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Abstract
In this expository paper, we present some fundamental connections between iterated
function systems, in particular thosewhose attractors are the graphs ofmultivariate real-
valued fractal functions, and foldable figures, affine Weyl groups, and wavelet sets.
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1 Introduction

This expository paper deals with some fundamental connections between iterated
function systems, in particular those whose attractors are multivariate real-valued
fractal functions, root systems and affine Weyl groups, and wavelet sets. After a first
superficial glance, these areas seem to be too different and distinct to contain
commonalities. However, the common multiscale structure that appears both in the
construction of fractal sets and wavelets points the way to a deeper connection. For
instance, it was first shown in [19] and [27] that a class of wavelets may be
constructed by piecing fractal functions together, and then later it was proved in [30]
that every compactly supported refinable function, i.e., every compactly supported
scaling function or wavelet, is a piecewise fractal function. The investigation into the
multiscale structure of fractals and wavelets was carried out in [46] and led to the
insight that the classical wavelet set concept, which is built on dilation and translation
groups, may be adapted to dilation and reflection groups.

A first construction of this new type of wavelet set appeared in [38] and then some
additional insights were reported in [39]. These two investigations were based on
earlier results in [25, 26] which had connected the known concepts of multiresolution
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analysis and affine fractal surface construction to foldable figures. Foldable
figures were shown to be in one-to-one correspondence with the fundamental
domains of affine Weyl groups [32].

Here, we will revisit some of the theoretical background and present several of the
main ideas that underlie the construction of dilation-reflection wavelet sets. In order
to keep the presentation as self-contained as possible, we first present an updated
view of iterated function systems and give a construction of (affine) fractal
hypersurfaces that is based on later requirements. These themes make up the contents
of Sects. 2, 3, and 4. Then, we describe root systems, affine reflections, the associated
affine Weyl groups, and the concept of foldable figure in Sect. 5. There, we also show
that based on the results in this section, one can construct orthonormal bases of
L2ðRnÞ consisting of affinely generated multivariate fractal functions. In Sect. 6, we
introduce and revisit the classical wavelet sets. This is done first in the one-
dimensional setting and then generalized to Rn. Finally, we define wavelet sets based
on dilation groups and affine Weyl groups coming from a foldable figure, and prove
their existence for all expansive dilation matrices and all affine Weyl groups.

2 Iterated function systems

In this section, we introduce the concept of iterated function system (IFS) and
highlight some of its fundamental properties. For more details and proofs, we refer
the reader to, for instance, [3, 4, 6, 36] and the references given therein.

Throughout this paper, we use the following notation. The set of positive integers
is denoted by N :¼ f1; 2; 3; . . .g and the ring of integers by Z. For a 1\N 2 N, we
setNN :¼ f1; . . .;Ng. The pair ðX; dXÞ always denotes a complete metric space with
metric dX. On occasion we simply write X when the metric is understood.

Definition 1 Let N 2 N. If fn : X ! X, n 2 NN , are continuous mappings, then
F :¼ X; f1; f2; :::; fNð Þ is called an iterated function system (IFS) on X.

By a slight abuse of terminology and notation, we use the same symbol, namely
F , for the IFS, the set of functions in the IFS, and for the following set-valued
mapping also referred to as the Barnsley–Hutchinson operator. This operator F :

2X ! 2X is defined by

F ðBÞ :¼
[
f 2F

f ðBÞ

for all B 2 2X, where 2X denotes the class of subsets of X.
Let H ¼ HðXÞ � 2X be the class of all nonempty compact subsets of X. ðH; dHÞ

becomes a metric space when endowed with the Hausdorff-Pompeiu metric dH (cf.
[21, 55]):

dHðA;BÞ :¼ maxfmax
a2A

min
b2B

dXða; bÞ;max
b2B

min
a2A

dXða; bÞg; A;B 2 H:

It is known that the completeness of ðX; dXÞ implies the completeness of ðH; dHÞ; cf.
for instance [55, Proposition 3.2].
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As F Hð Þ � H, we can also also treat F as a mapping F : H ! H. When U � X

is nonempty, we write HðUÞ :¼ HðXÞ \ 2U . We denote by Fj j the number of
distinct mappings in F .

A metric space X is termed locally compact if for every compact C � X and
every positive r 2 R the set cl ðC þ rÞ is again compact. Here, the notation cl ðC þ
rÞ means the closure of the union of balls of radius r[ 0, one centered on each point
of C.

The Lipschitz constant of a mapping f : X ! X is defined by

Lip f :¼ sup
x;y2X; x 6¼y

dX ðf ðxÞ; f ðyÞÞ
dXðx; yÞ :

Functions f with Lip f\1 are called contractions on X.
The following information is foundational. A proof of it can be found in [5].

Theorem 1 The following statements are valid:

1. If ðX; dXÞ is compact then ðH; dHÞ is compact.
2. If ðX; dXÞ is locally compact then ðH; dHÞ is locally compact.
3. If X is locally compact, or if each f 2 F is uniformly continuous, then F :

H ! H is continuous.
4. If f : X !X is a contraction mapping for each f 2 F , then F : H ! H is also a

contraction mapping. In this case, the Lipschitz constant of F is given by
maxfLip f : f 2 Fg.

For B � X, let F kðBÞ denote the k-fold composition of F , i.e., the union of
fi1 � fi2 � � � � � fik ðBÞ over all finite words i1i2 � � � ik of length k. Define F 0ðBÞ :¼ B:

Definition 2 An element A 2 HðXÞ is said to be an attractor of the IFS F if

(i) FðAÞ ¼ A and
(ii) there exists an open set U � X such that A � U and lim

k!1
F kðBÞ ¼ A; for all

B 2 HðUÞ, where the limit is taken with respect to the Hausdorff-Pompeiu
metric.

The largest open set U such that ðiiÞ is true is called the basin of attraction (for the
attractor A of the IFS F ).

Remark 1 Note that if U1 and U2 satisfy condition ðiiÞ in Definition 2 for the same
attractor A then so does U1 [ U2.

Remark 2 The invariance condition ðiÞ is not needed; it follows from ðiiÞ with
B :¼ A.

The following observation [40, Proposition 3 (vii)], [20, p.68, Proposition 2.4.7] is
used in the proof of Theorem 2 below:
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Lemma 1 Let Bkf g1k¼1� H be a sequence of nonempty compact sets such that
Bkþ1 � Bk , for all k 2 N. Then

T
k2N

Bk ¼ lim
k!1

Bk where the convergence is with

respect to the Haudorff-Pompeiu metric dH.

The next result shows how one may obtain the attractor A of an IFS. For the proof,
we refer the reader to [5]. Note that we do not assume that the functions in the IFS F
are contractive.

Theorem 2 Let F be an IFS with attractor A and basin of attraction U. If the
mapping F : HðUÞ! HðUÞ is continuous then

A ¼
\
m� 1

cl
[
k�m

F kðBÞ
 !

; for all B � U such that clB 2 HðUÞ.

The quantity on the right-hand side here is sometimes called the topological upper
limit of the sequence F kðBÞ : k 2 N

� �
. (See, for instance, [21].)

A subclass of IFSs is obtained by imposing additional conditions on the functions
that comprise the IFS. The definition below introduces this subclass.

Definition 3 An IFS F ¼ ðX; f1; f2; . . .; fN Þ is called contractive if each f 2 F is a
contraction (with respect to the metric dX), i.e., if there exists a constant c 2 ½0; 1Þ
such that

dXðf ðx1Þ; f ðx2ÞÞ� c dXðx1; x2Þ;
for all x1; x2 2 X.

By item 4. in Theorem 1, the mapping F : H ! H is then also contractive on the
complete metric space ðH; dHÞ and thus – by the Banach Fixed Point Theorem –
possesses a unique fixed point or attractor A. This attractor satisfies the self-
referential equation

A ¼ F ðAÞ ¼
[
f 2F

f ðAÞ: ð1Þ

Note that in the case of a contractive IFS, the definition of attractor given in Defi-
nition 2 coincides with the fixed point A of F .

Equation (1) expresses the fact that the attractor is a finite copy of images of itself
and therefore inductively a finite union of sets of the formfi1 � fi2 � � � � � fik ðAÞ, for
any finite word i1i2 � � � ik of length k. This observation demonstrates the immense
complexity of a non-trivial attractor which for that reason is also called a fractal (set).

In the case of a contractive IFS, the basin of attraction for A is X and the attractor
can be computed via the following procedure: Suppose K0 is any set in HðXÞ.
Consider the sequence of iterates
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Km :¼ F ðKm�1Þ ¼ FmðK0Þ; m 2 N:

Then Km converges in the Hausdorff-Pompeiu metric to the attractor A as m ! 1, i.
e., dHðKm;AÞ ! 0 as m ! 1.

There exist weaker conditions for the existence of an attractor of an IFS. We refer
the interested reader to, for instance, [41].

For the remainder of this paper, we deal exclusively with contractive IFSs as
defined above. We will see that the self-referential Eq.(1) plays a fundamental role in
the construction of fractals sets, i.e., the attractors of IFSs, and in the determination of
their geometric and analytic properties.

3 Fractal hypersurfaces in Rn+1

In this section, we construct a class of special attractors of IFSs, namely attractors
that are the graphs of bounded functions f : X � Rn ! R, where X 2 HðRnÞ, n 2 N.
Suppose that fui : X ! X : i 2 NNg is a family of injective mappings with the
property that

(P) fuiðXÞ : i 2 NNg is a set-theoretic partition of X in the sense that X ¼[N
i¼1

uiðXÞ and uiðXÞ \ ujðXÞ ¼ ;; for all i 6¼ j:

We remark that property (P) can be relaxed somewhat; for details, we refer the
interested reader to [53].

We introduce the set BðXÞ :¼ BðX;RÞ :¼ ff : X ! R : f is boundedg and
endow it with the metric

dðf ; gÞ :¼ supf f ðxÞ � gðxÞj j : x 2 Xg:
It is straight-forward to show that ðBðXÞ; dÞ is a complete metric space. Indeed it is
even a complete metric linear space. Recall that a metric linear space is a vector space
endowed with a metric under which the operations of vector addition and scalar
multiplication are continuous. (See, for instance, [51].)

For i 2 NN , let vi : X	 R ! R be a mapping that is uniformly contractive in the
second variable, i.e., there exists an ‘ 2 ½0; 1Þ so that for all y1; y2 2 R

viðx; y1Þ � viðx; y2Þj j � ‘ y1 � y2j j; 8x 2 X: ð2Þ
Define a Read-Bajactarević (RB) operator U : BðXÞ ! RX by
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Uf ðxÞ :¼
XN
i¼1

viðu�1
i ðxÞ; f � u�1

i ðxÞÞ vuiðXÞðxÞ; ð3Þ

where

vM ðxÞ :¼
1; x 2 M

0; x 62 M

�
;

denotes the characteristic function of a set M. Note that U is well-defined and since f
is bounded and each vi contractive in the second variable, Uf is again an element of
BðXÞ.

Moreover, by (2), we obtain for all f ; g 2 BðXÞ the following inequality:

dðUf ;UgÞ ¼ sup
x2X

Uf ðxÞ � UgðxÞj j

¼ sup
x2X

vðu�1
i ðxÞ; f ðu�1

i ðxÞÞÞ � vðu�1
i ðxÞ; gðu�1

i ðxÞÞÞ�� ��
� ‘ sup

x2X
f � u�1

i ðxÞ � g � u�1
i ðxÞ�� ��� ‘ dðf ; gÞ:

ð4Þ

To simplify notation, we set vðx; yÞ :¼PN
i¼1

viðx; yÞ vuiðXÞðxÞ in the above equation.

In other words, U is a contraction on the complete metric linear space BðXÞ and,
by the Banach Fixed Point Theorem, has therefore a unique fixed point f in BðXÞ.
This unique fixed point will be called a multivariate real-valued fractal function (for
short, fractal function) and its graph a fractal hypersurface of Rnþ1.

Next, we would like to consider a special choice for the mappings vi. To this end,
define vi : X	 R ! R by

viðx; yÞ :¼ kiðxÞ þ SiðxÞ y; i 2 NN ; ð5Þ
where ki 2 BðXÞ and Si : X ! R is a function. Then, vi given by (5) satisfies con-
dition (2) provided that the functions Si are bounded on X with bounds in [0, 1). For
then

viðx; y1Þ � viðx; y2ÞÞj j ¼ SiðxÞ y1 � SiðxÞ y2j j ¼ SiðxÞj j � y1 � y2j j
� kSik1;X y1 � y2j j � s y1 � y2j j:

Here, we denoted by k � k1;X the supremum norm on X and defined

s :¼ maxfkSik1;X : i 2 NNg:
Thus, for a fixed set of functions fki : i 2 NNg and fSi : i 2 NNg, the associated RB
operator (3) has now the form

Uf ¼
XN
i¼1

ki � u�1
i vuiðXÞ þ

XN
i¼1

ðSi � u�1
i Þ � ðf � u�1

i Þ vuiðXÞ; ð6Þ

or, equivalently,
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Uf � ui ¼ ki þ Si � f ; on X and i 2 NN :

Thus, we have arrived at the following result.

Theorem 3 Let X 2 HðRnÞ and suppose that fui : X ! X : i 2 NNg is a family of
injective mappings satisfying property ðPÞ. Further suppose that the vectors of

functions k :¼ ðk1; . . .; kN Þ and S :¼ ðS1; . . .; SN Þ are elements of
QN
i¼1

BðXÞ.

Define a mapping U :
QN
i¼1

BðXÞ
� �

	 QN
i¼1

BðXÞ
� �

	 BðXÞ ! BðXÞ by

UðkÞðSÞf ¼
XN
i¼1

ki � u�1
i vuiðXÞ þ

XN
i¼1

ðSi � u�1
i Þ � ðf � u�1

i Þ vuiðXÞ: ð7Þ

If s ¼ maxfkSik1;X : i 2 NNg\1 then the operator UðkÞðSÞ is a contraction on the

complete metric linear space BðXÞ and its unique fixed point f ¼ fðkÞðSÞ satisfies the
self-referential equation

f ¼
XN
i¼1

ki � u�1
i vuiðXÞ þ

XN
i¼1

ðSi � u�1
i Þ � ðf � u�1

i Þ vuiðXÞ; ð8Þ

or, equivalently,

f � ui ¼ ki þ Si � f; on X and i 2 NN : ð9Þ

Remark 3 Note that the fractal function f : X ! R generated by the RB operator

defined by (7) does depend on the two N-tuples of bounded functions k; S 2 QN
i¼1

BðXÞ
and that (8) therefore defines a two-parameter family of functions. The fixed point f
should therefore be written more precisely as fðkÞðSÞ. However, for the sake of
notational simplicity, we usually suppress this dependence for both f and U. Below,
we will see that imposing continuity conditions on the fixed point f will determine
the N-tuple of functions k and f will then depend only on S.

Now, assume that the vector of functions S is fixed. Then, the following result
found in [27] and in more general form in [45] describes the relationship between the
vector of functions k and the fixed point fðkÞ generated by the RB operator UðkÞ.

Theorem 4 The mapping k 7!fðkÞ is a linear isomorphism from
QN
i¼1

BðXÞ to BðXÞ.

Proof Let a; b 2 R and let k; l 2 QN
i¼1

BðXÞ. Injectivity follows immediately from the

fixed point Eq.(8) and the uniqueness of the fixed point: k ¼ l () fðkÞ ¼ fðlÞ.
Linearity follows from (8), the uniqueness of the fixed point and injectivity:
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fðakþ blÞ ¼
XN
i¼1

ðaki þ bliÞ � u�1
i vuiðXÞ

þ
XN
i¼1

ðSi � u�1
i Þ � fðakþ blÞ � u�1

i

� 	
vuiðXÞ

and

afðkÞ þ bfðlÞ ¼
XN
i¼1

ðaki þ bliÞ � u�1
i vuiðXÞ

þ
XN
i¼1

Si � u�1
i

� 	 � afðkÞ þ bfðlÞÞ � u�1
i

� 	
vuiðXÞ:

Hence, fðakþ blÞ ¼ afðkÞ þ bfðlÞ.
For surjectivity, we define ki :¼ f � ui � Si � f, i 2 NN . Since f 2 BðXÞ, we have

k 2 QN
i¼1

BðXÞ. Thus, fðkÞ ¼ f.

We will see below that this theorem allows us to obtain bases for fractal functions.
For more details, see also [31, 44, 47].

4 Affinely generated fractal surfaces

In this section, we specialize our construction of fractal functions even further. It is
our goal to obtain continuous fractal hypersurfaces that are generated by affine
mappings ki : X ! R on specially chosen domains X � Rn, namely n-simplices, and
by constant functions Si :¼ si 2 ð�1; 1Þ.

This type of fractal surface was first systematically introduced in [43] and
generalized in [24]. Further generalizations were presented in [25, 26, 33]. All these
constructions are based on using for X certain types of simplicial regions and affine
mappings. Later, different types of fractal surface constructions not necessarily based
on simplicial regions and affine mappings were published. A short and albeit
incomplete list of them is [8–10, 13, 14, 23, 42, 50, 52].

In order to set up the connection with wavelet sets, we need to follow the
construction that originated in [25, 26] and was used in [38, 47]. To this end, we first
need to choose as our domain X � Rn an n–simplex.

Definition 4 Let fp0; p1; . . .; png be a set of affinely independent points in Rn. A
regular n-simplex in Rn is defined as the point set

Mn :¼ x 2 Rn : x ¼
Xn
k¼0

tkpk ; tk � 0;
Xn
k¼0

tk ¼ 1

( )
:
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Over the n-simplex Mn, we consider the following set of functions:

CðMnÞ :¼ CðMn;RÞ :¼ ff : Mn ! R : f is continuous on Mng:
It is easy to verify that ðCðMnÞ; k � k1;MnÞ is a complete metric linear space.

Now let 1\N 2 N and suppose that fMn
i : i 2 NNg is a family of nonempty

compact subsets of Mn with the properties that:

(P1) Mn ¼
[N
i¼1

Mn
i ;

(P2) Mn
i is similar to Mn, for all i 2 NN ;

(P3) Mn
i is congruent to Mn

j , for all i; j 2 NN :

Note that conditions (P1), (P2), and (P3) imply the existence of N unique contractive
similitudes ui : Mn ! Mn

i given by

ui ¼ aOi þ si; i ¼ 1; . . .;N ; ð10Þ
where 0\a\1 is the similarity constant or the similarity ratio for Mn

i with respect to
Mn, Oi : R

n ! Rn an orthogonal transformation, and si 2 Rn a translation.
Let V be the set of vertices of Mn. We denote the set of all distinct vertices of the

subsimplices Mn
i by Vi. Suppose there exists a labelling map ‘ : [Vi :¼

SN
i¼1

Vi ! V

such that

8i 2 NN 8v 2 Vi : uið‘ðvÞÞ ¼ v: ð11Þ
Now, suppose that fki : Mn ! R : i 2 NNg is a collection of affine functions and
fsi : i 2 NNg a set of real numbers. As in the previous section, we set k :¼
ðk1; . . .; kN Þ and s :¼ ðs1; . . .; sN Þ. Let us denote by An :¼ Aff ðRn;RÞ the vector
space of all affine mappings k : Rn ! R. We like to define an RB operator

UðkÞðsÞf :¼
X
i2NN

ðki � u�1
i ÞvMn

i
þ
X
i2NN

ðsi f � u�1
i ÞvMn

i ð12Þ

(points on common boundaries are only counted once) on a subspace C0ðMnÞ of
CðMnÞ so that

U :
YN
i¼1

An

 !
	 RN 	 C0ðMnÞ ! C0ðMnÞ:

The affine mappings ki are usually determined by interpolation conditions. Thus,
consider the interpolation set
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Z :¼ ðv; zvÞ 2 Mn 	 R : v 2 [Vif g ð13Þ
Then, for all i 2 NN , the affine mappings ki are uniquely determined by the inter-
polation conditions

kið‘ðvÞÞ þ si z‘ðvÞ ¼ zv; 8v 2 Vi: ð14Þ
In order for Uf to be well-defined on and continuous across adjacent triangles Mn

i and
Mn

j , one needs to impose the following join-up conditions:

ki � u�1
i ðx; yÞ þ sif � u�1

i ðx; yÞ ¼ kj � u�1
j ðx; yÞ þ sjf � u�1

j ðx; yÞ; ð15Þ
for all ðx; yÞ 2 eij :¼ Mn

i \ Mn
j , i; j 2 NN with i 6¼ j. Here, eij is called a common edge

of Mn
i and Mn

j .

The next result, which is essentially Theorem 6 in [25] gives conditions for (15) to
be satisfied.

Theorem 5 Let Mn be a n–simplex and fMn
i : i 2 NNg a family of nonempty

compact subsets of Mn satisfying conditions (P1), (P2), and (P3). Let Z be an
interpolation set of the form (13) and let C0ðMnÞ :¼ f 2 CðMnÞ :f
f ðvÞ ¼ zv; v 2 [Vig. Suppose that there exists a labelling map ‘ as defined in
(11). Further suppose that s :¼ ðs; . . .; sÞ, with sj j\1. Then, the RB operator UðkÞðsÞ
defined by (12) maps C0ðMnÞ into itself, is well-defined, and contractive on the
complete metric subspace ðC0ðMnÞ; k � k1;MÞ of ðCðMnÞ; k � k1;MnÞ.

The unique fixed point of the RB operator in Theorem 5 is called a multivariate
real-valued affine fractal interpolation function and its graph an affinely generated
fractal hypersurface or an affine fractal hypersurface.

Example 1 Let n :¼ 2. Suppose we are given the 2–simplex M2 and its associated
partition as depicted in Fig. 1 below.

A simple computation yields for the four mappings ui the following expressions:

0
0.25

0.5

1

0

0.25
0.5

0.75
1

0

0.2

0.4

0

0.75

0

Fig. 1 A 2–simplex and its
associated partition
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u1
x

y

� �
¼

1

2
0

0
1

2

0B@
1CA x

y

� �
þ 1=2

0

� �
; u2

x

y

� �
¼

� 1

2
0

0
1

2

0B@
1CA x

y

� �
þ 1=2

0

� �

u3
x

y

� �
¼

1

2
0

0 � 1

2

0B@
1CA x

y

� �
þ 0

1=2

� �
; u4

x

y

� �
¼

1

2
0

0
1

2

0B@
1CA x

y

� �
þ 0

1=2

� �
:

The affine functions ki are then given by

k1ðx; yÞ ¼ k2ðx; yÞ ¼ �z1xþ ðz2 � z1Þyþ z1;

k3ðx; yÞ ¼ k4ðx; yÞ ¼ ðz2 � z3Þx� z3yþ z3;

where z1; z2;, and z3 are the nonzero z values. (See the figure above.) For z1 :¼ 1
5,

z2 :¼ 1
2, z3 :¼ 3

10, and s :¼ � 3
5, the sequence of graphs in Fig. 2 shows the generation

of the fractal hypersurface in R3.

Remark 4 In the above construction of an affine fractal hypersurface, one needs to
choose all scaling factors si equal to a common value s in order to guarantee
continuity of f. There is a related construction where one can choose different scaling
factors for the maps but in this case one is forced to consider coplanar boundary
conditions. The interest reader is referred to [47] for more details.

Fig. 2 The generation of an affine fractal hypersurface in R3
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Using Theorem 5 we can construct a basis for fractal hypersurfaces. For this
purpose, we denote by SðMn;AnÞ the set of all fractal functions generated by the RB
operator (12) subject to the conditions stated in Theorem 5. The set SðMn;AnÞ
becomes for fixed s a complete metric linear space inheriting its metric from CðMnÞ.
Note that dimSðMn;AnÞ ¼ nN � card [Við Þ; n free parameter for each of the N
affine functions ki and card [Við Þ many interpolation conditions at the vertices. One
may interpret SðMn;AnÞ as a generalized spline space.

This observation suggests the construction of an n-dimensional system of
Lagrange interpolants for each affine fractal function f of the form

B :¼ bv : Mn ! R : v 2 [Vif g; ð16Þ
where each bv is the unique affine fractal hypersurface interpolating the set

Zv :¼ ðv0; dvv0 Þ : v0 2 [Vif g; v 2 [Vi;

where dvv :¼ 1 and dvv0 :¼ 0, if v 6¼ v0. We also refer to the set of these affine fractal
functions as an affine fractal (hypersurface) basis. Thus, we have the following result.

Theorem 6 Let f be an affine fractal function with associated interpolation set Z as
defined in (13). Then there exists an affine fractal basis of Lagrange-type (16) of
cardinality card [Við Þ such that

f ¼
X
v2[Vi

zv bv:

Example 2 In Fig. 3, three of the six graphs of the affine fractal basis functions for
the affine fractal surface constructed in Example 1 are displayed.

As SðMn;AnÞ is finite-dimensional, we can apply the Gram–Schmidt Orthonor-
malization procedure to obtain an orthonormal basis for SðMn;AnÞ consisting of
affine fractal basis functions. (See also [25, 26, 44, 47].) This orthonormal basis will
play an important role in the connection with wavelet sets and affine Weyl groups.

5 Root systems and affine Weyl groups

In the current section, we introduce root systems, reflections about affine hyperplane,
and the associated affine Weyl groups. We only present those concepts that are of
importance for later developments and refer the interested reader to, for instance,
[11, 12, 15, 28, 29, 35, 37] for a more in-depth presentation of reflection groups and
root systems.

For the remainder of this section, we denote by En :¼ ðEn; h�; �iÞ n-dimensional
Euclidean space endowed with the canonical Euclidean inner product h�; �i.

Let H � En be a linear hyperplane, i.e., a codimension one linear subspace of En.

Definition 5 A linear transformation r : En ! En is called a reflection about H if
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1. rðHÞ ¼ H ;
2. rðxÞ ¼ � � x, for all x 2 H?. Here, H? denotes the orthogonal complement of H

with respect to the Euclidean inner product h�; �i.

A straight-forward computation yields an explicit representation of r, namely,

raðxÞ ¼ x� 2hx; ai
ha; ai a; for fixed 0 6¼ a 2 H?: ð17Þ

Recall that a discrete group is a subgroup of the general linear group GLðn;RÞ whose
subspace topology in GLðn;RÞ is the discrete topology.

Definition 6 A discrete group generated by a set of reflections in En is called a
Euclidean reflection group.

An abstract group that has a representation in terms of reflections is termed a
Coxeter group. More precisely, a Coxeter group is a discrete group C with a finite set
of generators fai : i ¼ 1; . . .; kg satisfying

C :¼ 
a1; . . .; ak : ðaiajÞmij ¼ 1; 1� i; j� k
�

where mii ¼ 1, for all i, and mij � 2, for all i 6¼ j. (mij ¼ 1 is used to indicate that no
relation exists.) It can be shown that finite Coxeter groups are isomorphic to finite
Euclidean reflection groups. [15]

Fig. 3 Some affine fractal basis functions. Upper left: zi ¼ d1i, upper right: zi ¼ d2i, and lower middle:
zi ¼ d3i, i ¼ 1; 2; 3
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Example 3 Klein’s Four-Group V or the dihedral group D4 of order 4. This group is
generated by two elements a and b as follows:

V ¼ D4 ¼


a; b : a2 ¼ b2 ¼ ðabÞ2 ¼ 1

�
:

In geometric terms, V is the symmetry group of the unit square ½� 1
2 ;

1
2
 	 ½� 1

2 ;
1
2


centered at the origin.

Definition 7 A root system R consists of a finite set of vectors a1; . . .; ak 2 Rnnf0g
having the following properties.

1. Rn ¼ span fa1; . . .; akg;
2. a; ta 2 R if and only if t ¼ �1;
3. 8a 2 R: raðRÞ ¼ R, where ra is the reflection through the hyperplane orthogonal

to a;
4. 8a; b 2 R: hb; a_i 2 Z, where a_ :¼ 2 a=ha; ai.

The dimension of Rn, i.e., n, is called the rank of the root system.

We note that condition 4. in Definition 7 restricts the possible angles between
roots: Let a; b be two roots and let

nðb; aÞ :¼ hb; a_i ¼ 2
ha; bi
ha; ai 2 Z:

Denote by aj j :¼ ha; ai1=2 the length of a and by h the angle between a and b. Then
ha; bi ¼ aj j bj j cos h and thus

nðb; aÞ ¼ 2
bj j
aj j cos h: ð18Þ

It follows from (18) that

nðb; aÞ nða; bÞ ¼ 4 cos2 h:

Hence,

nðb; aÞ 2 Z ¼) 4 cos2 h 2 f0; 1; 2; 3; 4g:
The following table shows the possible angles h and thus the relation between the
two roots a and b.
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nðb; aÞ ¼ 0; nða; bÞ ¼ 0; h ¼ p
2
:

nðb; aÞ ¼ 1; nða; bÞ ¼ 1; h ¼ p
3
; bj j ¼ aj j:

nðb; aÞ ¼ -1; nða; bÞ ¼ -1; h ¼ 2p
3
; bj j ¼ aj j:

nðb; aÞ ¼ 1; nða; bÞ ¼ 2; h ¼ p
4
; bj j ¼ ffiffiffi

2
p

aj j:

nðb; aÞ ¼ -1; nða; bÞ ¼ -2; h ¼ 3p
4
; bj j ¼ ffiffiffi

2
p

aj j:

nðb; aÞ ¼ 1; nða; bÞ ¼ 3; h ¼ p
6
; bj j ¼ ffiffiffi

3
p

aj j:

nðb; aÞ ¼ -1; nða; bÞ ¼ -3; h ¼ 5p
6
; bj j ¼ ffiffiffi

3
p

aj j:

Note that the value of h determines both nða; bÞ as well as f aj j= bj j; bj j= aj jg.
Example 4 The following are three examples of root systems in E2. See Fig. 4.

Roots may be divided into two classes as follows.

Definition 8 Choose v 2 Rn so that hv; ai 6¼ 0, for all roots a 2 R. The set of
positive roots is defined as

Rþ :¼ fa 2 R : hv; ai[ 0g
and the set of negative roots as

R� :¼ fa 2 R : hv; ai\0g:

Clearly, R ¼ Rþ q R�, where q denotes the disjoint union.
A root in Rþ is called simple if it cannot be written as the sum of two elements of

Rþ. The set D � Rþ of simple roots forms a basis of Rn with the property that every
a 2 R can be written in the form

a ¼
X

ki di; ki 2 Z; di 2 D;

where all ki [ 0 or all ki\0.
We summarize some properties of roots and root systems in the proposition below.

Fig. 4 Three root systems of rank 2
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Proposition 1 Let R be a root system and Rþ the set of positive roots.

1. Rþ is that subset of R for which the following two conditions hold:

(i) Given a 2 R, then either a 2 Rþ or �a 2 Rþ;
(ii) For all pairs ða; bÞ 2 Rþ 	 Rþ with a 6¼ b, such that aþ b 2 R,

aþ b 2 Rþ.

2. For a; b 2 D with a 6¼ b, ha;bi� 0. (I.e., the angle between two simple roots is
always obtuse.)

3. Assume that a; b 2 R, a and b are not multiples of each other, and ha; bi[ 0.
Then a� b 2 R.

Now suppose that a; b 2 R. Let H be the hyperplane orthogonal to a, i.e., H ¼ a?.
We denote by a� 2 ðEnÞ� the unique element in the algebraic dual of En such that

a�ðHÞ ¼ 0; and a�ðaÞ ¼ 2:

Then we may rewrite (17) in the form

raðbÞ ¼ b� a�ðbÞa ¼ ð1� a�  aÞðbÞ:
Since En and ðEnÞ� are isomorphic via the Euclidean inner product h�; �i, there exists a
unique element a_ 2 En so that a� ¼ ha_; �i. a_ is called the coroot of a and is
identical to the a_ in Definition (7), item 4. The lattice in En spanned by the roots R,
respectively, coroots R_ is called the root, respectively, coroot lattice.

The finite family of hyperplanes fHa : a 2 Rg, where Ha is the hyperplane
orthogonal to a, partitions En into finitely many regions. The connected components
of EnnS

a2R
Ha are called the (open) Weyl chambers of En.

The fundamental Weyl chamber C relative to D is defined by

C :¼
\
d2D

fv 2 En : hv; di[ 0g:

It should be clear that C is a simplicial cone, hence convex and connected (Fig. 5).

Definition 9 The subgroup of the isometry group of a root system that is generated
by the reflections through the hyperplanes orthogonal to the roots is called the Weyl
group W of the root system R.

As the root system is finite, W is a finite reflection group. Moreover, W acts
simply transitive on the Weyl chambers, i.e., if C1 and C2 are two Weyl chambers and
xj 2 Cj, j ¼ 1; 2, then there exists a unique r 2 W so that rðx1Þ ¼ x2.

An affine hyperplane with respect to a root system R is defined by

Ha;k :¼ fx 2 Rn : hx; ai ¼ kg; a 2 R; k 2 Z:

We can also consider reflections ra;k about affine hyperplanes. Employing conditions
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(i) and (ii) in Definition 5 applied now to affine hyperplanes, we obtain the following
expression for such reflections:

ra;kðxÞ ¼ x� 2ðhx; ai � kÞ
ha; ai a ¼ raðxÞ þ k a_: ð19Þ

Definition 10 Let R be a root system and fHa;k : a 2 R; k 2 Zg its system of affine

hyperplanes. The affine Weyl group fW for R is the infinite group generated by the
reflections ra;k about the affine hyperplanes Ha;k :fW :¼ 
ra;k : a 2 R; k 2 Z

�
The next result characterizes the affine Weyl group of a root system and relates it

to the finite Weyl group and the lattice generated by the coroots.
In reference to the theorem below, we recall the notion of semi-direct product of

groups. Let ðG; �Þ be a group with identity element e. Suppose H is a subgroup of G
and N a normal subgroup of G. Further suppose that G ¼ HN and H \ N ¼ feg.
Then G is called the semi-direct product of H and N.

Theorem 7 (Bourbaki) The affine Weyl group fW of a root system R is the semi-
direct product WnC, where C is the abelian group generated by the coroots a_.
Moreover, C is the subgroup of translations of fW and W the isotropy group
(stabilizer) of the origin. The group W is finite and C infinite.

In this context, also note the particular form of an affine reflection (19); it is the
sum of a reflection ra across a linear hyperplane plus a translation along the lattice
spanned by the coroot a_.

It can be shown that fW has a fundamental domain C � En in the sense that no

r 2 fW maps a point of C to another point of C, and for all x 2 En there exists an

r 2 fW such that rðxÞ 2 C. Furthermore, C is a compact and convex simplex.
All affine Weyl groups (and therefore their fundamental domains) are classified.

For a given dimension n 2 N there exists only a finite number of possible groups and
thus fundamental domains. The classification of so-called irreducible root systems
(root systems that cannot be written as the union of two root systems R1 and R2 such

Fig. 5 A root system, its Weyl
chambers (regions between
dashed lines) and the
fundamental Weyl chamber C
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that ha1; a2i ¼ 0, for ai 2 Ri, i ¼ 1; 2) follows from the representation theory of
simple Lie algebras.

The classification yields four infinite families An (n� 1), Bn (n� 2), Cn (n� 3),
and Dn (n� 4) and five exceptional cases E6, E7, E8, F4, and G2. (The subscript
indicates the rank of the root system.) For the cardinality of these families and the
explicit construction of their root system as well as the geometric description of the
fundamental domains, we refer the interested reader to [11, 35].

Figure 6 shows the three irreducible root systems of rank 2, their fundamental
domains C and coroot lattices. Note that the fundamental domains consist of an
equiangular triangle (root system A2), a 90�–45�–45� triangle (B2), and a
90�–30�–60� triangle (G2).

The final concept we need to introduce to set up the connection between affine
fractal surfaces, affine Weyl groups and wavelet sets is that of foldable figure.

Definition 11 A compact connected subset F of En is called a foldable figure if there
exists a finite set S of affine hyperplanes that cuts F into finitely many congruent
subfigures F1; . . .;Fm, each similar to F, so that reflection in any of the cutting
hyperplanes in S bounding Fk takes it into some F‘.

Two examples of foldable figures are given below in Fig. 7.

Fig. 6 The root systems A2, B2, and G2
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The next theorem summarizes the connections between affine Weyl groups and
their fundamental domains, and foldable figures. For proofs, see [11, 32].

Theorem 8

1. Let G be a reflection group and On the group of linear isometries of En. Then
there exists a homomorphism / : G ! On given by /ðgÞðxÞ ¼ gðxÞ � �gð0Þ,
g 2 G; x 2 En. The group G is called essential if /ðGÞ only fixes 0 2 En. The
elements of ker/ are called translations. If G is essential and without fixed points
then G has a compact fundamental domain.

2. The reflection group generated by the reflections about the bounding hyperplanes

of a foldable figure F is the affine Weyl group fW of some root system.

Moreover, fW has F as a fundamental domain.
3. There exists a one-to-one correspondence between foldable figures and reflection

groups that are essential and without fixed points.

Note that in view of this theorem, our construction of affine fractal hypersurfaces
took place over a foldable figure, namely Mn together with its collection of
subfigures fMn

i : i 2 NNg. As the foldable figure and hence every subfigure of it is

the fundamental domain of an associated affine Weyl group fW , the existence of a
labelling map ‘ is guaranteed. In addition – and this will become important in the
next section – we also constructed an orthonormal basis on this foldable
figure consisting of a finite number of basic affine fractal hypersurfaces.

In the next section it will become necessary to consider dilates of the fundamental
domain of an affine Weyl group, i.e., a foldable figure. To this end, let F � Rn be a
foldable figure with 0 2 Rn as one of its vertices. Denote by H be the set of
hyperplanes associated with F and by R be the tessellation of F induced by H. The

affine Weyl group of the foldable figure F, fW , is then the group generated by the
affine reflections rH , where H 2 H.

Now, fix 1\, 2 N and define M :¼ ,F. Then M is also a foldable figure, whose
N :¼ ,n subfigures Mi 2 R. Assume w.l.o.g that M1 ¼ F. The tessellation and set of
hyperplanes for M are ,R and ,H, respectively. Moreover, the affine reflection group

generated by ,H is an isomorphic subgroup of fW . Note that the similarity ratio

a ¼ 1=,. By simple transitivity of fW , define similitudes ui : M ! Mi by:

u1 :¼ 1

,
ð�Þ and 8j ¼ 2; . . .;N : uj :¼ rj;1 � u1;

where rj;1 is the composition of reflections from M1 to Mj. Now the construction

Fig. 7 Foldable
figures corresponding to the
reducible root system A1 	 A1

(left) and the irreducible root
system B2 (right)
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proceeds as in Sect. 4. This yields a fractal function f defined over M and an
orthonormal basis of the form (16) whose elements are defined over the foldable
figure ,F.

Given a fractal function f defined over a foldable figure F, we can extend f to all of
Rn by using the fact that the foldable figure F is a fundamental domain for its
associated affine Weyl group and that it tessellates Rn by reflections in its bounding

hyperplanes, i.e., under the action of fW . For any foldable figure F 0 2 R there exists a

unique r 2 fW so that F 0 ¼ rðFÞ. Define an extension f : Rn ! R of f by

fjF 0 :¼ f � r�1:

Similarly, we define an orthonormal affine fractal basis B0 over F 0 by setting
B0 :¼ fb � r�1 : b 2 Bg. Hence, we obtain[

r2eWfb � r�1 : b 2 Bg

as an orthonormal affine fractal basis for L2ðRnÞ.

6 Wavelet Sets

In this section, we establish a connection between the various concepts introduced in
the previous sections and the multiscale structure of wavelets. Our emphasis will be
entirely on wavelet sets in Rn and most of the material found here is taken from [16–
18, 38]. The reader interested in a more operator-theoretic formulation of wavelet sets
is referred to [17]. For motivational purposes, we present first the one-dimensional
setting, i.e., wavelet sets in R, and then proceed to the higher-dimensional scenario.

To this end, we need to first define wavelets.

Definition 12 A dyadic orthonormal wavelet on R is a unit vector
w 2 L2ðRÞ :¼ L2ðR;mÞ, where m denotes Lebesgue measure, with the property that
the set

f2n
2wð2nt � ‘Þ : n; ‘ 2 Zg ð20Þ

of all integral translates of w followed by dilations by arbitrary integral powers of 2,
is an orthonormal basis for L2ðRÞ.

We remark that this is not the most general definition of wavelet but for our
purposes it is sufficient. For more details along this line, the interested reader is
referred to the enormous literature on wavelets.

For later developments, we require the following two operators.

Definition 13 Let BðL2ðRÞÞ denote the Banach space of bounded linear operators
from L2ðRÞ to itself. The unitary translation operator T 2 BðL2ðRÞÞ and the unitary
dilation operator D 2 BðL2ðRÞÞ are defined by

123

418 P. Massopust



ðTf ÞðtÞ :¼ f ðt � 1Þ and ðDf ÞðtÞ :¼
ffiffiffi
2

p
f ð2tÞ; f 2 L2ðRÞ; t 2 R;

respectively.

With these two operators, we may write (20) more succinctly as

2
n
2wð2nt � ‘Þ ¼ ðDnT ‘wÞðtÞ

for all n; ‘ 2 Z, t 2 R. Note that an easy computation shows TD ¼ DT 2.
Next, we introduce the Fourier transform F and its inverse F�1 on functions

f ; g 2 L1ðRÞ \ L2ðRÞ by

ðFf ÞðsÞ :¼ 1ffiffiffiffiffiffi
2p

p
Z
R

e�ist f ðtÞdt ¼: bf ðsÞ; ð21Þ

ðF�1gÞðtÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z
R

eistgðsÞds ¼ bgð�sÞ ¼: g_ðtÞ: ð22Þ

Note that this particular form of the Fourier-Plancherel transform defines a unitary
operator on L2ðRÞ. In particular, we remark that

ðFTÞðf ÞðsÞ :¼ 1ffiffiffiffiffiffi
2p

p
Z
R

e�ist f ðt � 1Þdt ¼ e�isðFf ÞðsÞ ¼: e�isbf ðsÞ:
Hence, FTF�1bf ¼ e�isbf ¼: Me�isbf . If we define bT :¼ FTF�1 then bT ¼ Me�is .
Similarly, we obtain for any n 2 Z,

ðFDnf ÞðsÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z
R

e�ist
ffiffiffi
2

p �n
f ð2ntÞdt ¼

ffiffiffi
2

p ��n 1ffiffiffiffiffiffi
2p

p
Z
R

e�i2�nst f ðtÞdt

¼ ð
ffiffiffi
2

p
Þ�nðFf Þð2�nsÞ ¼ ðD�nFf ÞðsÞ:

As above, if we set cDn :¼ FDnF�1 then cDn ¼ D�n and therefore bD ¼ D�1.
Wavelet sets belong to the theory of wavelets via the Fourier transform.

Definition 14 Awavelet set in R is a Lebesgue measurable subset E of R for which
1ffiffiffiffi
2p

p vE is the Fourier transform of a wavelet.

The wavelet bwE :¼ 1ffiffiffiffi
2p

p vE is sometimes called s–elementary. The class of wavelet

sets was also investigated in [22, 34]. In their theory, the corresponding wavelets are
called MSF (minimally supported frequency) wavelets (Fig. 8).

Example 5 The prototype of a wavelet set is the Shannon or Paley-Wiener set given
byconstructed in Section

ES ¼ ½�2p;�pÞ [ ½p; 2pÞ: ð23Þ
The orthonormal wavelet for ES is then given by wSðtÞ ¼ sincð2tÞ � sinc t, where
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sincðtÞ :¼ sinðptÞ
pt

:

To prove that wS is indeed an orthonormal wavelet, note that the set of
exponentials

fei‘s : ‘ 2 Zg
restricted to ½0; 2p
 and normalized by 1ffiffiffiffi

2p
p is an orthonormal basis for L2½0; 2p
. Write

ES ¼ E� [ Eþ where E� ¼ ½�2p;�pÞ, Eþ ¼ ½p; 2pÞ. Since fE� þ 2p;Eþg is a
partition of ½0; 2pÞ and since the exponentials ei‘s are invariant under translation by
2p, it follows that

ei‘sffiffiffiffiffiffi
2p

p
����
ES

: ‘ 2 Z

( )

is an orthonormal basis for L2ðESÞ. Since bT ¼ Me�is , this set can be written as

fbT ‘bwS : ‘ 2 Zg:
Next, note that any “dyadic interval” of the form J ¼ ½b; 2bÞ, for some b[ 0 has the
property that f2nJ : n 2 Zg, is a partition of ð0;1Þ. Similarly, any set of the form

K ¼ ½�2a;�aÞ [ ½b; 2bÞ
for a; b[ 0, has the property that

f2nK : n 2 Zg
is a partition of Rnf0g.

To complete the proof, we need to introduce one more item.

Fig. 8 The Shannon or Paley-
Wiener wavelet
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Definition 15 Let U be a given unitary operator on a Hilbert space H. A nonempty
subspace K of H is called a wandering subspace for U if UmðKÞ?UnðKÞ, for all
m 6¼ n 2 N. If, in addition, H ¼ an2ZU

nðKÞ, then we say that K is a complete
wandering subspace of H for U.

It follows that the space L2ðKÞ, considered as a subspace of L2ðRÞ, is a complete

wandering subspace for the unitary dilation operator ðDf ÞðsÞ ¼ ffiffiffi
2

p
f ð2sÞ. For each

n 2 Z,

DnðL2ðKÞÞ ¼ L2ð2�nKÞ:
Soan2ZD

nðL2ðKÞÞ is a direct sum decomposition of L2ðRÞ. In particular ES has this
property. Thus,

Dn ei‘sffiffiffiffiffiffi
2p

p
�����
ES

: ‘ 2 Z

8<:
9=; ¼ e2

ni‘sffiffiffiffiffiffi
2p

p
�����
2�nES

: ‘ 2 Z

8<:
9=;

is a basis for L2ð2�nESÞ for each n. Hence

fDnbT ‘bwS : n; ‘ 2 Zg ¼ fcDn bT ‘bwS : n; ‘ 2 Zg
is an orthonormal basis for L2ðRÞ, as required.

The above arguments yield the following two sufficient conditions for E to be a
wavelet set:

1. The set of normalized exponentials 1ffiffiffiffi
2p

p ei‘s : ‘ 2 Z
n o

, when restricted to E,

constitutes an orthonormal basis for L2ðEÞ.
2. The family f2nE : n 2 Zg of dilates of E by integral powers of 2 should

constitute a measurable partition (i.e., a partition modulo null sets) of R.

These observations now motivate the next definitions.

Definition 16 Two measurable sets E;F � R are called translation congruent
modulo 2p

● if there exists a measurable bijection / : E ! F such that /ðsÞ � s ¼ nðsÞ 2p, for
each s 2 E, and a unique nðsÞ 2 Z,

or, equivalently,

● if there is a measurable partition fEn : n 2 Zg of E such that

fEn þ n 2p : n 2 Zg
is a measurable partition of F.

Two measurable sets G;H � R are called dilation congruent modulo 2
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● if there is a measurable bijection s : G ! H such that for each s 2 G there exists
an n ¼ nðsÞ 2 Z with sðsÞ ¼ 2ns,

or equivalently,

● if there is a measurable partition fGn : n 2 Zg of G such that

f2nGn : n 2 Zg
is a measurable partition of H.

Example 6 E :¼ ½0; 2p
 and F :¼ ½�2p;�p
 [ ½p; 2p
 are translation congruent
modulo 2p.

The following lemma is proved in [16].

Lemma 2 Let f 2 L2ðRÞ, and let E ¼ suppðf Þ. Then f has the property that

fei‘sf : ‘ 2 Zg
is an orthonormal basis for L2ðEÞ if and only if

1. E is congruent to ½0; 2pÞ modulo 2p, and
2. f ðsÞj j ¼ 1ffiffiffiffi

2p
p a.e. on E.

Observe that if E is 2p–translation congruent to ½0; 2pÞ, then since

f½0; 2pÞ þ 2pn : n 2 Zg
is a measurable partition of R, so is

fE þ 2pn : n 2 Zg:
Similarly, if F is 2–dilation congruent to the Shannon wavelet set
ES ¼ ½�2p;�pÞ [ ½p; 2pÞ, then since f2nES : n 2 Zg is a measurable partition of R,
so is f2nF : n 2 Zg.

A measurable subset G � R is a 2–dilation generator of a partition of R if the sets

2nG :¼ f2ns : s 2 Gg; n 2 Z

are disjoint and RnS
n2Z

2nG is a null set.

Analogously, E � R is a 2p–translation generator of a partition of R if the sets

E þ 2np :¼ fsþ 2np : s 2 Eg; n 2 Z;

are disjoint and RnS
n2Z

ðE þ 2npÞ is a null set.

The next theorem gives necessary and sufficient conditions for a measurable set
E � R to be a wavelet set. Before we state it, we need a definition.
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Definition 17 A fundamental domain for a group G of (measurable) transformations
on a measure space ðX ;A; lÞ is a measurable set C 2 A with the property that

fgðCÞ : g 2 Gg is a measurable partition (tessellation) of X; that is, Xn S
g2G

gðCÞ
 !

is

a l-null set and g1ðCÞ \ g2ðCÞ is a l-null set for g1 6¼ g2.

Theorem 9 Let E � R be a measurable set. Then E is a wavelet set if and only if
one of the following equivalent conditions holds.

1. E is both a 2–dilation generator of a partition (modulo null sets) of R and a 2p–
translation generator of a partition (modulo null sets) of R.

2. E is both translation congruent to ½0; 2pÞ mod 2p and dilation congruent to
½�2p;�pÞ [ ½p; 2pÞ mod 2.

3. E is a fundamental domain for the dilation group hDn : n 2 Zi and at the same
time a fundamental domain for the translation group hTk

2p : k 2 Zi. Here T2p is
translation by 2p along the real axis.)

Proof We refer to [16].

Now, we like to extend the above concepts and definitions to Rn. We will do this
in a slightly more general setting. To this end, letX be a metric space and l a r-finite
non-atomic Borel measure on X for which the measure of every open set is positive
and for which bounded sets have finite measure.

Let T and D be countable groups of homeomorphisms of X that map bounded
sets to bounded sets and which are absolutely continuously in the sense that they map
l-null sets to l-null sets. Furthermore, let G be a countable group of absolutely
continuous Borel measurable bijections of X. Denote by B :¼ BðXÞ the family of
Borel sets of X.

The following definition completely generalizes the definitions of 2p–translation
congruence and 2–dilation congruence given above.

Definition 18 Let E;F 2 B. We call E and F G–congruent and write E� GF, if there
exist measurable partitions fEg : g 2 Gg and fFg : g 2 Gg of E, respectively, F such
that Fg ¼ gðEgÞ, for all g 2 G, modulo l-null sets.

This definition immediately entails the next two results.

Proposition 2

1. G–congruence is an equivalence relation on the family of m-measurable sets.
2. If E is a fundamental domains for G, then F is a fundamental domain for G iff

F � GE.

Proof We refer again to [16].

Definition 19 We call ðD; T Þ an abstract dilation–translation pair if

1. for each bounded set E and each open set F there exist elements d 2 D and
s 2 T such that sðFÞ � dðEÞ;
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2. there exists a fixed point h 2 X for D with the property that if N is any
neighborhood of h and E any bounded set, there is an element d 2 D such that
dðEÞ � N .

The following result and its proof can be found in [17].

Theorem 10 Let X, B, l, D, and T as above. Let ðD; T Þ be an abstract dilation–
translation pair with h being the fixed point of D. Assume that E and F are bounded
measurable sets in X such that E contains a neighborhood of h, and F has non-
empty interior and is bounded away from h. Then there exists a measurable set
G � X , contained in

S
d2D

dðFÞ, which is both D–congruent to F and T –congruent to

E.

The next result is a consequence of Proposition 2 and Theorem 10 and is the key
to constructing wavelet sets.

Corollary 1 With the terminology of Theorem 10, if in addition F is a fundamental
domain for D and E is a fundamental domain for T , then there exists a set G which is
a common fundamental domain for both D and T .

In order to apply the above result to wavelet sets in Rn, we require the following
two definitions.

Definition 20 Let A 2 MnðRÞ be an ðn	 nÞ–matrix with real coefficients. An
orthonormal ðDA; TÞ–wavelet is a function w 2 L2ðRnÞ such that

detðAÞj jn2wðAnt � ‘Þ : n 2 Z; ‘ 2 Zn; i ¼ 1; . . .; n
n o

; ð24Þ

where ‘ ¼ ð‘1; ‘2; :::; ‘nÞ> (> transpose), is an orthonormal basis for L2ðRn;mÞ. (Here
m is product Lebesgue measure.)

A matrix A 2 MnðRÞ is called expansive, if all its eigenvalues are strictly greater
than 1.

If A 2 MnðRÞ is invertible (so in particular if A is expansive), then the operator
defined by

ðDAf ÞðtÞ :¼ detAj jn2f ðAtÞ
for f 2 L2ðRnÞ, t 2 Rn, is unitary.

For 1� i� n, let Ti be the unitary operator defined by translation by 1 in the ith

coordinate direction. Then, the set (24) above can be written as

Dk
AT

‘w : k; ‘ 2 Zn
� �

;

with T ‘ :¼ T ‘1
1 � � � T ‘n

n .

Definition 21 A ðDA; TÞ–wavelet set is a Lebesgue measurable subset E of Rn for
which the inverse Fourier transform of 1

mðEÞn=2 vE is an orthonormal ðDA; TÞ–wavelet.
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Two measurable subsets H and K of Rn are called A–dilation congruent, in
symbols H � dAK, if there exist measurable partitions fH‘ : ‘ 2 Zg of H and fK‘ :

‘ 2 Zg of K such that K‘ ¼ A‘H‘ modulo Lebesgue null sets. Moreover, two
measurable sets E and F of Rn are called 2p–translation congruent, written E� s2pF,
if there exist measurable partitions fE‘ : ‘ 2 Zng of E and fF‘ : ‘ 2 Zng of F such
that F‘ ¼ E‘ þ 2p‘ modulo Lebesgue null sets.

We remark that this generalizes to Rn the previous definition of 2p–translation
congruence for subsets of R. Observe that A–dilation by an expansive matrix
together with 2p–translation congruence is a special case of an abstract dilation-
translation pair as introduced in Definition 19.

Let D :¼ hAk : k 2 Zi be the dilation group generated by powers of A and let
T :¼ hT ‘

2p : ‘ 2 Zni be the group of translations generated by the translations T2p
along the coordinate directions. Let E be any bounded set and let F be any open set
that is bounded away from 0.

Let r[ 0 be such that E � Brð0Þ. Since A is expansive there is an ‘ 2 N such that
A‘F contains a ball B of radius large enough so that B contains some lattice point 2kp
together with the ball BRð2kpÞ of radius R[ 0 centered at the lattice point. Then
E þ 2kp � A‘F. That is, the 2kp–translate of E is contained in the A‘–dilate of F, as
required in (1) of Definition 19.

For (2) of Definition 19, let h ¼ 0, and let N be a neighborhood of 0, and let E be
any bounded set. As above, choose r[ 0 with E � Brð0Þ. Let ‘ 2 N be such that
A‘N contains Brð0Þ. Then A�‘ is the required dilation such that A�‘E � N .

Note that if W is a measurable subset of Rn that is 2p–translation congruent to the

n-cube E :¼ QN
i¼1

½�p; pÞ, it follows from the exponential form of bTj that

bT ‘1
1
bT ‘2
2 � � � bT ‘n

n ðmðW ÞÞ�n=2 vW : ‘ ¼ ð‘1; ‘2; . . .; ‘nÞ> 2 Zn
n o

is an orthonormal

basis for L2ðW Þ.
Furthermore, if A is an expansive matrix and B the unit ball of Rn then with

FA :¼ AðBÞ n B the collection fAkFA : k 2 Zg is a partition of Rn n f0g. Conse-
quently, L2ðFAÞ, considered as a subspace of L2ðRnÞ, is a complete wandering
subspace for DA. Hence, L2ðRnÞ is a direct sum decomposition of the subspaces
fDk

AL
2ðFAÞ : k 2 Zg. Clearly, any other measurable set F 0 � dAFA has this same

property.
The following theorem gives the existence of wavelet sets in Rn. For the proof, we

refer to [18].

Theorem 11 Let n 2 N and let A be an expansive n	 n matrix. Then there exist
ðDA; TÞ–wavelet sets.
Example 7 The following is an example of a (fractal) wavelet set in R2 taken from
[16] and shown below.

To this end, let A :¼ 2I , where I denotes the identity matrix in R2. For n 2 N,

define vectors a~; b~ 2 R2 by
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a~n :¼ 1

22n�2

p
2
p
2

0B@
1CA;

b~0 :¼ 0; b~n :¼
Xn
k¼1

ak~:

Set

G0 :¼ 0;
p
2

h i
;

Gn :¼ 1

22n
G0 þ b~n;

E1 :¼
[1
k¼1

Gk � 2G0 n G0;

C1 :¼ G0 [ E1 þ
2p

2p

 !
;

B1 :¼ 2G0 n ðG0 [ E1Þ:
Finally, let

A1 :¼ B1 [ C1;

A2 :¼ fð�x; yÞ : ðx; yÞ 2 A1g;
A3 :¼ fð�x;�yÞ : ðx; yÞ 2 A1g;
A4 :¼ fðx;�yÞ : ðx; yÞ 2 A1g;
W :¼ A1 [ A2 [ A3 [ A4:

It is not hard to verify that W is 2p-translation–congruent to C ¼ ½�p;pÞ 	 ½�p; pÞ
and a 2-dilation generator of a measurable partition for the two-dimensional plane
R2 n f0g. The wavelet set W is graphically displayed in Fig. 9 below.

For more examples and constructions of wavelet sets, we encourage the reader to
consult, for instance, [1, 7, 18, 48, 49, 54].

Finally, we put the concepts of fractal hypersurface, foldable figure, affine Weyl
group and wavelet set together and introduce a new type of wavelet set called a
dilation-reflection wavelet set. The idea is to adapt Definition 19, replacing the group

of translations T in the traditional wavelet theory by an affine Weyl group fW whose
fundamental domain is a foldable figure C, and then use the orthonormal basis of
affine fractal hypersurfaces constructed in Sect. 4.

In Definition 19, we take X :¼ Rn endowed with the Euclidean affine structure

and distance. For the abstract translation group T we take the affine Weyl group fW
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generated by a group of affine reflections arising from a locally finite collection of
affine hyperplanes of Rn.

Let C denote a fundamental domain for fW which is also a foldable figure. Recall
that C is a simplex, i.e., a convex connected polytope, which tessellates Rn by
reflections about its bounding hyperplanes. Let h be any fixed interior point of C. Let
A be any real expansive matrix in MnðRÞ acting as a linear transformation on Rn. In
the case where h is the orgin 0 in Rn we simply take DA to be the usual dilation by A
and the abstract dilation group to be D ¼ fDk

A : k 2 Zg. For a general h, define DA;h

to be the affine mapping DhðxÞ :¼ Aðx� hÞ þ h, x 2 Rn, and Dh ¼ fDk
A;h : k 2 Zg.

Proposition 3 ðDh;fWÞ is an abstract dilation-translation pair in the sense of
Definition 19.

Proof The proof is given in [38] but for the sake of completeness, we repeat it here.
By the definition of D, h is a fixed point for Dh. By a change of coordinates we

may assume without loss of generality that h ¼ 0 and consequently that D is
multiplication by A on Rn.

Let Brð0Þ be an open ball centered at 0 with radius r[ 0 containing both E and C.
Since F is open and A is expansive, there exists a k 2 N sufficiently large so that DkF
contains an open ball B3rðpÞ of radius 3r and with some center p. Since C tiles Rn

under the action of fW , there exists a word w 2 fW (i.e., a concatenation of
reflections) such that wðCÞ \ BrðpÞ has positive measure. (Note here that BrðpÞ is the
ball with the same center p but with smaller radius r.) Then wðBrð0ÞÞ \ BrðpÞ 6¼ ;.
Since reflections (and hence words in fW ) preserve diameters of sets in Rn, it follows
that wðBrð0ÞÞ is contained in B3rðpÞ. Hence w(E) is contained in DkðFÞ, as required.

This establishes part (1) of Definition 19. Part (2) follows from the fact that h ¼ 0
and D is multiplication by an expansive matrix in MnðRÞ. h

Now we extend the definition of ðDA; TÞ–wavelet set in Rn to this new setting.

Definition 22 Assume that an affine Weyl group fW acting on Rn is given with a
foldable figure C as its fundamental domain. Further assume that h 2 C is a

Fig. 9 The two-dimensional
wavelet set W from Example 7
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designated interior point and A an expansive matrix on Rn. A ðDA;h;fWÞ–wavelet set
is a Lebesgue measurable subset E of Rn satisfying the following two conditions:

1. E is congruent to C (in the sense of Definition 2.4) under the action of fW , and

2. fW generates a measurable partition of Rn under the action of the affine mapping
DðxÞ :¼ Aðx� hÞ þ h.

In the case where h ¼ 0, we abbreviate ðDA;h;fWÞ to ðDA;fWÞ.
The next result establishes the existence of ðDA;h;fWÞ–wavelet sets. The proof is a

direct application of Theorem 10 and can be found in [38].

Theorem 12 There exist ðDA;h;fWÞ–wavelet sets for every choice of fW , A, and h.

In the case of a dilation–translation wavelet set W, the two systems of unitary
operators are D :¼ fDk

A : k 2 Zg, where A 2 MnðRÞ is an expansive matrix, and
T :¼ fT ‘ : ‘ 2 Zng. An orthonormal wavelet basis of L2ðRnÞ is then obtained by

setting bwW :¼ ðmðW ÞÞ�n=2vW and taking

bDk
A
bT ‘bwW : k 2 Z; ‘ 2 Zn

n o
: ð25Þ

For the systems of unitary operators D :¼ fDk
A : k 2 Zg and fW , the affine Weyl

group associated with a foldable figure C, one obtains as an orthonormal basis for
L2ðRnÞ

Dk
,IBr : k 2 Z; r 2 fWn o

; ð26Þ

where Br ¼ b � r : b 2 Bf g is an affine fractal hypersurface basis as constructed in
the previous section and I 2 Rn	n denotes the unit matrix.

It was shown in [25, 26] that one can even construct multiresolution analyses
based on affinely generated fractal functions as constructed in Sects. 3 and 4. The
resulting sets of scaling vectors and multiwavelets are piecewise affine fractal
functions and they generate orthonormal bases for the underlying approximation,
respectively, wavelet spaces. If one uses these orthonormal multiwavelet bases in
(26) to obtain orthonormal bases for L2ðRnÞ then the analogy to the classical case as
exemplified by (25) is complete. For more details, we refer to [38].
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