 
particles, the transport by the E × B drift is comparable to that by the magnetic per-
turbation ( v E ∼ v∥�B∕B ). Both the effects of the electric field and the perturbative 
magnetic field should be considered for the energetic particle transport by AEs.

2.2 � Resonance condition

Alfvén eigenmodes (AEs) are destabilized by energetic particles through resonant 
interactions. The resonance condition is given by

where � and n are the AE frequency and the toroidal mode number, and l is an arbi-
trary integer. The poloidal and toroidal orbit frequencies are defined by �� = 2�∕T� 
and by �� = ��∕T� , respectively, where T� and �� are the time for each particle to 
complete one round in the poloidal angle and the toroidal angle which the particle 
passes in T� , respectively. With these definitions, we can find that the resonance con-
dition Eq. (1) is equivalent to

which indicates that when a resonant particle passes one round in the poloidal angle, 
the phase of the AE at the location of the particle should change by a multiple of 2� 
(Todo and Sato 1998). A generalized resonance condition for stellarator–heliotron 
plasmas is given in Kolesnichenko et al. (2002).

The resonance condition Eqs. (1) and (2) can be generalized to the higher-order 
resonance where the phase of the AE is the same when the particle passes K (K   >  
1) times around the poloidal angle:

(1)� − n�� − l�� = 0,

(2)(�T� − n��)∕2� = l,
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The higher-order resonance is also called nonlinear resonance or fractional reso-
nance. The higher-order resonance is negligible for the linear stability analysis, but 
may transfer substantial energy between finite-amplitude waves and particles.

2.3 � Conservation of E’

In axisymmetric time-independent fields, energy E and toroidal momentum 
P� = e h � + m h Rv� are conserved along the particle orbit. Here, � is the poloidal 
magnetic flux, and e h and m h are charge and mass of the particle. In the presence of 
a wave with angular frequency � and toroidal mode number n, neither energy nor 
toroidal momentum is conserved whereas magnetic moment � is an adiabatic invari-
ant if 𝜔 << 𝛺 h ≡ e h B∕m h is satisfied. However, a combination of energy and toroi-
dal momentum E� = E − �P�∕n is conserved (Hsu and Sigmar 1992). The reason is 
explained as follows. The energy and toroidal momentum evolution with the equilib-
rium field Hamiltonian H0 and the wave field Hamiltonian H1 are given by

because �H0

�t
=

�H0

��
= 0 holds. Supposing that the wave amplitude is constant, the 

wave field Hamiltonian can be written as H1 = Ĥ1(R, z)e
in𝜑−i𝜔t in cylindrical coordi-

nates (R,�, z) . The energy and momentum evolution is given by

Then,

is satisfied. For the wave-particle interaction in tokamak plasmas, the conservation 
of E′ relates the variations in particle energy ( �E ) and poloidal flux ( ��)

(3)K(�T� − n��)∕2� = l,

(4)� − n�� − (l∕K)�� = 0.

(5)d E

d t
=
�H

�t
=

�

�t
(H0 + H1) =

�H1

�t
,

(6)
d P�

d t
= −

�H

��
= −

�

��
(H0 + H1) = −

�H1

��
,

(7)d E

d t
=
𝜕H1

𝜕t
= −i𝜔Ĥ1(R, z)e

in𝜑−i𝜔t,

(8)
d P𝜑

d t
= −

𝜕H1

𝜕𝜑
= −inĤ1(R, z)e

in𝜑−i𝜔t.

(9)
d

d t
E� =

d

d t
(E − �P�∕n) = 0

(10)�E

�
=

�P�

n
≈

e h ��

n
.
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As the variation in poloidal flux corresponds to the radial transport, the radial trans-
port is related to the energy transfer between the wave and the particle. It is qualita-
tively suggested that the primary role of the waves with low � and high n such as the 
ion temperature gradient (ITG) modes is the radial transport rather than the energy 
transfer while the waves with high � , such as the ion cyclotron range of frequency 
(ICRF) and electron cyclotron heating (ECH) waves, work for heating rather than for 
transport.

One may ask the question why AEs can be destabilized by the resonant interac-
tion with energetic particles although the slowing-down distribution (and also the 
Maxwell distribution) has negative gradient in energy 𝜕f

𝜕E
< 0 . In spatially uniform 

plasmas, the distribution with 𝜕f
𝜕E

< 0 leads to the Landau damping of the wave. 
However, in toroidal plasmas, the spatial gradient of the energetic particle distribu-
tion destabilizes the AEs. When we take the energy derivative of the distribution 
function, we should keep E� = E − �P�∕n constant. Then, the energy derivative is

If we approximate the toroidal momentum by P� ≈ e h � , the derivative with respect 
to toroidal momentum can be approximated by

where the poloidal magnetic field is given by B� ≈ �rB∕qR ( B > 0, 𝜏 = −1 or 1) 
with safety factor q and major radius R. Introducing “temperature” T, which repre-
sents the energy derivative by �f

�E
= −

f

T
 , and �∗ =

�qT

e h B

� ln f

r�r
 , the energy derivative of 

the distribution function with E′ kept constant is expressed by

When the radial gradient of f is sufficiently large, the second term n

�
�∗ makes 

𝜕f

𝜕E

|||E′
> 0 leading to the destabilization of the AE. This also determines the sign of 

n∕� , i.e., the toroidal propagation direction of the AE (Todo 2012). Equation (13) is 
consistent with the formulae for the AE growth rate (Fu and Van Dam 1989; Spong 
et al. 1992).

The toroidal propagation direction is determined by the signs of the ener-
getic particle charge ( e h ), the radial derivative of the energetic particle dis-
tribution function ( �f∕�r ), and the poloidal magnetic field ( B� ). When 
sgn(e h ) ⋅ sgn(�f∕�r) ⋅ sgn(B�) = 1 , the AEs destabilized by the energetic particles 
propagate to +� direction with n∕𝜔 > 0 . When the triple product is − 1, the AEs 
propagate to −� direction with n∕𝜔 < 0 . When the torus is viewed from the top, 
+� ( −� ) is the counter-clockwise (clockwise) direction. For example, if energetic 
particles are ions [ sgn(e h ) = 1 ], and the distribution function decreases in radial 

(11)
�f

�E

||||E�

=
�f

�E

||||P�

+
n

�

�f

�P�

|||||E
.

(12)
n

�

�f

�P�

≈
n

�

�f

e h ��
≈

n

�

1

e h RB�

�f

�r
≈

n

�

�q

e h B

�f

r�r
,

(13)
�f

�E

||||E�

= −
f

T

(
1 −

n

�
�∗

)
.
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direction [ sgn(�f∕�r) = −1 ], and the plasma current is +� direction [ sgn(B�) = −1 ], 
the triple product =1 means the AE propagates to +� direction.

When both the poloidal and the toroidal mode numbers m and n are given for the 
AE, the poloidal propagation direction is determined from the toroidal propagation 
direction through the sign of m/n. For low frequency AEs such as TAE and RSAE, the 
parallel wave number is low |k∥| = |(mB𝜃∕r + nB𝜑∕R)∕B| << |n∕R| , and the signs of 
mB� and nB� are opposite to each other. Then, sgn(m∕�) = −sgn(n∕�) ⋅ sgn(B�∕B�) 
gives the poloidal propagation direction. When sgn(e h ) ⋅ sgn(�f∕�r) ⋅ sgn(B�) = 1 , 
the AE propagates to − � direction. The result is often summarized as a simple 

Fig. 1   Fast ion distribution 
functions in (P�,E) space for a 
co-going and b counter-going 
particles to the plasma current 
in a tokamak plasma. The 
magnetic moment is constant 
and chosen so that |v∥∕v| = 0.7 
for E = 80 keV at the plasma 
center. The white lines represent 
E
� = const. for a wave with n 

= 4 and frequency 70 kHz. The 
distribution functions along the 
E
� = const. lines are plotted 

versus E in c 

(a)

(b)

(c)
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conclusion: “AEs destabilized by energetic particle spatial gradient propagate to the 
energetic particle diamagnetic drift direction.”

Figure 1 shows fast ion distribution functions for co-going and counter-going par-
ticles to the plasma current in a tokamak plasma. The major and minor radii are 1.8 
and 0.6 m, respectively. The magnetic field strength is 2T at the plasma center, and 
the safety factor is 1.1 at the center and 3.0 at the edge. The fast ion species is deu-
terium and the energy distribution is a slowing down distribution with the critical 
energy 30 keV. The maximum energy of the distribution is 80 keV, and the spatial 
distribution is exponential in P� with the scale length 0.4�0 where �0 is the poloidal 
magnetic flux at the plasma center, and � = 0 at the plasma edge. The magnetic 
moment is constant and chosen so that |v∥∕v| = 0.7 for E = 80 keV at the plasma 
center. The white lines in the figure represent E� = const. for a wave with n = 4 and 
frequency 70 kHz. The distribution functions along the E� = const. lines are plotted 
versus E in panel (c).We see in the figure that d f∕ d E < 0 along the E� = const. 
lines. This demonstrates the destabilization mechanism of AEs through the spatial 
gradient of energetic particles.

In Fig. 1a, b, white lines for E� = const. are drawn from the plasma center and 
E = 80 keV to the plasma edge. We see in Fig. 1c that the energies at the plasma 
edge are 60 and 69 keV for co-going and counter-going particles, respectively. This 
indicates that the transport of counter-going particle from the plasma center to the 
edge needs less energy transfer than that of co-going particle. This property is fur-
ther enhanced by the loss region that appears in Fig.  1b. This region represents 
trapped particles whose orbit width is large enough to reach the plasma edge. Coun-
ter-going particles with energy lower than about 70 keV at the plasma center and 
the same magnetic moment are lost by entering the loss region across the passing-
trapped boundary. We can say that counter-going particles are easier to be lost than 
co-going particles.

Alfvén eigenmodes with toroidal mode number n = 0 are not destabilized by 
energetic particle spatial gradient. However, when the energetic particle distribu-
tion function is not isotropic in velocity space and depends on pitch angle variable 
� = �B0∕E , the energy derivative is given by

The second term on the right hand side can lead to destabilization of n = 0 modes 
such as the energetic-particle driven geodesic acoustic mode [EGAM (Fu 2008)].

2.4 � Particle trapping

The most important nonlinear process of the (inverse) Landau damping is “parti-
cle trapping” where the resonant particles are trapped by the finite-amplitude wave. 
After the particle is trapped by the wave, the particle executes a bounce motion 
in the wave potential well and does not transfer net energy to the wave in a time 
longer than the bounce period. This leads to the saturation of the (inverse) Landau 
damping. Particle trapping was first analyzed by O’Neil (1965) for one-dimensional 

(14)
�f

�E
=

�f

�E

||||�
+

��

�E

�f

��

||||E
.
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electrostatic wave. The importance of particle trapping for the saturation of AE was 
predicted and the bounce frequency for Alfvén eigenmode in tokamak plasma is 
given by Berk et al. (1992, 1993), Breizman et al. (1993).

It is well known that the phase space with a finite amplitude wave is divided into 
the “passing (open)” and “trapped (closed)” regions with the separatrix. It is easy to 
draw a figure of the phase space structure for one-dimensional problems. However, 
also for the waves and the particles in toroidal plasmas, we can analyze the phase 
space structure utilizing the surface-of-section plots where only one eigenmode is 
taken into account and the amplitude and the frequency of the wave are kept con-
stant. We choose particles which have a constant value of E� = E − �P�∕n , because 
E′ is conserved in the interaction with a constant-amplitude wave with frequency � 
and toroidal mode number n. Then with a single mode we have a conserved vari-
able and we can make surface of section plots that are easily interpretable. Other-
wise, with more than one wave we would obtain phase oscillations about Kolmogo-
rov–Arnold–Moser (KAM) surfaces that ruin the simplicity of the output so that 
we would have difficulty resolving KAM boundaries. Figure 2 shows an example of 
surface of section plots for a toroidal Alfvén eigenmode (TAE) in a tokamak plasma 
(Todo et al. 2003). The horizontal axis is the toroidal angle multiplied by the toroi-
dal mode number of the TAE in the co-moving frame with the TAE. The vertical 
axis is the major radius in the weak field side. In the surface of section plots we print 
the major radius R/a and phase, n� − �t , of a particle each time the poloidal angle 
of the particle reaches the midplane � = 0 or � . The particles plotted in the figure 
have the same E′ and magnetic moment. We see an island structure in the figure that 
indicates that the particles are trapped by the TAE.

2.5 � Saturation of the energetic particle driven instabilities

When an energetic particle driven instability grows to a finite amplitude, it is 
expected that the instability is saturated by the particle trapping. The saturation level 
will be determined by a condition � b ∼ � L where � b is the bounce frequency for 

Fig. 2   Surface of section plots for a toroidal Alfvén eigenmode in a tokamak plasma (Todo et al. 2003). 
Reproduced from Todo et al. (2003) with the permission of AIP Publishing
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the finite-amplitude wave and � L is the linear growth rate of the instability. Since 
the bounce frequency is in proportion to the square root of the wave amplitude, the 
saturation level is in proportion to the square of the linear growth rate. The satura-
tion due to the particle trapping was demonstrated by the earlier works on nonlin-
ear simulation of Alfvén eigenmode (Wu and White 1994; Fu and Park 1995; Todo 
et al. 1995; Briguglio et al. 1995). The quadratic scaling of the Alfvén eigenmode 
saturation level on the linear growth rate is also investigated in detail (Briguglio 
et al. 2017; Slaby et al. 2018). The quadratic scaling means that larger phase space 
islands are created for larger growth rate. However, the AE spatial profile limits the 
radial width of the islands. This leads to a weaker scaling of the saturation level for 
larger growth rate.

3 � Weakly nonlinear theory for marginal stability

3.1 � Berk–Breizman’s theory

In fusion plasmas, fast ions are created by the neutral beam injection, the ion-cyclo-
tron-range-of-frequency heating, and the fusion reaction for alpha particles. The fast 
ions slow down and are scattered in velocity space due to the collisions with the 
bulk electrons and ions. The fast ion losses also take place when the particle enters 
the loss cone and/or are transported by the electromagnetic perturbations to the 
plasma edge. Then, the fast ion distribution is formed with source and sink. Since 
the unstable distribution is gradually formed with source and sink in experiment, we 
need to consider marginally unstable states. No unstable distribution appears sud-
denly. We should consider energetic particle distributions close to the marginal sta-
bility together with source and sink.

Berk, Breizman, and their collaborators established a weakly nonlinear theory 
for the marginally unstable energetic particle driven waves (Berk et al. 1996). The 

Fig. 3   Distribution function 
with a bump on the high veloc-
ity region
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theory applies to the 1-dimensional electrostatic problem, but it also applies to gen-
eral energetic particle driven instabilities including Alfvén eigenmodes in toroidal 
plasmas (Breizman et al. 1997). Let us consider an electrostatic wave with the fre-
quency � and the wave number k. Suppose an electron distribution function shown 
in Fig. 3. The gradient of of the distribution function is positive at v = �∕k . This 
leads to the growth of the wave through the resonant interaction. This instability is 
called the bump-on-tail instability.

We follow Berk et al. (1996) to derive the cubic equation that describes the time 
evolution of the marginally unstable energetic particle driven waves. The Vlasov 
equation of the distribution function F(x,  v,  t) for a one-dimensional electrostatic 
problem is given by

where Ê(t) and � are the electric field amplitude and the phase of the wave. The 
source is represented by S(v), and the sink or dissipation is modeled with the Krook 
collision frequency � . The distribution function F is expanded in a Fourier series,

The time evolution of Ê(t) is given by

where � d is the intrinsic damping rate of the wave. In Eq. (19), it is taken into 
account that the total wave energy is double the electric field energy, and the other 
half is the electron kinetic energy for the electrostatic wave. We introduce the 

bounce frequency 𝜔 B (t) =

√
ekÊ(t)∕m , and assume that the electric field amplitude 

is so small that 𝜔 B ≪ 𝛾 L , 𝛾 d , 𝜈, (1∕t) is satisfied. The linear growth rate � L is 
defined later. The perturbed distribution functions are assumed to be so small that 
F0 ≫ f1 ≫ f0, f2 is satisfied. Equation (15) yields the equations for the time evolu-
tion of f0 and f1.

(15)
𝜕F

𝜕t
+ v

𝜕F

𝜕x
+

e

2m
Ê(t)[exp[i(kx − 𝜔t + 𝛼) + exp[−i(kx − 𝜔t + 𝛼)]

𝜕F

𝜕v

+ 𝜈F = S(v),

(16)F =F0 + f0 +

∞∑

n=1

[
fn exp(in� ) + f ∗

n
exp(−in� )

]
,

(17)F0 =S(v)∕�,

(18)� =kx − �t + �.

(19)
d

d t
Ê(t) = −

e𝜔

𝜖0k
Re∫ f1 d v − 𝛾 d Ê(t),

(20)�

�t
f0 + �f0 = −

�2
B
(t)

2

�

�u

(
f1 + f ∗

1

)
,

(21)�

�t
f1 + iuf1 + �f1 = −

�2
B
(t)

2

�

�u

(
F0 + f0 + f2

)
,
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where u = kv − � . The second order distribution function f2 does not contribute to 
the final results.

The solution is obtained perturbatively. First, the solution for

is

For Eq. (19), f1(t) is integrated in velocity space.

We used a formula for delta function,

A factor of 1/2 has been multiplied for the derivation of Eq. (24) since t� − t takes 
only negative value in the integration. Then, Eqs. (19) and (24) give the equation for 
the time evolution of the electric field amplitude without the damping term

Next, we consider the contribution from f ∗
1
 to f0,

(22)�

�t
f1 + iuf1 + �f1 = −

�2
B
(t)

2

�F0

�u

(23)f1(t) = ∫
t

0

d t�

(
−
�2

B
(t�)

2

)
�F0

�u
exp

[
(iu + �)(t� − t)

]
.

(24)

∫ f1(t) d v =∫ d v∫
t

0

d t�

(
−
�2

B
(t�)

2

)
�F0

�u
exp

[
(iu + �)(t� − t)

]

=∫
t

0

d t�

(
−
�2

B
(t�)

2

)

∫
d u

k

�F0

�u
exp

[
(iu + �)(t� − t)

]

=∫
t

0

d t�

(
−
�2

B
(t�)

2

)
�F0

�u

exp
[
�(t� − t)

]

k
2��(t� − t)

= −
�

2k
�2

B
(t)

�F0

�u
.

(25)∫ d u exp
[
iu(t� − t)

]
= 2��(t� − t).

(26)
d

d t
𝜔2

B
(t) =

ek

m

d

d t
Ê(t) =

𝜋e2𝜔

2𝜖0mk
2

𝜕F0

𝜕v
𝜔2

B
(t)

=𝛾L𝜔
2
B
(t)

(27)�L ≡ �e2�

2�0mk
2

�F0

�v
.
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The 3rd order f1 is generated from f0,

We replace �
2

�u2
 by −(t2 − t1)

2 assuming �
2F0

�u2
= 0 , and have

We integrate the 3rd order f1 given by Eq. (30) in velocity space,

The condition t2 = t� + t1 − t ≥ 0 limits the time integration domain of Eq. (31), and 
we have

The other contribution to f0 from the 1st order f1 is accompanied by a delta func-
tion �(t� − t + t2 − t1) . This term does not generate any net contribution to the 3rd 
order f1 because t� − t + t2 − t1 = 0 is satisfied only when t� = t and t2 = t1 . Then, 

(28)f0(t) = ∫
t

0

d t�

(
−
�2

B
(t�)

2

)
�

�u
f ∗
1
(t�) exp

[
�(t� − t)

]
.

(29)

f1(t) =∫
t

0

d t�

(
−
�2

B
(t�)

2

)
exp

[
(iu + �)(t� − t)

] �

�u
f0(t

�)

=∫
t

0

dt�

(
−
�2

B
(t�)

2

)
exp

[
(iu + �)(t� − t)

] �

�u ∫
t�

0

d t1

(
−
�2

B
(t1)

2

)
exp

[
�(t1 − t�)

]

×
�

�u ∫
t1

0

d t2

(
−
�2

B
(t2)

2

)
�F0

�u
exp

[
(−iu + �)(t2 − t1)

]
.

(30)

f1(t) = − ∫
t

0

d t�

(
−
�2

B
(t�)

2

)

∫
t�

0

d t1

(
−
�2

B
(t1)

2

)

∫
t1

0

d t2

(
−
�2

B
(t2)

2

)
�F0

�u
(t2 − t1)

2

× exp
[
(iu(t� − t − t2 + t1)

]
exp

[
−�(t − t2)

]
.

(31)

∫ f1(t) d v = −
2�

k

�F0

�u ∫
t

0

d t�

(
−
�2

B
(t�)

2

)

∫
t
�

0

d t1

(
−
�2

B
(t1)

2

)

∫
t1

0

d t2

(
−
�2

B
(t2)

2

)
(t2 − t1)

2

× �(t� − t − t2 + t1) exp
[
−�(t − t2)

]

=
�

4k

�F0

�u ∫
t

0

d t��2
B
(t�)∫

t
�

0

d t1�
2
B
(t1)�

2
B
(t� + t1 − t)(t − t

�)2

× exp
[
−�(2t − t

� − t1)
]
.

(32)

∫ f1(t)dv =
�

4k

�F0

�u ∫
t

t∕2

d t�(t − t�)2�2
B
(t�)∫

t�

t−t�
d t1�

2
B
(t1)�

2
B
(t� + t1 − t)

× exp
[
−�(2t − t� − t1)

]
.
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Eqs. (19), (24), and (32) give the equation for the time evolution of the electric field 
amplitude up to the 3rd order of the wave amplitude,

Amplitude and time are normalized with the transformations 
A =

[
�2

B
∕(� L − � d )

2
][
�L∕(� L − � d )

]1∕2 and � = (� L − � d )t . Equation (33) is 
rewritten with a normalized parameter 𝜈̂ = 𝜈∕(𝛾 L − 𝛾 d ) (Berk et al. 1996),

3.2 � Applications to Alfvén eigenmodes: steady amplitude and frequency 
splitting

Equation (34) depends on only one parameter, 𝜈̂ . For large 𝜈̂ > 𝜈̂cr = 4.38 , A(�) 
reaches the steady saturation. The steady saturation amplitude is A0 = 2

√
2𝜈̂2 which 

gives

As 𝜈̂ decreases below 𝜈̂cr , the transition of the solution takes place from the steady 
saturation to periodic limit cycle solution, chaotic regime, and explosive growth. 
The explosive growth goes beyond the applicability range of the weakly nonlinear 
analysis and leads to the saturation levels that are expected from particle trapping 
� B ∼ � L − � d.

The weakly nonlinear theory was extended with diffusion in velocity space (pitch-
angle scattering) (Breizman et al. 1997). The extended theory was applied to Alfvén 
eigenmodes observed in JET(Fasoli et al. 1998; Heeter et al. 2000), and successfully 
demonstrated that the periodic limit cycle solution explains the “pitchfork splitting” 
of the Alfvén eigenmodes. The theory was also extended with drag in velocity space 
(slowing down) (Lilley et al. 2009). The scaling of steady saturation levels with col-
lision frequency was confirmed for Alfvén eigenmodes with numerical simulations 
(Lang et al. 2010; Slaby et al. 2018). Micro-turbulence in fusion plasmas may work 
as an effective collision or dissipation, and may affect the time evolution of Alfvén 
eigenmodes. The effect of micro turbulence on the Alfvén eigenmode evolution has 
been theoretically predicted to be larger than that of collisions for present tokamaks 
and ITER (Lang and Fu 2011; Duarte et al. 2017).

(33)

d

d t
�2

B
(t) =(� L − � d )�

2
B
(t) −

� L

2 ∫
t

t∕2

d t�(t − t�)2�2
B
(t�)

× ∫
t�

t−t�
d t1�

2
B
(t1)�

2
B
(t� + t1 − t) exp

[
−�(2t − t� − t1)

]
.

(34)

d A

d 𝜏
=A(𝜏) −

1

2 ∫
𝜏∕2

0

d zz2A(𝜏 − z)

× ∫
𝜏−2z

0

d x exp [−𝜈̂(2z + x)]A(𝜏 − z − x)A(𝜏 − 2z − x) .

(35)�2
B
= 2

√
2�2

�
� L − � d

� L

�1∕2

.
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4 � Nonlinear evolution of single Alfvén eigenmode

In the weakly nonlinear theory discussed in the previous section, the wave ampli-
tude was assumed to be so small that the expansion in the wave amplitude converges 
within the third order. We know that the explosive solution given by the weakly 
nonlinear solution grows to a large amplitude beyond the applicability range of the 
analysis. In this section, a nonlinear simulation model that can deal with the parti-
cle trapping by a finite-amplitude wave is presented. The simulation model is not 
restricted by the condition 𝜔 B ≪ 𝛾 L , 𝛾 d , 𝜈, (1∕t) that is assumed for the weakly 
nonlinear theory presented in Sect. 3. On the other hand, the simulation uses a per-
turbative approach where the wave spatial profile is assumed fixed, while amplitude 
and phase of the wave and the energetic-particle nonlinear dynamics is followed 
self-consistently. The simulations based on the model clarify the saturation of the 
instability caused by the particle trapping and the spontaneous frequency chirping of 
the wave with the creation of the hole-clump structure in phase space.

4.1 � Nonlinear reduced simulation model for the bump‑on‑tail problem

Since the destabilization mechanism of Alfvén eigenmodes (AEs) is the inverse 
Landau damping, the evolution of the bump-on-tail instability is illuminating for the 
understanding of the AE evolution. In the bump-on-tail instability, an electrostatic 
wave is destabilized by energetic particles that form a bump on the tail of the distri-
bution function. If the velocity gradient of the distribution function is positive at the 
resonant velocity that is equal to the wave phase velocity, the wave grows through 
the inverse Landau damping. Berk and Breizman constructed a reduced simulation 
model to investigate the nonlinear evolution of the bump-on-tail instability (Berk 
et al. 1995). The derivation of the reduced simulation model is based on the Lagran-
gian formalism. For a one-dimensional electrostatic wave and energetic electrons, 
the reduced simulation model can be derived in a relatively simple way as follows.

Let us start with the linearized momentum equation of electron fluid and the 
Maxwell equation,

where m and −e  are electron mass and charge, n0 is the uniform equilibrium density, 
and u(x,  t) and E(x,  t) are the electron fluid velocity and the electric field, respec-
tively. We assume that the fluid velocity is zero in the equilibrium and the tempera-
ture is neglected for simplicity. We know the following solution of Eqs. (36) and 
(37)

(36)mn0
�

�t
u(x, t) = (−e)n0E(x, t),

(37)
�

�t
E(x, t) = −

(−e)n0u(x, t)

�0
,
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where � p is the electron plasma frequency, and Ê and û are real. When we consider 
energetic electrons, Eq. (37) is extended with the energetic electron current density 
j h (x, t),

When Eqs. (36) and (42) are integrated explicitly in time, the time step width is 
limited by the Courant condition for the plasma oscillation. If we assume that the 
evolution of the electric field amplitude is sufficiently slower than the plasma oscil-
lation period and the electrostatic wave is well approximated by the linear solutions 
given by Eqs. (38) and (39), we can eliminate the Courant condition for the plasma 
oscillation utilizing the linear solutions. Equations (36) and (42) are combined to the 
following equation.

We substitute the linearized solution Eq. (39) into Eq. (43). The left hand side of Eq. 
(43) is expanded in a series of �,

The second order term in � cancels out with the first term on the right hand side. 
We retain the first order terms in � , and define new variables Êcos = Ê cos(−𝛼) and 
Êsin = Ê sin(−𝛼) . Then, we have the following reduced equations.

(38)E(x, t) =
Ê

2

(
ei𝜔t−ikx+i𝛼 + e−i𝜔t+ikx−i𝛼

)
,

(39)u(x, t) =
û

2i

(
ei𝜔t−ikx+i𝛼 − e−i𝜔t+ikx−i𝛼

)
,

(40)� =� p ≡
√

n0e
2∕�0m,

(41)û = − Ê∕
√
n0m∕𝜖0,

(42)
�

�t
E(x, t) = −

1

�0

[
(−e)n0u(x, t) − j h (x, t)

]
.

(43)mn0
�2

�t2
u(x, t) = −

n2
0
e2

�0
u(x, t) −

(−e)n0

�0
j h (x, t).

(44)

− mn0𝜔
2 1

2i
û
(
ei𝜔t−ikx+i𝛼 − e−i𝜔t+ikx−i𝛼

)

+ mn0𝜔
̇̂u
(
ei𝜔t−ikx+i𝛼 + e−i𝜔t+ikx−i𝛼

)

+ mn0𝜔ûi𝛼̇
(
ei𝜔t−ikx+i𝛼 − e−i𝜔t+ikx−i𝛼

)
+ O(1).

(45)E(x, t) =Êcos cos(𝜔t − kx) + Êsin sin(𝜔t − kx),
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where we have introduced the wave damping rate �d and L is the system length. The 
advantage of the reduced model is that the time scale is the growth and damping 
times, which are longer than the wave oscillation period. Then, the reduced model 
enables simulations in a longer time than the original equations that describe the 
wave oscillation. An important property of the reduced model is that it incorporates 
the phase ( � ) evolution in addition to the amplitude evolution. Equation (44) indi-
cates that the term with the time derivative of phase ( 𝛼̇ ) is the same order of � as 
the term with the time derivative of amplitude. Then, the time derivative of phase (= 
frequency shift) should be retained together with the amplitude evolution. Another 
important property of the reduced model is that the energetic particle current j h ,cos 
and j h ,sin are divided by a factor of 2 on the right-hand sides of Eqs. (46) and (47). 
This factor appears through the mathematical derivation procedure, but physically 
indicates the equi-partition of the plasma oscillation energy to the electric field and 
the electron fluid motion.

The time evolution of the energetic particle distribution function f h (x, v, t) is 
described by the Vlasov equation, and the energetic particle current j h (x, t) is given 
by the integration of the distribution function f h (x, v, t) in velocity space

where f0(x, v) = f (x, v, t = 0) and the term with � is the Krook collision operator that 
appeared in the weakly nonlinear theory presented in Sect. 3. The Vlasov equation 
can be simulated with either Lagrangian approach (particles) or Eulerian approach. 
The particle simulation results are presented in the following subsections.

(46)
d Êcos

d t
= −

j h ,cos

2𝜖0
− 𝛾 d Êcos,

(47)
d Êsin

d t
= −

j h ,sin

2𝜖0
− 𝛾 d Êsin,

(48)j h ,cos =
2

L ∫
L

0

j h (x, t) cos(�t − kx) d x,

(49)j h ,sin =
2

L ∫
L

0

j h (x, t) sin(�t − kx) d x,

(50)
�

�t
f h (x, v, t) = − v

�

�x
f h (x, v, t) −

−e

m
E(x, t)

�

�v
f h (x, v, t)

− �
[
(f (x, v, t) − f0(x, v)

]

(51)j h (x, t) =∫
∞

−∞

(−e)vf h (x, v, t) d v,
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4.2 � Saturation due to particle trapping

Let us consider a 1-dimensional problem where the system size in x direction is 
L = 8�v t h∕� , the wave number of the wave is k = 2�∕L = �∕4vth and the reso-
nance velocity with the wave is vres = 4v t h . The energetic particle distribution is 
chosen so that the linear growth rate is � L ∕� = 2.42 × 10−2 . The time evolution of 

the electric field amplitude A =

√
Ê2
cos

+ Ê2
sin

 is shown in Fig. 4 for various cases.

Let us start with a special case for � d = 0 and � = 0 . The time evolution of the 
electric field amplitude is shown in Fig. 4a. We see in the figure linear growth, satu-
ration, and amplitude oscillation after the saturation. The saturation level A = 0.024 
gives the bounce frequency � B = 0.077 ∼ 3.2� L . Figure 5 shows the distribution 
function for the different phases of the evolution. We see the vortex structure forma-
tion in phase space that indicates the particle trapping by the wave. This leads to 
the saturation of the instability. The amplitude oscillation is brought about by the 
bounce motion of the trapped particles by the electric field.

4.3 � Hole‑clump creation and frequency chirping

The most surprising discovery of the nonlinear reduced simulation was the sponta-
neous formation of the hole and clump structure in phase space and the consequent 

Fig. 4   Time evolution of mode amplitude for a � d = 0 and � = 0 , b � d ∕� = 5 × 10−3 and � = 0 , c 
� d ∕� = 2 × 10−2 and � = 0 , and d � d ∕� = 2.4 × 10−2 and �∕� = 1 × 10−2 . The linear growth rate is 
� L ∕� = 2.42 × 10−2 for all the cases
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frequency chirping (Berk et al. 1997, 1998, 1999). Before this study, it was expected 
that the wave damps due to the intrinsic damping after the saturation of the instability 
was caused by the particle trapping. Figure 4b shows the result for � d ∕� = 5 × 10−3 
and � = 0 . We see in the figure the saturation of the instability and the damping of 
the wave amplitude to the noise level. This is what was expected before the dis-
covery of the hole-clump creation. However, the story is different if the damping 
rate is close to the linear growth rate. Figure 4c shows the wave amplitude evolu-
tion for � d ∕� = 2 × 10−2 and � = 0 . The damping rate ( � d ) is close to the linear 
growth rate � L ∕� = 2.42 × 10−2 . We see in the figure that the wave amplitude does 
not monotonically damp, but the time-average amplitude is kept at a constant level. 
The time evolution of the wave frequency spectrum is shown for another case with 
� d ∕� = 1 × 10−2 and � = 0 in Fig. 6. The frequency chirps both upward and down-
ward. The frequency up-shift and down-shift are associated with the formation of 
the hole and clump structure in phase space. Figure 7 shows the distribution function 

(a) (b)

(c) (d)

Fig. 5   Distribution function for � L ∕� = 2.42 × 10−2 , � d ∕� = 0 , and � = 0 at a � L t = 0 , b � L t = 15 , c 
� L t = 17.5 , and d � L t = 25
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for various moments. We see in the figure that the holes and the clumps, which are 
islands in phase space, are formed and shift to higher and lower velocities in time, 
respectively. The holes and the clumps are types of the Bernstein–Greene–Kruskal 
(BGK) solution that is consistent with the electric potential distribution. The veloc-
ity up-shift (down-shift) of the hole (clump) releases energy. The frequency chirping 
rate is determined so that the released energy balances with the energy dissipation 
due to the wave damping (Berk et al. 1999). The frequency chirping is in proportion 
to the square-root of time and given by,

An exact solution and a theoretical framework for long-time behavior of the holes 
and clumps were developed in Breizman (2010), Nyqvist et  al. (2012). A helpful 
explanation for the understanding of the frequency chirping is given in Breizman 
(2011).

The spontaneous frequency chirping takes place for both the assumed constant 
mode damping and the self-consistent damping due to heavy stabilizing species. 
Comprehensive simulation studies have been devoted to the nonlinear evolution of 
the bump-on-tail problem including the hole-clump pair creation (Vann et al. 2005; 
Lesur et al. 2009; Lilley et al. 2010). The frequency chirping of Alfvénic modes has 
been observed in many tokamak plasmas (Shinohara et al. 2002; Fredrickson et al. 
2006; Gryaznevich and Sharapov 2006).

The frequency chirping of an energetic particle mode and Alfvén eigenmodes in 
tokamak plasmas have been investigated by computer simulations, and the relation 

(52)�� = (16∕3�2)� L

√
2� d t∕3.

Fig. 6   Frequency spectrum evolution for � L ∕� = 2.42 × 10−2 , � d ∕� = 1.0 × 10−2 , and � = 0
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between the frequency chirping and the hole-clump pair creation has been discussed 
(Todo et al. 2003; Pinches et al. 2004; Zhu et al. 2013, 2016). Asymmetry between 
the upward chirping and the downward chirping are observed in the experiments and 
the simulations. The asymmetry is attributed to the non-uniform distribution of the 
free energy source (Pinches et al. 2004; Zhu et al. 2016) and to the interaction with 
the shear Alfvén continuous spectra.

The time evolution of energetic particle driven geodesic acoustic modes 
(EGAMs) is often accompanied by the frequency chirping (Boswell et  al. 2006; 
Nazikian et al. 2008; Ido et al. 2016). The frequency chirping and the sudden exci-
tation of EGAMs observed in LHD experiments were successfully reproduced by 
kinetic MHD hybrid simulations (Wang et al. 2013, 2018). Though the reduced sim-
ulation model may not be applied to the EGAMs for which energetic particles have 
the non-perturbative effects on the real frequency and the spatial profile, the creation 
of hole and clump was demonstrated for a chirping EGAM with the kinetic MHD 
hybrid simulation (Wang et al. 2013).

(a) (b)

(c) (d)

Fig. 7   Distribution function for � L ∕� = 2.42 × 10−2 , � d ∕� = 1.0 × 10−2 , and � = 0 at a � L t = 0 , b 
� L t = 100 , c � L t = 200 , and d � L t = 300
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4.4 � Effect of collisions

Next, we introduce a finite Krook collision frequency � . Figure 4d shows the result for 
�∕� = 1 × 10−2 . The linear growth rate and the damping rate are � L ∕� = 2.42 × 10−2 
and � d ∕� = 2.4 × 10−2 . The growth rate that was observed in the simulation result is 
�∕� = 5.43 × 10−4 . The normalized collision frequency is 𝜈̂ = 𝜈∕𝛾 = 18.4 . Here, we 
replaced � L − � d by � observed in the simulation. We see the steady amplitude in the 
figure. The weakly nonlinear theory predicts the steady saturation, and the saturation 
level given by Eq. (35) is A = 1.7 × 10−4 . The saturation level in the simulation result 
is A = 2.0 × 10−4 , which is in good agreement with the theoretical prediction. The col-
lision term in Eq. (50) of the reduced simulation model plays two roles, source and 
sink. The term �f  is a sink because it dissipates fine structures in phase space, while the 
term �f0 is a source because it restores the equilibrium distribution function. The steady 
state shown in Fig. 4d is established by a balance between the distribution flattening 
caused by the wave and the source and the sink provided by collisions.

5 � Energetic particle transport by Alfvén eigenmodes

The interaction between energetic particles and Alfvén eigemodes (AEs) leads to 
energetic particle transport and losses. The particle trapping by a single AE flattens 
the energetic particle spatial profile. The flattening due to a single AE takes place in 
a localized region near the resonance. When multiple AEs exist and their amplitudes 
are sufficiently high, the resonance overlap may occur leading to the emergence of 
stochasticity and the global transport. Stochasticity may arise even for a single AE 
with large amplitude. The higher-order (nonlinear, fractional) resonance discussed 
in Sect. 2 leads to the emergence of stochasticity for a single AE. Energetic particles 
may be lost when they are transported to the plasma edge or the particle orbit transi-
tions to another type of orbit with a large orbit width during the interaction with the 
AEs. Both the particle trapping and the stochasticity in phase space can lead to ener-
getic particle losses. We discuss in this section the energetic particle transport by a 
single AE and multiple AEs, and energetic particle loss.

5.1 � Energetic particle transport by a single Alfvén eigenmode

Figure 8 shows surface-of-section plots for counter-passing fast ions in the strong 
field side of a tokamak plasma for a TAE with n = 3 (Todo et al. 2003). The plasma 
center and the edge are located at R∕a = 3.2 and R∕a = 2.2 , respectively. Figure 8a 
shows the plots for the field amplitude �B∕B = 2 × 10−3 . We see islands that are the 
trapped regions by the TAE. The energetic particle distribution is flattened in the 
islands. In addition to the islands, we see a stochastic region near the plasma edge. 
The emergence of stochastic region can be understood when we investigate another 
case with lower TAE amplitude. Figure  8b shows the surface-of-section plots for 
the amplitude �B∕B = 8 × 10−4 . Now the particle dynamics hardly have any region 
of stochasticity. Instead, we see the emergence of second- and fourth-order islands 
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around R∕a = 2.27 and R∕a = 2.35 , respectively, in addition to the two first-order 
islands around R∕a = 2.22 and R∕a = 2.32 . With increasing field amplitude these 
islands overlap to eventually destroy the KAM surfaces and create the stochastic 
region that appears in Fig. 8a. The stochastic regions can be created by the overlap 
of higher-order islands of a single AE. This effect was first demonstrated by Refs. 
Hsu and Sigmar (1992), Sigmar et al. (1992). Fast ion losses by energetic particle 
driven geodesic acoustic modes through the higher-order resonance were observed 
in DIII-D experiments (Kramer et al. 2012).

Fig. 8   Surface of section plots for counter-passing fast ions in the strong field side for a tokamak 
plasma for a TAE with n = 3 when the field amplitude is fixed in time at: a �B∕B = 2 × 10−3 and b 
�B∕B = 8 × 10−4 . The plasma center is located at R∕a = 3.2 and the plasma edge at the strong field side 
is R∕a = 2.2 (Todo et  al. 2003). Reproduced from Todo et  al. 2003 2888 with the permission of AIP 
Publishing
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5.2 � Resonance overlap among multiple Alfvén eigenmodes

When multiple AEs exist, each eigenmode has trapped regions (islands) in phase 
space. The trapped regions of the different AEs may overlap each other. When 
the trapped regions overlap, the particles inside the overlapped regions can move 
around the whole of the overlapped region and their motions become stochastic. The 
surface-of-section plots presented in the previous subsection use particles with the 
same E′ value. Since E′ depends on the AE frequency and the toroidal mode num-
ber, we should make the plots separately. The surface-of-section plots for different 
AEs consist of particles with different energy and toroidal canonical momentum. 
The resonance overlap of multiple AEs cannot be discussed in an exact sense if 
we focus on the particles with the same E′ . We need to extend the analysis to two-
dimensional phase space (P�,E).

A new analysis method to distinguish resonance overlap has been developed (Todo 
et  al. 2016). In Todo et  al. (2016), fast ion transport by multiple AEs in a DIII-D 
plasma was investigated for various beam deposition power with hybrid simulations 

Fig. 9   Particle trajectories in the phase space of normalized major radius R̂ = (R − R axis)∕(R edge − R axis) 
and energy E [keV] for beam deposition power a 1.56 MW, b 3.13 MW, c 6.25 MW, and d 15.6 MW. 
Particle orbits are followed with the electromagnetic perturbations of a single TAE with fixed amplitude 
and frequency, and R̂ and E are recorded when the particle passes the mid-plane from bottom to top. The 
particles are co-going to the plasma current with the same magnetic moment which gives v∥∕v = 0.63 for 
E = 70 keV. Only the particles trapped by the TAE are plotted in the figure. The eigenmodes are repre-
sented by colors: n = 1 (blue), n = 2 (purple), n = 3 (green), n = 4 (orange), and n = 5 (red) (Todo et al. 
2016). Reproduced with permission from Todo et al. 2016 112008. Copyright 2016 IAEA Vienna
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for energetic particles interacting with an MHD fluid. The resonance regions in fast ion 
phase space was analyzed for a single eigenmode with fixed amplitude and frequency 
that are observed in the simulation results. Figure 9 shows the particle trajectories in 
the phase space of normalized major radius R̂ = (R − Raxis)∕(Redge − Raxis) and energy 
E [keV] with the AEs observed in the simulations for DIII-D experiments for beam 
deposition power (a) 1.56 MW, (b) 3.13 MW, (c) 6.25 MW, and (d) 15.6 MW (Todo 
et al. 2016). Here, P� is replaced by R̂ to clarify the spatial location. The AE amplitude 
is larger for higher beam deposition power. The particle orbits were followed with the 
electromagnetic perturbations of a single eigenmode for 2 ms, and the position in (R̂,E) 
space was recorded as each particle passed the mid-plane from bottom to top. Colli-
sions are turned off to clarify the resonance regions. The particles are co-going to the 
plasma current with the same magnetic moment which gives v∥∕v = 0.63 for E = 70 
keV. The peak of the fast ion distribution is located at v∥∕v = 0.63 . Only the particles 
trapped by the eigenmode are plotted in the figure. The time for this analysis ( = 2 ms ) 
is 1–30 times longer than the bounce period of the wave-particle trapping. The particles 
are initially located uniformly in (R̂,E) space with intervals 0.01 in horizontal axis and 
1 keV in vertical axis. The particles plotted can be regarded as resonance regions in 
phase space. The eigenmodes are represented by colors: n = 1 (blue), n = 2 (purple), n 
= 3 (green), n = 4 (orange), and n = 5 (red).

In Figure 9a for PNBI = 1.56 MW, only the resonance region of the n = 1 mode 
(blue) overlaps the resonance regions of the other modes, but the overlapped regions 
are small in the phase space. For PNBI = 3.13 MW shown in Fig.  9b, the resonance 
regions of n = 2–5 modes broaden due to the larger amplitude of eigenmodes. How-
ever, we see that gaps exist between the resonance regions of n = 5 (red), n = 4 
(orange), and n = 3 (green) for 0.4 < R̂ < 0.6 . These gaps prevent the fast ion transport 
flux from increasing. For PNBI = 6.25 MW shown in Fig. 9c, the resonance regions 
overlap substantially for 0.4 < R̂ < 0.6 . This leads to the enhancement of fast ion trans-
port flux for 0.4 < r∕a < 0.6 . The overlapped region spreads outward up to R̂ = 0.8 for 
PNBI = 15.6 MW shown in Fig. 9d, which spreads the fast ion transport flux profile up 
to r∕a = 0.8 . This analysis demonstrated that the enhanced fast ion transport observed 
in the simulations can be attributed to the resonance overlap among the multiple AEs.

The importance of the resonance overlap of the multiple AEs was first predicted in 
Berk et al. (1992), Breizman et al. (1993), Berk et al. (1995). In DIII-D experiments, 
anomalous flattening of the fast ion spatial profile was observed with a rich spectrum of 
toroidal Alfvén eigenmodes and reversed shear Alfvén eigenmodes in the current ramp-
up phase (Heidbrink et al. 2007). The electron temperature fluctuations due to the AEs 
were observed with the electron cyclotron emission measurement. The electron tem-
perature fluctuations are well reproduced by analyses based on MHD models (Van Zee-
land et al. 2006, 2009; Spong et al. 2012; Todo et al. 2015). The magnetic fluctuation 
amplitude of the AEs is of the order of �B∕B ∼ O(10−4) . Numerical analyses of the fast 
ion transport demonstrated that the multiple AEs observed in the experiment with the 
amplitude �B∕B ∼ O(10−4) bring about the significant fast ion transport and the profile 
flattening (White et al. 2010a, b). The significantly flattened fast ion pressure profile 
due to the multiple AEs was reproduced by the comprehensive kinetic-MHD hybrid 
simulations with neutral beam injection and collisions of fast ions (Todo et al. 2015). 
Experiments in the DIII-D tokamak show that fast-ion transport suddenly becomes stiff 
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above a critical threshold of beam power in the presence of many overlapping small-
amplitude AEs (Collins et al. 2016). The sudden increase in fast ion transport flux and 
its phase space dependence was also reproduced with the comprehensive hybrid simu-
lations (Todo et al. 2016). In the hybrid simulation results, monotonic degradation of 
fast ion confinement and fast ion profile stiffness is found with increasing beam deposi-
tion power. The confinement degradation and profile stiffness are caused by the sudden 
increase in fast ion transport flux that is brought about by multiple AEs for fast ion 
pressure gradients above a critical value. The redistribution of fast ion profile with mul-
tiple AEs was also observed on JT-60U tokamak (Ishikawa et al. 2005) and the Large 
Helical Device (LHD) (Osakabe et al. 2006).

5.3 � Fast ion loss

Fast ion losses induced by AEs have been measured in tokamak and stellarator/
heliotron devices with the scintillator-based detectors (Darrow et al. 1997; Weller 
et  al. 2001; Isobe et  al. 2006; Pinches et  al. 2006; Darrow et  al. 2008; García-
Muñoz et al. 2010; Van Zeeland et al. 2011; Ogawa et al. 2012). The lost particles 
measured by the detectors on the tokamaks are mainly trapped particles that were 
originally counter-passing particles to the plasma current, lost energy due to the 
interaction with the AEs, and became trapped particles. Since the orbit width of 
trapped fast ion is large in the present devices, the trapped fast ions may reach 
the fast ion loss detectors located outside the plasma. We discussed this particle 
loss mechanism for Fig.  1b in Sect.  2. For the LHD experiments, the lost fast 
ions measured with the detector were co-passing particles and transition particles 
(Ogawa et al. 2012).

Two types of fast ion loss have been observed. The fast ion loss rate of the first 
type is linearly proportional to the AE amplitude, while the second type has a quad-
ratic dependence on the AE amplitude (García-Muñoz et  al. 2010; Ogawa et  al. 
2012). The fast ion loss signal for the first type oscillates with the same frequency 
as that of the AE(García-Muñoz et al. 2010). In test particle simulations where the 
AE amplitude and the frequency are assumed to be constant, the quadratic depend-
ence of fast ion loss rate on the AE amplitude was predicted when stochasticity 
emerges in phase space (Sigmar et al. 1992). The first type of fast ion loss is related 
to convective transport and the second type is called diffusive transport. Both the 
linear and the quadratic dependences were reproduced by test particle simulations 
(Van Zeeland et al. 2011; Ogawa et al. 2012). Reduced simulations of multiple AEs 
(Schneller et al. 2013) and hybrid simulations for the bursting evolution of multiple 
AEs (Todo et  al. 2012) reproduced the quadratic dependence of the fast ion loss 
rate on the AE amplitude. We can attribute the first type of fast ion loss to a single 
low-amplitude AE without stochasticity in phase space and the second type to a sin-
gle large-amplitude AE with stochasticity or multiple AEs with resonance overlap 
which generates stochasticity.

However, we should notice that fast ion transport flux is based on the product of 
the perturbed distribution function ( �f  ) and the radial particle velocity perturbation 
( �E + v∥�� ). Neither the phase space analysis such as the surface-of-section plots 
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nor the test particle simulations consider the effect of �f  whose evolution should be 
consistent with that of the AEs. The two types of fast ion response to an EPM were 
observed with the directional Langmuir probe located inside the plasma of the Com-
pact Helical System (CHS) (Nagaoka et al. 2008). The first type of response oscil-
lates with the same frequency as that of the EPM and is linearly proportional to the 
EPM amplitude, while the second type has zero frequency and is proportional to the 
square of the EPM amplitude. It was clearly demonstrated that the phase difference 
between the first type of response and the EPM generates a net transport of fast ions 
(Nagaoka et al. 2008). When we consider a single AE destabilized by fast ions, the 
perturbed distribution function is given by an equation similar to Eq. (16) where the 
linear and the quasi-linear responses of the fast ion distribution function are given 
by f1 and f0 , respectively. We know in Eqs. (16), (23), and (28) that f1 oscillates 
with the same frequency as that of the AE and has linear dependence on the AE 
amplitude, and the frequency and the dependence on the AE amplitude of f0 is 0 and 
quadratic, respectively. These are the general properties of the wave-particle interac-
tion and the same as those observed with the fast ion loss detectors and the direc-
tional Langmuir probe, but are not related to the emergence of stochasticity. More 
works would be needed to conclude the relationship between the fast ion transport 
processes and the fast ion loss measurements.

6 � Discussion and summary

We have explained the basics of the interaction between energetic particles and 
Alfvén eigenmodes (AEs), which is an important research issue for burning plas-
mas. Experimental, theoretical, and computational studies of the interaction have 
been extensively conducted. The various types of time evolution of AEs such as 
steady state, frequency splitting, frequency chirping, and recurrent bursts have been 
observed in the experiments in tokamak and stellarator/heliotron plasmas. Berk and 
Breizman presented both a one-dimensional weakly nonlinear theory for marginal 
stability and a reduced simulation model that qualitatively explain the various types 
of time evolution. The fast ion profile flattening and losses brought about by AEs 
have been also measured in the experiments. These experimental results promoted 
the development of theory and computer simulation, especially the extension with 
source (NBI, ICRF, and birth of alphas in future work) and sink (collisions and 
losses). When we turn our eyes on the academic aspects, the AE instability is a kind 
of inverse Landau damping that is the fundamental research subject of plasma phys-
ics. We can say that the studies of AEs have pioneered a new frontier in plasma 
physics on the nonlinear evolution of (inverse) Landau damping with source and 
sink.

Let us discuss the limitations of Berk–Breizman’s reduced simulation model 
and the future works. In this article, we focused on the nonlinear wave–particle 
interaction and neglected the nonlinear “wave–wave” interaction. The author and 
his collaborators performed the first numerical demonstration of TAE bursts with 
parameters similar to a TFTR experiment (Wong et  al. 1991) using the reduced 
simulation model presented in section 4, and reproduced many of the experimental 
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characteristics (Todo et  al. 2003). However, the saturation amplitude of the mag-
netic field fluctuation normalized by the toroidal field was �B∕B ∼ 2 × 10−2 , which 
is higher by one order of magnitude than the value �B∕B ∼ 10−3 inferred from the 
experimental plasma displacement measurements (Todo et  al. 2003; Durst et  al. 
1992). In the simulation of Ref. (Todo et al. 2003), the only nonlinearity retained 
was the nonlinearity in the energetic-particle orbits, while the nonlinear MHD 
effects were neglected. The nonlinear MHD effects on the evolution of a TAE was 
carefully investigated, and it was found that the energy transfer from the TAE to 
the nonlinearly generated zonal modes with toroidal mode number n = 0 and to the 
higher harmonics reduces the saturation level of the TAE (Todo et al. 2010, 2012). 
The zonal flow generation induced by AEs was first found in a gyrofluid simulation 
(Spong et al. 1994) and was found also in gyrokinetic simulations (Zhang and Lin 
2013; Biancalani et al. 2016). Theory of the zonal flow generation by TAE has been 
also developed (Qiu et al. 2016).

Another important missing subject in this article is the energetic particle modes 
(EPMs) for which energetic particles play an essential role on the mode frequency 
and the spatial profile. When the energetic particle distribution is modified by EPMs, 
the frequency and the spatial profile of the EPM are also modified. The reduced 
simulation model presented in Sect.  4 cannot be applied to EPMs. The reader is 
referred to a review article that discusses EPM in detail (Chen and Zonca 2016). 
Comprehensive kinetic MHD hybrid simulations have been performed for EPMs in 
JT-60U plasmas (Bierwage et al. 2014, 2018). For the evolution of EPM, the inter-
action with the shear Alfvén continuous spectra is also an essential issue. The inter-
action with the shear Alfén continuous spectra affects also the time evolution of the 
gap modes such as TAE and RSAE when they have the continuum damping and/
or the chirping frequency hits the continuum. A theoretical model of the frequency 
chirping of AEs with the interaction with shear Alfvén continua has been developed 
(Wang and Berk 2012).

An interesting correlation between the amplitude and the chirping frequency of 
TAE was observed in NSTX experiments (Podestà et al. 2011). A similar correla-
tion was observed for BAE in gyrokinetic simulations (Zhang et al. 2012). Even for 
AEs whose frequency is located inside the continuum gap, it has been pointed out 
that energetic particles have non-perturbative effects on the mode spatial profile and 
the real frequency (Breizman et al. 2003; Todo et al. 2005; Wang et al. 2013). These 
modes cannot be simulated with the reduced model. Kinetic-MHD hybrid simula-
tions (Park et al. 1992; Spong et al. 1992; Todo et al. 1995; Briguglio et al. 1995; 
Todo and Sato 1998; Wang et al. 2010; Zhu et al. 2016) and gyrokinetic simulations 
(Mishchenko et al. 2009; Lang et al. 2009; Zhang et al. 2010; Bass and Waltz 2010) 
will be powerful tools to reproduce and predict the nonlinear behaviors of energetic 
particles and Alfvénic modes beyond the limitations of the reduced simulation.
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