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Abstract
This paper compares algorithms to deal with the problem of missing values in higher 
frequency data. We refer to Swiss business tendency survey data at monthly and 
quarterly frequency. There is a wide range of imputation algorithms. To evaluate the 
different approaches, we apply them to series that are de facto monthly, from which 
we create quarterly data by deleting two out of three data points from each quarter. 
At the same time, the monthly series are ideal to deliver higher frequency infor-
mation for multivariate imputation algorithms. With this set of indicators, we con-
duct imputations of monthly values, resorting to two univariate and four multivari-
ate algorithms. We then run tests of forecasting accuracy by comparing the imputed 
monthly data with the actual values. Finally, we take a look at the congruence of an 
imputed monthly series from the quarterly survey question on firms’ capacity utili-
sation with other monthly data reflecting the Swiss business cycle. The results show 
that an algorithm based on the Chow and Lin approach, amended with a variable 
pre-selection procedure, delivers the most precise imputations, closely followed by 
the standard Chow-Lin algorithm and then multiple regression. The cubic spline and 
the EM algorithm do not prove useful.

Keywords Temporal disaggregation · Imputation · Business tendency surveys · Out-
of-sample validation · Mixed-frequency data

JEL Classification C19 · C22 · C53

 * Michael Graff 
 graff@kof.ethz.ch

1 ETH Zürich, KOF Swiss Economic Institute, Leonhardstrasse 21, CH-8092 Zurich, Switzerland
2 Latvijas Banka, Riga, Latvia
3 CESifo, Munich, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s41549-023-00088-y&domain=pdf
http://orcid.org/0000-0003-3844-9201


242 Journal of Business Cycle Research (2023) 19:241–273

1 3

1 Introduction

Access to timely and reliable information is instrumental for continuous monitoring 
and for forming sound judgements on the short-term outlook of economic condi-
tions. This is especially true when economic conditions change rapidly, with ele-
vated levels of uncertainty, as the experience gained during the Great Financial Cri-
sis as well as the more recent COVID-19 pandemic has illustrated.

Some economic key indicators, however, are released at quarterly or annual fre-
quencies only, and in some cases with substantial publication delays, which often 
amount to several months. In such situations, to alleviate the informational con-
straints imposed by low-frequencies and publication delays, temporal disaggregation 
may be indicated, for the most current values as well as those referring to the past. 
To this end, different temporal disaggregation methods, both uni- and multivariate, 
have been suggested and are applied to convert observed low-frequency time series 
into higher frequencies. Noteworthy, imputation of lower-frequency series into 
higher frequencies poses different challenges for missing values between observed 
data points in the past and the most recent data points (interpolation), which have to 
be now- or forecasted beyond the last available observation (extrapolation). We refer 
to the former as “in-sample” and the latter as “out-of-sample”.

In this paper we document the performance of a selection of temporal disaggre-
gation techniques, distinguishing in-sample from out-of-sample imputations. Our 
main data come from the monthly business tendency surveys (BTS) in the Swiss 
manufacturing industry, conducted by the KOF Swiss Economic Institute. First, 
we explore which method performs best to impute monthly values within the very 
same data corpus. To this end we create artificially quarterly series from de  facto 
monthly BTS series by removing two out of three quarterly observations, so that we 
can compare the imputations with the known realisations. Moving from this experi-
mental set-up to a real rather than constructed informational deficit, we turn to the 
genuinely quarterly series technical capacity utilisation in per cent, summarising 
the responses of firms in Switzerland to the corresponding question in the quarterly 
KOF BTS in the manufacturing industry. The importance of this indicator lies in the 
fact that it measures economic slack/pressure at the micro level and—aggregated—
helps to assess potential output and hence the output gap at the macro level (Graff & 
Sturm, 2012).1

In particular, we proceed as follows: In the first step, we conduct an experimen-
tal simulation exercise based on the eleven monthly BTS question series that can 
be traced sufficiently long back into the past. Skip-sampling two months of each 
quarter in these time series provides eleven quarterly time series. To these skip-sam-
pled time series we apply a selection of uni- and multivariate temporal disaggre-
gation algorithms to impute back the removed observations, with the multivariate 
algorithms referring to the monthly information from the remaining ten time series, 

1 Given the exposure of the small and open Swiss economy to a rapidly changing global economy, this 
indicator is one of utmost important for the guidance of monetary and fiscal policies. It is in order to 
remark that whilst our data and their information are relating to Switzerland, the problem is general and 
applies similarly to the rest of the world.
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serving as auxiliary indicators. We benchmark the performance of the considered 
imputation methods against what is in our context the most conservative (naïve) 
method, namely carrying the last observation forward. The competing temporal 
disaggregation methods include the univariate cubic spline, and in the multivariate 
setup the Expectation–Maximisation algorithm, multiple regression, the standard 
Chow-Lin method, and a modified version of the latter. We refer to this as the inter-
nal validation step, as we are able to compare the accuracy of imputations across 
different temporal disaggregation methods because we know the true values of the 
skip-sampled observations.

In the second step, we apply the best-performing method from the first step to 
convert a quarterly time series of interest, the KOF survey item technical capacity 
utilisation in per cent, into monthly frequency. Then we take this temporally disag-
gregated time series and evaluate its congruence with a selection of monthly busi-
ness cycle indicators other than the KOF BTS that can a priori be assumed to be 
closely related to what is reflected by the technical capacity utilisation BTS ques-
tion. Since in this exercise the unobserved monthly capacity utilisation values are 
genuinely unknown, we rely on a forecast encompassing test in order to verify the 
superiority of the chosen temporal disaggregation method over the benchmark, last 
observation carried forward. We refer to this as the external validation step.

We contribute to the literature in the following ways. First, our experimental sim-
ulations with artificially created quarterly time series allows us to compare the per-
formance of different temporal disaggregation techniques along a variety of dimen-
sions going beyond the focus of the related literature. We do not only discriminate 
(1) in-sample interpolations between historically observed data points from out-of-
sample extrapolations of values, but also (2) the accuracies of imputations of the 
first and the second unobserved month within a quarter, (3) the accuracies of direct 
imputations of the missing BTS values of the balance indicators versus indirect 
computation form the imputed positive- and negative shares,2 and last but not least 
(3) the accuracy of the directional changes (trends) of the imputed values. In par-
ticular, we demonstrate that for our data corpus, temporal disaggregation with an 
adoption of the procedure suggested by Wang et al. (2007) to the standard Chow-Lin 
(1971) method, tends to outperform the considered alternatives, although precision 
is only marginally improved compared to the standard Chow-Lin algorithm. The 
performance of the Expectation–Maximisation algorithm is revealed as less than 
satisfying, which is not quite as we expected, given its popularity, whereas multiple 
regression surprises on the positive side, given that is goes back to the nineteenth 
century. Last but not least, while the univariate spline may be useful for in-sample-
imputations, it clearly fails to outperform the (naïve) carrying forward of the last 
observation.

The rest of the paper is structured as follows. Section 2 reviews the relevant lit-
erature. Section 3 presents the data used in the internal and external validation steps. 
In Sect. 4 we describe both the internal and external validation procedures in detail, 

2 Our monthly BTS questions are all qualitative (respondents have choose between positive, neutral and 
negative assessments) and quantified as balance indicators, computed as the differences between the 
shares of positive and negative answers to each question. For details, see Sect. 3.
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and we summarise the results obtained, distinguishing the between pre-COVID-19 
period (up to 2019) as well as the COVID-19 pandemic years (2020−2021). Sec-
tion 5 summarises our findings. The implementations of the imputation algorithms 
are described in the Appendix, along with reproductions of the KOF monthly and 
quarterly survey questionnaires.

2  Review of the Literature

In general, temporal disaggregation can be done with either univariate or multi-
variate approaches. The former type ranges from equal distribution of quarterly 
outcomes to monthly subdivision or interpolation, assuming a smooth evolution. 
Non-parametric approaches like spline methods or methods based on the quadratic 
function minimisation like that of Boot et al. (1967) or Denton (1971) also belong 
to this category. At the right margin of a series, univariate methods either hold the 
very last observation fixed (last observation carried forward) or try to exploit the 
momentum of the series, either by simple extrapolation or by modelling ARIMA 
processes or univariate state-space models, like in Harvey and Pierce (1984). Yet, 
even if some of these approaches are technically quite sophisticated, their inherent 
shortcoming lies in the fact that missing observations are imputed without resorting 
to any information except for the series itself. While the results may be satisfying 
when a time series evolves smoothly, these methods by construction cannot capture 
structural breaks or economic shocks before some time has passed. In other words, 
the resulting higher frequency breakdowns will be particularly flawed when the eco-
nomic situation is changing, i.e., when timely information is particularly needed. 
Feijoó et al. (2003) evaluate the performance of several popular univariate temporal 
disaggregation procedures. They confirm that univariate higher frequency transfor-
mations are informationally inefficient when other data are disregarded that could 
supply valid information on the true movement of the process through time at points 
that are unobserved in the target series. This information inefficiency can be suc-
cessfully addressed by employing one or several auxiliary higher-frequency vari-
ables that are related to the low-frequency time series in question.

Let yl
t
 be a low-frequency variable that we intend to temporally disaggregate to a 

higher frequency. The most popular methods for temporal disaggregation assume a 
linear relationship between an unknown high-frequency representation of the low-
frequency variable yh

t
 and a related high-frequency variable xt in the following form:

where various assumptions are made on the nature of the disturbance term εt. 
For example, Chow and Lin (1971) assume an AR(1) process. Fernández (1981) 
assumes that εt follows an I(1) process and in Litterman (1983) an ARIMA(1,1,0) 
process is suggested. Proietti (2006) proposes a general state-space model that 
encompasses these three temporal disaggregation approaches. Another approach to 
multivariate temporal disaggregation, based on structural time series models, is sug-
gested by Moauro and Savio (2005). In a Monte Carlo simulation, their approach 

(1)yh
t
= � + �xt + �t
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compares favourably with several traditional methods. They conclude (p. 230) that 
“what this limited experiment seems to indicate is that the choice of the method for 
time aggregation can be even more relevant than the use of a good reference series, 
even if the use of this series can substantially add in terms of accuracy when an 
appropriate framework for time aggregation is chosen.”

The multivariate methods for temporal disaggregation mentioned above employ 
one, or at most, a handful of high-frequency indicators. When more high-frequency 
indicators are available, possibly exceeding the number of observations of a low-fre-
quency variable, the quality of temporal disaggregation can be negatively influenced 
by data over-fitting. Hence, a variable selection procedure is required that retains 
only the most informative high-frequency variables regarding the dynamics of the 
low-frequency variable of interest. Several variable selection procedures, like for-
ward, backward or stepwise, are common. Alternatively, penalised regressions can 
be used for variable selection, like the least absolute shrinkage and selection opera-
tor (LASSO) of Tibshirani (1996).

Alternatively, Stock and Watson (2002b) propose an approach to impute values in 
large data panels involving variables sampled at heterogeneous frequencies. This is 
based on the Expectation-Maximization (EM) algorithm, which typically consists of 
recursive iterations. In the first step, the missing values are substituted with the best 
guess for some given initial parameter values defining the common factors, which 
are extracted from the data set by means of principal components analysis. In the 
second step, the imputed values are updated, conditional on the specified parameter 
values. Then the missing values are imputed again, conditional on the new param-
eter values. The iterating procedure is continued until some convergence criteria 
are met. This approach is used, for example, in Schumacher and Breitung (2008) 
for imputation of missing values in monthly and quarterly German economic data. 
Since September 2015, the EM procedure is applied for temporal disaggregation of 
the quarterly components of the KOF Economic Barometer, a composite leading 
economic indicator for the Swiss economy (Abberger et al., 2018) and since January 
2020 for the KOF/FGV Global Barometers (Abberger et al., 2022).

In this paper we show that it is straightforward to incorporate the procedure 
developed in Wang et al. (2007) for estimating the LASSO regression of Tibshirani 
(1996) in the presence of autocorrelated disturbances into the temporal disaggrega-
tion procedure suggestion in Chow and Lin (1971). The advantage of such a com-
bination is that the LASSO regression performs selection of the most informative 
auxiliary indicators that will be used for temporal disaggregation of the target time 
series. In doing so, the penalised regression also solves the curse of dimensionality 
problem.

In a parallel contribution to ours, Mosley, Eckley, and Gibberd (2022) suggest 
a sparse temporal aggregation approach that combines the standard Chow-Lin 
(1971) method with the LASSO penalised regression of Tibshirani (1996) as well 
as the adaptive LASSO algorithm of Zou (2006). Yet, our approach is different from 
Mosley et al. (2022) in several important aspects. First and foremost, we apply the 
temporal disaggregation procedures to a completely different data set, involving 
business tendency surveys collected in Switzerland. Second, Mosley et  al. (2022) 
focus exclusively on interpolation, leaving the assessment of extrapolation for future 



246 Journal of Business Cycle Research (2023) 19:241–273

1 3

research, while we assess the accuracy of both interpolation and extrapolation, thus 
addressing the problem of “ragged edge” at the right margin. Thirdly, we compare 
the quality of the sparse temporal disaggregation technique with that based on the 
Expectation–Maximisation algorithm of Stock and Watson (2002a) developed for 
the factor-type models. This exercise, comparing algorithms designed for the sparse 
versus dense data, was also left for the future research in Mosley et al. (2022). Our 
findings thus complement and reinforce those reached in Mosley et al. (2022) on the 
usefulness of temporal disaggregation techniques in data-rich environments.

3  Data

Our data are primarily from the monthly KOF Swiss Economic Institute’s BTS 
in the Swiss manufacturing sector. Presently, more than 1,000 firms are surveyed. 
The latest monthly questionnaire comprises 21 items. The response rate is about 70 
per cent. Due to changes to the questionnaire in the past, we have access to eleven 
monthly series going back more than 50 years.3 They are summarized in Table 1.

The underlying questions are all qualitative, with three options to answer: down/
too low ( −), no change/about right ( =), up/too high ( +). For quantification, the 
standard is to compute the balance indicator (percentage share + minus percent-
age share −). The balance tends to move up and down over the business cycle, and 
while the series’ averages may not be exactly constant in the long run, the quantifi-
cation has an upper bound of 100% and a lower bound of − 100%. These variables 
can thus increase or decrease only within narrow limits, so that we treat them as 

Table 1  Questions from the monthly KOF manufacturing BTS

Questionnaire item Topic; answer options: up/too high, constant/about right, down/too low

1a Incoming orders compared to previous month
1b Incoming orders compared to 12 months ago
2a Order backlog compared to previous month
2b Assessment of order backlog
3a Production compared to previous month
3b Production compared to 12 months ago
5a Inventories of final goods compared to previous month
5b Assessment of final goods’ inventories
8a Expected incoming orders in the following three months
8c Expected production in the following three months
8d Expected purchase of intermediary goods in the following three months

3 The 10 questionnaire items with shorter time series, hence omitted from the analyses, are 2c (assess-
ment of export order backlog), 4a (change of intermediate products inventory), 4b (assessment of inter-
mediate products inventory), 6 (assessment of employment level), 7a to 7d (assessment of current busi-
ness situation, assessment of future business situation, difficulty to predict future development of own 
business, uncertainty of future development of own business), 8b (expected export orders) and 8e to 8g 
(expectations regarding number of employees, selling prices and purchasing prices).
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mean-stationary. The internal validation is conducted exclusively with eleven series 
from the monthly BTS. These variables also constitute the higher frequency infor-
mation set for the external validation procedure.

The target series for the external validation procedure with genuine imputa-
tions of truly unobserved monthly values, technical capacity utilisation in per cent, 
comes from the quarterly KOF manufacturing BTS, which is conducted during the 
first month of each quarter. It is quantitative, computed as the weighted average 
of the responses of the surveyed firms on their technical capacity utilisation in per 
cent.4 During the observation period, it fluctuates around 82% with a maximum of 
88.2% and a minimum of 75.9%. Analogous to the monthly BTS series, we treat it 
as mean-stationary. The remaining variables for the external validation are monthly 
data reflecting the economic situation, taken from other sources than the KOF 
BTS, namely the KOF Economic Barometer, the KOF/FGV Leading and Coinci-
dent Global Barometers, the Swiss National Bank’s Business Cycle Index, the Swiss 
unemployment rate and the Swiss inflation rate. We use seasonally adjusted data.

The latest observations referred to in this paper relate to December 2021 or the 
fourth quarter of 2021, respectively. Considering the COVID-19 pandemic and its 
drastic impact on the economies around the world, we first restrict the analyses to 
data points up to 2019m12. Then, we verify the robustness of the results referring to 
the years 2020–2021, when the pandemic affected the economy most.

4  Methods and Results

In this section, we present the temporal disaggregation methods evaluated in this 
paper, their implementation, and the resulting accuracy statistics. The first sub-
section deals with the internal validation procedure, the second looks at the exter-
nal validation exercise. Before proceeding, a few preliminary considerations are in 
order.

First, imputing unobserved higher-frequency values only makes sense when the 
process that is observed at the lower frequency is in fact occurring at the higher (tar-
get) frequency. This is evident for continuous processes like the production of goods 
(output) and services or their use (consumption, investment). For genuinely discrete 
processes, however, the highest frequency to be estimated in sensible way is that of 
their occurrence. Retail trade sales preceding Christmas, for example, occur once 
per year. It would not make sense to impute quarterly or monthly values, although 
this may be possible in technical terms. Hence, before a series is submitted to a pro-
cedure to generate a corresponding higher frequency series, a reality check must be 
performed to confirm that the process indeed occurs at the higher frequency and 
the fact that there are unobserved data points is solely due to the lower measure-
ment frequency. In our case, the process is the economic situation, which is clearly 

4 For the latest version of the questionnaires, including the quarterly BTS, refereed to later in this paper, 
see https:// ethz. ch/ conte nt/ dam/ ethz/ speci al- inter est/ dual/ kof- dam/ docum ents/ Frage bogen Archi ve/ imt/ 
inu_ en_q. pdf.

https://ethz.ch/content/dam/ethz/special-interest/dual/kof-dam/documents/FragebogenArchive/imt/inu_en_q.pdf
https://ethz.ch/content/dam/ethz/special-interest/dual/kof-dam/documents/FragebogenArchive/imt/inu_en_q.pdf
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evolving in a continuous fashion, but its measurement is performed at discrete inter-
vals, so that temporal disaggregation is justified.

Second, temporal disaggregation has to distinguish between stock and flow vari-
ables. Temporal disaggregation of flow variables should ensure that the higher fre-
quency data points add up to the lower frequency values covering the correspond-
ing period. This requires revisions of imputations beyond the last know observation 
(extrapolations) as soon as the corresponding lower frequency observation becomes 
available, and they technically change from out-of-sample to in-sample. Stock vari-
ables are different, as it not obvious whether or in which way lower frequency data 
impose restrictions on higher frequency imputations. For some applications, it may 
make sense that the averages of a disaggregated series should be equal to the value 
of the corresponding lower frequency observations, but his depends on the nature 
of the data generating process, so that a general answer cannot be given. For our 
purposes however, as we are dealing with BTS data reflecting the assessment of a 
continuously changing environment, coming as stock variables at discrete intervals, 
there is no need to restrict the joint values of the monthly breakdowns to a corre-
sponding observed quarterly value.

Consequently, for our purposes there is no requirement to distinguish between 
imputation methods for flow and stock variables, and we do not impose any restric-
tions on the imputed higher frequency values to be derived from the corresponding 
lower frequency values when or as soon as they are available.

Last but not least, as we distinguish between ex-post and simulated real-time, we 
are faced with two options, namely rolling or expanding windows, where the simu-
lated real-time imputation is the last observation at the right margin. For our pur-
poses, we chose to refer to 20-years rolling windows, which keeps the degrees of 
freedom constant as the window is subsequently moved forward in one-month steps. 
The length of the period is a compromise between “sufficiently long” to cover more 
than one business cycle and “sufficiently short” to avoid losing too many simulated 
real-time imputations.

4.1  Internal Validation

The setup of our simulation exercise is shown in Fig. 1, summarizing the temporal 
disaggregation methods and terminology of our paper as well as the time pattern of 
the observed and imputed values.

To illustrate the time pattern, the figure reflects the information set available 
to an observer in the end of the last month of a year, looking back four quarters/
twelve months into the past. The monthly series (KOF BTS series, k = 11) relate 
to the months in which they are released. Accordingly, towards the end of Decem-
ber (m12) the monthly BTS data releases for the year that is coming to its end are 
complete. The quarterly BTS series consist of data points, which are released in 
and relate to the first month of each quarter. This corresponds to the actual release 
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calendar of the KOF BTS.5 Correspondingly, whilst the four “actual” values (m1, 
m4, m7 and m10) of the quarterly series are known, the disaggregation challenge 
is to impute the eight unobservable values for the second and third month of each 
quarter (m2, m3, m5, m6, m8, m9, m11 and m12). We distinguish between “sym-
metric” and “asymmetric” imputation environments. Imputations are symmetric 
when or as soon as they fall in between two observed values (m2, m3, m5, m6, m9 
and m9), and we refer to them as “ex-post” (or “in-sample”), whereas imputations 
are asymmetric when or as long as all actual values lie in the past, and we refer to 
them as “ex-ante” or “out-of-sample”. In Fig. 1, those two are labelled “postcast” 
(m11) and “nowcast” (m12), because in technical terms, they are forecasts (exten-
sions of time series beyond the last known value), but as they relate to the present 
(m12) or the recent past (m11), the terminology denotes the chronology. All ex-ante 
imputations are conducted in simulated real-time. In particular, these imputations 
are calculated referring to repeated 20-years rolling windows ranging from mt–240 
to mt, where the results for mt are the nowcasts and those for mt–1 correspond to 
the postcasts. Moreover, notice that the actual are values preserved in the temporally 
disaggregated series, even when the algorithms would compute imputed values to 
replace the known ones.

We consider two univariate and four multivariate imputation algorithms. The 
computationally simplest algorithm is to carry the last observation forward (locf), or 
what is known as the “hot-deck” estimate. As locf is an implementation of a random 
walk without drift and hence the most “conservative” estimate, it will also serve as 
our benchmark, which the competing methods have to outperform in order to be 
considered as serious alternatives.6 The competing temporal disaggregation methods 
include a univariate implementation of the cubic spline (spline), the Expectation-
Maximisation (EM) algorithm of Stock and Watson (2002a), generalised multiple 
regression (GLS), the traditional Chow-Lin (1971) algorithm, and our modification 
of the latter, which is based on the following considerations: Allowing multivariate 
procedures to incorporate information from all available auxiliary indicators may 
lead to excessive numbers of indicators. For the factor type EM algorithm, this is 
less likely to pose a serious problem, but GLS and Chow-Lin may suffer from the 
curse-of-dimensionality phenomenon. In order to mitigate this, we combine the 
standard Chow-Lin (1971) procedure with the least absolute shrinkage and selection 
operator (LASSO) regression of Tibshirani (1996) based on approaches suggested in 
Wang et al. (2007). Because of the selection properties of the LASSO method, only 
a subset of the available auxiliary indicators is used in temporal disaggregation.7

6 As a default option to impute missing values, many statistical packages compute the variable average. 
While this may be an appropriate default for cross-sectional analyses, it would be too naïve for our time 
series, as it ignores the predictive quality of the last known observation, the “hottest” punched card on 
top of the file.
7 Detailed descriptions of the imputation algorithms as implemented in our paper are given in the 
Appendix.

5 Typically, in the Europe, monthly BTS questionnaires are distributed and collected during the month 
they relate to and published before the end of this month. During the first month of a quarter, the quar-
terly BTS are conducted in parallel with the monthly BTS.
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A further distinction within our simulation exercise concerns the quantification of 
the qualitative BTS survey items. As the monthly BTS questions are qualitative and 
the common quantification is the balance, we can either directly impute the missing 
observations of the balance indicators, or we can impute the positive and negative 
shares and indirectly derive the imputed target values from the difference of the two 
imputed series. A priori, it is not evident which approach should be superior. The 
indirect imputation increases the number of observations to be imputed by 100%, 
but it is informationally more efficient, as the same value for the balance statistics 
can result from widely different positive and negative shares. Accordingly, we let the 
data speak and proceed along both paths.

The observations of the eleven monthly balance BTS time series cover the period 
1967m2–2021m12, amounting to 659 observations per time series. Correspond-
ingly, the artificially created quarterly time series by the skip-sampling procedure 
retain 219 observations each, implying that 440 data points can be imputed, which 
would amount to 4840 data points in total. However, the negative and positive shares 
have been stored in the KOF data base from 1971m4 only, and unfortunately, there 
is no way to recover them. In order to be able to compare the accuracy of the direct 
and indirect temporal disaggregation, in this paper we refer to the shorter sample 
period. Accordingly, the first 20-year rolling covers the period 1971m4–1991m3, 
and the resulting simulated real-time data start in 1991m3. Carrying this forward to 
2019m12 yields 231 simulated real-time (ex-ante) imputations per survey item and a 
total of 2541 pre-COVID-19 imputations for the eleven series. A further considera-
tion concerns how we define ex-post. In this paper, under ex-post, we understand the 
imputations from one and the same 20-years rolling window (vintage), namely the 
one that ends before 2020, when the COVID-19 hit. The ex-post vintage thus covers 
the period of 2000m1–2019m12, comprising 160 imputations per survey item and 
a total of 1,760 imputations for our eleven series. Finally, to verify the robustness 
of our results with respect to the inclusion of the COVID-19 years, we separately 
conduct the analysis over the period 2020m1–2021m12. Here, the number of impu-
tations years is 16 per series, amounting to 176 for the eleven indicators in total. The 
different observation periods and the corresponding types of analyses are shown in 
Table 2.

The accuracy of the imputations is measured with the root mean squared error 
(RMSE)

Table 2  Observation periods

Period Imputable data points Evaluation focus

1967m2–2021m12 4,840 Entire data base
1991m3–2019m12 2,541 Ex-ante, direct & indirect imputations
2001m1–2019m12 1,760 Ex-ante & ex-post, direct & indirect imputations
2020m1–2021m12 176 Sensitivity check for the COVID-19 pandemic
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The RMSE is computed for different sets of imputed data points, distinguished by 
the following dimensions: Firstly, for all imputations taken together (jointly for the 
second and third month of a quarter) versus separately for the second and the third 
month of a quarter. Secondly, we distinguish between ex-ante and ex-post imputa-
tions. Thirdly, direct imputations of the balance are distinguished from indirect ones 
via positive and negative shares.

To evaluate the precision of the different measures against our benchmark (last 
observation carried forward), we compute the relative RMSE (RRMSE), defined as 
the ratio of the RMSE imputation method under consideration against the RMSE of 
the benchmark. Ratios below one indicate higher precision of the imputation method 
under consideration, ratios above one indicate that the benchmark method delivers 
superior results.

In addition to this, taking into account the interest of economic observers and 
policy makers in upward or downward movements and trends in real-time, corre-
sponding to the right margins of economic time series, we also analyse the direc-
tional accuracy of the imputations, both ex-post and ex-ante. With the actual values 
being at hand for comparison, it is straightforward to compute the percentage of cor-
responding up and down direction changes recorded for the second and third months 
in each quarter as well as for both taken together. Here, values above 50% indicate 
that the imputations are reflecting direction changes better than simple guessing by 
flipping a coin.

4.2  Internal Validation: Results

4.2.1  Imputation Accuracy in Terms of (R)RMSE

The accuracy of the imputations is summarised in Table  3. The panel on the left 
reports the RMSE statistics computed for interpolated values in-sample (ex-post 
analysis), the panel on the right shows the extrapolated values out-of-sample (ex-
ante analysis), respectively. To facilitate the comparison of the imputations in terms 
of average accuracy, the lowest RMSE of the respective cells in bold numbers are 
highlighted (best method for imputations of second and third month of a quarter 
taken together and separate for both imputed months).

Obviously, in terms of RMSE, Chow-Lin and the Chow-Lin/LASSO imputations 
outperform all alternative approaches, but several additional conclusions can be 
drawn from Table 2.

For the benchmark, last observation carried forward, three regularities stand out: 
First, the RMSE are always larger for m3 compared to m2 (with the RMSE for both 
months together lying in between by construction). This is in line with expectations, 
as the lag to the last recorded observation increases, and therefore, if a series is not 
quickly reverting to come steady state, the error is prone to increase. Second, the 

(2)RMSE =

�

∑N

i=1
(Predictedi − Actuali)

2

N
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indirect imputations via the difference of imputed positive and negative shares turn 
out to be slightly but consistently more precise than the direct imputations of the 
balance. Third, compared to the periods up to 2019 the accuracy of the imputation is 
markedly worse in the years 2020–2021, when the COVID-19 pandemic had severe 
and rapidly changing impacts on the economy. Notice that the RMSE are equal ex-
ante and ex-post, as locf does not revise imputations when new information becomes 
available.

For the only other univariate method considered here, the cubic spline, the RMSE 
across all specifications range from 6.54 to 23.54 and the median equals 8.92, which 
is high compared to the benchmark (locf: RMSE 6.54–23.54, median 7.62). Ex-post, 
the accuracy is somewhat better than ex-ante for 2000–2019, and considerably better 
for 2020–2021. The cubic spline is particularly inferior the benchmark ex-ante, and 
this holds especially for the COVID-19 years, when the economic situation changed 
quickly and more than once. In our data corpus, the spline’s extrapolation of the 
most recent trend is hence more misleading than the assumption of a random walk. 
Ex-post, the interpolations tend to outperform the benchmark slightly, but the dismal 
results at the right margin rule out the spline as an alternative to locf when real-time 
accuracy matters most. Furthermore, similar to what we find for the benchmark, the 
RMSE tend to be larger for m3 compared to m2, and they are consistently larger for 
the direct compared to the indirect imputations.

For the EM algorithm, the RMSE range from 7.93 to 11.94 with a median of 8.74, 
which is again higher than for the benchmark. The ex-post accuracy is only slightly 
better than ex-ante, and the tendency for m2 to be imputed more precisely than m3 
as well as the superiority of the indirect imputation of the balances is less visible 
than with locf or the cubic spline. In our data corpus, the EM algorithm imputation 
hence does not hold the promise to outperform the naïve locf. This applies to all 
periods considered as well as to ex-ante and ex-post.

For the GLS regressions, the RMSE range from 4.59 to 6.41 (median 4.92). In 
our data corpus, the regression imputations consistently outperform the benchmark. 
Moreover, GLS is also consistently superior to EM. This applies to all periods con-
sidered, ex-ante and ex-post. Interestingly, the third month of a quarter is not clearly 
imputed less precisely than the second. As the GLS imputations are cross-sectional 
and therefore disregarding the time series-properties of the data, they should exploit 
the information from the ten auxiliary variables for all imputed months equally well. 
In other words, while the relatively stable accuracy across the various imputation 
environments may appear as an advantage of GLS, the drawback is that without 
neglecting the time series properties, the imputations could be even better, in par-
ticular in-sample and, although to lesser degrees, for the second and third months of 
the final quarter (ex-ante postcasts and nowcasts). Chow-Lin and our modification 
will address this.

For the Chow-Lin algorithm, both with and without LASSO, the RMSE range 
from 3.59 to 5.82 with a median of 3.98. Not only do they consistently outper-
form the benchmark in terms of accuracy; they are also consistently superior to 
all other methods under consideration. The extension of the standard Chow-Lin 
method by LASSO proves its viability, as for both long periods (1991–2019 and 
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2000–2019) the combination Chow-Lin/LASSO tends to deliver somewhat higher 
imputation accuracy compared to the standard implementation of the Chow-Lin 
method. On a side note, in our simulation exercise, the number of auxiliary indi-
cators was not excessively large, such that the standard Chow-Lin method was 
also feasible. In other settings, however, when the number of auxiliary monthly 
indicators may well exceed the number of low frequency observations, the 
modified Chow-Lin procedure would be the only option. In addition, during the 
COVID-19 years, the standard Chow-Lin method delivered a slightly better ex-
ante forecast accuracy but given the comparatively small number of observations 
available for the evaluation, this finding is to be taken rather precautionary.

Taken together, we observe a clear ranking of the different approaches: Chow-
Lin without and with the LASSO modification produce the most accurate imputa-
tions. GLS delivers the third best results, whereas at least in our data corpus, the 
EM and the cubic spline exhibit strongly inferior performance.

Across methods the indirect imputations via imputed positive and negative 
shares tend to be more precise than the direct imputations of the balance. Ad 
ad-hoc explanations of this surprising finding may point to the fact that indirect 
imputations are informationally more efficient, as the same value for a balance 
can result from combinations of different positive and negative shares with differ-
ent neutral shares. Another reason may lie in the fact that differences of season-
ally adjusted series are usually not identical to the seasonally adjusted difference 
of two series. If the seasonality of the underlying series is more likely to be cap-
tured by a filter than seasonal pattern from the combined series, it may be easier 
to impute the underlying series. Further research on this is called for, as this find-
ing may be especially useful in practical applications.

Last but not least, the RMSE are larger for m3 compared to m2 for the univari-
ate methods and the EM algorithm, but not for the other multivariate methods, 
which apparently successfully exploit the information from the auxiliary varia-
bles likewise for all imputed months.

To illustrate the relative performance of the imputation algorithms with 
respect to the benchmark, Table  3 replicates the structure of Table  2, but it 
reports the RRMSE (relative RMSE, computed as the ratio of the RMSE in each 
cell of Table  2 to the corresponding value of locf). It thus quantifies the gains 
(RRMSE < 1) or losses (RRMSE > 1) in imputation precision in comparison to 
the benchmark.

As can be inferred from Table 4, both implementations of the Chow-Lin method 
achieve about 45% reduction in the RMSE relative to the benchmark. For the GLS 
regressions, the improvement is less pronounced, but it is still amounting to about 
30% reduction in the corresponding metric. EM method is nearly always less pre-
cise than the benchmark, with most RRMSE clearly exceeding one. The cubic spline 
method is only slightly better than the benchmark for the interpolating of data points 
ex-post, but its performance completely deteriorates out-of-sample with all reported 
RRMSE values markedly exceeding unity.

Comparing the improvements of accuracy of imputations relative to the bench-
mark computed in-sample (ex-post) versus out-of-sample (ex-ante), the former are 
generally more pronounced than the latter. The reason for this is that the RMSE are 
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generally higher for ex-ante imputations than ex-post for all imputation algorithms 
except locf, where they are equal ex-post and ex-ante (see Table 2).

Moreover, comparing precision of imputing values for the second versus the third 
month in each quarter. Lastly, the imputation accuracy somewhat deteriorated dur-
ing the COVID-19 period, reflecting the elevated level of uncertainty and turbulence 
brought about by the pandemic.

4.2.2  Directional Accuracy

Our second quantification of the accuracy of the imputations relates to turning 
points. Quarterly series as well as imputed monthly locf series are silent on changes 
of directions for the unobserved/imputed months. Yet, economic observers may be 
particularly interested in upward or downward movements at the right margins of 
economic time series. The directional accuracy of the imputations resulting from the 
different disaggregation methods is summarised in Table 5. It shows the percentage 
of correctly predicted up- or downward movements from one month to the other. 
Values above 50% indicate that the imputations are reflecting direction changes bet-
ter than random guessing. Turning points are not computed for the RMSE bench-
mark, as imputations by carrying the last observed value forward do not have direc-
tion changes by construction. Accordingly, here the benchmark for the usefulness of 
an algorithm is the 50%-hurdle.

The ranking is very similar to that for the point forecast accuracy (Tables 2 and 
3). Chow-Lin/LASSO takes the lead, closely followed by Chow-Lin, and then by 
GLS and EM. The cubic spline shows the strongest contrast when comparing the 
directional forecast accuracy for ex-post versus ex-ante imputations. For the imputa-
tions computed in-sample, the hit ratio is about 60%, whereas for imputations out-
of-sample it drops to 50% and below, which is comparable to what one would expect 
from random coin flipping, or worse For the remaining procedures the hit ratios are 
comparable across ex-post/ex-ante computations.

Based on our data corpus, the implied recommendations regarding the preferred 
algorithms for imputing monthly values for quarterly economic time series remain 
the same when the focus is on the correct direction from one month to the other 
rather than on the precision of the level: Chow-Lin and in particular Chow-Lin/
LASSO stand out, and GLS is not much inferior. The cubic spline algorithm, on the 
other hand, exhibits clearly unsatisfactory performance ex-ante and is at best mod-
erately useful ex-post. The only qualitative difference to the findings based on the 
point forecast accuracy measured in terms of RMSE is that the EM algorithm proves 
to be relatively accurate in terms of directional accuracy. Yet, the percentage of hits 
is markedly less than for Chow-Lin/LASSO, Chow-Lin or GLS, so again, EM leaves 
much room for improvement.
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4.3  External Validation

In this section, we apply the best-performing method from the preceding internal 
validation, Chow-Lin/LASSO to convert our quarterly time series of interest, tech-
nical capacity utilisation in per cent from the quarterly KOF BTS (CapUq), into 
monthly frequency (CapUm). Then, we verify whether the resulting temporally dis-
aggregated time series is superior to the benchmark, capacity utilisation temporally 
aggregated with the last value observation carried forward algorithm (CapUlocf) 
in explaining the within-quarter variance of a selection of monthly business cycle 
indicators reflecting economic conditions that can a priori be assumed to be closely 
related to what is measured by CapU. Since in this exercise the monthly CapU val-
ues are genuinely unknown, a forecast encompassing test is applied.

The external validation consists of the following steps. First, we select six 
monthly economic indicators as reference time series. They cannot be taken from 
the monthly KOF BTS, as this is where the within quarter variance of the disaggre-
gated series comes from, but they should still have a close relation to the Swiss busi-
ness cycle. We identified six suitable and publicly available time series:

 1.1. The KOF Economic Barometer, one of the most prominent monthly composite 
leading indicators for the Swiss economy.8

 1.2. The Leading Global Barometer, a monthly composite leading indicator for the 
world economy, developed and published jointly be the KOF Swiss Economic 
Institute and the Brazilian Fundação Getúlio Vargas (FGV).9

 1.3.  The Coincident Global Barometer, which corresponds to the Leading Indicator 
with the exception that it does not target a lead to the world economy but instead 
a stronger congruence with it.

 1.4.  Swiss National Bank’s Business Cycle Index (SNB BCI), a monthly composite 
indicator designed to reflect the Swiss GDP growth cycle.10

 1.5. The official Unemployment Rate, a monthly series based on the number of 
registered unemployed persons in Switzerland.11

 1.6. Inflation, measured as the year-on-year growth rate of the Swiss Consumer Price 
Index.12

Where seasonally and calendar day adjusted data are available, we take these, 
otherwise we use the series unadjusted as published. We refer to these six series as 
“external” (Emi). To verify that the external time series and CapU are indeed reflect-
ing the same – or at least a similar – data generating process and to identify the 
lead/lag structure, we compute pairwise cross-correlations of CapUlocf and the Emi, 

8 For details, see https:// kof. ethz. ch/ en/ forec asts- and- indic ators/ indic ators/ kof- econo mic- barom eter. html.
9 For details regarding this and the next indicator on the list, see https:// kof. ethz. ch/ en/ forec asts- and- 
indic ators/ indic ators/ kof- globa lbaro. html.
10 For details, see https:// data. snb. ch/ en/ topics/ snb/ chart/ snbbc ich.
11 For details, see https:// www. bfs. admin. ch/ bfs/ en/ home/ stati stics/ work- income/ unemp loyme nt- under 
emplo yment. html.
12 For details, see https:// www. bfs. admin. ch/ bfs/ en/ home/ stati stics/ prices/ surve ys/ lik. html.

https://kof.ethz.ch/en/forecasts-and-indicators/indicators/kof-economic-barometer.html
https://kof.ethz.ch/en/forecasts-and-indicators/indicators/kof-globalbaro.html
https://kof.ethz.ch/en/forecasts-and-indicators/indicators/kof-globalbaro.html
https://data.snb.ch/en/topics/snb/chart/snbbcich
https://www.bfs.admin.ch/bfs/en/home/statistics/work-income/unemployment-underemployment.html
https://www.bfs.admin.ch/bfs/en/home/statistics/work-income/unemployment-underemployment.html
https://www.bfs.admin.ch/bfs/en/home/statistics/prices/surveys/lik.html
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allowing up to 15 months lag/lead. We refer to CapUlocf alternatively in levels and 
in year-on-year growth rates (y–o-y). The same applies for the six Emi, but here we 
compute annual differences rather than growth rates, when the scale of a series man-
dates this. The cross correlations are computed with CapUlocf covering the period 
2000m1–2019m12, but we refer to all available data points of the six external series 
to identify the leads or lags.13 For each combination of CapUlocf and Emi, we deter-
mine the highest absolute cross correlation, along with the corresponding variable 
specifications (levels or growth rates/differences) and leads/lags. Table  6 summa-
rises the findings, ordered according to the maximum absolute cross correlations.

The magnitude of the highest (absolute) cross-correlations ranges from 0.86 to 
0.50. Of the six external series, five are leading with respect to CapU. The highest 
cross-correlations (0.80 and above) are recorded for the domestic and international 
versions of the composite business cycle indicators. The cross-correlation with the 
unemployment rate is negative (–0.65), which makes sense, as unemployment is the 
inverse of labour utilisation and it is known to react to changing conditions with 
a certain inertia, so that it is a lagging indicator of the business cycle. The lowest 
absolute cross-correlation (0.50) is recorded with the CPI inflation. As pressure on 
technical capacity utilisation can be expected to go along with rising output prices, a 
positive association is to be expected, but changes to the price level are also caused 
by many other factors, so that a more than moderate correlation would have come as 
a surprise.

What we can take from this is that CapU is indeed a key indicator for the Swiss 
business cycle, and accordingly, we find it to correlate highly with the six external 
series that are also directly or indirectly reflecting the state of the Swiss economy.

What remains to be seen is whether within-quarter variance created by the impu-
tation of monthly CapU values strengthens the associations. Our criterion for this 

13 The external series all go back to the 1990s and more than 15 months beyond 2019m12.

Table 6  Cross correlations, capacity utilisation and external series

External series CapU Max abs. cross  
correlation

Lead/lag of external series

KOF Economic Barometer
Level y–o-y growth rate 0.86 7 months lead
KOF/FGV Leading Global Barometer
Level y–o-y growth rate 0.85 6 months lead
KOF/FGV Coincident Global Barometer
Level y–o-y growth rate 0.84 4 months lead
SNB Business Cycle Indicator (BCI)
y–o-y difference y–o-y growth rate 0.80 9 months lead
Unemployment Rate
y–o-y difference y–o-y growth rate –0.65 3 months lag
Consumer Price Index (CPI) Inflation
Level Level 0.50 2 months lead
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is that the preferred Chow/Lin-LASSO algorithm must be “superior” to the naïve 
locf approach, but since we do not know what would have been the true observed 
monthly values, had a monthly survey been conducted, we define superiority as 
beating locf in predicting (forecasting) the external reference series. In particular, we 
let the monthly series CapUm resulting from temporal aggregation with the Chow-
Lin/LASSO algorithm compete with the benchmark CapUlocf in predicting the six 
reference series. This amounts to comparisons of non-nested models, for which the 
J-test is adequate (Davidson & MacKinnon, 1981; Mizon & Richard, 1986).

For the imputation of the missing monthly values of the CapUq time series 
with the Chow-Lin/LASSO algorithm, the auxiliary data are the eleven monthly 
BTS series (Table  1). The imputations cover the 20  years before the pandemic, 
2000m1–2019m12, comprising 240 months, for which 160 unobserved values are 
imputed. Notice that CapUq is not a balance indicator but a quantitative survey item, 
so we do not conduct indirect imputations (as there are no positive- and negative 
shares).

The J-test is conducted as follows: Let  H1 and  H2 denote two rival models 
Y = X1 g and Y = X2 h. Then the J-test will evaluate whether the predicted values of 
an alternative model (X2 ĥ or X1 ĝ) significantly improve the fit of the rival model in 
the two following regressions:

The test statistics are the t-values for φ and τ coefficients. Significance of φ along 
with insignificance of τ implies rejection of  H1 by  H2. Significance of τ only means 
that  H2 is rejected by  H1. When neither φ nor τ are significant, the test does not 
result in any particular model selection. When both φ and τ are significantly dif-
ferent from zero, both models must be considered as partly useful, but ultimately 
deficient, given the available information. Since our rival models are the different 
estimates of the known data points from the original monthly reference series Rt, 
so that X1 and X1 are not bundles of time series (vectors) but two single time series, 

(3)Y = X1g + 𝜑
(

X2ĥ
)

(4)Y = X2h + 𝜏
(

X1ĝ
)

Table 7  Encompassing tests (2000–2019), out-of-sample imputations

Chow-Lin/LASSO locf R2

Series/Statistics g t-stat p-value h t-stat p-value

KOF Economic Barometer 2.06 4.36  < 1% 0.57 1.26 0.21 0.74
Leading Global Barometer 1.89 4.46  < 1% 0.38 0.94 0.35 0.72
Coincident Global Barometer 1.84 4.50  < 1% 0.16 0.40 0.69 0.68
SNB BCI 0.19 2.81  < 1% 0.10 1.57 0.12 0.64
Unemployment Rate -0.10 -2.90  < 1% -0.002 -0.06 0.95 0.44
CPI Inflation 0.20 7.50  < 1% -0.01 -0.84 0.41 0.25
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CapUm
t–L and CapUlocf

t–L, the J-test is here identical with the simpler encompassing 
test (E-test), which consists of running the regression

and addressing the significance of the estimated coefficients g and h by the usual 
t-tests, where L is the optimal lead/lag parameter shown in Table 6, and μt is the 
error term. The decision rule equals that of the J-test. We refer to the out-of-sample 
imputations of CapU, since this is what matters most when economic observers try 
to understand what is happening in real-time as long as their preferred quarterly data 
are not updated. The results are shown in Table 7.

The E-tests are unambiguously in favour of the Chow-Lin/LASSO imputations 
for all six reference series. The regression coefficients g all have the expected signs, 
and the t-statistics are high in absolute term, so that the associated p-values indicate 
significance at the 1%-level (highlighted bold). For the competing locf imputation, 
the h-coefficients are all considerably smaller and the t-statistics do not even come 
close to indicating statistical significance. In other words, the external validation 
confirms that Chow-Lin/LASSO imputations of CapU are significantly superior to 
the locf series in predicting the six external series, so that we can conclude that the 
temporally disaggregated time series of technical capacity utilisation created by the 
Chow-Lin/LASSO imputation is a valid reflection of the monthly dynamics of the 
Swiss economy.

4.3.1  Robustness of the Results During the COVID‑19 Period

The last part of our analyses is to run the same six E-tests for the COVID-19 years 
2020–2021. While the number of observations (24, of which 16 are imputed for 
CapU) is small for statistical inference, we can at least verify whether our conclu-
sions based on the pre-COVID-19 results are not reverted. The results are shown in 
Table 8.

Looking at the COVID-19  years, the E-tests for two of the six external varia-
bles (unemployment and inflation) are unambiguously in favour of the Chow-Lin/

(5)Rt = gCapUm
t−L

+ hCapU
locf

t−L
+ �t

Table 8  Encompassing tests, COVID-19 years (2020–2021)

Chow − Lin/LASSO locf R2

Series/statistics g t-stat p-value h t-stat p-value

KOF Economic Barometer  − 2.58  − 0.86 0.40 5.13 1.61 0.12 0.38
Leading Global Barometer  − 1.42  − 0.70 0.49 4.34 2.01 0.06 0.64
Coincident Global Barometer  − 1.78  − 0.92 0.37 4.65 2.27  < 5% 0.66
SNB BCI 0.24 0.62 0.54  − 0.004  − 0.009 0.99 0.27
Unemployment Rate  − 1.24  − 2.21  < 5%  − 0.02  − 0.40 0.40 0.87
CPI Inflation 0.26 4.75  < 1%  − 0.01  − 0.35 0.73 0.84
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LASSO imputations at the 5%-significance level (highlighted in bold). For the KOF 
Economic Barometer, the Leading Global Barometer and the Swiss National Bank’s 
BCI, the E-tests indicate that neither of the two competing imputations can be said 
to explain the variation in the external series at conventional significance levels. 
Lastly, for the Coincident Global Barometer, the E-test is favouring locf.

Accordingly, the results from the pre-COVID-19 period are confirmed for the 
time of the pandemic regarding the “hard” data only (official unemployment and 
inflation statistics), which is still remarkable, as with n = 16 statistical significance 
requires very clear results. On the other hand, the more sophisticated imputation 
fails to outperform the benchmark to achieve congruence with the “soft data” (com-
posite sentiment indicators). The uncertainty in 2021 and 2022 apparently to some 
degree invalidated the composite sentiment indicators, while the auxiliary variables 
for the imputation of the missing CapU observations maintained much of their 
usefulness.

All in all, our results suggest that the monthly variation in the temporally disag-
gregated time series surveying technical capacity utilisation by means of the Chow-
Lin/LASSO procedure is generally rather closely related to the monthly dynamics 
of the Swiss economy. The overwhelming evidence in favour of this conclusion 
that is reported in Table 6 for the longer period is, however, less apparent for the 
COVID-19 period, in which also many other economic indicators failed to perform 
as previously.

5  Summary and Conclusions

In this paper, we compare algorithms to deal with the problem of missing values 
in higher frequency data sets. To this end, we refer to the Swiss KOF business ten-
dency surveys amongst manufacturing firms. They are conducted at both monthly 
and quarterly frequency, where an information sub-set is collected at quarterly fre-
quency only.

In order to determine the best temporal disaggregation method, we design two 
verification procedures. The first procedure, referred to as internal validation, com-
pares the performance of several univariate as well as multivariate temporal disag-
gregation techniques using eleven monthly time series from the KOF Swiss man-
ufacturing survey. For each monthly time series in turn, we construct artificially 
quarterly series by skip-sampling two out of three monthly observations in each 
quarter. Then we use a selection of temporal disaggregation methods to recover the 
deleted data points. More specifically, we use the following methods: last observa-
tion carried forward as the benchmark, a cubic spline, linear regression, the Expec-
tation–Maximisation algorithm, the standard Chow-Lin procedure and the Chow-
Lin procedure augmented with the least absolute shrinkage and selection operator 
(LASSO) regression of Tibshirani (1996) based on approaches suggested by Wang 
et al. (2007). Since we know both the original and imputed values, we can run stand-
ard tests of forecasting accuracy to rank these methods by their imputation precision. 
We compare the accuracy of imputations both in terms of the root mean squared 
error as well as of directional accuracy.
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As the result of the internal validation procedure, the temporal aggregation algo-
rithm that combines the standard Chow-Lin method with the LASSO approach of 
Tibshirani (1996) is found to the best performing algorithm. It has a slight edge over 
the standard Chow-Lin method and much superior performance when compared 
to other competing methods. It is important to note that the combined Chow-Lin/
LASSO method would also work in data-rich environments when the number of 
auxiliary monthly indicators may well exceed the number of data points in the low-
frequency variable, i.e., in situations where the standard Chow-Lin method would be 
infeasible to implement.

The internal validation is amended by an external validation, where we evalu-
ate the congruence of genuinely imputed monthly values from the quarterly survey 
question about firms’ technical capacity utilisation in per cent with existing monthly 
time series that can be expected to be related to technical capacity utilisation: the 
KOF Economic Barometer, the KOF/FGV Leading and Coincident Global Barome-
ters, the Swiss National Bank’s Business Cycle Index, the Swiss unemployment rate 
and inflation. To this end, we run the forecast encompassing to determine whether 
the temporally disaggregated technical capacity utilisation time series by our pre-
ferred combined Chow-Lin/LASSO method can capture the monthly variation in the 
six external time series better than the capacity utilisation series temporally disag-
gregated with the benchmark algorithm last observation carry forward.

For the pre-COVID-19 decades going back to the 1990s, we find the forecast 
encompassing test statistics unambiguously in favour of our amended Chow-Lin/
LASSO imputations for all six reference series. This is strong evidence that the 
imputed monthly variance of the technical capacity utilisation series is meaningfully 
related to the true monthly dynamics of the Swiss economy.

For the COVID-19 years 2020–2021, the results are not as unambiguous as those 
obtained for the longer pre-COVID-19 sample, which we attribute to the rather 
small sample size available for testing (in total 24 monthly observations, of which 
16 are imputed) as well as the elevated degree of general uncertainty and turbulence 
in the underlying monthly indicators.

The rule that findings from simulated forecasting exercises are particular to the 
data used applies here, too. Having said this, we trust that the ranking of the algo-
rithms will be similar for comparable applications, i.e. imputations of monthly val-
ues for quarterly time series relating to the business cycle. Also, the superiority of 
indirect imputations of balance indicators via the underlying shares compared to the 
direct approach may apply for qualitative business cycle survey data in general, but 
more research should be conducted before drawing too firm conclusions.

Appendix

Cubic Spline

The specification of the cubic spline procedure used in this paper imputes the miss-
ing monthly values with the “natural” cubic spline interpolation. A cubic spline is 
natural if the bending moment (the second derivative of the spline function) at the 
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end points equals zero and the slope (the first derivative of the spline function) is 
constant. Consequently, the natural cubic spline ends in a straight line, as missing 
monthly values at the end of the series are extrapolated by continuing a straight line.

EM Algorithm

We adopt an approximate static factor model like the one presented by Stock and 
Watson (2002a) that allows modelling the co-movement of numerous variables in 
terms of a few latent factors. The approximate static factor model given a T × N 
matrix X of N time series assumes the following factor model representation:

where L is a K × N matrix of the factor loading coefficients, and F is a T × K matrix 
of K common factors. The idiosyncratic error term � is variable-specific and has the 
corresponding dimension T × N . The idiosyncratic disturbances can be serially and 
cross-sectionally correlated. The approximate static factor model relaxes restrictive 
assumptions of the classic factor analysis that requires cross-sectional and temporal 
independence of the idiosyncratic disturbances. Stock and Watson (2002a) showed 
that under fairly general conditions on the error terms the latent factors can be con-
sistently estimated using the principal components (PC) analysis. Observe that in 
order to rule out scale effects, we perform the principal components extraction refer-
ring to the correlation matrix rather than to the covariance matrix of the selected 
indicator variables. This is mandatory, as the variances of our transformed indicators 
series differ greatly for purely technical reasons that should not affect the weight 
given to a particular variable.

For any arbitrary number of common factors K ( K < min(N, T) ) estimates of L 
and F are obtained as a solution to the following nonlinear least squares minimisa-
tion problem:

The optimisation problem is solved by setting L equal to the eigenvectors corre-
sponding to the K largest eigenvalues of the sample correlation matrix X . The esti-
mator of the common factors is given by F̂ = XL̂�.

Alternatively, the first principal component can be defined as the linear combina-
tion of variables with maximal variance. The subsequent principal components are 
similarly defined with an additional restriction that their loadings must be orthogo-
nal to all previously calculated principal components. Formally,

Factors are estimated as before by F̂k = XL̂�
k
 , where Fk is the k-th column of F 

and Lk the k-th row of L . Hence principal components analysis has the following 

(A1)X = FL + �

(A2)L̂, F̂ = argmin
F,L

T
∑

t=1

(Xt − FtL)�(Xt − FtL), subject to LL� = Ik

(A3)�Lk = argmax
Lk

var
(

Fk

)

, subject to LkL
�
k
= 1 and LkL

�
j
= 0 for all j < k.
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interpretation. The first principal component explains as much variation in the data 
as possible. The second explains as much of the remaining variation in the data PC 
as possible after extraction of the first, and so on. In this way principal component 
analyses reduces the dimensionality of a large set of interrelated variables, while 
retaining as far as possible the information (variation) present in the data set.

Our panel always contains one quarterly series whose non-quarter months are 
missing and N − 1 monthly indicators. We employ the Expectation–Maximisation 
(EM) algorithm following Stock and Watson (2002b) to estimate the common fac-
tors and missing observations simultaneously.

The steps of this algorithm are:

• Fill the missing values in X with their initial estimates (mean imputation is com-
monly used, i.e. the missing values in variable Xi are filled with the mean of Xi).

• Repeat the following steps until convergence is reached:

1. Compute the factors F̂ and factor loadings L̂ (M-step).
2. Reconstruct X with X̂ = F̂L̂ (E-step).
3. If the absolute differences between the missing values from the first imputa-

tions in X̂ and the corresponding values in X are below a certain threshold, 
stop.

4. Update the initial iterations in X with the new estimates in X̂ and go to step 
1.

In the above procedure, we limit ourselves to 2 principal components, because the 
quality of the imputation in terms of RMSE did not improve with a higher number of 
components.

Multiple Regression

The missing monthly values of a quarterly series are imputed with the help of the 
remaining ten available monthly indicators. For this purpose, the following multiple 
regression is estimated:

yl is the T × 1 quarterly target series, X the 3T × N matrix of monthly indicators, 
C a N × 3T  conversion matrix that converts the monthly matrix X to a T × N quar-
terly matrix by extracting the quarter months, and u ∼ N(0,Σ) is a 3T × 1 vector of 
errors with Σ = �2I . We drop the requirement of i.i.d. errors ut and assume they fol-
low an AR-process. The ordinary least squares solution is given by

(A4)yl = CX� + Cu

(A5)�̂ = (X�C�CX)−1X�C�yl.
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If N > T  , the matrix X′C′CX is singular and no unique solution for �̂  exists. 
When N ≤ T  but N is large relative to T  , ordinary least squares is prone to overfit-
ting, such that the model fits the in-sample data and its noise well but fails to give 
good out-of-sample predictions. Since N = 10 and our in-sample window is T = 80 
quarters long, overfitting might prove to be an issue.

We then estimate the T × 1 monthly series yh with ŷh = X�̂  and replace the miss-
ing monthly values in yh with ŷh to arrive at the imputed monthly series.

Chow and Lin (1971) Procedure

The Chow and Lin (1971) methodology is a least-squares optimal solution for tem-
poral disaggregation on the basis of a linear regression model. In that respect it for-
malises and generalises the ad-hoc ordinary least squares solution. Notwithstanding 
that is has been suggested close to half a century ago, it is arguably still the most 
popular imputation method when high frequency indicators are at hand.14

The Chow/Lin procedure seeks to exploit a statistical relationship between low 
frequency data and higher frequency indicator variables through a high frequency 
regression equation.

Where X are high frequency indicators and u is an error term with variance 
covariance matrix V  . With C the conversion matrix which includes the distribution 
or interpolation restrictions the low frequency regression equation becomes.

The regression coefficients are computed using the Generalised Least Squares 
(GLS) estimator.

The high frequency values can then be calculated by.

Where D is the distribution matrix (distributing the low frequency residuals to the 
high frequency values).

The part CVC′ is the low frequency variance covariance matrix.

(A6)yh = X� + u

(A7)yl = Cyh = CX� + Cu

(A8)�̂ =
[

X
�

C�(CVC
�

)−1CX
]−1

X�C�(CVC�)−1yl

(A9)ŷh = X�̂ + D(yl − CX�̂)

(A10)D = VC�(CVC
�

)−1

14 See, amongst many others, Bagzibagli (2014), Čižmešija et al. (2018) and Stuart (2018),
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In the context of this article the low frequency is quarterly, and the high fre-
quency is monthly. The problem is an interpolation problem where the value of the 
quarter is identical to the value of the first month in the respective quarter. So, the 
conversion matric C is.

This case was also discussed in the original paper of Chow and Lin (1971). The 
simplest case is to assume that the monthly regression residuals are serially uncorre-
lated. In that case D = C� so that the distribution matrix assigns the quarterly resid-
ual fully to the first month of the quarter.

Chow and Lin assume for the high frequency residuals an AR(1) process, that is.

Where �t is white noise with variance �2
�
 . In this case V is of the form

So, for the procedure one needs an estimate of � . For this, the first order autocor-
relation of the quarterly (the low frequency) residuals is estimated. With the AR(1) 
assumption for the monthly residuals the first order autocorrelation of the quarterly 
residuals is �3 . The estimates are then plug into the distribution matrix D to estimate 
the high frequency values.

Combined Chow‑Lin and LASSO Approach

We combine Chow and Lin (1971) with the penalised regression or least abso-
lute shrinkage and selection operator (LASSO) approach suggested in Tibshirani 
(1996). It turns out that is it a straightforward way to do as all the necessary steps 
were already described in contribution of Wang et  al. (2007) that shows how the 
penalised LASSO regression can be modified in the presence of the autocorrelated 
error term. The main motivation for extending the standard Chow-Lin procedure is 

(A11)C =

⎡

⎢

⎢

⎢

⎣

1 0 0 ⋯ 0 0

0 0 1 0 0 ⋯ 0

⋮

0 ⋯ 1 0 0

⎤

⎥

⎥

⎥

⎦

(A12)ut = �ut−1 + �t

(A13)V =
�2
�

1 − �

⎡

⎢

⎢

⎢

⎣

1 � ⋯ �n−1

� 1 ⋯ �n−2

⋮ ⋮

�n−1 �n−2 ⋯ 1

⎤

⎥

⎥

⎥

⎦



269

1 3

Journal of Business Cycle Research (2023) 19:241–273 

that it becomes operational in data-rich environments with a very large number of 
high-frequency indicators available as potential candidates to be used in the tempo-
ral aggregation process. As noted in Tibshirani (1996), the LASSO combines both 
shrinkage and model selection aspects.

The LASSO method estimates the linear regression coefficients by minimizing 
the sum of least squares subject to an l1 penalty function:

The use of the  l1 penalty in conjunction with the squared objective function leads 
to many corner solutions for which the parameter estimates are zero. λ is a tuning 
parameter that captures the relative weight on the penalty function.

Wang et al. (2007) extend the LASSO for regressions with autoregressive errors 
by reformulating the LASSO criterion as follows.

Here ( �, �) are the shrinkage parameters. The authors allow for two different 
shrinkage parameters, one for the regression coefficients and one for the autore-
gressive coefficients. In our implementation, the problem is simplified. Instead of a 
general AR(q) process for the error term, a parsimonious first-order autoregressive 
dynamics is assumed, AR(1), for which no shrinkage is required. Penalty terms are 
computed only for the regression slope parameters β.

To solve the optimization problem Wang et al. (2007) propose an iterative algo-
rithm. This algorithm simplifies in the present context to:

In step i of the iteration:
2. Use LASSO with fixed �̂(i):

3. Use �̂(i + 1) to estimate �̂(i + 1) with ordinary least squares.
Steps 1 and 2 are repeated until convergence. The initial values for iterations �̂(0) 

are estimated with a ridge regression �̂(0) with ordinary least squares. The shrinkage 
parameter � is chosen according to BIC, as proposed by Wang et al. (2007).

After convergence, the estimates �̂  and �̂ = �̂3 are again plugged into the Chow 
and Lin estimation equation for ŷh = X�̂ + D(yl − CX�̂) to obtain high frequency 
estimates.
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