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Abstract
Within a New Zealand business cycle context, we assess whether Hamilton’s (H84) 
OLS regression methodology produces stylised business cycle facts which are mate-
rially different from the Hodrick–Prescott (HP) and Baxter–King (BK) measures, 
and whether using the H84 predictor for forecast-extension improves the HP filter’s 
properties at the ends of series. Stylised business cycle facts were computed for a 
set of key New Zealand macroeconomic variables. In general, H84 produces greater 
volatilities and less credible trend movements during key economic periods than 
either HP or BK, and so for this purpose there is no material advantage in using H84 
over HP or BK. At the ends of series, we evaluate the performance of the forecast-
extended HP filter for three representative business cycle environments. The fore-
cast-extension methods compared include the H84 predictor, the informed forecasts 
of three leading New Zealand economic agencies, two methods based on models of 
past data, and the HP filter with no extension. As expected, the better the forecast-
extension the more accurate the HP filter at the ends of series and, as reported else-
where in the literature, the HP filter with no extension performed poorly. However, 
in all cases considered the H84 predictor performed worst.
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1  Introduction

Hamilton (2018) makes a case for why you should never use the Hodrick-Prescott 
filter (Hodrick & Prescott, 1997), with his key arguments being the following.

(a) The Hodrick-Prescott (HP) filter introduces spurious dynamic relations that 
have no basis in the underlying data-generating process.
(b) Filtered values at the end of the sample are very different from those in the 
middle and are also characterised by spurious dynamics.
(c) A statistical formalization of the problem typically produces values for the 
smoothing parameter vastly at odds with common practice.
(d) There is a better alternative.

His better alternative is to use the regression of a variable at date t on the four 
most recent values as of date t-h since this would achieve “… all the objectives 
sought by users of the HP filter with none of its drawbacks”.

Hamilton provides illustrative empirical results for a long-run quarterly U.S. 
total employment series (1947q1–2016q2), and for quarterly GDP and GDP com-
ponent series of similar length. He uses his proposed regression method (H84) 
and his companion 8-lag difference method (H8). The regression can also be used 
to project forward eight more quarters of observations. Growth cycle volatility 
and contemporaneous cross-correlation results are provided (Hamilton  2018, 
Table 2), and benchmarked against random walk results, but perhaps surprisingly 
not against results from using the HP filter. Nor does he provide standard errors 
or non-contemporaneous cross-correlation results and there is also no explicit 
assessment of the economic circumstances in which end-point issues might be 
empirically concerning.

An increasing number of studies have provided theoretical and empirical 
evaluations of Hamilton’s proposed methodology. See, for example, Phillips and 
Shi (2021), Hodrick (2020), Jönsson (2020a, 2020b), Quast and Wolters (2020), 
Schüler (2018), and Drehmann and Yetman (2018) among others.

Phillips and Shi (2021) provide detailed responses to Hamilton’s (2018) cri-
tique of the HP filter, and analyse the performance of Hamilton’s regression 
approach relative to their boosted HP filter (bHP). Their findings show a clear 
preference for the bHP filter over the Hamilton regression, and they also conclude 
that the HP filter may continue to be used as a helpful empirical device for the 
estimation of trends and cycles.

Hodrick (2020) has used simulations approximating the natural logarithm of 
U.S. real GDP to examine the properties of the HP filter and Baxter-King filter 
(Baxter & King, 1999) (BK), relative to those from Hamilton’s H84 filter. He 
finds that the HP and BK filters are quite similar, that the H84 filter performs 
much better in environments with straightforward first difference stationary time 
series, and that the reverse is true for more complex time series. This leads him 
to conclude that the choice of methodology might depend on one’s priors about 
the nature of the series. But for the purpose of developing stylised business cycle 
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facts to assist in building and evaluating growth cycle models, he has expressed a 
preference to use the HP and BK methods.1

Jönsson (2020a) has assessed the extent to which HP and Hamilton filters intro-
duce spurious dynamics to a business cycle’s cyclical component, and report that 
similar dynamics can be found in the cyclical component of HP-filtered and Ham-
ilton-filtered series. The paper takes no stand on which of the two methods should 
be used when decomposing a series into trend and cycle components, and concludes 
that choosing between the two filters may turn out to be harder than at first thought. 
Jönsson (2020b) compares the HP and Hamilton filters with respect to real-time sta-
bility in US GDP gap estimation and finds that the Hamilton filter outperforms the 
HP filter when it comes to real-time revisions. The source of the inferior perfor-
mance of the HP filter is that trend and cycle estimates close to the end of the sam-
ple are revised to a large extent as more data are added to the series, a finding also 
documented by other authors.

For U.S. log GDP and credit-to-GDP data, Schüler (2018) has compared the 
cyclical properties of Hamilton’s regression filter with those from the HP filter. 
Overall, he finds that while Hamilton’s filter is not subject to the same drawbacks 
as the HP filter, it too reflects ad hoc underlying assumptions. Specifically, he sin-
gles out the two-year regression filter for excluding two-year cycles and emphasising 
cycles which are longer than typical business cycles fluctuations, thereby being at 
odds with stylised business cycle facts, such as the one-year duration of a typical 
recession.

Drehmann and Yetman (2018) have assessed whether an HP trend or a Hamilton 
linear projection of the credit-to-GDP gap performed the better in providing an early 
warning indicator for crises. While acknowledging that it is an empirical question as 
to which of a range of measures performs best on this question, they also find that no 
other gap outperforms their baseline measure (a one-sided HP filter with smoothing 
parameter � = 400,000). Further, they find that credit gaps based on linear projec-
tions in real time perform poorly.

Against the above background and for New Zealand data, we assess whether 
Hamilton’s H84 filter has provided a “better alternative” to the HP filter. In particu-
lar, we evaluate comparative performance in two areas. In the body of the series we 
compare the stylised business cycle facts produced by the H84 filter relative to those 
from the HP filter and also the BK filter. The latter provides direct estimates of the 
business cycle based on the definitions of Burns and Mitchell (1946). At the ends 
of series, we compare the relative performance of the HP filter in the case where 
the series has been augmented with forecasts (HP forecast-extension) from the H84 
regression and other forecast-extension methods. Our stylised facts evaluation is for 
a wider set of key macroeconomic model variables than the real GDP, output gap 
and credit-to-GDP gap variables investigated by others, and both evaluations use 

1  On the importance of developing important empirical regularities/stylised facts as benchmarks for 
assessing theoretical macroeconomic models and guiding macroeconomic policy, see Stock and Watson 
(1999).
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data from a small, open economy rather than from the considerably larger econo-
mies examined by others.

Specifically, we address two questions.

•	 For post-1987q2 New Zealand, does Hamilton’s H84 filter produce business 
cycle volatility and bivariate cross-correlation measures which are materially dif-
ferent from those obtained using the HP and BK filters?

•	 At the ends of series, does HP forecast-extension using the Hamilton H84 predic-
tor perform better than other forecast-extension methods, including the informed 
forecasts of three leading New Zealand economic agencies, two methods based 
on models of past data, and the HP filter with no extension?

The latter question is investigated for three representative end-point environ-
ments: New Zealand’s post-2009q1 business cycle expansion path, and two busi-
ness cycle turning point periods encompassing the peak and trough associated 
with New Zealand’s five quarter classical Global Financial Crisis (GFC) reces-
sion 2008q1–2009q1.2 We are not aware of other evaluations which have focussed 
directly on end-of series issues at business cycle turning point periods.

Section 2 provides a brief description of our methodological framework. Empiri-
cal results are presented in Sects. 3 and 4, and Sect. 5 concludes.

2 � Methodological Framework

Consider a non-seasonal quarterly economic time series xt , possibly log trans-
formed, and assume that xt admits the additive decomposition

where gt is an unobserved or hidden trend and ct is the deviation from the trend. 
The decomposition and its conceptual components are identified by assuming that 
gt is smooth and follows the secular general movement of the time series concerned, 
whereas ct reflects shorter-term fluctuations and cyclical behaviour not accounted 
for by the trend. In essence, gt is the base mean level around which shorter-term 
deviations, such as the business cycle, are estimated.

Typically, gt is estimated by a linear trend filter of the form

with the trend deviations estimated by

(1)xt = gt + ct

(2)ĝt =
∑

s

wt(s)xt−s

2  For investigative work on the role of an HP1600 filter for the U.S. GFC period, see Phillips and Jin 
(2021).



155

1 3

Journal of Business Cycle Research (2021) 17:151–183	

where w̃
t
(s) = −w

t
(s) (s ≠ 0) and w̃t(0) = 1 − wt(0) . The filter weights wt(s) can be 

time-varying or time-invariant where wt(s) = w(s) . Many filters used in business 
cycle analysis can be put into this general form including the Hodrick-Prescott filter 
(Hodrick & Prescott, 1997) where the wt(s) are time-varying, the Baxter-King filter 
(Baxter & King, 1999) which directly estimates the business cycle following the def-
initions proposed by Burns and Mitchell (1946), and simple moving average trend 
filters with time-invariant weights. The latter include the Henderson filters (Hender-
son, 1916) used by the seasonal adjustment procedure X-12-ARIMA (Findley et al., 
1998) to estimate the so-called trend-cycle which includes the business cycle.

The empirical modelling framework (1) has a long history in official statistics and 
economic analysis going back to Macaulay (1931) if not earlier. It forms the basis 
for the trend-seasonal-irregular decomposition procedure X-12-ARIMA (a devel-
opment of X-11 and X-11-ARIMA) which remains the dominant seasonal adjust-
ment procedure used by official statistical agencies around the world, despite many 
attempts to supplant it by modern parametric dynamic models and methods. The use 
of the HP filter in economic time series analysis appears to be following a similar 
and parallel development, i.e. it is widely used in practice, but challenged by aca-
demic researchers who seek to replace it by a suitable dynamic model or equivalent.

While not wishing to rehearse all the arguments for and against the use of this 
empirical modelling framework, primary reasons for the popularity of X-12-ARIMA 
and the HP filter are that they:

•	 provide a conceptually simple framework that is readily understood by analysts 
and users alike;

•	 enjoy broad consensus with the methods widely used in practice and found use-
ful by the international official statistics and applied economics communities;

•	 adopt a common standard method used across broad classes and collections of 
time series both nationally and internationally with little data-dependent fitting 
involved.

As a consequence, these omnibus methods have, for the most part, provided use-
ful descriptions of individual economic time series and informative national and 
international economic comparisons across series, over a long period of time (post 
WW2).

On the other hand, all trend estimation methods involving moving average filters:

(a)  necessarily modify the dynamic structure of the original time series, some-
times significantly;
(b) only provide stable historical trend estimates in the body of the series;
(c) provide more volatile trend estimates at the ends of series than those in the 
body since they are subject to revision as more data values are added to the series;
(d) cannot match the forecasting performance of individual dynamic time series 
models identified and fitted to each series.

ĉt = xt − ĝt =
∑

s

w̃t(s)xt−s
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Of these deficiencies, arguably the greatest is (c). In the case of seasonal adjust-
ment, considerable effort has been invested into minimising the revisions of trend 
estimates at the ends of series (see Gray & Thomson, 2002, for example). Here it is 
known (see Geweke, 1978, Burman, 1980, and Pierce, 1980) that the optimal strat-
egy is to augment the time series with optimal forecasts and then apply the moving 
average trend filter to the augmented time series. Such forecast-extension methods 
take the best of both modelling frameworks. Dynamic time series models can be 
used to provide out-of-sample forecasts that largely eliminate deficiency (d) and pro-
vide more stable estimates of the desired empirical trend at the ends of series which 
directly addresses deficiency (c).

Kaiser and Maravall (1999, 2012) would appear to be the first to propose and 
implement forecast-extension procedures for the HP trend filter within a business 
cycle framework. As they acknowledge, their procedures are derived from the Sta-
tistics Canada seasonal adjustment program X-11-ARIMA (Dagum, 1980) which 
implemented forecast extension procedures for the X-11 trend-seasonal-irregular 
decomposition procedure that underpins X-12-ARIMA used by most official statisti-
cal agencies worldwide. Forecast-extension has also been used more widely in busi-
ness cycle analysis: Christiano and Fitzgerald (2003) use forecast-extension with the 
Baxter-King filter, Garratt et al. (2008) have used forecast extension for estimating 
the output gap, and a number of economic agencies such as the European Commis-
sion have used such methods (see Kaiser & Maravall, 2012, for example, and the 
references therein). Nevertheless, forecast-extension methods for the HP trend filter 
have yet to be as routinely and universally adopted as they have within the official 
statistics community and trend-seasonal-irregular decomposition procedures such as 
X-12-ARIMA.

In this paper we follow the consensus and assume that the HP filter provides a 
useful, and economically meaningful, empirical trend in the body of the series. As 
a consequence, the HP trend deviations are deemed to provide reliable estimates of 
the business cycle in the body of the series. At the ends of the series we consider a 
variety of methods of forecast extension for trend estimation at key dates in the evo-
lution of our New Zealand time series. The quality of the various forecast extensions 
is compared, including the case of no extension (using the HP filter trend estimates 
at the ends).

In Sect. 2.1 we briefly review some technical aspects of the HP filter, in Sect. 2.2 
we discuss the criticisms of Hamilton (2018) within the above framework and, in 
Sect. 2.3, we provide further details on the forecast extension procedures we have 
adopted.

2.1 � Comments on the HP Filter

The HP filter is an empirical trend filter whose trend ĝt minimises the criterion

(3)F + 𝜆S =
∑

t

(xt − ĝt)
2 + 𝜆

∑

t

(Δ2ĝt)
2
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where Δ is the first difference operator Δxt = xt − xt−1 and � is a trade-off parameter 
balancing the fidelity F of ĝt to the data xt with the smoothness S of ĝt . The smaller 
F is the closer ĝt follows the data, and the smaller S is the closer Δ2ĝt is to zero and 
the closer ĝt is to a simple linear trend. For most quarterly applications the standard 
choice of � is 1600 although this value can be tuned, if necessary, to better reflect 
the balance of smoothness and fidelity desired.

As noted earlier, the HP filter is a linear trend filter of the form (2) with time-
varying weights. De Jong and Sakarya (2016) show that, while the weights at the 
ends of the series (defining the HP end filters) are always time-varying, those in the 
body of the series are time-invariant provided the time series is long enough (around 
50 quarters or greater for quarterly data and � equal to 1600). These time-invariant 
weights define the central HP filter, which is a symmetric, non-negative definite, 
moving average filter of the form (2) whose weights are given by

where

and

These are simplified versions of the formulae given in McElroy (2008) and De 
Jong and Sakarya (2016). In our case � = 1600 and � takes the value 0.8941 so the 
weights w(s) decay slowly to zero as |s| increases. It is the central HP filter that we 
adopt as our target trend filter.

Given observations x = (x1, x2,… , xT )
� , minimising (3) yields the solution

where ĝ = (ĝ1, ĝ2,… , ĝT )
� and the (T-2) x T matrix D has typical element Dij = 1 

(j = i, i + 2), Dij = −2 (j = i + 1) and Dij = 0 otherwise. For large T, the rows of H 
give the time-varying weights of the HP filter with the central rows corresponding 
to the time-invariant weights (4) and the remaining rows corresponding to the asym-
metric HP end filters.

Alternative methods for computing ĝ are available. King and Rebelo (1993) show 
that the HP filter can be given a model-based interpretation with (1) comprising a 
stochastic trend gt that satisfies

(4)w(s) =
1

�
sin (|s|� + �)�|s|

� =
1

√
1 + � +

√
�
, � =

�

�

�
�2 +

1

�2
− 2 cos 2�

�

� =
1 +

√
1 + 16�

8�
, � = tan−1

�
1

2
√
�

1 + �2

1 − �2

�
, � = tan−1

�
2
√
�(tan �)2

�
.

(5)ĝ = Hx,H = (I + 𝜆D�D)−1

(6)Δ2gt = �t
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and �t, ct being mutually independent Gaussian white noise processes. Under these 
assumptions ĝ can be computed using the Kalman filter and smoother (see Harvey 
& Jaeger, 1993). Kaiser and Maravall (1999, 2012) use this model and Wiener-Kol-
mogorov filtering to forecast missing values at the ends of the series (forecast-exten-
sion) and then apply a computationally efficient form of the central HP filter (4) to 
the extended series. Gomez (1999) shows that these three procedures are equivalent.

Although we adopt the central HP filter as our target filter, irrespective of the data 
generating process that xt or its components gt , ct might follow, it is noted that the 
HP filter is the optimal (minimum mean-squared error) estimator of gt in the body 
of the series for two general classes of stochastic trend models. Here we follow Mise 
et al (2005) who build on King and Rebelo (1993). Let xt be given by (1) with com-
ponents that follow the models

or

where L is the backward shift operator, C(z) =
∑∞

j=0
𝛼jz

j
�
𝛼0 = 1,

∑∞

j=0
𝛼2

j
< ∞

�
 is 

non-zero for |z| ≤ 1 and �t, �t are mutually independent Gaussian white noise pro-
cesses. In both cases the central HP filter generates the optimal estimator of  gt in 
the body of the series. Moreover, the reduced model for xt is given by

where d = 2 for model (7), d = 1 for model (8), � and � are given by (4), and ut is 
Gaussian white noise. Judicious choice of C(L) allows for a more general class of 
data generation processes than just the case C(L) = 1 given in (6). In particular, xt 
follows an ARIMA(p,d,q) model when C(L) = A(L)∕

(
B(L)

(
1 − 2� cos �L + �2L2

))
 

where the invertible moving average operator A(L) has order q and the stationary 
autoregressive operator B(L) has order p. These models are examples of the I(1) and 
I(2) economic time series models commonly met in practice and, in turn, imply non-
trivial models for the cycle ct.

2.2 � Hamilton Critique

Hamilton (2018) argues against the routine use of the HP filter in business cycle 
analysis and suggests an alternative procedure. Some of his reasons, such as (c) in 
Sect. 1, relate specifically to the HP filter itself. However most apply to the generic 
model framework (1). In this sense Hamilton (2018) can be seen as a more general 
argument against the use of structural time series models such as (1) for business 
cycle analysis. This is a more serious challenge, especially given the wide-spread 
and long-standing use of the empirical framework (1) and the more recent develop-
ment of parametric structural time series models based on (1) that are exemplified 
in the literature by Akaike (1980), Harvey (1989), Kitagawa and Gersch (1996) and 

(7)Δ2gt = C(L)�t, ct = C(L)�t

(8)Δgt = C(L)�t, ct = C(L)(1 − L)�t

Δdxt = C(L)
(
1 − 2� cos �L + �2L2

)
ut



159

1 3

Journal of Business Cycle Research (2021) 17:151–183	

Durbin and Koopman (2001) among many others. Like the HP filter, the latter have 
their genesis in the much earlier work of Whittaker (1923) and Henderson (1924).

What is the alternative procedure proposed in Hamilton (2018)? In essence Ham-
ilton eschews the model framework (1) with its unobserved trend gt and trend devia-
tion ct . Instead, he argues that business cycle information can be gleaned directly 
from the time series xt using suitably chosen OLS prediction errors. In particular, he 
fits the (auto) regression forecasting model

by OLS to get forecasts and prediction errors given by

respectively. Here the 𝛽j are the OLS regression coefficients determined from all the 
data and the forecast horizon h is recommended to be h = 8 quarters (2 years) ahead 
for quarterly time series as is the case considered here. Hamilton (2018) shows that 
x̂t is a robust (largely model independent) predictor that yields consistent forecasts 
of xt for a wide variety of nonstationary processes. In practice it would appear that 
this predictor is close to

where, as before, 𝛽0 is determined by OLS regression and so any business cycle 
analysis would be undertaken on the mean-corrected lag-h differences xt − xt−h.

Hamilton’s arguments for using these prediction errors for business cycle analysis 
instead of a more conventional analysis based on trend deviations seem less con-
vincing. The prediction errors 𝜈̂t measure the departure of xt from its expected level, 
a forecast determined from data up to 8 quarters (2 years) earlier. By contrast, the 
trend deviations ĉt measure the departure of xt from its local level ĝt where the lat-
ter is either a trend determined largely by consensus or, in the case of parametric 
structural time series models, the expected value of the hidden trend given all the 
available data. The two estimates of level are quite different, both conceptually and 
in terms of their time series properties. Whereas ĝt is expected to be smooth, this is 
not necessarily the case for x̂t which will be much more variable (typically of the 
same order as the original series xt ). The use of a common h = 8 quarter forecast 
horizon is also arguable since some economic variables or jurisdictions may need 
different horizons to produce useful results. These issues are addressed by Quast and 
Wolters (2020) who consider a modified Hamilton filter which averages the predic-
tion errors from the Hamilton regressions (9) for h = 4 to h = 12. This produces a 
much smoother Hamilton trend which they argue gives better measures of real-time 
output gaps for the U.S., U.K. and Germany than those produced by the HP filter or 
the bandpass filter of Christiano and Fitzgerald (2003).

In Sect. 3, we apply the Hamilton (2018) methodology to establish stylised busi-
ness cycle facts for our set of key New Zealand macroeconomic variables. In Sect. 4 
we use the Hamilton robust predictor x̂t for forecast extension and compare it to 
other contenders.

(9)xt = �0 + �1xt−h + �2xt−h−1 + �3xt−h−2 + �4xt−h−3 + �t

(10)x̂t = 𝛽0 + 𝛽1xt−h + 𝛽2xt−h−1 + 𝛽3xt−h−2 + 𝛽4xt−h−3, 𝜈̂t = xt − x̂t

x̂t = 𝛽0 + xt−h
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2.3 � HP Forecast Extension Procedures Adopted

We consider the performance of forecast extension of the HP filter using predic-
tions published by two leading New Zealand public sector economic forecasters, 
the Reserve Bank of New Zealand (RBNZ) and the New Zealand Treasury (Treas-
ury), and a prominent private sector economic forecasting entity, the New Zealand 
Institute of Economic Research (NZIER). The predictions of these three institutions 
have been chosen because their quarterly predictions are both publicly available and 
have been published for the three historical business cycle-related sample periods 
we investigate. It is to be expected that these forecasts are the result of extensive 
modelling and other, possibly nonlinear, procedures which are informed by informa-
tion about future events that is not encapsulated in just the past data of the series 
concerned. These institutional predictions will be termed informed forecasts.

In Sect. 4.2 the performances of the informed forecasts are benchmarked against 
a number of simple forecast-extension procedures based only on past observations 
available at the time. A number of candidate benchmark procedures could be cho-
sen. Here we have chosen four simple procedures; the HP filter with no-extension, 
forecasting using the Hamilton predictor, ARIMA forecast extension, and forecast-
ing using a simple adaptive random walk model.

2.3.1 � HP with No Extension

Kaiser and Maravall (1999, 2012) show that the HP filter defined by (3) and (5) 
can be calculated by applying the central HP filter to the original series augmented 
by forecasts from model (7) in the simplest case where C(L) = 1 and gt follows (6). 
Mise et al. (2005) show that, for models (7) and (8) where the HP filter is optimal in 
the body of the series, forecast-extension using these models always performs bet-
ter than the HP end filters, except for the case when C(L) = 1 . Thus, the HP filter 
is consistent with forecast-extension using forecasts only from this special model 
where gt follows (6). Since this simple special model is unlikely to hold in practice, 
other forecast-extension methods are likely to be more efficient and better minimise 
revisions.

2.3.2 � Hamilton Robust Predictor

Here we adopt the Hamilton method as a robust auto-regressive predictor that yields 
consistent forecasts of xt for a wide variety of nonstationary processes. Use of the 
Hamilton methodology for robust forecast-extension does not seem to have been 
considered elsewhere in the literature.

2.3.3 � ARIMA Forecast Extension

Following in the footsteps of Dagum (1980), Kaiser and Maravall (1999, 2012) 
and many others, we augment xt with forecasts generated by a best-fitting ARIMA 
model. The results of Mise et  al. (2005) and the discussion following models (7) 
and (8) in Sect. 2.1, suggest that this approach should reduce revision mean-squared 
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errors in practice, particularly at the ends of series. However, the extent of any 
reduction will depend in no small part on how well the fitted model captures the 
dynamics of the data.

2.3.4 � Naïve Predictor

Here we consider forecast extension using the simple random walk model

where �t measures a smooth, slowly evolving, drift and �t is stationary noise. In 
effect, this model assumes that the trend gt in (1) is locally linear. Here we have 
chosen to estimate �t as the median of the first differences xt − xt−1 over the most 
recent 8 quarters (2 years), but other simple robust location estimators could also 
be chosen and applied over alternative local time windows. In the case of log data, 
note that this estimator is just the median quarterly growth rate of the untransformed 
time series over the last two years. This simple robust predictor provides a suitable 
benchmark forecast extension which will be called the naive predictor. It is an I(1) 
model that is conceptually simple, easy to implement and understand, adaptive and 
robust. It is similar in philosophy to the rolling IMA(1,1) model used in Stock and 
Watson (2007), but more adaptive.

3 � Empirical Results: H84, HP and BK Stylised Business Cycle Facts

We compute stylised business cycle facts for a set of key New Zealand macroeco-
nomic variables typically included in theoretical or empirical macroeconomic mod-
els of small open economies. Quarterly, seasonally adjusted data have been sourced 
from Statistics New Zealand (SNZ), the RBNZ and Treasury. They are as docu-
mented in McKelvie and Hall (2012, Appendix C) with the exception of the CPI 
non-tradables series which comes from the RBNZ. Series were log-transformed 
with the exception of those containing negative observations (e.g. net exports share, 
CPI inflation rate, real 90-day Bank Bill rate) or those already expressed as a per-
centage (e.g. unemployment).

In addition to computing and comparing H84 and HP stylised business cycle 
facts, we also compare these with the stylised business cycle facts obtained using 
the Baxter-King (BK) filter which has a different rationalisation to either the H84 or 
HP filters. The BK filter is directly based on a band-pass filter (see Baxter & King, 
1999; Christiano & Fitzgerald, 2003, for example) and is closer in spirit to the Burns 
and Mitchell (1946) paradigm than either the H84 or HP filters.

In this and subsequent sections, any reference to the HP filter assumes that the 
trade-off parameter chosen is λ =1600, any reference to the Hamilton filter or pre-
dictor (without qualification) refers to the Hamilton H84 regression filter described 
in Sect. 2.2 with h = 8, and any reference to the BK filter assumes that it is the 25 
point moving average band-pass filter recommended in Baxter and King (1999) 
which is designed to pass frequency components with periods between 6 and 32 

(11)xt = xt−1 + �t + �t
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quarters. All computations and graphical analysis were carried out in the R statisti-
cal environment (R Development Core Team, 2004).

3.1 � Results

Stylised business cycle facts for the cycles (trend deviations) estimated by the Ham-
ilton H84, HP and BK filters are compared for 13 New Zealand macroeconomic 
series over the period 1987q2 to 2019q4, the latter quarter being the business cycle 
peak immediately prior to New Zealand’s Covid-19 recession. This analysis com-
plements and extends that given in Hall et  al. (2017) who compute stylised busi-
ness cycle facts for a more extensive set of series over the shorter period 1987q2 to 
2015q3 using the HP, BK, Christiano and Fitzgerald (2003) and loess (local regres-
sion) trend filtering methods, but not the Hamilton H84 filter. We use the same 
methodology as Hall et al. (2017) where further details are given on the underpin-
ning theory, including standard error calculations. We are not aware of any other 
study assessing use of the Hamilton H84 method for New Zealand business cycle 
analysis.

Earlier studies of stylised business cycle facts for New Zealand macroeconomic 
data include Kim et al. (1994), McCaw (2007) as well as the more recent Hall et al. 
(2017). In common with experience reported elsewhere in the world, the HP filter 
remains a commonly used technique for business cycle and economic analysis in 
New Zealand. It is typically the method against which other methods are compared 
and contrasted. This is the case for our study where, as noted earlier, we follow the 
consensus and assume that the HP filter provides a useful, and economically mean-
ingful, empirical trend in the body of the series where its trend deviations provide 
reliable estimates of the business cycle.

Hamilton H84, HP and BK volatility, persistence and cross correlation statistics 
are presented in Tables 1 and 2.3 For each of our 13 data series the H84 volatility 
always exceeds the HP or BK volatility where these differences are, for the most 
part, statistically significant. On the other hand, while the HP volatility typically 
exceeds BK volatility, these differences are always not statistically significant. In 
terms of persistence (measured by the lag 1 autocorrelation), BK cycles are always 
more persistent than either the HP or H84 cycles, and the H84 cycle is almost 
always more persistent than the HP cycle. However, while the HP and BK persis-
tence measures are almost always not significantly different from the H84 persis-
tence measure, significant differences are more typical between the HP and BK per-
sistence measures. The cross correlations of the H84, HP and BK cycles for each of 
our data series with the log GDPE cycle show broad agreement (Table 2). All are of 
the same sign, much the same magnitude (their differences are not significantly dif-
ferent), and they have significant non-contemporaneous correlation at the same lag. 

3  Volatility, persistence and cross correlation results for Hamilton’s H8 procedure are not presented in 
Tables 1 and 2, since the differences from H84 are small and their respective trends and cycles are very 
similar.
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For government consumption expenditure, CPI inflation and CPI non-tradables, all 
three cycles judge the cross-correlation with log GDPE as not significantly different 
from zero.

Comparative trend and trend deviation (cycle) paths are illustrated in Figs. 1, 2 
and 3 for real expenditure-based gdp (gdpe), real residential investment (invres) and 
real gross fixed capital formation (gfcf). It is clear from the top panels in these Fig-
ures that, while the HP and BK trends are in close agreement and provide a good 
description of the local level of the series, the H84 trend does not. Rather, the H84 
trend is close to a mean-corrected phase-shifted version of the series (a lag of 8 
quarters) reflecting the discussion following (10). In particular, the phase-shifted 
H84 trends fail to capture the local levels of the series during periods of substantive 
level change such as those associated with the 1991–92 and GFC recessions.  

Table 1   Stylised business cycle facts, 1987q2—2019q4: comparative volatilities and persistence

H84 statistics are for standard Hamilton OLS regresssion estimates; HP statistics are for Hodrick-Prescott 
estimates with standard assumption for quarterly data of λ = 1600; BK statistics are for Baxter-King esti-
mates using the standard assumption of cycles between 6 and 32 quarters
Volatility is % standard deviation; persistence is represented by first order serial correlation
Numbers in parentheses for volatility and short-term persistence are robustly estimated standard errors
*  SNZ National Accounts series adjusted for frigate purchases recorded in 1997q2 and 1999q4
**  Sample period 1987q3–2019q4
***  Sample period 1989q1–2019q4

Variable x Volatility Persistence

H84 HP BK H84 HP BK

Log GDP (production) 3.05 (0.52) 1.18 (0.21) 1.09 (0.35) 0.85 (0.05) 0.85 (0.04) 0.94 (0.03)
Log GDP (expenditure) 3.05 (0.55) 1.30 (0.17) 1.18 (0.32) 0.86 (0.04) 0.72 (0.06) 0.91 (0.04)
Log Consumption 

(private)
3.12 (0.66) 1.48 (0.17) 1.31 (0.31) 0.86 (0.04) 0.79 (0.05) 0.94 (0.03)

Log Gross Fixed Capital 
Formation

11.72 (2.42) 5.46 (0.72) 5.55 (1.23) 0.88 (0.04) 0.76 (0.06) 0.93 (0.03)

Log Investment (resi-
dential)

16.13 (2.85) 7.97 (0.88) 8.16 (1.42) 0.89 (0.04) 0.79 (0.05) 0.92 (0.04)

Log Govt. Consumption 
expend.

3.21 (0.60) 1.29 (0.15) 1.22 (0.29) 0.85 (0.05) 0.47 (0.08) 0.94 (0.04)

Net Exports Share (%)* 2.22 (0.39) 1.23 (0.15) 1.09 (0.25) 0.87 (0.04) 0.70 (0.06) 0.90 (0.04)
Log Imports goods & 

services*
7.04 (1.66) 4.16 (0.58) 4.00 (0.89) 0.87 (0.04) 0.77 (0.05) 0.90 (0.04)

Log Employment 2.81 (0.38) 1.30 (0.17) 1.10 (0.28) 0.84 (0.05) 0.90 (0.04) 0.96 (0.03)
Unemployment (%) 1.22 (0.25) 0.55 (0.13) 0.58 (0.20) 0.88 (0.04) 0.87 (0.04) 0.95 (0.03)
CPI Inflation (annual % 

change)**
1.16 (0.17) 0.86 (0.10) 0.85 (0.14) 0.87 (0.05) 0.76 (0.06) 0.87 (0.05)

CPI Nontradables (ann. % 
change)***

0.99 (0.12) 0.81 (0.16) 0.67 (0.19) 0.84 (0.05) 0.76 (0.06) 0.88 (0.05)

Real 90-day Bank Bill 
(%)**

1.60 (0.24) 0.87 (0.12) 0.84 (0.17) 0.85 (0.05) 0.70 (0.06) 0.88 (0.04)
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Figures 1, 2 and 3 also show that the HP and BK trend deviations (the estimated 
cycles) are in good agreement, but both differ markedly from the Hamilton H84 esti-
mated cycle. All three cycles show stationary behaviour about a zero mean, but the 
H84 cycle is much more volatile (larger standard deviation) than either the HP or 
BK cycles.

To better quantify the differences between any two competing cycles we consider 
the root mean squared difference (RMSD) between them. Here RMSD is used as a 
dissimilarity measure. It is readily shown that the mean squared difference (MSD) 
of two time series Xt and Yt (the square of RMSD) follows the simple identity

Fig. 1   Logarithms of gdpe, trends, and trend deviations. a Top panel shows log gdpe (black), HP trend 
(red), H84 trend (green) and BK trend (blue). b Bottom panel shows log gdpe trend deviations for HP 
(red), H84 (green) and BK (blue)



166	 Journal of Business Cycle Research (2021) 17:151–183

1 3

where X,Y , sX , sY and rXY are the sample means, sample standard deviations and 
sample correlation of series Xt and Yt with the last 3 measures having divisor T 
(series length) rather than T-1. Clearly Xt and Yt are identical when RMSD or MSD 
is zero which can only occur when X = Y  , sX = sY and rXY = 1 . The larger RMSD, 
the greater the dissimilarity of Xt and Yt with each of the three non-negative terms in 
(12) measuring the respective contributions to MSD of the difference in the means, 

(12)MSD =
1

T

T∑

t=1

(Xt − Yt)
2 = (X − Y)2 + (sX − sY )

2 + 2sXsY
(
1 − rXY

)

Fig. 2   Logarithms of invres, trends, and trend deviations. a Top panel shows log invres (black), HP 
trend (red), H84 trend (green) and BK trend (blue). b Bottom panel shows log invres trend deviations for 
HP1600 (red), H84 (green) and BK (blue)
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Fig. 3   Logarithms of gfcf, trends, and trend deviations. a Top panel shows log gfcf (black), HP1600 
trend (red), H84 trend (green) and BK trend (blue). b Bottom panel shows log gfcf trend deviations for 
HP1600 (red), H84 (green) and BK (blue)

Table 3   Dissimilarity measure 
RMSD between HP, H84 and 
BK estimated cycles for log 
GDPE, together with their 
means, standard deviations (SD) 
and correlations

Mean SD Correlations RMSD

HP H84 BK HP H84 BK

HP − 0.001 0.014 1 0.649 0.911 0 0.027 0.006
H84 − 0.000 0.033 0.649 1 0.611 0.027 0 0.028
BK − 0.002 0.013 0.911 0.611 1 0.006 0.028 0



168	 Journal of Business Cycle Research (2021) 17:151–183

1 3

the difference in the standard deviations, and the difference of the correlation from 
one (a measure of the difference in dynamics).

Table  3 shows an example of the values of the dissimilarity measure MSD 
between the HP, H84 and BK estimated cycles for log GDPE. The respective means, 
standard deviations and correlations are also given. For our 13 data series, the dis-
similarity measure RMSD between the HP and H84 cycles or the BK and H84 
cycles is always considerably larger (over twice, and typically over four times) than 
the RMSD between the HP and BK cycles. While the means of the three cycles are 
always very similar and close to zero as expected, the standard deviation for the 
H84 cycle is typically over twice that of either the HP or BK cycles which are very 
similar. In terms of the contributions of the components in (12) to the MSD between 
the HP and H84 cycles, the difference in means is negligible with the difference 
in standard deviations and the difference in dynamics (difference of the correlation 
from 1) each typically contributing around 50 per cent. For the MSD between the 
HP and BK cycles, the difference in the dynamics typically contributes over 90 per 
cent to MSD with the differing standard deviations under 10 per cent.

Others have also shown that H84 cycle volatilities for U.S. real GDP are typically 
over twice those of HP cycles (e.g. Hodrick, 2020; Schüler, 2018). We find that this 
is further the case for New Zealand real GDP when H84 volatilities are set against 
BK volatilities.4

3.2 � Key Findings

Our key findings on stylised facts are as follows.

•	 H84 trends are subject to phase-shifts and generally fail to provide a good 
description of the local level of our series, unlike the HP and BK trends which 
are in close agreement.

•	 Business cycles estimated using the HP or BK filters are very similar by compar-
ison to the markedly different cycles estimated using the H84 regression method-
ology.

•	 H84 cycles have considerably greater volatilities than their HP or BK counter-
parts.

•	 HP cycles are generally less persistent than the corresponding H84 cycles which, 
in turn, are generally less persistent than the corresponding BK cycles, although 
these differences are, for the most part, not statistically significant.

•	 Cross correlations of H84, HP and BK cycles with real GDPE show broad agree-
ment. Any differences are not statistically significant.

Hence, primarily on the basis that H84 produces materially greater volatili-
ties and less credible trend movements associated with H84’s inherent phase-shift 
behaviour, particularly during key economic periods such as the 1991–92 and GFC 

4  This finding is also the case for the longer-term Hall and McDermott (2016) New Zealand production-
based GDP series, updated to 1947q2 to 2019q3, where the volatility from the H84 series is over twice 
that of the HP1600-filtered series (4.1 relative to 1.8, with commensurate standard errors 0.50 and 0.29).
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recessions, we have a clear preference for measures of stylised business cycle facts 
produced by the HP or BK filters rather than those from Hamilton’s H84 procedure.

For macroeconomic data from a small open economy such as New Zealand, we 
conclude that the HP filter remains our method of choice for business cycle analysis 
in the body of the series. With this established, Sect. 4 uses HP forecast extension 
to address the widely-acknowledged limitations of the HP filter at the ends of series.

4 � Empirical Results: HP Forecast Extension Methods Compared

The objectives of this section are two-fold. The first objective is to assess the per-
formance of the Hamilton filter as a robust predictor for HP forecast-extension and 
measure its performance against the other HP forecast-extension procedures given 
in Sect. 2.3. The second objective is to assess the performance of forecast extension 
using the informed forecasts provided by the RBNZ, Treasury and NZIER whose 
predictions might be expected to be influenced by additional information over and 
above the past data of the series concerned. This additional information should con-
fer performance advantages over forecast-extension using just past data, especially 
where business cycle turning points are involved.

Further details on our data series and performance measures are given in 
Sect.  4.1. Results are presented in Sect.  4.2, and key findings are summarised in 
Sect. 4.3.

4.1 � Data and Performance Measures Adopted

We consider log-transformed New Zealand quarterly real production-based gdp data 
(GDPP) post-1987q2 and focus on three illustrative historical periods and their asso-
ciated data.

•	 Period NTP considers data to 2015q3 which falls in New Zealand’s post-
2009q1 classical business cycle expansion path which had no turning points until 
2019q4.

•	 Period TPP concerns data to 2006q4 which is 4 quarters before the 2007q4 
turning point peak of New Zealand’s five quarter classical GFC recession 
2007q4–2009q1.

•	 Period TPT concerns data to 2008q1 which is 4 quarters before the 2009q1 
turning point trough of New Zealand’s five quarter classical GFC recession 
2007q4–2009q1.5

5  The TPP and TPT turning points, taken from Hall and McDermott (2016, Table 1) preferred classical 
real gdpp turning points for New Zealand’s post-1947q2 economy have been computed from the Bry 
and Boschan (1971) (BB) dating algorithm for quarterly data. Robustness of these turning points rela-
tive to those computed from Harding and Pagan’s (2002) BBQ algorithm, along with other evaluations 
of robustness, is reported in Hall and McDermott (2016, Sect. 2.2). For 17 of 18 BB turning points, the 
BB and BBQ algorithms produced identical results, including for the peak at 2007q4 and the trough at 
2009q1.
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For each of the periods NTP, TPP and TPT, we consider quarterly GDPP time 
series data up to the given time point in the period and then evaluate the perfor-
mance of the forecast-extended HP filters at the ends of these three series. In each 
case we use the data and forecasts available at that time (real-time forecasts). To 
assess the performance of the forecast extension procedures, more recent GDPP 
data (as of 2019q4) is used to augment the available data to provide ‘true’ values 
of GDPP for the period after each series end point. In particular, this data is used to 
provide the target historical estimates of the HP filter at the ends of series.

Periods TPP and TPT focus on the performance of the various forecast-extended 
HP filters at the ends of series in the important case of turning points, whereas 
period NTP has no turning points and presents fewer challenges. Results for the var-
ious forecast methods are unlikely to vary greatly for any NTP period chosen along 
an ongoing close-to-linear classical business cycle expansion path but are likely to 
differ in the neighbourhood of turning points. In the latter case, the results directly 
address the issue of which, if any, of the HP forecast extension methods significantly 
reduce revisions at the ends of series.

For period NTP the data is from 1987q2 to 2015q3 (SNZ release, December 
2015) and is the data used by RBNZ, Treasury and NZIER for their forecasts from 
2015q4. For period TPP, the data is from 1987q2 to 2006q4 (SNZ release, March 
2007) and precedes the 2007q4 GFC business cycle peak by 4 quarters. For period 
TPT we use the data from 1987q2 to 2008q1 (SNZ release, June 2008) where this 
data precedes the 2009q1 GFC business cycle trough by 4 quarters. The TPP and 
TPT GDPP data sets were taken from the real-time data sets compiled by the RBNZ 
(see Sleeman, 2006). The specially compiled data set of real-time forecasts by the 
RBNZ, Treasury and NZIER have been sourced from the relevant publicly available 
Monetary Policy Statements (MPS), Treasury Budget and Half-year Economic and 
Fiscal Updates (BEFU/HYEFU), and NZIER Quarterly Predictions (QP) releases.

We have chosen to augment, or extend, each data set by forecasts over a forecast 
window of 8 quarters (two years) following the data’s last available quarterly obser-
vation. The HP filter is then applied to the extended data set to provide trend esti-
mates over the times of the original data (the data window) as well as the forecast 
window. The trend estimates over the data window are the desired output of the fore-
cast-extended HP filter. This means, for example, that the most recent trend value 
in the data window will be calculated by the HP end filter 8 quarters from the end 
of the forecast augmented data. Any gains in precision will depend on the quality of 
the forecasts and how closely this HP end filter agrees with the central HP filter.

The choice of an 8-quarter (two-year) forecast window needs more justification. 
In part this choice reflects expediency. The RBNZ publish quarterly forecasts up to 
3 years ahead, NZIER up to 4 years ahead and Treasury up to 5 years ahead. How-
ever, Lees (2016), and Labbé and Pepper (2009) chose one-year and two-year ahead 
horizons for their comparisons of RBNZ and external forecaster performance which 
is consistent with our two-year forecast window. The Hamilton filter also provides a 
natural forecast over a two-year horizon. As already noted, with forecast extension 
there will always be a trade-off between forecast accuracy and trend volatility at the 
ends of series. Poor forecasts may well lead to greater trend volatility at the ends of 
series than the HP filter with no extension.
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A further argument in favour of the 8-quarter forecast window relates to the dif-
ference between the HP end filters and the central HP filter that applies in the body 
of the series. The former are finite-window asymmetric approximations to the cen-
tral HP filter with weights given by (4). If an HP end filter is a reasonable approxi-
mation to the central HP filter and we have accurate forecasts, then we would expect 
more accurate, less volatile, trend estimates at the ends of series. The following 
table shows the square root of the sum of squared differences (RSSD) between the 
weights of the central HP filter and the HP end filter located q quarters from the end 
of the series.

Quarters from end of series
q 0 4 8 12 16 20 24 28 32 36 40

RSSD 0.293 0.156 0.066 0.027 0.026 0.026 0.020 0.013 0.007 0.003 0.001

Note that the RSSD of the differences in filter weights is also a proxy measure of 
the root mean square difference between the outputs of the two filters. The RSSD is 
greatest, as expected, for the HP end filter at the end of the series where the RSSD is 
0.293. It then falls off rapidly to 53%, 22% and 9% of the maximum RSSD, for HP 
end filters located at 4 quarters (1 year), 8 quarters (2 years) and 12 quarters (3 years) 
from the end of the series. The remaining RSSD are likely to lead to negligible trend 
differences in practice. Similar conclusions are reached by Kaiser and Maravall 
(1999, 2012) whose results are based on a more comprehensive analysis. These con-
siderations provide further support for the use of the 8-quarter forecast window.

To assess the quality of the various HP forecast extension methods, including the 
case of no extension, we need to define a target trend and a suitable time interval 
(assessment window) over which measures of the size of deviations from the target 
trend are calculated. These measures include the mean deviation or bias, the root 
mean square error (RMSE) and the mean absolute error (MAE) of the respective 
deviations. The assessment window is focussed on the ends of the series since the 
differences between the forecasted-extended HP filter and the HP filter are negligi-
ble in the body of the series. The analysis given in the previous paragraph for the 
8-quarter forecast window also applies to the assessment window which is now cho-
sen to be the last 8 quarters of the data window. Note that for historical periods TPP 
and TPT, this places the GFC business cycle turning point in the middle of the fore-
cast window.

For each historical period (NTP, TPP and TPT) we define the target trend to be 
the HP trend of the original log GDPP data available at that time, augmented by sta-
ble (fully revised) ex-post log GDPP data. A similar strategy has also been adopted 
in Kaiser and Maravall (1999, 2012) and Mise et  al. (2005). The augmented log 
GDPP data were obtained by applying the growth rates of GDPP data to 2019q4 
(SNZ release, March 2020) to the last GDPP value of the original data (the last 
observation in the data window). The target trend defines the stable historical HP 
trend we wish to better estimate at the ends of series.



172	 Journal of Business Cycle Research (2021) 17:151–183

1 3

4.2 � Results

Here we evaluate the accuracy of the various HP forecast-extension procedures for 
each of the NTP, TPP and TPT periods considered. The Hamilton robust predictor 
and ARIMA forecast extension fit models to all the data available for the period 
concerned, whereas the naïve predictor is more adaptive, using only the last 8 quar-
ters of each data set. In the case of ARIMA forecast extension, a range of ARIMA 
models were fitted with model choice guided by information criteria such as the 
Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). 
For each period (NTP, TPP, TPT) the first differences of the log GDPP data were 

Fig. 4   Log GDPP (black) and log GDPP forecasts based on data to 2015q3 and an 8 quarter forecast 
window: RBNZ (red), Treasury (green), NZIER (blue), Hamilton H84 predictor (cyan), ARIMA predic-
tor (magenta), and naïve predictor (grey)

Fig. 5   Log GDPP (black) and log GDPP forecasts based on data to 2006q4 and an 8 quarter forecast 
window: RBNZ (red), Treasury (green), NZIER (blue), Hamilton H84 predictor (cyan), ARIMA predic-
tor (magenta) and naïve predictor (grey)
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well-modelled by an ARMA(1,1) process with mean. This was the model chosen for 
ARIMA forecast extension.

In Sect. 4.2.1 we evaluate the accuracy of the log GDPP forecasts used prior to 
applying the HP filter to the extended series and, in Sect.  4.2.2, we evaluate the 
accuracy of the corresponding forecast-extended HP filters at the ends of series.

4.2.1 � Evaluation of Forecast Extensions

Figures 4, 5 and 6 show the log GDPP forecasts over their 8-quarter forecast win-
dows for each of the periods NTP, TPP, and TPT respectively. Also shown are the 
‘true’ log GDPP values derived from the actual log GDPP series available at the 
time, augmented by the ex-post log GDPP growth rates released by SNZ in March 
2020. The mean forecast error, MAE and RMSE for all forecast extension meth-
ods are given in Table 4.6 When the forecast errors are differences in logarithms, 
they can be regarded as proportionate errors or, when multiplied by 100, percentage 
errors of the untransformed data. The accuracy of these forecasts has a direct bear-
ing on the quality of their associated forecast-extended HP trends. Specific com-
ments on each historical period follow.

Period NTP: Here “true” log GDPP shows a near-linear expansion path over the 
assessment and forecast windows. All forecasts are below “true” log GDPP with 
the exception of the naive predictor which provides the best forecast. Of the fore-
cast methods, the naïve method performs best in terms of RMSE followed by the 
informed forecasts with the RBNZ forecasts better than comparable forecasts from 
NZIER and Treasury. ARIMA forecast extension was much closer to Treasury in 
performance than the Hamilton robust predictor H84 which was worst.

Fig. 6   Log GDPP (black) and log GDPP forecasts based on data to 2008q1 and an 8 quarter forecast 
window: RBNZ (red), NZIER (blue), Hamilton H84 predictor (cyan), ARIMA predictor (magenta), and 
naïve predictor (grey)

6  Results have also been computed for the modified Hamilton predictor recently evaluated by Quast and 
Wolters (2020). These results are not presented here, as for all three of our representative business cycle 
periods the root mean squared errors (RMSE) from using the Quast and Wolters modification are greater 
than those produced by the H84 filter.
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Period TPP: In this case “true” log GDPP shows near-linear expansion over the 
4 quarters (one year ahead) to 2007q4 when it turns (a peak) and enters the con-
traction phase of the GFC recession (2008q1–2009q1). None of the forecasts have 
adequately managed to forecast the turning point with most below “true” log GDPP 
until 2007q4 and all well above it by the end of the forecast window. The Treasury 
forecast, naive predictor, NZIER forecast and ARIMA forecast extension provide 
the best forecasts with the Hamilton robust predictor H84 the worst.

Period TPT:   Here “true” log GDPP shows near-linear expansion over the 
assessment window followed by 5 quarters of near-linear contraction to 2009q1 
when its trough enters another expansion phase. In essence there are two turning 
points (2007q4 and 2009q1) rather than just the one for period TPP. Of our three 
sample periods, this provides the most challenging forecast environment. None of 
the forecasts have adequately managed to forecast log GDPP over the forecast win-
dow (all are well above “true” log GDPP) although RBNZ and NZIER forecasts are 

Table 4   Percentage error 
measures for log GDPP 
forecasts

Mean = Mean average error; MAE = Mean absolute error; 
RMSE = Root mean squared error; H84 percentage error measures 
are for standard Hamilton OLS regression estimates; ARIMA per-
centage error measures are for an ARMA(1,1) model plus mean fit-
ted to all available differences; Naive percentage error measures are 
for an I(1) model with a smooth, slowly evolving drift and stationary 
noise, the drift calculated from the most recent 8 quarters of data

Forecaster Mean MAE RMSE RMSE Rank

Period NTP: data to 2015q3 and an 8 quarter forecast window
RBNZ − 0.82 0.82 0.85 2
Treasury − 1.27 1.27 1.33 4
NZIER − 1.18 1.18 1.25 3
H84 − 1.69 1.69 1.85 6
ARIMA − 1.35 1.35 1.44 5
Naive − 0.21 0.23 0.32 1
Period TPP: data to 2006q4 and an 8 quarter forecast window
RBNZ 1.22 1.49 2.15 5
Treasury 0.34 0.82 1.12 1
NZIER 0.39 1.17 1.46 3
H84 2.44 2.44 2.73 6
ARIMA 0.35 1.17 1.48 4
Naive − 0.11 1.08 1.23 2
Period TPT: data to 2008q1 and an 8 quarter forecast window
RBNZ 2.23 2.23 2.61 1
NZIER 2.64 2.64 3.13 2
H84 5.83 5.83 6.23 5
ARIMA 3.68 3.68 3.99 3
Naive 3.82 3.82 4.12 4
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closest and did predict earlier turning points (in expectation of a shorter recession).7 
As a consequence, the informed forecasts were best in terms of RMSE, with RBNZ 
better than NZIER. Of the forecasts based on past data alone, the naïve predictor and 
ARIMA forecast extension performed comparably and were significantly better than 
the Hamilton robust predictor H84.

4.2.2 � Evaluation of Forecast‑Extended HP Filters at the Ends of Series

Figures 7, 8 and 9 show the log GDPP forecast-extended HP trends and their trend 
deviations over the 8 quarter assessment windows for each of the periods NTP, TPP, 
and TPT respectively. Also shown are the HP trend with no forecast extension and 

Fig. 7   Forecast-extended HP trends (top) and their trend deviations (bottom) for log GDPP data to 
2015q3 (top dotted) over the 8 quarter assessment window from 2013q4 to 2015q3. Also shown are the 
target HP trend (top black) based on ex-post log GDPP data to 2019q4 and its corresponding target trend 
deviation (bottom black). The forecast extensions used are RBNZ (red), Treasury (green), NZIER (blue), 
Hamilton H84 predictor (cyan), ARIMA predictor (magenta), naïve predictor (grey) and no extension 
(brown). The latter corresponds to using the HP filter with no extension

7  No results are presented for Treasury in the bottom panel of Table 4. Treasury’s BEFU and HYEFU 
forecasts are published at approximately six-monthly intervals, and so there are no directly comparable 
quarterly real time forecast observations available from Treasury for the TPT period.
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the target trend (the HP trend of “true” log GDPP). Table 5 gives the mean, MAE 
and RMSE for the differences between the log GDPP forecast-extended trends 
(including the HP trend with no extension) and the target log GDPP trend. As 
before, when these measures involve differences in logarithms, they can be regarded 
as proportionate errors of the untransformed trends (percentage errors when multi-
plied by 100). For all periods the various trends are much the same at the beginning 
of the assessment window (as expected), but show greater divergence at the end. 
Moreover, in terms of RMSE, the forecast-extended HP trends show a worsening 
performance that broadly matches that of their associated forecast rankings given in 
Table 4. Specific comments on each historical period follow.

Period NTP: The forecast-extended HP trend using the naive predictor pro-
vides the most accurate estimate of the target trend, reflecting the relatively benign 
near-linear expansion path of log GDPP over period NTP. This is followed by the 
informed forecast-extended HP trends (RBNZ, NZIER, Treasury) and the HP trend 
based on ARIMA forecast extension which is close to the Treasury forecast-extended 

Fig. 8   Forecast-extended HP trends (top) and their trend deviations (bottom) for log GDPP data to 
2006q4 (top dotted) over the 8 quarter assessment window from 2005q1 to 2006q4. Also shown are the 
target HP trend (top black) based on ex-post log GDPP data to 2019q4 and its corresponding target trend 
deviation (bottom black). The forecast extensions used are RBNZ (red), Treasury (green), NZIER (blue), 
Hamilton H84 predictor (cyan), ARIMA predictor (magenta), naïve predictor (grey) and no extension 
(brown). The latter corresponds to using the HP filter with no extension
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HP trend. The worst trends are the HP trend with no extension and the Hamilton 
H84 forecast-extended HP trend which are comparable (the former being slightly 
better). The respective trend deviations also reflect these findings.

Period TPP: In this case the target trend does not run through the middle of the 
log GDPP data in the assessment window since it is already turning to accommo-
date the contraction phase just ahead. The forecast-extended HP trend using the 
naive predictor is closest to the target trend, with the informed forecast-extended HP 
trends (Treasury and NZIER) and the ARIMA forecast-extended HP trend all very 
close and not far behind. The worst trends are the HP trend with no extension and 
the Hamilton H84 forecast-extended HP trend with the former being the better.

Period TPT: As in the case of period TPP, the target trend does not run 
through the middle of the log GDPP data in the assessment window. Its path is 
influenced by the two turning points (one in the assessment window and one in 
the forecast window) and so takes an intermediate course, tracking below the 
first turning point 2007q4 (a peak) and above the second turning point 2009q1 

Fig. 9   Forecast-extended HP trends (top) and their trend deviations (bottom) for log GDPP data to 
2008q1 (top dotted) over the 8 quarter assessment window from 2006q2 to 2008q1. Also shown are the 
target HP trend (top black) based on ex-post log GDPP data to 2019q4 and its corresponding target trend 
deviation (bottom black). The forecast extensions used are RBNZ (red), Treasury (green), NZIER (blue), 
Hamilton H84 predictor (cyan), ARIMA predictor (magenta), naïve predictor (grey) and no extension 
(brown). The latter corresponds to using the HP filter with no extension
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(a trough). The informed forecast-extended HP trends (RBNZ and NZIER) are 
similar and performed best, being closest, but not close, to the target trend. Next 
were the HP trends based on the naive predictor and ARIMA forecast extension, 
both based on past data alone and both very similar. The worst trends are the HP 
trend with no extension and the Hamilton H84 forecast-extended HP trend (the 
former being the better) which are both markedly different from the target trend.

4.3 � Key Findings

If the three sample periods and turning point environments chosen (NTP, TPP, TPT) 
are representative of those met in practice, then the following are key findings.

Table 5   Percentage error 
measures for the differences 
between forecast-extended HP 
log GDPP trends and the target 
HP trend

Mean = Mean average error; MAE = Mean absolute error; 
RMSE = Root mean squared error; % reduction in RMSE is forecast-
extended HP filter at the ends of series compared to the HP1600 
filter with no extension; H84, ARIMA, and Naïve measures are 
as defined in Table 4; HP no extension statistics are for Hodrick–-
-Prescott estimates with standard assumption for quarterly data of 
λ = 1600

Forecaster Mean MAE RMSE RMSE Rank

Period NTP: measures for the 8 quarter assessment window from 
2013q4 to 2015q3

RBNZ − 0.25 0.25 0.27 2
Treasury − 0.37 0.37 0.40 4 = 
NZIER − 0.33 0.33 0.36 3
H84 − 0.45 0.45 0.50 7
ARIMA − 0.37 0.37 0.40 4 = 
Naive − 0.10 0.10 0.11 1
HP no extension − 0.44 0.44 0.48 6
Period TPP: measures for the 8 quarter assessment window from 

2005q1 to 2006q4
RBNZ 0.42 0.43 0.56 5
Treasury 0.24 0.26 0.35 3
NZIER 0.24 0.27 0.36 4
H84 0.82 0.82 0.96 7
ARIMA 0.21 0.25 0.34 2
Naive 0.11 0.18 0.23 1
HP no extension 0.66 0.66 0.81 6
Period TPT: measures for the 8 quarter assessment window from 

2006q2 to 2008q1
RBNZ 0.78 0.78 0.84 1
NZIER 0.87 0.87 0.95 2
H84 1.70 1.70 1.87 6
ARIMA 1.15 1.15 1.26 3
Naive 1.19 1.19 1.30 4
HP no extension 1.60 1.60 1.75 5
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•	 As expected, forecast extension can markedly improve the accuracy of the HP 
filter at the ends of series and, as a consequence, lessen the volatility of HP trend 
estimation at the ends of series.

•	 As a general rule, the more accurate the forecast extension, the more accurate 
and less volatile the forecast-extended HP trend at the end.

•	 Using the forecast-extended HP filter is almost always better than using the HP 
filter with no extension.

•	 For the most part, and especially for the most challenging forecast environ-
ment TPT, the best of the forecast-extended HP filters using informed forecasts 
(RBNZ, Treasury and NZIER) performs comparably to, or better than, the fore-
cast-extended HP filters using forecasts based only on past data (Hamilton robust 
predictor, naive predictor and ARIMA forecast extension).

•	 In more benign environments (NTP and TPP) forecast extension using the naive 
predictor is more than competitive with other forecast extension methods; it also 
provides a useful benchmark in more challenging environments, particularly for 
forecast-extended HP filters using informed forecasts.

•	 In accord with usage reported elsewhere in the literature, the HP filter with no 
extension does not perform well at the ends of series, but for all representative 
business cycle environments considered the H84 robust predictor performed 
worse.

The three periods (NTP, TPP and TPT) each presented forecasting challenges 
of varying degrees of difficulty, with NTP the least challenging and TPT the most 
challenging. This is reflected in the size of the RMSE values in Table 4. Using the 
RMSE values in Table 5 for the HP filter with no extension as a measure of forecast 
difficulty, period TPP is almost twice as difficult, and period TPT almost 4 times as 
difficult, as the no turning point period NTP. Nevertheless, in all periods forecast 
extension typically led to practically significant trend improvements at the ends of 
series.

A measure of these trend improvements is given in Table 6 which shows the per-
centage reduction in RMSE using forecast extension over the assessment window, 
by comparison to using the HP filter with no extension. These reductions in RMSE 
translate directly to reductions in trend volatility at the ends of the series. Apart 
from the HP forecast extension using the naive predictor, the forecast-extended HP 

Table 6   Percentage reduction 
in RMSE of forecast-extended 
HP filters at the ends of series 
compared to the HP filter with 
no extension

Forecast extension NTP TPP TPT Mean

RBNZ 43 30 52 42
Treasury 17 57 – 37
NZIER 25 56 46 42
H84 −4 −18 −7 -10
ARIMA 16 58 28 34
Naive 78 71 26 59
Mean 29 42 29 34
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filters using informed forecasts (RBNZ, Treasury, NZIER) were better on average 
(RMSE reductions of around 40 per cent) than the other methods based only on 
past data. For the most challenging turning point period TPT, the forecast-extended 
HP filters using informed forecasts dominated all the other methods. Overall, HP 
forecast extension using the naive predictor was best on average and dominated all 
other methods in the more benign environments (NTP, TPP). Since it and ARIMA 
forecast extension are based on I(1) models with drift, it is likely that its success is 
due to the fact that it is the only truly adaptive forecast-extension method with drift 
determined locally (the median growth rate over the last 8 quarters).

We also note that the results for the two turning point periods TPP and TPT are 
consistent with the findings of Joutz and Stekler (2000) who found that, for four 
U.S. recessions during the period 1965 to 1989, Greenbook forecasts produced by 
the Federal Reserve staff generally failed to call an NBER business cycle peak in 
advance and tended to predict a cycle trough too early.

These findings are in accord with the more extensive practical and theoretical evi-
dence in the forecast-extension literature. For macroeconomic business cycle analy-
sis, (optimal) forecast extension should be used routinely to minimise trend vola-
tility at the ends of series. The gains in practice are likely to be considerable and 
largely eliminate many of the deficiencies associated with the HP filter, especially at 
the ends.

5 � Conclusions

In a New Zealand business cycle context, we assess whether Hamilton’s H84 OLS 
regression method has provided a “better alternative” to the Hodrick-Prescott (HP) 
filter. In particular, we evaluate comparative performance in two areas: stylised busi-
ness cycle facts produced by the H84 filter relative to those obtained using the HP 
and Baxter-King (BK) filters; and relative performance of the forecast-extended HP 
filter at the ends of series using the H84 predictor relative to other benchmark fore-
cast-extension methods.

Firstly, for a set of key quarterly New Zealand macroeconomic variables typi-
cally included in a small theoretical or empirical macroeconomic model, H84 trends 
and cycles lead to considerably greater cycle volatilities than those computed from 
either the HP or BK filters which are comparable. Others have shown that H84 cycle 
volatilities for U.S. real GDP are typically over twice those of HP cycle volatilities 
(e.g. Hodrick, 2020; Schüler, 2018). Our findings confirm this effect which is even 
more pronounced when H84 cycle volatilities are compared to BK cycle volatili-
ties and holds for the majority of our key macroeconomic series. Cycle persistence 
is generally less for HP than for H84 which, in turn, is generally less than BK, but 
the differences are, for the most part, not statistically significant. Cross correlations 
of H84, HP and BK cycles with real GDPE show broad agreement, with any differ-
ences being not statistically significant.

Accordingly, for a small open economy like New Zealand, and primarily on the 
basis that H84 produces materially greater volatilities and less credible trend move-
ments associated with H84’s inherent phase-shift behaviour, particularly during key 
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economic periods such as the 1991–92 and GFC recessions, we have a clear prefer-
ence for measures of stylised business cycle facts produced by the HP or BK filters 
rather than those from Hamilton’s H84 procedure. A similar conclusion has been 
reached by Hodrick (2020).

Secondly, at the ends of the series we evaluate the performance of the forecast-
extended HP filter for real GDP and three representative business cycle environ-
ments. The forecast-extension methods compared include the H84 predictor, two 
methods based on models of past data, and the HP filter with no extension. They 
also included a specially compiled data set of real-time forecasts published by two 
leading New Zealand public sector institutions (RBNZ and the New Zealand Treas-
ury) and a prominent private sector agency (NZIER). The three representative busi-
ness cycle environments included a relatively undemanding close-to-linear expan-
sion path with the other two being more demanding and involving business cycle 
turning points. For this paper, the latter are New Zealand’s GFC-related business 
cycle peak at 2007q4 and its corresponding 2009q1 business cycle trough. A two-
year assessment window at the end of each series was used to evaluate the perfor-
mance of the various forecast-extended HP trends relative to a true HP trend based 
on ex-post data to 2019q4.

For all three end point environments considered, the HP filter with forecast exten-
sion was almost always markedly better than using the HP filter with no extension 
and led to practically significant trend improvements at the ends of series. As a 
general rule, the more accurate the forecast extension, the more accurate and less 
volatile the forecast-extended HP trend at the end. These results are in accord with 
findings reported elsewhere in the literature. The notable exception to these findings 
was forecast extension using the Hamilton H84 predictor which produced results 
that are inferior, in terms of root-mean-squared-error (RMSE), to those produced 
by the other forecast-extension methods and the HP filter with no extension. This 
outcome should not be regarded as surprising when the forecast extension comes 
from prominent economic forecasting agencies. Of greater significance is that H84 
forecast-extension failed to out-perform two other univariate benchmark methods 
based solely on past data, and produced RMSEs which were inferior to those using 
the HP filter with no extension whose poor performance has been well-documented 
elsewhere in the literature.

Hence, in a New Zealand business cycle context, the evidence presented here 
suggests there is no material advantage in using the H84 regression over the HP 
filter for the purpose of presenting stylised business cycle facts; nor does the H84 
predictor improve on other forecast extension methods at the ends of series, includ-
ing the HP filter with no extension.
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