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Abstract
The coronavirus disease 2019 (COVID-19) is rapidly spreading in the world and the

mortality rate is getting higher and higher. Due to the outbreak of such epidemic

disease, many countries imposed stricter measures among which is social distancing

and enforced isolation. The present study tries to establish a realistic model to

characterize the dynamics of COVID-19 and explicitly parameterize the interven-

tion effects of control measures. In so doing, it takes into account stochastic per-

turbation and investigates the effects of media coverage on the transmission

dynamics. This paper seeks to study the existence and uniqueness of the global

positive solution to the proposed model and establish conditions for extinction and

persistence in mean of the disease. Numerical simulations are presented to show the

theoretical results obtained from this study.
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1 Introduction

In their history, pandemics have taken different forms and shapes and gone viral

throughout the globe. For instance, in the 20th century, there appeared two

prominent types of pandemics following the Spanish Influenza of 1918. These are

the Asian flu of 1957 and the Hong Kong flu of 1968, while in the 21st century,

there emerged another four types, namely N1H1 in 2009, known as (bird flu),

(SARS) in 2002, which stands for Severe Acute Respiratory Syndrome, Middle East

Respiratory Syndrome (MERS) in 2012, and last but not least Ebola which attained

maximum intensity in 2013–2014. A detailed listing of information related to the

afore-mentioned types of pandemics is beyond the scope of the current study.

However, the following article website presents the comprehensive information

about this issue under question [6].

The recent form of the pandemic persisting these days and that is permeating and

jeopardizing humankind life is known as the novel COVID-19. The current existing

pandemic named COVID-19, which closely resembles a viral pneumonia malady,

marked its initial appearance in Wuhan, China, in December 2019. Since that time

and up to the the 30th May 2020, this disease has gone viral all around the world

infecting thus a considerable number of people.

There is a unanimous agreement among scientists that COVID-19 is an infectious

disease that is caused by severe acute respiratory syndrome. Research endeavors are

still exploring the features that characterize COVID-19 attack, its strength of

infecting individuals and future predictions pertaining to the long term epidemic. In

this respect, Qing and Gallagher [13] maintain that COVID-19 is a new

phenomenon in the scientific world and many of its features are still unfathomable

and are under scrutiny due to its new tensions and strains.

The term COVID-19 was coined by the World Health Organization (WHO) in

February 2020 [17]. McKay et al. [10] asserted that COVID-19 has gone viral in all

corners of the globe and that no place is left safe from its contagion. In seven

months after its appearance, almost 12 million individuals were contaminated and

more than 500 thousand people deceased so far [17]. Given that it became a major

global concern, COVID-19 was declared a pandemic on March 11, 2020 [17].

In order to prevent COVID-19 infection and slow its transmission, many

governments are acting proactively by maintaining trade restrictions and quarantine

requirements. Like never before, humanity has been suffering a great deal ever since

the emergence of COVID-19 pandemic. The current crisis has led several public

authorities worldwide to cripple all sorts of internal movements. Social contacts and

peoples’ movements are thus strictly limited.

Given that it is a new phenomenon in the scientific world, the novel coronavirus

is posing lots of challenges for worldwide researchers. Indeed, much efforts need to

be coordinated in order to understand the current COVID-19’s biological character

and its mode of attack. Again, to combat COVID-19 is to block its spread through

the implementation of the afore-mentioned preventive measures.

As far as the mathematical models of infectious disease transmission dynamics

are concerned, there are plenty of them in the literature. These models play a key
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role in measuring possible infectious disease control and mitigation strategies. the

novel COVID-19 is a contagious disease caused by a new virus which sets off the

worldwide alarm bells and requires a specific model taking into consideration its

identified features and aspects.

Numerous approaches have been made to get a thorough understanding of the

novel coronavirus (COVID-19) but for modeling biological phenomenon, it is

important to use stochastic models due to its realistic approach in order to yield

more valuable output. In this respect, Zhao and Chen [15] recommend to use the

SUQC model (Susceptible, Un-quarantined infected, Quarantined infected, Con-

firmed infected) to typify the underlying forces of COVID-19 and clearly determine

the intervention effects of control measures. Four SUQC model variables, which are

related to their features, are used to specify the flux of people within four possible

states, namely the Susceptible, Un-quarantined infected, Quarantined infected,

Confirmed infected. SUQC system can be used as an epidemic model to measure

parameters and variables pertaining to the effects of quarantine or confirmation

methods on the epidemic, and pave the way to a better control of the outbreak.

The remaining part of this paper is delineated as follows: In Section one, we

propose a stochastic epidemic model for the COVID-19 transmission dynamics to

describe the changing behavior of the epidemic diseases in a realistic sense. We

attempt to improve the recommended model in [15] by primarily including the

stochastic perturbation. Subsequently, we investigate the effects of media coverage

on the transmission dynamics. In Sect. 2, we show the existence and uniqueness of a

global positive solution of the model. Extinction and persistence in mean will be

discussed in Sects. 3 and 4 respectively. In Sect. 5, we present some numerical

simulations to clarify obtained analystical results and conclude the paper by a

discussion.

2 The model

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is generating a

worldwide emergency situation and needs a model taking into account its known

specific characteristics. In particular, it would be convenient to develop a model

which incorporates the following:

• The effect of undetected infected people and the effects of quarantine.

• The effects of control measures, which is more suitable for analysis than other

existing epidemic models.

• The high infectivity during incubation, and the intervention effects of

implemented quarantine and control measures.

There are some mathematical models in the literature that try to describe the

dynamics of the evolution of COVID-19. Zhao and Chen [15] propose SUQC model

(Susceptible, Un-quarantined infected, Quarantined infected, Confirmed infected) to

typify the underlying forces of COVID-19 and clearly determine the intervention

effects of control measures. SUQC distinguishes the infected individuals (observed
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data) to be un-quarantined, quarantined but not confirmed, and confirmed. SUQC

can be used as an epidemic model to measure parameters and variables pertaining to

the effects of quarantine or confirmation methods on the epidemic, and pave the way

to a better control of the outbreak.

The SUQC model distinguishes the confirmed infected individuals (observed

data), the total infected individuals, and the parameter confirmation rate is affected

by medical resources and the sensitivity of diagnosis methods. Furthermore, the

number of recovered and died individuals due to the disease is included in the

number of confirmed cases in the SUQC model. In addition to that, we take into

account the (natural) dead in each compartment as well as the newborns while

keeping the population constant.

The total population is divided into four classes: the susceptible S, infected and

un-quarantined individuals U, the quarantined infected individuals Q, and the

confirmed infected cases C. In the model, U goes directly to C, or goes through

Q indirectly.

The infected individuals are classified into un-quarantined, quarantined and

confirmed. And only the unquarantined can infect the susceptible individuals.

SUQC distinguishes the confirmed infected individuals (observed data), the total

infected individuals, and the parameter confirmation rate is affected by medical

resources and the sensitivity of diagnosis methods. The limitation of detection

methods and the medical resources can greatly delay the confirmation process,

insomuch the confirmation proportion C
I is less than 1 and time-varying.

In this paper, we modify the model that appears in the work of Zhao and Chen

[15] by adding the recovery class R which contains the individuals who have been

infected and then recovered, as well as those who no longer spread the disease. This

compartment class sees some augmentatin in terms of individuals recovering from

their infection and a decrease as regards individuals who surrender to death due to

loss of immunity. Let N be the size of the population i.e. N ¼ Sþ U þ Qþ C þ R ,

and we assume that N is constant, i.e., fixed over time. Another thing is that

COVID-19 mortality rate seems higher compared to other diseases and that the

number of deaths is on the rise across the globe. Hence, we assume a different

mortality rates to the model compartments, namely l1, l2, l3, l4 and l5.
At any given time, t� 0, the numbers S(t), U(t), Q(t), C(t) and R(t) denote the

fractions of the total population belonging to the classes of susceptibles, infected

and un-quarantined individuals, the quarantined infected individuals, the confirmed

infected cases, the recovered individuals (resp.). With the above variables, IðtÞ ¼
UðtÞ þ QðtÞ þ CðtÞ represents the actual cumulative number of individuals infected

at the time t. The limitation of detection methods and the medical resources can

greatly delay the confirmation process, insomuch the confirmation proportion C
I is

less than 1 and time-varying.

It should be noted that C stands for cumulative confirmed cases and not for active

ones. It could be then considered as the sum of active infective agents and removed

cases (recovered or died due to the COVID-19).

Among the most useful tools, according to several works that contribute to the

control of epidemic spreading, we cite media awareness. So, in order to investigate
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the effects of media coverage on the transmission dynamics, we introduce a general

incidence function g(S, U) induced by media awareness, by means of the following

incidence function:

gðS;UÞ ¼ a� a1f ðUÞð Þ SU
N

;

where a1 is the contact rate before media alert; the term a1f ðuÞ measures the effect

of reduction of the contact rate when infectious individuals are reported in the

media. Since the coverage report cannot prevent disease from spreading completely,

we have a� a1 [ 0. The function f(U) is a continuous bounded function that takes

into account disease saturation or psychological effects such that f ð0Þ ¼ 0, f 0 [ 0

and limU!1 f ðUÞ ¼ 1:
The deterministic system has the following form:

_S ¼ KN � gðS;UÞ � l1S;
_U ¼ gðS;UÞ � c1U � l2U � ð1� c1ÞdU � k1U;

_Q ¼ c1U � c2 þ ð1� c2Þrð ÞQ� l3Q� k2Q;
_C ¼ c2 þ ð1� c2Þrð ÞQþ ð1� c1ÞdU � l4C � k3C;

_R ¼ k1U þ k2Qþ k3C � l5R;

8
>>>>>><

>>>>>>:

ð1Þ

where a, c1, c2, m and r are positive constants such that a 2 ½0;1Þ and

c1; c2 2 ½0; 1�.
The basic reproduction number R0, which is a threshold quantity that determines

whether an epidemic occurs or the disease simply dies, is given by:

R0 ¼
aK

l1ðl2 þ c1 þ k1 þ ð1� c1ÞdÞ
:

The physical reality shows that the epidemic dynamics are inevitably disturbed by

ambient noise. In this paper, our approach is to make the proposed system more

realistic. This fact leads us to include stochastic perturbation, which is analogous to

that of Imhof and Walcher [7] in order to show how the noise affects our epidemic

model and the transmission dynamics. At this point, we assume that stochastic

perturbations are of a white noise type which are directly proportional to S(t), U(t),

Q(t),C(t) influenced on the _SðtÞ, _UðtÞ, _QðtÞ, _CðtÞ in the model (1).

Finally, since R(t) does not appear in the equations of system (1), it is quite

adequate to consider only the equations for S(t) , U(t), Q(t), and C(t). Hence, the
system that we propose in this study while introducing white noises and taking into

account the effects of media coverage on the transmission dynamics with the

transformations S
N ¼ s; UN ¼ u; QN ¼ q; and C

N ¼ c; can be written as
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ds ¼ K� gðs; uÞ � l1s½ �dt þ r1sdB1ðtÞ;
du ¼ gðs; uÞ � c1u� l2u� ð1� c1Þdu� k1u½ �dt þ r2udB2ðtÞ;
dq ¼ c1u� c2 þ ð1� c2Þrð Þq� l3q� k2q½ �dt þ r3qdB3ðtÞ;

dc ¼ c2 þ ð1� c2Þrð Þqþ ð1� c1Þdu� l4c� k3c½ �dt þ r4cdB4ðtÞ;

8
>>><

>>>:

ð2Þ

where Bi; i ¼ � � � ; 4 are independent standard Brownian motions defined on a

complete probability space ðX;F ;PÞ with a natural filtration fF tgt� 0 (i.e., it is

increasing and right continuous while F 0 contains all P-null sets) with intensities

ri; i ¼ � � � ; 4.
The parameters of the considered model have characteristics presented in table 1.

Throughout this paper, we will use the following notations. Rd denotes the d-
dimensional Euclidean space, and |x| denotes the Euclidean norm of a vector x and

Rd
þ denote the positive cone in Rd; i.e., Rd

þ ¼ fx 2 Rd : xi [ 0 ; i ¼ 1; 2. . .; dg.
We define a d-dimensional stochastic differential equation (SDE)

dXðtÞ ¼ Fðt;XðtÞÞdt þ Gðt;XðtÞÞdBðtÞ; ð3Þ

where F : Rd ! ½t0;þ1½�Rd, G : ½t0;þ1½�Rd ! Md;mðRÞ, and B(t) is an d-
dimensional Brownian motion defined on the probability space ðX;F ;PÞ with the

filtration fF tgt� 0 satisfying the usual condition. Denote Sh ¼ fx 2 Rd : jxj\0g;
the differential operator L acts on a function V 2 C1;2ðRþ � Sh;R

þÞ is of the form

LVðt; xÞ ¼Vtðt; xÞ þ Vxðt; xÞFðt; xÞ þ
1

2
trace GTðt; xÞVxxðx; tÞGðx; tÞ

� �
: ð4Þ

By the Itô’s formula, if XðtÞ 2 Sh, we have

Table 1 Model parameters description

Symbol Description

a The infection rate; the mean number of new infected caused by an un-quarantined

c1 The quarantine rate for an un-quarantined infected which represents multi-resource measures to

reduce infection caused by u. c1 is a parameter to explicitly model the effects of quarantine

and control measures

c2 The confirmation rate of q; the probability that the quarantined infected individuals are

identified to be confirmatory cases by a conventional method such as the laboratory

diagnosis, and it is affected by the incubation period duration, medical conditions, accuracy

of laboratory tests, and other artificial factors

r The subsequent confirmation rate of those infected that are not confirmed by the conventional

methods but confirmed with some additional tests. If no other special approaches used, r is

set to 0

d The confirmation rate of the un-quarantined infected who can be identified as confirmed

infections without being quarantined

K The per capita constant fecundity rate

l The natural mortality rate
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dVðt;XðtÞÞ ¼LVðt;XðtÞÞdt þ Vxðt;XðtÞÞdBðtÞ; ð5Þ

where

Vt ¼
oV

ot
; Vx ¼

oV

ox1
;
oV

ox2
; . . .;

oV

oxd

� �

Vxx ¼
oV2

oxioxj

� �

d�d

: ð6Þ

3 Existence and uniqueness of the global positive solution

In order to investigate the dynamical behavior of the disease, the first disconcerting

thing is whether the solution is global and unique. Using Lyapunov’s analysis

method, we will show that the model (2) has a positive local solution, then we will

show that this solution is global. The next theorem gives us the existence and

uniqueness of the global positive solution.

Theorem 1 For any given initial value ðsð0Þ; uð0Þ; qð0Þ; cð0ÞÞ 2 R4
þ, the model (2)

has a unique global solution ðsðtÞ; uðtÞ; qðtÞÞ; cðtÞÞ 2 R4
þ for all t� 0 almost surely.

Proof Since the coefficients of the system (2) are locally Lipschitz continuous and

for any given initial value ðsð0Þ; uð0Þ; qð0Þ; cð0ÞÞ 2 R4
þ, there is a unique local

solution (see [14]) (s(t), u(t), q(t), c(t)) for t 2 ½0; seÞ; where se is the explosion time

[14]. So, to show this solution is global, we need to show that se ¼ 1 a.s. First, we

show that s(t), u(t), q(t), c(t) do not explode to infinity in a finite time.

Let k0 [ 0 such that be sufficiently large so that sð0Þ 2 1
k0
; k0

h i
; uð0Þ 2 1

k0
; k0

h i
,

qð0Þ 2 1
k0
; k0

h i
; cð0Þ 2 1

k0
; k0

h i
. Then, for each integer k� k0, we define the

stopping time

sk ¼ inf t 2 ½0; seÞ : sðtÞ 62
1

k
; k

� �

or uðtÞ 62 1

k
; k

� �

or qðtÞ 62 1

k
; k

� �

or cðtÞ 62 1

k
; k

� �� �

;

where throughout this paper we set inf ; ¼ 1 (as usual ; denotes the empty set).

We remark that sk is increasing as k " 1. Set s1 ¼ limk!1 sk, whence, s1 � se a.s.
To complete the proof, it is required to show that s1 ¼ 1 a.s. If s1 ¼ 1 a.s is true,

then se ¼ 1 and ðsðtÞ; uðtÞ; qðtÞ; cðtÞÞ 2 R4
þ a.s for t� 0. If this statement is false,

then there exists a pair of constants T [ 0 and e 2 ð0; 1Þ such that

Pfs1 � Tg[ e: ð7Þ

Thus there is an integer k1 � k0 such that

Pfsk � Tg� e; 8k� k1:

Let xðtÞ ¼ ðsðtÞ; uðtÞ; qðtÞ; cðtÞÞ and consider the C2-function V1 : R
4
þ ! Rþ as

follows
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V1ðxðtÞÞ ¼ s� a� a log
s

a

� 	� 	
þ u� logðuÞð Þ

þ q� logðqÞð Þ þ c� logðcÞð Þ � 3;
ð8Þ

for a positive constant a. We note that V1 is a nonnegative function verified from the

fact that 8y 2 Rþ
� y� log y� 1� 0: Then by the Dynkin formula [2], we obtain

for all k� k1 that

EV1ðxðT ^ skÞÞ ¼ V1ðxð0ÞÞ þ E

Z T^sk

0

LV1ðxðtÞÞdt; ð9Þ

where LV1 is given by

LV1ðxðtÞÞ ¼ 1� a

s

� 	
K� gðs; uÞ � l1sðtÞ½ � þ a

r21
2

þ 1� 1

uðtÞ

� �

gðs; uÞ � c1uðtÞ � l2uðtÞ � k1u� ð1� c1ÞduðtÞ½ � þ r22
2

þ 1� 1

qðtÞ

� �

c1uðtÞ � k2q� c2 þ ð1� c2Þrð ÞqðtÞ � l3qðtÞ½ � þ r23
2

þ 1� 1

cðtÞ

� �

c2 þ ð1� c2Þrð ÞqðtÞ þ ð1� c1ÞduðtÞ � l4cðtÞ � k3c½ � þ r24
2
:

Hence

LV1ðxðtÞÞ ¼al1 � l2uþ Kþ l2 þ l3 þ l4 þ k1 þ k2 þ k3 þ c1 þ c2 � l1sðtÞ � k1u

� k2q� k3c�
aK
s

� l3qþ l4cþ ð1� c2Þr� ða� a1f ðuÞÞsþ ð1� c1Þd

� c1uðtÞ
qðtÞ þ aða� a1f ðuÞÞu�

ðc2 þ ð1� c2ÞrÞqðtÞ
cðtÞ � ð1� c1ÞduðtÞ

cðtÞ

þ ar21 þ r22 þ r23 þ r24
2

;

which implies that

LV1ðxðtÞÞ� al1 þ aa� l2 � k1ð ÞuðtÞ þ l2 þ l3 þ l4 þ k1 þ k2 þ k3 þ Kþ c1 þ c2

þ ð1� c1Þdþ ð1� c2Þrþ ar21 þ r22 þ r23 þ r24
2

:

Choose a ¼ l2þk1
a such that aa� l2 � k1ð Þu ¼ 0, it yields

LV1ðxðtÞÞ�K; ð10Þ

where is the following positive number
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K ¼ðl2 þ k1Þl1
a

þ l2 þ l3 þ l4 þ k1 þ k2 þ k3 þ Kþ c1 þ c2 þ ð1� c1Þd

þ ð1� c2Þrþ ðl2 þ k1Þr21
2a

þ r22 þ r23 þ r24
2

:

Substituting (10) into (9), we obtain

0� E½V1ðxðsk ^ TÞÞ� �V1ðxð0ÞÞ þ KT : ð11Þ

Similar to the method developed in the study conducted by [1, 9], we obtain

1[V1ðxð0ÞÞ þ KT ¼ 1;

which is a contradiction. So,we must have se ¼ 1 a.s. Consequently, s(t), u(t), q(t)
and c(t) are positive and the solution of (2) is global. The proof is complete. h

4 Extinction

The main problem in epidemiology is how we investigate the infectious disease

behavior so that the epidemic will be vanished in a long term. In this section, we

investigate sufficient conditions for the extinction of the disease of the system (2).

Let Re
0 be the quantity

Re
0 ¼ R0 �

r22
2ðl2 þ c1 þ k1 þ ð1� c1ÞdÞ

:

Before presenting the main result of this section, we need some lemmas that we

state as follows:

Lemma 1 (See [12]) Let A(t) and U(t) be two continuous adapted increasing
process on t� 0 with Að0Þ ¼ Uð0Þ ¼ 0 a.s. Let M(t) be a real-valued continuous
local martingale with Mð0Þ ¼ 0 a.s. Let X0 be a nonnegative F 0-measurable
random variable such that EX0\1. Define XðtÞ ¼ X0 þ AðtÞ � UðtÞ þMðtÞ for all
t� 0. If X(t) is nonnegative, then limt!1 AðtÞ\1 implies limt!1 UðtÞ\1,

limt!1 XðtÞ\1 and �1\ limt!1 MðtÞ\1 hold with probability one.

Lemma 2 (See [8]). Let ðMðtÞÞt� 0 be a local martingale vanishing at time 0 and

define:

qMðtÞ ¼
Z t

0

dhM;MiðsÞ
ð1þ sÞ2

; t� 0

where hM;MiðsÞ is Meyers angle bracket process. Then,

limt!1
MðtÞ
t ¼ 0 a.s. provided that limt!1 qMðtÞ\1 a.s

Lemma 3 Let f 2 C ½0;1Þ � X; ð0;1Þð Þ. If there exist positive constants k0; k
such that for all t� 0
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log f ðtÞ� kt � k0

Z t

0

f ðsÞdsþ FðtÞ;

where F 2 C ½0;1Þ � X;Rð Þ verifies limt!1
FðtÞ
t ¼ 0a:s: Then,

lim sup
t!1

1

t

Z t

0

f ðsÞds� k
k0

a:s:

Theorem 2 Assume that (s(t), u(t), q(t), c(t)) be a solution of the stochastic

differential equation (2) along with initial value ðsð0Þ; uð0Þ; qð0Þ; cð0ÞÞ 2 R4
þ, then

lim sup
t!1

ðsðtÞ þ uðtÞ þ qðtÞ þ cðtÞÞ\1 a.s: ð12Þ

Moreover,

lim
t!1

1

t

Z t

0

sðzÞdB1ðzÞ ¼ 0; lim
t!1

1

t

Z t

0

uðzÞdB2ðzÞ ¼ 0 a.s:

lim
t!1

1

t

Z t

0

qðzÞdB3ðzÞ ¼ 0; lim
t!1

1

t

Z t

0

cðzÞdB4ðzÞ ¼ 0 a.s:

ð13Þ

Proof Using equations of (2), we can write

dðsþ uþ qþ cÞ ¼ K� l1sðtÞ � ðl2 þ k1ÞuðtÞ � ðl3 þ k2ÞqðtÞ � ðl4 þ k3ÞcðtÞ½ �dt
þ r1sdB1ðtÞ þ r2udB2ðtÞ þ r3qdB3ðtÞ þ r4cdB4ðtÞ:

Let l ¼ minfl1; l2 þ k1; l3 þ k2; l4 þ k3g; then,

dðsþ uþ qþ cÞ� K� lðsðtÞ þ uðtÞ þ qðtÞ þ cðtÞÞ½ �dt
þ r1sdB1ðtÞ þ r2udB2ðtÞ þ r3qdB3ðtÞ þ r4cdB4ðtÞ:

Now, let X(t) be the solution of the following differentiel equation:

dXðtÞ ¼ K� lXðtÞ½ �dt þ r1sdB1ðtÞ þ r2udB2ðtÞ þ r3qdB3ðtÞ þ r4cdB4ðtÞ;
Xð0Þ ¼ sð0Þ � uð0Þ þ qð0Þ � cð0Þ:

�

On the one hand, by using stochastic comparaison theorem, we have:

sðtÞ þ uðtÞ þ qðtÞ þ cðtÞ�XðtÞ:

On the other hand, X(t) verifies XðtÞ ¼ K
l � Xð0Þ � K

l

� 	
e�lt þMðtÞ; where
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MðtÞ ¼r1

Z t

0

sðzÞe�
l
NzdB1ðzÞ þ r2

Z t

0

uðzÞe�
l
NzdB2ðzÞ þ r3

Z t

0

qðzÞdB3ðzÞ

þ r4

Z t

0

cðzÞe�
l
NzdB4ðzÞ:

Clearly, M(t) is a continuous local martingale with Mð0Þ ¼ 0a:s: Furthermore, we

have

XðtÞ ¼ Xð0Þ þ AðtÞ � UðtÞ þMðtÞ;

where

AðtÞ ¼ K
l

1� e�
l
Nt

� 	
and UðtÞ ¼ Xð0Þð1� e�ltÞ for all t� 0:

It is quite easy to check that A(t) and U(t) are continuous adapted increasing pro-

gress on t� 0 with Að0Þ ¼ Uð0Þ ¼ 0: By using lemma 1, we have

limt!1 XðtÞ\1a:s:
Hence, we deduce that lim supt!1ðsðtÞ þ uðtÞ þ qðtÞ þ cðtÞÞ\1 a:s: This

complete the proof of (12).

For convenience, we denote

M1ðtÞ ¼r1

Z t

0

sðzÞdB1ðzÞ; M2ðtÞ ¼ r2

Z t

0

uðzÞdB2ðzÞ;

M3ðtÞ ¼r3

Z t

0

QðzÞdB3ðzÞ; M4ðtÞ ¼ r4

Z t

0

cðzÞdB4ðzÞ:

We have hM1;M1iðtÞ ¼ r21
R t

0
s2ðzÞds and by (12) because of the quadratic variation,

we can write:

lim
t!1

q1ðtÞ ¼ lim
t!1

Z t

0

r21s
2ðzÞ

ð1þ zÞ2
dz� r21 sup

t� 0

fs2ðtÞg\1:

Then, by lemma 2, we have limt!1
1
t

R t

0
r1sðzÞdB1ðzÞ ¼ 0.

Similary, we also get

lim
t!1

1

t

Z t

0

uðzÞdB2ðzÞ ¼ 0; lim
t!1

1

t

Z t

0

qðzÞdB3ðzÞ ¼ 0;

lim
t!1

1

t

Z t

0

cðzÞdB4ðzÞ ¼ 0 a:s:

This draws an end to the proof. h

The following theorem gives a a sufficient condition for the extinction of the

disease expressed in terms of Re
0:

Theorem 3 For any given initial value, ðsð0Þ; uð0Þ; qð0Þ; cð0ÞÞ 2 R4
þ, if Re

0\1 .

Then, the solution of the stochastic differential equation (2) obeys
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lim
t!þ1

1

t

Z t

0

sðtÞdt ¼ K
l1

a:s:

lim
t!1

uðtÞ ¼ lim
t!1

qðtÞ ¼ lim
t!1

cðtÞ ¼ 0 a:s:

Proof Applying the Itô’s formula, we obtain:

dðlogðuðtÞÞ ¼ gðs; uÞ
u

� c1 � l2 � ð1� c1Þd� k1 �
r22
2

� �

dt þ r2dB2ðtÞ:

Hence,

1

t
logðuðtÞÞ� a

t

Z t

0

sðxÞdx� c1 þ l2 þ ð1� c1Þdþ k1 þ
r22
2

� �

þ r2
t
B2ðtÞ þ

logðuð0ÞÞ
t

:

ð14Þ

Denoting /ðtÞ ¼ sðtÞ þ uðtÞ; we have

d/ðtÞ ¼
�
K� l1sðtÞ � ðc1 þ l2 þ ð1� c1Þdþ k1ÞuðtÞ

þ r22
2

	
dt þ r1sB1ðtÞ þ r2udB2ðtÞ:

Intergrating the above relation along [0, t], we obtain

/ðtÞ � /ð0Þ ¼ Kt � l1

Z t

0

sðxÞdx� ðc1 þ l2 þ ð1� c1Þdþ k1Þ
Z t

0

uðxÞdxþ N1ðtÞ;

ð15Þ

where N1ðtÞ ¼ r1
R t
0
sðxÞdB1ðxÞ þ r2

R t
0
uðxÞdB2ðxÞ: Combining (14) and (15), we

deduce that

logðuðtÞÞ� aK
l1

� c1 þ l2 þ ð1� c1Þdþ k1 þ
r22
2

� �
 �

t

� aðc1 þ l2 þ ð1� c1Þdþ k1Þ
l1t

Z t

0

uðxÞdxþ N2ðtÞ;
ð16Þ

where N2ðtÞ ¼ a
l1
N1ðtÞ � að/ðtÞ�/ð0ÞÞ

l1
þ r2B2ðtÞ þ logðuð0ÞÞ. Hence,

logðuðtÞÞ� l2 þ c1 þ k1 þ ð1� c1Þdð ÞðRe
0 � 1Þt

� aðc1 þ l2 þ ð1� c1Þdþ k1Þ
l1t

Z t

0

uðxÞdxþ N2ðtÞ:

By the strong law of large numbers for martingales, we obtain limt!1
N2ðtÞ
t ¼ 0; and

the lemma 3 gives that
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lim sup
t!1

logðuðtÞÞ
t

� l2 þ c1 þ k1 þ ð1� c1Þdð ÞðRe
0 � 1Þ a:s: ð17Þ

This means that whenever Re
0\1, then

lim
t!1

uðtÞ ¼ 0 a:s: ð18Þ

Next, we define X1 ¼ fx 2 X : limt!1 uðtÞ ¼ 0g: Consequently, (18) implies that

PðX1Þ ¼ 1. Moreover, we have for any �[ 0 and x 2 X1, there exists a constant

T1ðx; �Þ[ 0 such that

uðx; tÞ� �; for all t� T1: ð19Þ

Combining (19) and the third equation of the system (2), we obtain for all

ðx; tÞ 2 X1 � ðT1;1Þ

dqðtÞ� c1�� k2q� ðl3 þ c2 þ ð1� c2ÞrÞqð Þdt þ r3qdB3ðtÞ:

Integrating the above inequality from 0 to t, dividing by t, and using the theorem 2,

we obtain for all ðx; tÞ 2 X1 � ðT1;1Þ

qðtÞ� c1�
l3 þ k2 þ c2 þ ð1� c2Þr

þ qðT1Þe�ðl3þk2þc2þð1�c2ÞrÞðt�T1Þ;

Taking the limit superior of both sides, we deduce

lim sup
t!þ1

qðtÞ� c1�
l3 þ k2 þ c2 þ ð1� c2Þr

; a:s

Since � is arbitrary and qðtÞ� 0; we arrive to

lim
t!þ1

qðtÞ ¼ 0 a:s: ð20Þ

Let X2 ¼ fx 2 X : limt!1 uðtÞ ¼ limt!1 qðtÞ ¼ 0g, by (19) and (20) we have

PðX2Þ ¼ 1. Then, for all x 2 X2 and �[ 0, there exists a constant T2ðx; �Þ[ 0

such that

uðx; tÞ� � ; qðx; tÞ� �; 8t� T2: ð21Þ

Substuting (21) into the fourth equation of the system (2), we have for all

ðx; tÞ 2 X2 � ðT2;1Þ

dcðtÞ� ðc2 þ ð1� c2Þrþ ð1� c1ÞdÞ�� ðl4 þ k3Þcð Þdt þ r4cðtÞdB4ðtÞ: ð22Þ

Using theorem 2, we obtain limt!1
1
t

R t
0
cðtÞdB4ðtÞ ¼ 0:

The Integration of the relation (22) from 0 to t and dividing it by t leads to
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cðtÞ� c2 þ ð1� c2Þrþ ð1� c1Þd
l4 þ k3

�þ cðT2Þe�ðc2þð1�c2Þrþð1�c1ÞdÞðt�T2Þ

þ r4
l4 þ k3

1

t

Z t

0

cðtÞdB4ðtÞ; for all ðx; tÞ 2 X2 � ðT1;1Þ:
ð23Þ

Taking the limit superior of both sides we obtain

lim sup
t!þ1

cðtÞ� c2 þ ð1� c2Þrþ ð1� c1Þd
l4 þ k3

�; a:s:

By the positivity of the solution and the arbitrariness of � we obtain

lim
t!þ1

cðtÞ ¼ 0 a:s:

Consequently, limt!þ1 iðtÞ ¼ 0 a:s:; where iðtÞ ¼ uðtÞ þ qðtÞ þ cðtÞ represents

the number of individuals infected at the time t, which significate that when the

value of Re
0 is below 1 will lead to the extinction of the disease.

Likewise, similar to the proof found in the study ran by [3], we have obtained the

following result

lim
t!þ1

1

t

Z t

0

sðtÞdt ¼ K
l1

a:s:;

which proves the desired assertion and hence the theorem 3. h

5 Persistence in mean

In epidemics modelling, persistence is an important property to investigate as it

means that the disease continues to exist under some appropriate conditions. We

define the number

Rp
0 ¼ R0 �

2a1Kþ l1r
2
2

2l1ðc1 þ k1 þ l2 þ ð1� c1ÞdÞ
:

In this section, we study the persistence in mean for the stochastic model (2). Firstly,

we give the following definition and lemma.

Definition 1 System (2) is said to be persistent in the mean if

lim inf
t!1

1

t

Z t

0

sðxÞdx[ 0; lim inf
t!1

1

t

Z t

0

iðxÞdx[ 0:

Lemma 4 Let f 2 C½½0;1Þ� X; ð0;1Þ�. If there exist positive constants k0; k such
that
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log f ðtÞ� kt � k0

Z t

0

f ðsÞdsþ FðtÞ a:s:

for all t� 0 where F 2 C½½0;1Þ � X;R� verifies limt!1
FðtÞ
t ¼ 0 a:s:.Then,

lim inf
t!1

1

t

Z t

0

f ðsÞds� k
k0

a:s:

We omit the proof of lemma 4 as it is similar to the one given in [5].

Theorem 4 For any given initial values ðsð0Þ; uð0Þ; qð0Þ; cð0ÞÞ 2 R4
þ, if R

p
0 [ 1 .

Then, the solution of the stochastic differential equation (2) obeys

(1) lim inft!1
1
t

R t
0
sðxÞdx� K

l1þa a:s:;

(2) lim inft!1
1
t

R t
0
uðxÞdx� a1ðRp

0 � 1Þ a:s:;

(3) lim inft!1
1
t

R t

0
qðxÞdx� a2ðRp

0 � 1Þ a:s:;

(4) lim inft!1
1
t

R t

0
cðxÞdx� a3ðRp

0 � 1Þ a:s:

For some positive constants, ai; i ¼ 1; � � � ; 3:. That is the solution to the stochastic

model (2) starting from any point in R4
þ are persistent in mean.

Proof

(1) From the first equation of the system, (2) and the fact that gðs; uÞ� as; , we
obtain

ds� K� ðl1 þ aÞs½ �dt þ r1sdB1ðtÞ:

Integrating the above inequality and dividing both sides by t, , we obtain

1

t

Z t

0

sðxÞdx� K
l1 þ a

þ r1
l1 þ a

1

t

Z t

0

sðxÞdB1ðxÞ �
sðtÞ � sð0Þ
ðl1 þ aÞt

From theorem 2, we have limt!1
1
t

R t
0
sðtÞdB1ðtÞ ¼ 0a:s: Making use of (13)

and the large numbers theorem for martingales, we obtain

lim inf
t!1

1

t

Z t

0

sðxÞdx� K
l1 þ a

a:s:

(2) Using the Itô’s formula, we obtain

d log uðtÞ ¼ gðs; uÞ
u

� c1 � l2 � k1 � ð1� c1Þd�
r22
2

� �

dt þ r2dB2ðtÞ:

Hence,
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d log u� ða� a1ÞsðtÞ � ðc1 þ k1 þ l2 þ ð1� c1ÞdÞ �
r22
2


 �

dt þ r2dB2ðtÞ:

ð24Þ

Thus

log uðtÞ� ða� a1Þ
Z t

0

sðxÞdx� ðc1 þ k1 þ l2 þ ð1� c1ÞdÞ þ
r22
2


 �

t

þ logðuð0ÞÞ þ r2dB2ðtÞ:
ð25Þ

Combining the above inequality with (15), we obtain

log uðtÞ� ða� a1Þ
K
l1

� c1 þ k1 þ l2 þ ð1� c1ÞdÞ þ
r22
2

� �
 �

t

� ða� a1Þðc1 þ l2 þ ð1� c1Þdþ k1Þ
l1

Z t

0

uðxÞdxþ GðtÞ;
ð26Þ

where

GðtÞ ¼ a� a1
l1

N1ðtÞ �
ða� a1Þð/ðtÞ � /ð0ÞÞ

l1
þ r2dB2ðtÞ þ logðuð0ÞÞ:

By virtue of the law of large numbers, we conclude that limt!1
GðtÞ
t ¼ 0:

Hence, using lemma 4, one can obtain the following result:

lim inf
t!1

1

t

Z t

0

uðxÞdx� l1
a� a1

R0 �
2a1Kþ l1r

2
2

2l1ðc1 þ k1 þ l2 þ ð1� c1ÞdÞ
� 1


 �

;

ð27Þ

almost surely, which means that

lim inf
t!1

1

t

Z t

0

uðxÞdx� a1ðRp
0 � 1Þa:s:; ð28Þ

where a1 ¼
l1

a� a1
[ 0:

(3) Integrating the third equation of system (2) and dividing by t we have

1

t

Z t

0

qðxÞdx ¼ c1
l3 þ k2 þ c2 þ ð1� c2Þr

� �
1

t

Z t

0

uðxÞdx

� qðtÞ � qð0Þ
l3 þ k2 þ c2 þ ð1� c2Þrð Þt

þ r3
l3 þ k2 þ c2 þ ð1� c2Þr

1

t

Z t

0

qðxÞdB3ðxÞ:

Using (28) and extending t to 1, then applying theorem 2 and the law of

large numbers, we obtain
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lim inf
t!1

1

t

Z t

0

qðxÞdx� c1
l3 þ k2 þ c2 þ ð1� c2Þr

a1ðRp
0 � 1Þ a:s:

Hence

lim inf
t!1

1

t

Z t

0

qðxÞdx� a2ðRp
0 � 1Þ a:s:; ð29Þ

where a2 ¼
c1a1

l3 þ k2 þ c2 þ ð1� c2Þr
[ 0:

(4) Integrating the fourth equation of system (2) and multiplying by 1
t ; we obtain

1

t

Z t

0

cðxÞdx ¼ c2 þ ð1� c2Þr
l4 þ k3

� �
1

t

Z t

0

qðxÞdx� cðtÞ � cð0Þ
ðl4 þ k3Þt

þ ð1� c1Þd
l4 þ k3

� �
1

t

Z t

0

uðxÞdxþ r4
l4 þ k3

1

t

Z t

0

cðsÞdB4ðsÞ:

Then,

1

t

Z t

0

cðxÞdx� minfc2 þ ð1� c2Þr; ð1� c1Þdg
l4 þ k3

1

t

Z t

0

ðuðxÞ þ qðxÞÞdx

� cðtÞ � cð0Þ
ðl4 þ k3Þt

þ r4
l4 þ k3

1

t

Z t

0

cðxÞdB4ðxÞ:

Making use of the assertions (2) and (3), we come up with the following

result:

1

t

Z t

0

cðxÞdx� a3ðRp
0 � 1Þ � cðtÞ � cð0Þ

ðl4 þ k3Þt
þ r4
l4 þ k3

1

t

Z t

0

cðxÞdB4ðxÞ;

where a3 ¼ minfðc2þð1�c2ÞrÞa2;ðð1�c1ÞdÞa1g
l4þk3

[ 0: Taking the inferior limit, and

applying the theorem 2 and the law of large numbers, we obtain

lim inf
t!1

1

t

Z t

0

cðxÞdx� a3ðRp
0 � 1Þa:s:

It follows that Rp
0 � 1[ 0 is a sufficient condition so that the disease would

prevail and be persistent in mean. This completes the proof.

h

Table 2 Parameters values used in numerical simulations

K l1 l2 l3 l4 c1 d r c2 ki; i ¼ 1; � � � ; 3

0.09 0.09 0.091 0.093 0.093 0.1 0 0 0.1 0.13
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6 Numerical simulations and discussion

To illustrate our analytical results, we show numerical simulations via Euler–

Maruyama scheme [18] to approximate the solution of the SDE model (2). The

parameter values presented in Table 2 remain inchanged throughout this section.

To produce an extinction scenario, we choose a ¼ 0:35; a1 ¼ 0:06 with f ðuÞ ¼
u

1þu : This corresponds to values Re
0 ¼ 0:95 and R0 ¼ 1:09: By theorem 3, the

disease in the stochastic system (2) will go to zero with probability one even if it

will be prevailing in the deterministic system (1) provided that R0 is greater than 1.

Figure 1 illustrates these results.

On the other hand, if we let a ¼ 1:13; a1 ¼ 0:04; we obtain by computation

Rp
0 ¼ 3:5: By virtue of theorem 4, the disease will be persistent as long as Rp

0 [ 1.

A simulation of this case is showed in Fig. 2.

Now, let f ðuÞ ¼ u
10�3þu and using different values of a1 to generate trajectories of

unquarantined infectives and new infected cases respectively. These paths are

plotted in Fig. 3. Thus, high values of a1 representing media efforts significantly

Fig. 1 Trajectories of the solutions to systems (1) and (2) respectively, with parameters given in Table 2,
r1 ¼ r3 ¼ r4 ¼ 0:2 and r2 ¼ 0:3
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Fig. 2 Paths solutions to the deterministic system (1) and stochastic system (2) showing the persistence of

the disease under the condition Rp
0 [ 1

Fig. 3 The influence of media coverage on the unquarantined population size (left) and the new infected
cases (right) for a ¼ 1:3 according to different situations characterizing media alert. Blue line a1 ¼ 0; red
line a1 ¼ 0:7; green line a1 ¼ 1:06 (color figure online)
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reduce the number of unquaranted infected individuals and minimize the number of

new infectives. This means that intense media efforts play a key role in reducing the

infective population size.

To sum up, due to its massive global outbreak, the 2019-nCoV virus has proven

to be one of the wordlwide deadliest diseases over history. It has posed a potential

threat to human health attracting worldwide attention after the (SARS) 2003 and the

(MERS) 2012 and up to this very moment, there is no entirely proper treatment of it.

Instead, preventive measures should be strictly implemented such as social

distancing and other infection control measures to prevent the spread of

SARSCoV-2 via human-to-human transmission. The compartmental model (Sus-

ceptible, Un-quarantined infected, Quarantined infected, Confirmed infected)

proposed in the present study of the spread of COVID-19 has taken into account

the particularities of this infectious disease where some of them are still not well-

known. As well, we have used parameters and variables pertaining to the effects of

quarantine and confirmation methods. In an attempt to render our model more

realistic, we have included stochastic perturbations. Given that media awareness is

one of the most useful tools that contributes to the control of epidemic spreading

[11], we have tried to investigate the effects of media coverage on the transmission

dynamics. By having recourse to the stochastic theory and the compartmental

mathematical model keeping in view the characteristics of the novel COVID-19, our

study seeks to study the spread and the transmission dynamics. We initially adopted

the idea of stochastic Lyapunov functions theory to prove the existence and

positivity of the solution. Then, the extinction has been further discussed to pave the

way for the conditions that put an end to the disease. Sufficient condition to the

persistence of the disease is also obtained. More significantly, numerical simulations

are presented to show these results as well as the impact of media coverage on the

size of the infected class. Overall, it is worth noting that there is a great influence of

noise intensity on the COVID-19 transmission. Equally important, media efforts

could be helpful to reduce the number of infectives and offer more time to

authorities to react to the global pandemic.
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model with impact of media coverage. Stochastics 91 (7): 998–1019.

5. Ji, C., and D. Jiang. 2014. Threshold behaviour of a stochastic SIR model. Applied Mathematical
Modelling 38 (21–22): 5067–5079.

6. Globalsecurity [Internet], Retrived 30 May 2020, from: https://www.globalsecurity.org/security/ops/

hsc-scen-3_pandemic-history.htm

7. Imhof, L., and S. Walcher. 2005. Exclusion and persistence in deterministic and stochastic chemostat

models. Journal of Differential Equations 217 (1): 26–53.

8. Liptser, R.S. 1980. A strong law of large numbers for local martingales. Stochastics 3 (1–4):

217–228.

9. El Fatini, M., R. Pettersson, I. Sekkak, and R. Taki. 2020. A stochastic analysis for a triple delayed

SIQR epidemic model with vaccination and elimination strategies. Journal of Applied Mathematics
and Computing 64 (1): 781–805.

10. McKay, B., J. Calfas, and T. Ansari. 2020. Coronavirus Declared Pandemic by World Health
Organization. English. The Wall Street Journal.

11. Tchuenche, J.M., and C.T. Bauch. 2012. ISRN biomathematics: dynamics of an infectious disease

where media coverage influences transmission. 2012

12. Mao, X. 2007. Stochastic differential equations and applications. Elsevier.
13. Qing, E., and T. Gallagher. 2020. SARS coronavirus redux. Trends in Immunology.

14. Mao, X., G. Marion, and E. Renshaw. 2002. Environmental Brownian noise suppresses explosions in

population dynamics. Stochastic Processes and their Applications 97 (1): 95–110.

15. Zhao, S., and H. Chen. 2020. Modeling the epidemic dynamics and control of COVID-19 outbreak in

China. Quantitative Biology 1–9.

16. Zhao, D. 2016. Study on the threshold of a stochastic SIR epidemic model and its extensions.

Communications in Nonlinear Science and Numerical Simulation 38: 172–177.

17. WHO (World Health Organization). Coronavirus disease 2019 (COVID-19) outbreak [Internet]. 2020

. Retrived 30 May 2020, from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019

18. Higham, D.J. 2001. An algorithmic introduction to numerical simulation of stochastic differential

equations. SIAM Review 43: 525–46.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

Understanding death risks of Covid-19 under media awareness... 99

https://www.globalsecurity.org/security/ops/hsc-scen-3_pandemic-history.htm
https://www.globalsecurity.org/security/ops/hsc-scen-3_pandemic-history.htm
https://www.who.int/emergencies/diseases/novel-coronavirus-2019

	Understanding death risks of Covid-19 under media awareness strategy: a stochastic approach
	Abstract
	Introduction
	The model
	Existence and uniqueness of the global positive solution
	Extinction
	Persistence in mean
	Numerical simulations and discussion
	Funding
	References




