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Abstract

The line-haul feeder vehicle routing problem (LFVRP) is a rather new and therefore hardly investigated problem and can be
seen as vehicle routing problem with synchronisation constraints. Synchronisation takes place if two or more vehicles (small
and large vehicles) meet at the same place and at the same time and perform a transshipment of goods. Small vehicles are
used to serve customers which are difficult to access (e.g. due to traffic jams, narrow streets or limited parking space). The
downside is their limited capacity. To avoid the journey back to the depot, the small vehicle can meet with a large vehicle
at a customer with enough space for reloading. Thus, the small vehicle uses the large vehicle as virtual depot and is able to
save time and reduce costs. In Brandstitter and Reimann (Eur J Oper Res 270:157-170, 2018), we already introduced two
promising solution approaches to master the LFVRP—the Linkage- and Split-Approach. Both approaches were shown to
find high-quality solutions in short time. Moreover, we demonstrated the advantage of the LFVRP strategy when compared
with the heterogeneous fleet vehicle routing problem. With this paper, we propose and justify several improvements to our
original algorithms. These include the application of Ant Colony Optimization, different local search operators, as well as the
exact solution of a sub-problem. To highlight the performance contribution of these modifications, we perform a thorough
and extensive computational experiment. We evaluate each algorithmic component individually as well as their combination
and statistically validate the benefits. Overall, we find that the final algorithm improves our previous approaches by almost
9% at a computational cost of a few seconds.

Keywords Vehicle routing problem - Synchronisation - ACO - Metaheuristics - Matheuristics - Multiple solutions -
Local search

1 Introduction

The influx of new residents is a common phenomenon for
major cities around the world. According to statistics from the
United Nations [46], European cities like Stockholm (27%),
Madrid (20%), Munich (20%) or London (19%) will have an
increase in population of more than 20% (from 2005) until
2020. With more and more people living in the city centre,
new challenges for city logistics arise. Some of these chal-
lenges are increasing demands, crowded streets with hardly
any parking space and also increasing land prices for buying
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or renting space. Thus, a depot located far outside of town
might be considered as well as the use of smaller vehicles.
However, smaller vehicles do also have alimited capacity and
more vehicles need to be dispatched from the depot which
will result in higher costs.

Another prominent problem is the particulate matter pol-
lution, which is addressed, especially by environmental and
governmental institutions (see [22]). Their aim is to hold or
better reduce the level of pollution to a minimum. Hence,
some governmental institutions (e.g. in Germany—Stuttgart
and Munich) plan to ban motorised vehicles on several days
if a critical pollution level is reached. The ban will be relevant
for vehicles that do not meet certain emissions standards (e.g.
Euro 6). In other words, most city logistics companies will
not be allowed to deliver goods with motorised vehicles on
days with a high particulate matter level. In conclusion, city
logistics companies will have to master the before mentioned
challenges to maintain their competitive edge.
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Besides the challenges for city logistics, new opportuni-
ties for vehicle routing research arise as well. New problems
will be defined and analysed so that the findings can be used
by city logistics companies to remain competitive. One of
these problems is the line-haul feeder vehicle routing prob-
lem (LFVRP) which can be described as follows. The LFVRP
consists of a single physical depot (PD), a set of customers
with different characteristics in terms of parking space and
a heterogeneous fleet of vehicles. The heterogeneous fleet
uses two types of vehicles which are dispatched from the
PD. The two vehicle classes used are categorized in terms
of size, costs and vehicle load. Specifically, the large vehi-
cle (LV) class is represented by a truck with a trailer and the
small vehicle (SV) class can be a (electric) car, motor-bike or
cargo bike. Furthermore, the majority of customers (type-2)
can only be delivered by the SV class, whereas the remaining
customers (type-1) can be delivered by both vehicle classes.
The downside of using a smaller vehicle class is the limited
capacity. Consequently, the smaller vehicles would need to
return to the depot more often for reloading. To avoid trav-
elling back to the depot, the small vehicle can meet with a
large vehicle at a customer with enough space (type-1) for
reloading (transshipment of goods). Thus, the large vehicle
is acting as a virtual depot (VD) for the small vehicle class.
However, both vehicles need to be at the same place at the
same time to be able to perform a transshipment of goods. In
other words, both vehicle tours need to be synchronised and
therefore the LFVRP can be seen as a VRP with synchroni-
sation constraints.

The purpose of this paper is to improve our previously
presented heuristic approaches (see [5]) by combining the
principles of metaheuristics (particularly Ant Colony Opti-
mization), the exact solution of a sub-problem, the systematic
use of multiple solutions and local search. We will present
the improvement for each step supported by numerical
results and also provide a statistical analysis to validate our
approaches. The remainder of this paper is organized as fol-
lows. In Sect. 2, we will conduct a literature review on the
methods used to improve our heuristics. A detailed descrip-
tion of the improvement steps is presented in Sect. 3. In
Sect. 4, we will report the computational results using an
extended test instance set and conclude the paper with our
final remarks.

2 Literature review

The LFVRP originated in Taiwan during the delivery of lunch
boxes and was first introduced by Chen et al. [14]. They
presented two simple heuristics (cost-sharing and threshold
method) which were tested on 17 test instances. Chen et
al. [13] added time windows and provided a two-stage heuris-
tic by using tabu search (TS) in the second stage. The initial
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solution of the first stage was then improved by Chen and
Wang [15]. Chen [12] exchanged the original test instances
to 15 test instances derived from the well-known Solomon
instance set and analysed four different issues on the LFVRP.
These four issues were different solution algorithms, cus-
tomer demands, VD candidates and range of time windows.
However, no mathematical model formulation has been pro-
vided so far.

Brandstitter and Reimann [5] formally defined the prob-
lem and solved the problem optimally for a small number
of customers. Furthermore, they presented two promising
solution algorithms for larger problem sizes (named the
Linkage-Approach and Split-Approach) and tested them on
the original test instances provided by Chen et al. [14]. While
the Linkage-Approach tries to link SV tours through a VD,
the Split-Approach tries to split a giant tour into feasible sub-
tours. In addition, the Linkage-Approach uses a Bin Packing
Problem (BPP) strategy where the bin size is equivalent to
the maximum allowed working time. Other well-known bin
packing algorithms are First Fit (FF), Best Fit (BF) and Worst
Fit (WF). For these algorithms also, decreasing versions exist
(the abbreviations will be extended with the letter D: e.g. First
Fit Decreasing (FFD)). Interested readers are advised to refer
to Johnson [28], Yao [49] or Delorme et al. [19].

The synchronisation element distinguishes the LFVRPT
from other VRP variants. Yet there are some variants with
rather close similarities. One of these problems is the site-
dependent vehicle routing problem (SDVRP). The attributes
of the SDVRP are similar in terms of a mixed fleet of vehi-
cles and a predefined customer—vehicle relationship. In other
words, some vehicles can visit only a certain customer cate-
gory. For further reading on the SDVRP, the interested reader
is advised to see Chao et al. [10], Cordeau and Laporte [17]
or Pisinger and Ropke [37].

Another similar VRP variant is the vehicle routing prob-
lem with Multiple Trips (MTVRP). In the classical VRP, only
one single tour per vehicle is allowed. However, this does not
match many real-life situations. For instance, if a vehicle has
a small capacity, it can only serve a limited number of cus-
tomers. Hence, the vehicle will return to the depot early and
can possibly start another tour. Therefore, it is possible that a
vehicle performs several tours within a certain time limit. Fur-
ther information on the MTVRP can be found in Cattaruzza
et al. [8,9], Cheikh et al. [11] and Francois et al. [23]—often
the problem is also referred as Multi Trip VRP, VRP with
multiple routes or VRP with multiple use of vehicles.

The heterogeneous fleet vehicle routing problem (HFVRP)
is another similar VRP variant where at least two different
vehicle classes are used. The vehicles can differ in several
aspects like size, costs, capacity or range. An overview on
the HFVRP can be found in Subramanian et al. [45], Penna
et al. [36], Kritikos and Ioannou [31] Kog et al. [30] and Bal-
dacci et al. [3]. Earlier research with a heterogeneous fleet
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is named Fleet Size Mix (FSM) and can be found in Golden
et al. [26] or Liu and Shen [35].

Overall, there is a vast range of heuristics to solve and
improve the VRP and its variants (see [16,34]). Early heuris-
tics focused on a two-step approach that construct an initial
feasible solution in the first stage and try to improve it after-
wards. In the last two decades, the focus was primarily set on
metaheuristics and for a solid overview the interested reader
is advised to see Briysy and Gendreau [6,7].

According to Laporte [33], metaheuristics focus on three
basic principles—Ilocal search, population search and learn-
ing mechanisms. The local search principle searches the
solution space by moving to another (better) solution in the
neighbourhood at every iteration. Prominent examples are
TS (see [24,25]), simulated annealing (SA) (see [29,47]) and
adaptive large neighbourhood search (for ALNS see [41,42]).
Genetic algorithms (GA) are famous representatives of the
population search principle (see [2,39]). Here, a population
of solutions is used to create offspring by using parent solu-
tions from the population and recombining them.

A prominent representative of a learning mechanism is
ant colony optimization (ACO). The basic principle behind
ACO is to imitate the behaviour of ants during their search
for food. When ants are deployed from their home to search
for food, they lay a pheromone trail. The pheromone value of
the trail will be increased (accumulated) if another ant uses
that trail or decreased (evaporated) if no ant uses that trail.
When returning home, an ant will choose a trail more likely
with a higher pheromone value as it indicates (a possible)
shorter trail. A successful implementation of ACO can be
found in Reimann et al. [40], and a solid overview is given
in Dorigo and Blum [21].

The research field of matheuristics is a rather young field
of research. The basic idea is to combine exact solution tech-
niques with heuristics. The result is a hybrid heuristic which
uses the benefits of both solution techniques. A recent con-
ducted survey by Doerner and Schmid [20] indicates that
existing hybrid heuristics mostly fit into three categories—
set covering, local branching and decomposition techniques.
For the improvement of our algorithm, we will use the decom-
position technique and describe it in more detail in the next
section. For further reading on matheuristics, see Boschetti et
al. [4], Subramanian et al. [45] or Archetti and Speranza [1].

Large neighbourhood search heuristics are often used to
improve the final solution. Specifically, the neighbourhood
of a solution is searched for a superior solution by using
different neighbourhood search procedures. One of these pro-
cedures is named destroy and repair. The basic concept is to
destroy the solution and repair it afterwards by alternating
some characteristics. In the literature, this is often referred to
as the large neighbourhood search and the interested reader
is advised to refer to Ropke and Pisinger [41,42] and Pisinger
and Ropke [37,38] for a solid overview.

3 Algorithm improvement

To start out, let us first formally define the LFVRP. The
LFVRP can be modelled through a graph consisting of a
set of nodes V representing one physical depot (node 0) as
well as a set of customers C—which is divided into type-1
(set A) and type-2 (set B) customers—and a set of edges E
which correspond to the travel links between any two nodes i
and j. With each edge, a travel cost ¢;; and time #;; are asso-
ciated. The customers have a demand d; and service time tiS .
Further, a fleet F of vehicles k with a max. vehicle capacity
Qk, which is also divided into small Fgy and large vehicles
Fry, is considered.

All vehicle tours must start and end at the physical depot
(PD), and the duration of each tour must be within the given
time limit. Large vehicles are only allowed to visit customers
of type-1, whereas small vehicles can visit both customer
types. Visiting the customers in the LFVRP is different than in
the usual VRP variants. Usually, customers may only be vis-
ited once, but for the LFVRP that is only true for customers of
type-2. Type-1 customers can be visited multiple times (and
by different vehicles) because they provide enough parking
space, so that a large vehicle can act as a virtual depot (VD).
In other words, a large vehicle can park at a customer of type-
1 and meet with different small vehicles to perform multiple
transshipments. A transshipment between a large and a small
vehicle requires a transshipment time of taf).

3.1 Previous work

The two LFVRP approaches we will improve are called
the Linkage- and Split-Approach. For a better understand-
ing of our different improvement steps, we will describe
the two approaches briefly. For the general introduction of
the LEVRP together with the formal definition and a more
detailed description of both approaches, the interested reader
is advised to see Brandstiitter and Reimann [5].

3.1.1 Linkage-Approach

The Linkage-Approach consists of four different steps. In the
first step, we create a VRP solution for all type-2 customers
by using Solomon’s I1 heuristic (see [44]: witha = 1, A =2
and u = 1). In the next step, we try to link the existing tours
through a potential VD—customer of type-1—or the PD. A
linkage will be accepted if the resulting costs are less than
the sum of the initial costs. That step will be repeated until
no further linkage is possible. For a better understanding, we
provided a small illustrative example in Fig. 1.

Let us assume that the VRP solution of Solomon’s I1
heuristic is two SV tours: SV Tour I and SV Tour 2. We
now try to link the two tours through a VD. In other words,
the two edges e4 pp and epp 5 will be replaced by es vp
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Fig.1 First two steps of the basic Linkage-Approach

and ey p 5. The two tours will be linked because the overall
costs for using a VD are less than driving back to the PD
(ca,vp +cvp5 < capp + cpp,s5). Consequently, we get
one single SV tour (SV Tour 1’) with a VD in place to satisfy
all the necessary constraints. In our example, we have only
considered the forward version of the SV tours. Neverthe-
less, we can also consider the backwards version of the tours
because we are not considering time windows yet. Hence,
four possible tour combinations will be checked for feasibil-
ity.

In the third step, we create the LV tours. To make a trans-
shipment possible, the small and large vehicle need to be at
the same place at the same time. If tours are linked through a
VD in the second step, the time and place for the transship-
ment is already set. Therefore, we sort all inserted VDs in
their chronological order and insert them into the LV tours.
In the final step, the remaining customers of type-1 will be
inserted according to Solomon’s I1 heuristic.

3.1.2 Split-Approach

The Split-Approach differs from the Linkage-Approach only
in the first two steps. In the first step, we will solve the TSP
instead of the VRP for all type-2 customers. The result is one
giant tour because we neglect the capacity and time constraint
for now. In the next step, we try to split the giant tour into
feasible sub-tours. We start by selecting a split position in the
giant tour where the time constraint (maximum allowed tour
length) is satisfied. However, selecting the split position is
not enough, as the capacity constraint needs to be satisfied as
well. Hence, we calculate the required number of reloads and
insert all necessary VD or PD visits at all feasible positions.

@ Springer

If no feasible sub-tour solution is found, the split position
will be moved to the previous customer. Now, the required
number of reloads is recalculated and the insertion of the VD
or PD visits is started again. That procedure will be repeated
until a feasible solution is found. The sub-tour solution with
minimum resulting costs will be split from the giant tour
and that procedure will continue until no more split or VD
insertion is necessary. To get a better understanding of the
Split-Approach, a small illustrative example is provided in
Fig. 2.

Here, the result of the first step is a giant tour with 8
customers. The split position where the time constraint is
satisfied is marked between customers 4 and 5. To satisfy
the capacity constraint, one reload (VD) is necessary and
will be inserted between customers 1 and 2, customers 2
and 3 (remove edge e 3 and add edges ez vp and ey p3)
or customers 3 and 4. In our example, the VD position with
the minimum cost is between customers 2 and 3. Hence, the
sub-tour PD - 1 - 2 - VD - 3 - 4 - PDis
split from the giant tour. The remaining giant tour is now
PD - 5 —- 6 - 7 — 8 — PD and requires only
one reload to become feasible. Thus, a VD will be inserted
between customers 6 and 7. As a result, the giant tour was
split into two sub-tours with one inserted VD each.

3.2 Improvement approach

Our improvement approach will feature the benefits from
metaheuristics, matheuristics, generating multiple solutions
and local search. For a better understanding of the different
strategies, we provide a comparison in Fig. 3. The four-step
benchmark algorithm, which was briefly described before,
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is presented on the left-hand side, whereas the improvement
approach is presented on the right-hand side.

The improvement approach can be summarized as fol-
lows. We used a metaheuristic (ACO) in the first step to
improve our initial solution. In the next step, we solved
the SV tours (Linkage-Approach) and the giant tour (Split-
Approach) optimally by using a mathematical problem
solver. Afterwards, we generated multiple solutions by con-
sidering forwards and backwards versions of the tours along
with the first and second best choice for a transshipment
customer. Furthermore, we adapted and applied some well-
known BPP strategies but only for the Linkage-Approach.
After that, we generated the LV tours and chose the best
solution (minimum cost) among all feasible solutions. In the
last and final step, we applied the principle of local search
to improve the best found solution. The pseudo-code for the
improvement approach is presented in Algorithm 1.!

Algorithm 1: Improvement Approach

1 x = 0 For Linkage-Approach | x = 1 for Split-Approach

(x € {0, 1});

if x = 0 then

solve VRP for all type-2 customers with ACO;

solve all SV tours optimally;

apply core algorithm of Linkage-Approach: Algorithm 2;
else

solve TSP for all type-2 customers with ACO;

OR solve TSP for all type-2 customers optimally;

apply core algorithm of Split-Approach: Algorithm 3;

o N R W

end
for all small vehicle tours do

—
-

12 insert all VDs into LV tours in chronological order;

13 insert all remaining type-1 customers into SV/LV tours;
14 solve all LV tours without synchronization optimally;

15 store solution in sol;

16 end

17 choose the best solution (min cost) among all solutions (sol);
18 apply local search procedure: Algorithm 4;

If we have a look at the improved approach in Fig. 3, we
can see that the complexity of the algorithm increased sig-
nificantly. Thus, we will describe each improvement strategy
in more detail to better understand the interaction between
them.

3.3 Metaheuristics strategy (ME)

In the first step of the benchmark algorithm, a VRP solu-
tion for the Linkage-Approach and a TSP solution for the
Split-Approach for all type-2 customers were generated. Con-
sequently, our first aim is to improve the VRP/TSP solution

1 If the matheuristic strategy is enabled within the Splir-Approach
(marked with * in Fig. 3), the metaheuristic strategy becomes obso-
lete because the giant tour can be solved optimally.
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and for that more than half a century of scientific research is
at our disposal (see [33]).

As metaheuristics are among the most promising algo-
rithms (see [16,33]), we decided to use a metaheuristic to
improve the solution quality of the first stage. We tested dif-
ferent metaheuristics (GRASP, TS and ACO) but with no
significant difference in terms of solution quality. Due to
earlier positive experience (e.g. [40,43]), we decided to use
ACO for our first improvement measure. We used the ACO
implementation for the vehicle routing problem with time
windows (VRPTW) of Senarclens de Grancy [43] with slight
adjustments. For instance, we had to disable the capacity and
time limitation to gain the TSP tour for the Split-Approach,
but for a better understanding, we will describe the ACO
metaheuristic in more detail.

The basic concept of ACO is to imitate the behaviour of
real ants during their search for food. The chosen path of
an artificial ant is—from a VRP perspective—the series of
chosen edges between the customer nodes. Thus, feasible
paths (solutions) for a number of artificial ants (m) are gen-
erated by applying the principle of Solomon’s I1 heuristic.
More specific, all vehicle tours are constructed sequentially.
A seed customer is selected and inserted between the start-
and end-depot which results in one route with a single cus-
tomer. After the seed customer was inserted to the route, the
other customers are inserted afterwards until no further fea-
sible insertions (in terms of tour duration and capacity) are
possible. In that case, a new route is started with a new seed
customer and the insertion procedure is repeated until all
customers are serviced. To select a customer, the ACO meta-
heuristic uses a probabilistic choice. The probability Pji; of
inserting customer k between customers j and / is:

K jki

D il ki

where («) represents the attractiveness for inserting a cus-
tomer and [ the set of possible insertions. As described
before, the construction heuristic requires two types of deci-
sions. First, the attractiveness of selecting a seed customer is
calculated as:

ey

P =

Kjkl = Cjk(Tjk + Tht) )

In Equation (2), j and [ represent the start- and end-depot,
¢ jk the travel time/cost between the depot and the seed cus-
tomer and (7) the pheromone level of the respective edge. If
aroute is already initialized with a seed customer, additional
customers can be added as long as feasibility is observed.
Therefore, the second decision considers the insertion of a
customer to an already existing route. The attractiveness for
inserting customer k between customers j and / is therefore
calculated as:
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1
P — 3
Kk COStjkl )

3iki Tkl ifd <0
Siki/Tin else

“

CoStjkl

The costs of insertion are calculated as the additional dis-
tance costs djx = cjk + cu — cj; — 2cor multiplied by
the pheromone trail value T = T’éj_lr” if §ji < 0. Oth-
erwise, the additional distance costs V\;ill be divided by the
pheromone trail value (see Equation (4)). To avoid a division
by 0, the costs of insertion are normalized (cost k).

After afeasible solution is found for every artificial ant, the
firstiteration is finished. Now the pheromone level (7) of each
edge is updated (increased if an edge is used or decreased
if not used) and the next iteration starts. Prior to the first
iteration, the pheromone levels are initialized with the value
1.

Tjj=1,for(i,j) € E (@)

After each iteration, the pheromone levels are updated
using the following update rule:

Tij = Tijp + (1 — p) At (6)

If an artificial ant uses an edge, the pheromone level of
that edge will be increased. However, pheromone evaporates
over time which results in a reduction in the pheromone level.
That characteristic will be considered with the pheromone
persistence factor (p). To update the pheromone level, it
will be multiplied with the pheromone persistence factor and
increased by (1 — p) if the edge ¢;; is used (At;; = 1) within
the global solution. Once the pheromone level is updated
the construction heuristic starts again using already the new
information about the previous chosen paths. That procedure
will continue until a certain stopping criterion is reached—
maximum number of iterations or time limit reached. In the
last step, a local search procedure is applied to improve the
best found solution. For more detailed information about
the design of the used metaheuristic (ACO),2 the interested
reader is advised to see Senarclens de Grancy [43].

3.4 Matheuristics strategy (MA)

After improving the starting solution with ACO, we applied
a matheuristic strategy to further improve the solution.
Specifically, we used the decomposition technique where

2 The configuration details for our algorithm are as follows: (i) stochas-
tic Solomon: seed customer = random, o« = 1, A = 2, u = 1; (ii) ACO:
no. of ants = dynamic, p = 0.975, runtime limit: 3 sec./instance; (iii)
local search: enabled—3 operators: shake-reduce, exchange and relo-
cate.

a (smaller) sub-problem is extracted from the main prob-
lem. The sub-problem can then be solved optimally by using
a mathematical problem solver. In the LFVRP context, the
SV tours of the Linkage-Approach and the giant tour of the
Split-Approach are considered as sub-problems. Therefore,
for both approaches a sub-problem is one single tour with a
limited no. of customers. In other words, we need to solve
the Traveling Salesman Problem (TSP: see [18,32]). As the
sub-problems can be considered rather small (only a few cus-
tomers per tour), the TSP is solved rather quickly—far less
than 1 second for the Linkage-Approach and less than 3 sec-
onds (for 100 customers) for the Split-Approach. Thus, we
also applied the matheuristic strategy to the LV tours, but
only those with no synchronisation between vehicles. That
is because the time and location of the VDs in the LV tours
are already predefined by the SV tours. Hence, we have to
accept possible detours of the LV to preserve the synchronisa-
tion between the vehicles. To solve the sub-problems we used
the formulation of Dantzig et al. [18] with the sub-tour elim-
ination constraint (SEC) Ziﬁjes’i# xij <18S|-1, VSC
V., § # 0. The TSP was then solved with the software Gurobi
Optimizer.?

3.5 Multiple solutions strategy (MS)

In Sect. 3.1, we already presented the original designed
strategies for the Linkage- and Split-Approach. However, the
final solution of both approaches usually has one or more
VD visits. In other words, small and large vehicle tours are
synchronized and therefore interdependent. Due to this inter-
dependence, itis rather difficult to apply an improvement step
at the end of the algorithm. Therefore, we decided to apply a
multiple solution strategy and choose the best solution among
them.

For the Linkage-Approach, we will use the concept of bin
packing strategies, whereas for the Split-Approach multiple
solutions will be generated for every tour split. As we do
not use time windows, we can consider all SV tours in both
directions—forwards (FW) and backwards (BW). Further-
more, we will also choose the first and second best fit for a
VD. To get a better understanding of both strategies, we will
describe both of them in more detail.

3.5.1 Linkage-Approach

As mentioned before, we used the basic concept of the three
most common bin packing strategies named First Fit (FF),
Best Fit (BF) and Worst Fit (WF). For these strategies, also
decreasing versions exist where all elements are first sorted
in decreasing order before the bin packing strategy starts. For

3 Version 6.5.1: for detailed information please refer to Gurobi Opti-
mization [27].
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our algorithm, the maximum tour duration is equal to the bin
size in the bin packing strategy. In the decreasing version,
the tours are sorted according to their tour length. How these
strategies are applied to our algorithm will be described in
the following paragraphs.

The FF algorithm takes the first SV tour and tries to link it
with the second through a potential VD or PD. As mentioned
before, not only the forwards but also the backwards version
of the tours is checked. Therefore, for two tours we already
have to consider four combinations. These combinations are
presented in Fig. 4. In our example, we have four SV tours
and the first tour cannot be linked with another tour. There-
fore, the second tour will be checked for a possible linkage.
A linkage with the third tour would exceed the maximum
allowed tour duration and therefore we check the possible
linkage with the fourth tour. The forwards and backwards
versions of the second tour will be checked with the forwards
and backwards versions of the fourth tour—thus four com-
binations. These four combinations will be checked with the
best and second best VD in terms of detour, which means that
finally 8 combinations are possible. If more combinations are
feasible, the combination with the minimum resulting costs
will be considered. The two tours will be linked together if
the resulting costs are less than the separated tours together
and are henceforth considered as one single SV tour. How-
ever, in the FF algorithm we do not check the other tours if
a linkage of two tours is already possible. The first feasible
linkage will be accepted and thus first fit. That procedure
will repeat until all tours are checked and no further linkage
is possible.

The BF/WF algorithm follows the same principle as the
FF but with one exception. The linkage of a tour is checked
with all existing tours. Therefore, if we consider our example
from before, we have 16 possible tour combinations. Both
tours (SV Tour 2 and SV Tour 4) as starting tour with for-
wards and backwards consideration and also the check with
best and second best VD. Again, the linked tours must be
feasible together and depending on the bin packing strategy
the best/worst combination will be considered.

However, we had to adjust the bin packing strategies
slightly. We cannot simply add the total travel times of the
tours because we have to eliminate the travel time from the
last customer of the first tour to the PD and the travel time
from the PD to the first customer from the second tour. In
exchange for that, we have to add the travel times from and
tothe VD as well as the transshipment time (t$ %). Finally, the
combined tour duration must fit into the time limit. Let j (k)
denote the last (first) customer on the first (second) tour. Fur-
ther let +5V! and #5V? denote the durations of the two tours
and let 3V denote the new travel time of the linked tour.
The two resulting equations are presented in Eqgs. 7 and 8§,
respectively.
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ISV — tSVl _ tj,PD + tj,VD + ISV2
TS
—tppi+tvpi +typ @)
3V < driver working time (8)

If we look again at our example in Fig. 4, the first linkage
to be considered would be the forwards consideration of SV
Tour 2 and SV Tour 4. The new tour duration of the linked tour
is calculated in Eq. 9, and if Eq. 10 is satisfied, the linkage is
feasible for further consideration.

SV SV2
t =1 _IIZ,PD+t12,VDl
NZ TS
+1 —1pp,19 +1typl 19 + 1y, ©)
3V < driver working time (10)

To sum up, we use our original proposed strategy together
with three most common bin packing strategies with ran-
dom and decreasing order of the initial solution and also a
forwards and backwards consideration of our tours. In addi-
tion, we also take the first and second best transshipment
customer (VD) into consideration. As a result, we gener-
ate multiple solutions for the synchronisation with the LV
tours. The pseudo-code for the core algorithm of the Linkage-
Approach is presented in Algorithm 2.

Algorithm 2: Core algorithm for the Linkage-
Approach
1 for first, second best VD or PD do

2 for original and all BPP strategies do
3 while SV tours can be linked through a transshipment
do
4 if linkage is feasible (depending on the strategy)
then
5 link tours with a VD/PD;
6 else
7 | continue;
8 end
9 end
10 save solution temporarily;
11 end
12 end

3.5.2 Split-Approach

For the Split-Approach, we also applied the principle of a
multiple solution strategy by considering the forwards and
backwards versions of the giant tour and of the sub-tours,
respectively. In addition, we generate solutions with the first
and second best VD as transshipment customer. For a better
understanding, we provide a small illustrative example in
Fig. 5.
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Fig.4 Linkage-Approach multiple solutions

A giant tour with 14 customers will be split after the first
five customers. For simplification, we make the following
assumption. Split Tour 1 has already inserted all necessary
VDs to become feasible (as provided in Fig. 2). The remain-
ing giant tour (Giant Tour’) is still not feasible and therefore
needs to be split again. However, from this point we have to
consider the forwards (FW) and backwards (BW) versions of
Split Tour I and also of the remaining giant tour (Giant Tour’
FW and Giant Tour’ BW). In other words, at this point we
have four possible combinations. But now we have to split
the forwards version of the remaining giant tour into Split
Tour 2 and Split Tour 3 as well as the backwards version into
Split Tour 2’ and Split Tour 3.

Figure 5 shows a giant tour with the necessary split
positions. Thus, we have three SV tours for consideration.
However, multiple combinations of these three tours are pos-
sible. For example, if we consider only the forwards version
of the initial giant tour, we get 16 temporary solutions. These
16 solutions are as follows:

Split Tour 1 FW + Split Tour 2 FW + Split Tour 3 FW
Split Tour 1 FW + Split Tour 2 FW + Split Tour 3 BW
Split Tour 1 FW + Split Tour 2 BW + Split Tour 3 FW
Split Tour 1 FW + Split Tour 2 BW + Split Tour 3 BW
Split Tour 1 FW + Split Tour 2° FW + Split Tour 3° FW
Split Tour 1 FW + Split Tour 2° FW + Split Tour 3° BW
Split Tour 1 FW + Split Tour 2° BW + Split Tour 3° FW
Split Tour 1 FW + Split Tour 2° BW + Split Tour 3° BW
Split Tour 1 BW + Split Tour 2 FW + Split Tour 3 FW

e Al i

10. Split Tour 1 BW + Split Tour 2 FW + Split Tour 3 BW
11. Split Tour 1 BW + Split Tour 2 BW + Split Tour 3 FW
12. Split Tour 1 BW + Split Tour 2 BW + Split Tour 3 BW
13. Split Tour 1 BW + Split Tour 2° FW + Split Tour 3 FW
14. Split Tour 1 BW + Split Tour 2° FW + Split Tour 3° BW
15. Split Tour 1 BW + Split Tour 2° BW + Split Tour 3 FW
16. Split Tour 1 BW + Split Tour 2° BW + Split Tour 3° BW

If we also consider the backwards version of the initial
giant tour and the second best choice as VD, we will be
able to generate 64 temporary solutions. These temporary
solutions are the result of the multiple solution generation of
the Split-Approach and will be used for further processing.
One final remark, in our example we assume that all split
tours have at least one VD inserted. Hence, we consider the
forwards and backwards versions of the tours. However, if a
split tour is feasible without the necessity of inserting a VD,
the backwards version must not be considered because that
tour is independent from the others. Thus, the forwards and
backwards versions of that tour will result in the same final
solution from a cost perspective. In Algorithm 3, we present
the pseudo-code for the core algorithm of the Split-Approach.

3.6 Local search strategy (LS)
After generating multiple solutions for the SV class, the LV

tours for all solutions are constructed by applying the same
two steps as in the benchmark algorithm—sort all VDs in
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Algorithm 3: Core algorithm for the Split-Approach
for first, second best VD or PD do

1
2 for giant tour forwards and backwards do
3 while giant tour is infeasible do
4 while sub-tour is infeasible do
5 for sub-tour forwards and backwards do
6 if a feasible solution is found then
7 insert VD/PD visits and save
solution in temp_sol;
8 else
9 | continue;
10 end
11 end
12 end
13 end
14 end
15 for all possible combinations in temp_sol do
16 generate all SV tour combinations and save
temporarily;
17 end
18 end

chronological order, insert them into the LV tours and insert
all the remaining type-1 customers into the SV or LV tours.
As mentioned before, LV tours without synchronisation will
be solved optimally and the final solution will be saved tem-
porarily.

Even though we already improved our solution in the pre-
vious steps, we believe we can still further improve our
algorithm by the use of local search (LS). Although the
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Split Tour 2/ Split Tour 3’

used local search procedure for our algorithm was originally
developed for the Linkage-Approach, it is also applicable for
the Split-Approach. The basic principle of local search is to
explore the solution space within the neighbourhood of the
current solution. Hence, we apply the local search procedure
on the best found solution with minimum costs.

The applied local search procedure can be described as
follows. We start by selecting the first SV tour with at least
one transshipment customer (VD) and free all VDs from that
tour and those from the associated LV tour. Afterwards, we
destroy the remaining LV tour completely. In other words, all
previously serviced customers (customers of type-1) of the
LV tour are again unserviced. In the next step, we apply the
matheuristics principle from the second improvement step to
the selected SV tour and solve the routing optimally. After-
wards, we apply the core element of the Split-Approach to
that tour. Contrary to the original core element of the Split-
Approach, we consider now all possible VD insertion places
that lead to a feasible tour. In other words, we search the solu-
tion space by generating again multiple solutions and choose
the best solution among them. In Fig. 6, we provide a small
illustrative example for a better understanding.

In our example, the best found solution has one SV and
LV tour with one VD (see Fig. 6a). We now free the VD from
both tours, destroy the LV tour so that all four (type-1) cus-
tomers are unserviced again and solve the SV tour (TSP for
customers 1,2,3 and 4) optimally. The result of these three
steps is presented in Fig. 6b. After that, we apply the core-
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algorithm of the Split-Approach and generate solutions for
all three possible VD insertion places (between customers 1—
2, 2-3 and 3-4; see Fig. 6¢). If a superior solution is found,
the current solution will be replaced and the LS procedure
continues. That procedure will be repeated for all synchro-
nized SV tours and the algorithm ends. The pseudo-code for
the local search procedure is presented in Algorithm 4.

Algorithm 4: Core algorithm for the local search pro-
cedure
1 for all synchronized SV tours do

2 free all VDs from the selected SV and associated LV tour;

3 destroy associated LV tour and mark the customers
unserviced;

4 apply matheuristics to the selected SV tour;

wn

apply the core element of the Split-Approach and generate
for all feasible solutions a final solution;

6 search among all found solutions by the LS procedure;
7 if a superior solution is found then
8 \ accept current solution as best found solution;
9 else
10 | continue;
11 end
12 end

4 Computational results

The coding was done in programming language C and com-
piled with GNU GCC Compiler on a 4 * Intel® Core™
i7-5557U0 CPU @ 3.1 GHz processor and 16 GB DDR3

SV Tour”™’

LV Tour™”

(¢) solutions found with LS

RAM (1.6 MHz) under a 64-Bit Operating System (Kubuntu
14.04). For the mathematical problem solver, we used the
optimization software Gurobi Optimizer (Version 6.5.1) and
coded the mathematical formulation of the TSP with the pro-
gramming language Python (Version 2.7.6).

4.1 Set-up

To the best of our knowledge, Chen et al. [14] and Brandstit-
ter and Reimann [5] are the sole available research papers for
the LFVRP. The Linkage- and Split-Approach of Brandstit-
ter and Reimann [5] provide superior results and therefore
we consider them as benchmark for our analysis. Yet, we
seize the opportunity to change/soften some of the limita-
tions originally made by Chen et al. [14].

The limitations for change are the service/transshipment
times, vehicle costs, average speed, depot location and set of
test instances. As for the service and transshipment times, we
will follow the approach from Brandstitter and Reimann [5]
and set the transshipment time of a complete SV load to 15
minutes and the service times in relation to the demand of
each customer. Furthermore, we will set the vehicle costs to
European standards. For the LV, we consider a truck with a
trailer with a 40t payload. The costs are as follows: €200 per
day and vehicle, fuel consumption of 351 per 100 km—which
results in €0.35/km and the drivers salary of €30 per hour.
For the SV, we consider a cargo bike with costs of €2 per day
and vehicle, €0.0/km (no fuel consumption) and the drivers
salary of €20 per hour.
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Table 1 Improvement strategy

analysis Strategy? Linkage® Split® Stat. comp.©
No. ME MA MS LS Solomon Chen Total Solomon Chen Total p value
1 0 0 0 0 1981 2375 2197 2013 2508 2285 0.03
2 0 0 0 1 1888 2341 2137 1970 2430 2223 0.00
3 0 0 1 0 1861 2281 2092 1954 2423 2212 0.00
4 0 0 1 1 1829 2279 2076 1926 2407 2190  0.00
5 0 1 0 0 1941 2347 2164 1960 2414 2209 037
6 0 1 0 1 1879 2306 2114 1919 2377 2171 0.19
7 0 1 1 0 1856 2254 2075 1929 2378 2176 0.04
8 0 1 1 1 1818 2259 2060 1915 2362 2161  0.03
9 1 0 0 0 1958 2213 2098 1995 2416 2227  0.00
10 1 0 0 1 1833 2176 2022 1950 2377 2185  0.00
11 1 0 1 0 1816 2147 1998 1944 2377 2182  0.00
12 1 0 1 1 1782 2119 1967 1936 2356 2167  0.00
13 1 1 0 0 1939 2200 2082 1960 2414 2209 0.01
14 1 1 0 1 1840 2157 2014 1919 2377 2171 0.00
15 1 1 1 0 1799 2122 1976 1929 2381 2178  0.00
16 1 1 1 1 1742 2103 1941 1915 2367 2164  0.00

#Improvement strategies: metaheuristic (ME), matheuristic (MA), multiple solutions (MS) and local search
(LS). 1 indicates an enabled strategy, and O a disabled strategy

b Average cost values over total instance set

“Results of WSRT for the comparison of total costs. For values in bold: p value < 0.05 — Hj rejected

For this paper, we decided to introduce different average
speed values for the vehicle classes. We maintain the average
speed of 40 km/h for the LV but needed to reduce the average
speed for the SV due to the use of eco-friendly cargo bikes.
Hence, we set the average speed for the SV to 15 km/h.

Furthermore, wee keep the SV capacity constant with 100
units and therefore not all original test instances were eligible.
Hence, we consider only the first 11 (A) testinstances of Chen
et al. [14] and extend the set with test instances of the well-
known VRPTW test instance set proposed by Solomon [44].
As we do not consider time windows, it does not make sense
to use all 56 test instances. Therefore, we decided do use just
the 101 dataset with 100 customers (for classes C, R and RC).
In addition, we also divided a single set into 25, 50 and 100
customers. Thus, we gain 9 additional test instances which
will result in a total of 20 test instances for our analysis. For
the remainder of the paper, we will refer to the 11 (A) test
instances as the Chen instances and the 9 C,R and RC test
instances as the Solomon instances.

The customer distribution of type-1 and type-2 customers
is the next limitation we changed. We set the customer dis-
tribution to 1:3 for the Solomon instances, and we left the
customer distribution of the Chen instances as they were
(4 type-1 customers for each instance). In other words, the
majority of the customers (75% customers of type-2 for the
Solomon instances) must be served by the SV class, whereas
25% can be chosen as a VD and served by both vehicle
classes. Finally, we wanted to simulate a PD outside the city
borders with the coordinates of 0/0.
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4.2 Data analysis

Before we have a look at the best found results, we want to
analyse the impact of the different improvement strategies
along with their dependencies. Therefore, we implemented
the four improvement strategies to be independent, so we
can enable or disable them separately. Table 1 shows the
16 strategy combinations (four strategies which are either
enabled or disabled) for our analysis.

The first column of Table 1 indicates the combination
number, whereas the following four columns show which
improvement strategy is enabled (1) or disabled (0). For
example, Strategy 10 has the metaheuristic enabled (1),
matheuristic (0) and multiple solutions (0) disabled and local
search enabled (1). The next six columns show the average
cost results (divided into Solomon, Chen and Total results)
for the Linkage- and Split-Approach gained after 10 repe-
tition cycles. In the last column, we present the results for
the statistical comparison. We compared the average total
costs of both approaches by using the Wilcoxon signed rank
test (WSRT see [48]) with the Null Hypothesis Hy if both
approaches have the same solution quality and the Alterna-
tive Hypothesis H; if the difference in solution quality is
significant.

‘What we can observe is that the Linkage-Approach outper-
forms the Split-Approach regardless of the strategy combina-
tion. The advantage is substantial for almost every strategy
combination except for two—strategy combination 5 and 6.
Here, both approaches provide similar results in terms of
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Table2 Improvement strategy ranking

Table 3 Statistical analysis Linkage-Approach

Linkage-Approach Split-Approach

Rank Total cost Strategy?® Total cost Strategy?®
1 1941 16 2161 8

2 1967 12 2164 16
3 1976 15 2167 12
4 1998 11 2171 6

5 2014 14 2171 14
6 2022 10 2176 7

7 2060 8 2178 15
8 2075 7 2182 11
9 2076 4 2185 10
10 2082 13 2190 4
11 2092 3 2209 5
12 2098 9 2209 13
13 2114 6 2212 3
14 2137 2 2223 2
15 2164 5 2227 9
16 2197 1 2285 1
Min. 1941 16 2161 8
Max. 2197 1 2285 1
Range 256 n.a. 124 n.a.

4Strategy no. from first column of Table 1

solution quality. As expected, the biggest advantage—more
than 10%—can be realised if all four strategies are enabled.

Table 2 shows the ranking of the different strategies. We
can observe that the best results (Rank 1-6) for the Linkage-
Approach are achieved with an enabled metaheuristic. How-
ever, the best results (Rank 1-7) for the Split-Approach are
mixed with an enabled matheuristic. The reason for that can
be found in the first two improvement strategies.

The matheuristic provides the optimal solution for the
giant tour. Consequently, the first step with the metaheuristic
approach becomes obsolete. That can be seen if we compare
the total costs of the Split-Approach (which are almost equal)
for ranks 1-2, 4-5, 6-7 and 11-12. Finally, 14 strategy com-
binations of the Linkage-Approach are superior to the best
found result of the Split-Approach. Therefore, we decided to
skip the Split-Approach for further analysis and proceed only
with the Linkage-Approach.

With the previous analysis, we gained an interesting
insight. We found the best results for the Linkage-Approach
with all improvement strategies enabled. However, to prove
the impact of each improvement strategy on an individual
level, we needed an additional analysis. Hence, we conducted
a multi-stage statistical analysis. In the first stage, we com-
pared the results of the improvement strategies on their own.
In other words, we compared the total costs with enabled and
disabled improvement strategy over the total instance set.

Strategy set Comparison p value?
None ME versus no ME 0.00
MA versus no MA 0.00
MS versus no MS 0.00
LS versus no LS 0.00
ME=1 MA versus no MA 0.03
MS versus no MS 0.00
LS versus no LS 0.00
MA=1 ME versus no ME 0.00
MS versus no MS 0.00
LS versus no LS 0.00
MS=1 ME versus no ME 0.00
MA versus no MA 0.00
LS versus no LS 0.00
LS=1 ME versus no ME 0.00
MA versus no MA 0.00
MS versus no MS 0.00

2p value < 0.05 — Hy rejected

Afterwards, we enabled each improvement strategy sepa-
rately and compared the remaining strategies again (second
stage), e.g. enable (1) MS as prerequisite and compare MA
versus no MA, MS versus no MS and LS versus no LS. In
the third/fourth stage, we enabled two/three improvement
strategies as prerequisite compared the results of the remain-
ing strategies accordingly. Table 3 shows the results of the
first two stages, and the remaining results can be found in
Table 6 of the “Appendix”.

Table 3 shows that all strategy combinations yield a sig-
nificant contribution to the final result. The only exception
(which can be found in Table 7 of the “Appendix”) is the
matheuristic (MA) strategy with enabled metaheuristic (ME)
and local search (LS) strategy. With that constellation, we
were not able to provide a significant result contribution.
Yet, we can conclude that the impact of all four improve-
ment strategies is substantial.

In Table 4, we present the final results for the Linkage-
Approach gained with strategy 16 (all improvement strategies
enabled). We were able to reduce the total costs—in compar-
ison with the benchmark results presented in Table 7 (see
“Appendix’’)—for the Solomon instance set by 7.8% and the
Chen instance set by 9.2% which results in a total improve-
ment by 8.6%. Furthermore, no. of vehicles, driven distance
and needed time were reduced for the SV class and slightly
increased for the LV class. No. of required reloads (at the PD
and VDs) and the required cpu time increased as well. For
the sake of completeness, we present the final results for the
Spit-Approach in Table 8 of the “Appendix”.

Finally, we present the best found results regardless of
the chosen approach and strategy in Table 5. As expected,
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Table 5 Best found results from both approaches

Instance Cost CPU Approach
C101_25 850 0.040 Linkage
C101_50 1239 0.369 Linkage
C101_100 2448 1.992 Linkage
R101_25 846 2374 Linkage
R101_50 1474 2.978 Split
R101_100 2281 18.658 Split
RC101_25 1049 0.070 Split
RC101_50 1757 3.072 Linkage
RC101_100 2786 4.975 Linkage
A32 1488 2.202 Linkage
A34 1550 2.999 Linkage
A38 1658 3.028 Linkage
A45 1900 0.229 Linkage
A46 1787 2.994 Linkage
A60 2202 3.002 Linkage
A61 2157 2.963 Linkage
A64 2146 3.007 Linkage
A65 2214 3.002 Linkage
A69 2300 3.010 Linkage
A80 2768 3.093 Linkage
Average Solomon 1637 3.836 n.a.
Average Chen 2015 2.684 n.a.
Average Total 1845 3.203 n.a.

the majority of the best results are provided by Linkage-
Approach. Only for three instances—R101_50, R101_100
and RC101_25—the Split-Approach provided better results.
In summary, we provided evidence that the Linkage-Approach
is the superior approach and can be henceforth considered as
new benchmark for the LEFVRP.

5 Conclusion

City logistics are facing new challenges these days. Some
of these challenges are rising land prices and customer
demands, cities with limited space and increasing traffic or
additional environmental regulations (e.g. to reduce partic-
ulate matter pollution). Current VRP variants address some
of these challenges but do not cover all of them. Thus, new
variants with multiple challenges arise and one of them is the
LFVRP.

The LFVRP uses a heterogeneous fleet of vehicles (small
and large) to serve two types of customers. Customers of
type-1 have enough space and can be accessed by both vehi-
cle classes, whereas customers of type-2 can only be accessed
by the SV class due to limited space. The main characteris-
tic, that distinguishes the LFVRP from other VRP variants, is

the synchronisation between vehicles. Synchronisation takes
place if a small and large vehicle meet at a customer with
enough space and perform a reload operation. In our first
paper, we formally defined the problem and introduced two
promising heuristics called the Linkage- and Split-Approach.
We provided evidence that the synchronisation of vehicles
reduces significantly the no. of (small) vehicles and there-
fore the total required costs.

With this paper, we improved the two previously pro-
posed approaches by using the benefits of metaheuris-
tics, matheuristics, generating multiple solutions and local
search. In the first step, we focused on the improvement
of the starting solution which is in its core a VRP- (for
the Linkage-Approach) and a TSP-solution (for the Split-
Approach), respectively. Although there are several ways
to improve a VRP- or TSP solution, we decided to use
the metaheuristic ACO due to earlier positive results. In
the second step, we applied a matheuristic strategy, specifi-
cally the decomposition method where single vehicle tours
are extracted from the solution and solved optimally. For
the Linkage-Approach, we solved all SV tours, and for the
Split-Approach the giant tour. Furthermore, the matheuristic
strategy is also applied to all LV tours without synchroni-
sation (no VDs). In the next step, we generated multiple
solutions by using different construction strategies. For the
Linkage-Approach, we adopted the most common bin pack-
ing strategies. The forwards and backwards consideration of
the tours along with the best and second best VD positions
were used for both approaches. In the final step, we applied a
local search strategy by using a destroy-and-repair approach.

For our numerical analysis, we extended the previous
provided test instances and altered some parameters, e.g.
different (average) speed for the vehicle classes, capacity
for the SV (as we use cargo bikes), more realistic transship-
ment times, and we set the costs to a European standard.
In the first part of our analysis, we investigated the impact
of different strategy combinations. In total, we analysed
16 strategy combinations and we were able to significantly
improve both our approaches. As expected, the best results
for the Linkage-Approach were achieved by enabling all
four strategies and for the Split-Approach by enabling only
three strategies (matheuristics, multiple solutions and local
search). Even though both approaches were improved sig-
nificantly, the Linkage-Approach clearly outperformed the
Split-Approach. Hence, we proceeded with the statistical
analysis only for the Linkage-Approach where we analysed
the impact of each individual strategy and strategy combina-
tion. The contribution to the final result was substantial for
almost all strategy combinations. Overall, we were able to
reach an average improvement of around 9% over previous
approaches.

This paper serves as solid foundation for further investiga-
tions on the LFVRP. The results clearly show that the LFVRP
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has a huge potential—especially the multiple solutions strat-
egy. Another interesting direction will be the extension or
further development of the problem in terms of the current
set-up (e.g. usage of cargo bikes as SV). For instance, if cargo
bikes are used, it is unlikely that they will also start from the
PD if it is located far outside of the city. In that case, it is
more likely that they will start their tours from somewhere
within the city. If that is the case, they must first meet with
a LV to pick up their load so that they can start servicing the
customers. Nonetheless, the LFVRP has huge potential and
is worth to be investigated further.
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Table 7 Benchmark results for Linkage-Approach

Appendix

See Tables 6, 7 and 8.

Table 6 Statistical analysis Linkage-Approach (Table 3 continued)

Strategy set

Comparison p value?

ME=1and MA =1

ME = land MS =1

ME = landLS =1

MA =land MS =1

MA = landLS = 1

MS = landLS =1

ME = I,MA = land MS =1
ME = I,MA = landLS =

1
ME = 1,MS = landLS =1
MA = 1,MS landLS =1

MS versus no MS 0.00

LS versus no LS 0.00
MA versus no MA 0.03
LS versus no LS 0.00

MA versus no MA 0.05
MS versus no MS 0.00
ME versus no ME 0.00
LS versus no LS 0.00
ME versus no ME 0.00
MS versus no MS 0.00
ME versus no ME 0.00
MA versus no MA 0.00
LS versus no LS 0.01
MS versus no MS 0.00
MA versus no MA 0.01
ME versus no ME 0.00

4p value < 0.05 — Hy rejected

Instance Cost No. SV No. LV Dist. SV Time. SV Dist. LV Time, LV Reload CPU time
C101_25 915 1 1 272.20 782.86 196.94 336.31 3 0.008
C101_50 1347 2 1 509.21 1457.90 249.65 436.13 4 0.052
C101_100 2777 4 1 1145.72 3503.55 646.69 787.69 9 0.367
R101_25 997 2 1 427.17 1176.01 174.03 191.93 1 0.008
R101_50 1562 3 1 739.11 2059.85 263.02 311.92 3 0.054
R101_100 2568 4 1 1249.87 3557.41 411.48 582.52 8 0.427
RC101_25 1125 2 1 435.05 1254.50 219.36 288.89 3 0.006
RC101_50 1831 3 1 789.39 2235.04 299.05 537.47 5 0.046
RC101_100 3274 5 1 1484.00 4404.26 698.81 823.61 9 0.379
A32 1590 3 1 835.77 22717.72 214.99 226.99 1 0.017
A34 1618 3 1 816.40 2229.07 260.35 275.35 1 0.021
A38 1819 5 0 1335.23 3618.52 0.00 0.00 0 0.034
A45 2112 6 0 1548.50 4199.23 0.00 0.00 0 0.056
Ad6 1990 4 1 1097.20 2997.47 246.02 263.02 1 0.065
A60 2728 5 1 1570.12 4296.68 312.80 346.60 3 0.146
A61 2356 4 1 1240.47 3440.32 267.05 446.21 5 0.237
A64 2332 4 1 1304.20 3598.56 232.39 324.00 4 0.182
A65 2508 5 1 1435.55 3937.03 265.89 315.30 3 0.185
A69 2580 5 1 1491.06 4088.17 263.46 311.01 3 0.262
A80 3051 6 1 1831.70 5010.44 254.96 325.42 3 0.382
Average Solomon 1822 2.89 1.00 783.52 2270.15 351.00 477.39 5.00 0.150
Average Chen 2244 4.55 0.82 1318.75 3608.47 210.72 257.63 2.18 0.144
Average Total 2054 3.80 0.90 1077.90 3006.23 273.85 356.52 345 0.147
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Table 8 Final results for Split-Approach

Instance Cost No. SV No. LV Dist. SV Time. SV Dist. LV Time, LV Reload CPU time
C101_25 970 2 1 378.29 1059.78 196.60 223.60 2 2.427
C101_50 1393 4 1 638.57 1839.19 203.78 258.78 4 3.980
C101_100 3201 9 1 1747.61 4865.30 430.67 532.90 5 81.156
R101_25 962 2 1 424.02 1167.83 148.47 162.57 1 2.998
R101_50 1582 4 1 810.69 2248.14 203.62 237.92 3 3.963
R101_100 2362 6 1 1216.90 3431.37 266.23 454.51 7 16.594
RC101_25 1109 2 1 425.22 1206.91 216.53 301.05 3 2.748
RC101_50 2426 7 1 1374.94 3770.50 278.73 305.73 2 10.784
RC101_100 3231 9 1 1764.68 4926.89 433.92 530.86 7 112.017
A32 1618 5 0 1190.88 3216.68 0.00 0.00 0 3914
A34 1750 5 0 1286.74 3480.70 0.00 0.00 0 2.924
A38 1767 4 1 981.33 2667.77 196.80 207.70 1 2.593
A45 2088 5 1 1263.65 3434.94 138.38 149.58 1 2.975
A46 2006 4 1 1083.00 2959.80 246.02 309.14 2 2.894
A60 2769 7 1 1721.69 4691.58 178.35 195.75 2 4.903
A6l 2539 7 1 1509.79 4133.90 217.55 242.35 3 5.341
A64 2536 6 1 1494.72 4096.82 227.19 261.09 3 2.932
A65 2847 7 1 1698.25 4635.47 265.89 295.69 3 3.936
A69 2886 7 1 1753.72 4796.49 227.92 258.29 3 4.658
A80 3175 8 1 1952.14 5312.42 249.75 287.81 3 12.044
Average Solomon 1915 5.00 1.00 975.66 2723.99 264.28 334.21 3.78 26.296
Average Chen 2362 5.91 0.82 1448.72 3947.87 177.08 200.67 1.91 4.465
Average Total 2161 5.50 0.90 1235.84 3397.12 216.32 260.77 2.75 14.289
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