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Abstract Long-term throughput, as a key performance indicator of a stochastic flow
line, is affected by numerous parameters describing the features of the flow line, such
as processing time and buffer size. Fast and accurate evaluation methods for a given
set of values for those parameters are a prerequisite to systematically optimize such
a flow line. In this paper, we consider the case of a flow line with random processing
times, limited buffer capacities and so-called milkruns that supply the machines with
material parts that are required to perform, e.g., assembly operations on workpieces.
In such a system, shortages in the supply of material parts can limit the performance
of the flow line. Up to now, there are no accurate analytical approaches to quantify
the complex interactions in such milkrun-supplied flow lines for realistic problem
sizes. We propose to use recurrent neural networks to determine the long-term
throughput of such flow lines enabling us to evaluate production systems of flexible
size. Our results show that the throughput can be determined accurately and quickly
via recurrent neural networks. Furthermore, we use this new evaluation procedure
as a building block to optimize this type of flow line using gradient and local search
techniques.
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1 Introduction

Flow lines are often used in the mass production of physical goods. In these lines,
the processing times at different subsequent production stages, as seen by the work-
pieces, can vary randomly due to the random nature of the respective production
processes, machine failures or other operational faults. To prevent such a distur-
bance in the flow of workpieces from propagating through the flow line and causing
immediate blockage of upstream machines or starvation of downstream machines,
subsequent production stages are often partially decoupled via buffers of limited
capacity. This decoupling leads to the question of where to allocate buffer spaces to
maximize the throughput of the line. Due to the complex interactions of blocking
and starving in flow lines, the answer to this question depends on the entirety of
the parameters describing the line. In practice, time-consuming discrete-event sim-
ulation models are often used to quantify the throughput of a particular flow line
configuration in the design phase before often irreversible investment decisions in
machines and buffers are made.

In this paper, we consider flow lines as they are often used for assembly operations
of physical goods. It is common during different assembly operations for some kind
of material parts to be assembled onto the main workpieces as they move downstream
along the flow line. A certain number of these material parts is typically stored next
to the respective machine or work station. This local material storage is periodically
refilled by a train of cars circulating between central storage for those types of
material parts, the so-called “supermarket”, and the different work stations of the
flow line. In such a system, an additional design question arises of how long the
replenishment cycle should be and up to which level should the respective local
storage of material parts be refilled upon the arrival of this train of cars. Due to
the similarity with (former) daily deliveries of fresh milk to individual customer
households, this system of material delivery is frequently called a “milkrun” in
practice.

To create efficient production systems, it is essential to optimize both the flow
line (in terms of buffer allocation) and the material component supply (in terms
of the common milkrun replenishment cycle and the machine specific order-up-to
levels) since material shortages impede the flow of workpieces through the flow line.
However, quantifying the effect of such management decisions on the throughput of
the line is methodologically challenging, in particular if results are required that are
both accurate and can be obtained quickly within a systematic optimization process.
This is particularly true for flow lines with a milkrun supply of material. Since
analytical solution approaches are typically not suitable for modeling the complexity
of these systems for realistic problem sizes, we propose Recurrent Neural Networks
(RNNs) for the evaluation of stochastic flow lines with limited material supply. The
main idea is to train such an RNN in advance of the optimization process based
on a large data set of simulated flow line configurations. Thereby, the RNN allows
for the performance evaluation of a flexible size of stages in the production system.
During the optimization process, the RNN is then used as a both fast and accurate
evaluation component for the numerous candidate configurations that are considered.
The conceptual advantage of this approach is that it uses the flexibility of a discrete-
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event simulation of a manufacturing system and then delivers the computational
speed of an analytic, closed-form solution for the throughput of the flow line as
a function of its features, which are in turn subject to management decisions. This
approach enables fast and systematic system optimization, which is typically not
possible if a discrete-event simulation is used as the evaluation method within the
optimization process. Consequently, a trained RNN can act as a building block for
an efficient decision support system. However, setting up, training, and then using an
RNN in the context of flow line analysis and optimization is not straight-forward.
The main contributions of this paper are therefore as follows:

� We show how to set up an Artificial Neural Networks (ANN) to predict the
throughput of a stochastic milkrun-supplied flow line. The special features of the
selected RNN enable us to analyze, at least in principle, lines of arbitrary length.

� We demonstrate how the RNNs can be trained efficiently by creating training data
in a systematic manner.

� We present numerical results that indicate the high precision of the throughput
forecasts stemming from the RNN.

� We introduce two optimization approaches that combine our RNN with local and
gradient search strategies and provide managerial insights into the optimal design
of milkrun-supplied flow lines.

The remainder of this paper is organized as follows. In Sect. 2 we present a formal
description of the production system and the resulting optimization problem and
discuss the relevant literature. Sect. 3 provides a brief introduction to the architecture,
operation, and training of the RNN, which quantifies the throughput function of the
milkrun-supplied flow line. Numerical results related to the accuracy of the RNN
are presented in Sect. 4. We introduce two optimization approaches and numerical
results on their performance and the structure of the optimized flow line designs
in Sect. 5. In Sect. 6, we draw our conclusions and present directions for further
research.

2 Modeling and Optimization of Milkrun-Supplied Flow Lines

2.1 System Characteristics

We consider a basic model of a flow line with random processing times, finite buffer
capacities between the machines, and limited material supply, as depicted in Fig. 1,
for the case of a line with four machines M1 to M4 and three buffers B1 to B3. The
key performance indicator of interest is the long-term throughput of the line in terms
of work pieces per unit of time. To be able to analyze the system in isolation, we
assume that in front of the first machine, there is an unlimited supply of raw work
pieces. Likewise, we assume that downstream of the last machine, there is unlimited
storage for completely processed work pieces. The first machine is, hence, never
starved, and the last is never blocked.

For simplicity with respect to the exposition but without loss of generality per-
taining to the methodology proposed in this paper, we assume that the processing
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Fig. 1 Exemplary flow line with milkrun material part supply

times at the different machines i follow exponential distributions with rates �i . If
a work piece has been processed by a machine and finds the downstream buffer
full, it remains on that machine, which is then temporarily blocked, i.e., we assume
blocking after service. Each processing task on a work piece consumes a unit of ma-
terial parts that are stored next to the machines, e.g., because this unit is assembled
onto the work piece. The local storage for material parts next to machine i is refilled
to the machine-specific order-up-to level Si , in constant and identical replenishment
intervals of length r via a milkrun system. If a material part is not available in the
line-side storage area, the work piece has to wait in the upstream buffer for the
next material replenishment before its operation can start. The transportation times
of the transport vehicle between machines are short relative to the length r of the
replenishment cycle and are hence assumed to be zero.

Buffers of size Ci between machines i and i C 1 dampen the propagation of
blocking and starving in the line due to the random processing times. In addition to
blocking and starving effects, material part shortages can impede the flow of work
pieces through the flow line.

Due to the mutual interdependence between the flow line and material supply,
integrated approaches are required to evaluate and optimize the performance of
stochastic flow lines with limited material supply. In this way, a tailored material
supply for the respective flow line configuration can be ensured.

The complex interactions in such a system can be demonstrated for the example
in Fig. 1 with the parameter values in Table 1. The slowest machine in this flow
line, machine M3, can, on average, process 0.85 work pieces per time unit (TU),
which constitutes the upper limit on the throughput of the line. However, the material

Table 1 Parameter values for the unbalanced four-machine line example

Parameter Values

Processing rates �1; :::; �4 [TU�1] 1.1, 0.9, 0.85, 0.95

Buffer sizes C1; :::; C3 all 2

Length r of the replenishment interval [TU] 60

Order-up-to levels S1; :::; S4 45, 54, 48, 51
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a b

Fig. 2 Effect of an isolated parameter variation relative to a modified base case with buffer sizes Ci D 20
and order-up-to levels Si D 90 for all machines i (discrete-event simulation results). a Variation in buffer
size C2, b Variation in order-up-to level S3

supply at the first machine cannot exceed 45 material parts every 60TU. This leads to
a tighter upper bound on the throughput of 0.75 work pieces per time unit. However,
the actual throughput of this line with small buffer sizes Ci D 2 and order-up-to
levels Si in Table 1, as determined via a simulation, is 0.6426/TU due to frequent
blocking and starving because of the relatively small buffers and the relatively high
variability of the exponentially distributed processing times.

For the processing rates �i and the length r of the replenishment interval in
Table 1, both the buffer sizes Ci and the order-up-to levels Si are insufficient to
reach a throughput close to the processing rate �3 D 0.85 TU�1 of the slowest
machine M3. In Fig. 2a and b, we therefore consider a new base case of a less
“lean” line with buffers of size 20 and order-up-to levels of 90. The graphs show
the effect of an isolated variation in the size C2 of the second buffer (all other buffer
sizes still being 20) or the order-up-to level S3 at the third machine (all other order-
up-to levels still being 90) on the throughput of the line. The graphs indicate that
both C2 and S3 can be too small and hence limit the throughput of the line. They
can also be too large and not have a further positive impact on the throughput of
the line. The smoothness of the graphs of simulated throughput in Fig. 2a and b
underlines the high degree of accuracy of our steady-state simulation results with
a relative half-width of the 95% confidence interval not exceeding 0.5%.

2.2 Estimating the throughput via an artificial neural network

The throughput functions in Fig. 2a and b hold only for the given values of processing
rates �i , buffer sizes Ci , length r of the replenishment cycle and order-up-to levels
Si . A series of time-consuming and highly precise discrete-event simulation runs
were necessary to determine the shape of those figures, which renders a direct,
simulation-based optimization impractical. This paper therefore proposes to use
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a neural network, i.e., a machine learning approach, to “learn” the (true but unknown)
throughput function

TH D TH.�1; :::; �I ; C1; :::; CI�1; S1; :::; SI ; r/ (1)

for a high-dimensional parameter space via an RNN such that systematic flow line
optimization becomes feasible using a previously trained neural network (instead of
a simulation) as the evaluation component. Simulation results can be used to generate
the data required to train the neural network. A suitably trained RNN hence results
in a throughput estimate

cTH D cTH.�1; :::; �I ; C1; :::; CI�1; S1; :::; SI ; r/: (2)

For a given parameter constellation j of a flow line with parameters
�1;j ; :::; �I;j ; C1;j ; :::; CI�1;j , S1;j ; :::; SI;j ; rj , our discrete-event simulation model
provides an arbitrary exact value THj for the throughput of the line. For the
same parameter constellation, our RNN provides a throughput estimate cTHj , thus
leading to an estimation error

ej D THj � cTHj : (3)

The training of the RNN then aims to minimize those errors via a loss function, in
our case, the mean squared error

MSE D
PJ

j D1e
2
j

J
D

PJ
j D1.THj � cTHj /2

J
(4)

by tuning the coefficients of the regression computation inside of the artificial neural
network. The advantage of using a well-trained artificial neural network to obtain an
estimate, in our case cTH, is that the computations to determine cTHj via the neural
network are several orders of magnitude faster than a discrete-event simulation. This
speed advantage makes systematic optimization, which would simply take too long
if a discrete-event simulation were used to evaluate each tentatively considered flow
line configuration, possible. However, to properly train such an artificial network,
a sufficiently large number of observations is necessary prior to the optimization
process, in which the network is then used as an evaluation component.

2.3 Optimization Problem

In the process of designing a flow line of this type, the optimization problem can
be described as finding a combination of buffer sizes Ci , order-up-to levels Si and
length r of the milkrun replenishment cycle for given processing rates �i such that an
exogenously given target throughput THmin is achieved in the long run. This problem
requires capital investment in buffers and local material part storage. Furthermore,
we assume a cost (over the lifetime T of the system) that is proportional to the
frequency with which the milkrun vehicles resupply the machines on the line.
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Given the unit investment of buffers kB
i for work pieces, unit investment for ma-

terial storage kM
i per unit of the auxiliary material, and unit cost kR per delivery, we

can state the problem to determine buffer capacities C D .C1; C2; :::; CI�1/, order-
up-to levels S D .S1; S2; :::; SI / and the frequency 1

r
of the common replenishment

cycle of length r that minimize the required investment as follows:

Minimize f

�

C ; S;
1

r

�

D
I�1
X

iD1

kB
i � Ci C

I
X

iD1

kM
i � Si C kR � T

r
(5)

s.t.

TH.�1; :::; �i ; C1; :::; CI�1; S1; :::; SI ; r/ � THmin (6)

Ci � 0; i D 1; :::; I � 1 (7)
Si � 1; i D 1; :::; I (8)
r > 0 (9)

The decision variables of this problem are the buffer sizes Ci , the order-up-to
levels Si , and the length r of the replenishment interval. In the objective function
(5), we aim to minimize the one-time investment in buffer space and material part
storage plus the total (nondiscounted) cost of the replenishment operations over the
lifetime T of the flow line.

Both the objective function and the main constraint (6) are nonlinear in
the decision variables. Closed-form expressions of the throughput function (1)
are not known in general. To facilitate a systematic flow line optimization,
we propose to use deep learning methods to “learn” this throughput function
TH.�1; :::; �i ; C1; :::; CI�1; S1; :::; SI ; r/ and then use gradient and local search
methods to optimize the problem (5)–(9) in an integrated approach.

2.4 Literature Review

The modeling and optimization of stochastic flow lines with limited material supply
via deep learning methods is related to three different literature streams. However,
the connections between those streams are only partially developed.

Evaluation and optimization approaches for flow lines with random processing
times and finite buffer capacities are discussed in a large number of publications.
Surveys on the performance analysis of flow lines are provided by Dallery and
Gershwin (1992); Papadopoulos and Heavey (1996); Li and Meerkov (2009) and in
monographs by Buzacott and Shantikumar (1993); Gershwin (1994); Altiok (1997)
and Papadopoulos et al. (2009). Markovian models, which are used for the exact
analysis of small systems as e.g. two-machine lines, are presented by Dallery and
Gershwin (1992); Li et al. (2006) and Papadopoulos et al. (2019).

Aggregation approaches and decomposition techniques are applied for an approx-
imate analysis of long and complex flow lines. The initial decomposition approaches
by Gershwin (1987); Dallery et al. (1988) and Buzacott and Shantikumar (1993) and
the aggregation approach by Li et al. (2009) were extended for a variety of system
configurations. However, there are no closed-form solutions for stochastic milkrun-
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supplied flow lines that can be used for the analysis of longer systems with decom-
position.

The optimization of stochastic flow lines often addresses the buffer spaces be-
tween the production stages. A classification of the literature on buffer optimization
approaches can be found in Demir et al. (2014) and Weiss et al. (2019). Examples
of solution approaches are presented, e.g., by Gershwin and Schor (2000); Spinel-
lis et al. (2000); Shi (2012) and Weiss and Stolletz (2015). To optimize milkrun-
supplied flow lines, we aim to achieve simultaneous optimization of the number of
buffers and the material supply configuration described by the material order-up-to
levels and the milkrun replenishment cycle.

A large number of publications refer to the supply of material parts focussing
on storage of parts, transport of parts and the part feeding policy. Though, only
a restricted number of publications refers to integrated models for stochastic flow
lines with limited material supply. Mindlina and Tempelmeier (2021) present ap-
proximative (mixed-integer) linear programming approaches for the evaluation and
optimization of stochastic milkrun-supplied flow lines. Since these approaches face
limitations in terms of problem size, we propose an evaluation approach based on a
Recurrent Neural Network (RNN). Further publications with integrated approaches
for stochastic milkrun-supplied flow lines imply other problem formulations. Yan
et al. (2010) propose an approach to allocate a limited number of material transport
vehicles to line-side buffers with the aim of preventing material shortages. Chang
et al. (2013) develop a performance evaluation approach based on a max-plus lin-
ear system for flow lines with limited material supply and random machine fail-
ures. Ciemnoczolowski and Bozer (2013) present a closed-form model to approxi-
mate the material starving probability of work stations in a milkrun-supplied flow
line. Further, Weiss et al. (2017) present a sample-based optimization approach to
solve the buffer allocation problem of a stochastic flow line with limited material
supply only at the first station.

The third literature stream refers to neural networks. We focus on publications
that consider the application of neural networks to the evaluation and optimization
of stochastic flow lines. In contrast to these publications, we apply a RNN for the
high-dimensional parameter space of the underlying throughput function to enable
optimization of the entire production system. To the best of our knowledge, there are
no specific applications of RNNs to stochastic flow lines in the literature. A large
number of publications incorporating RNNs can be found in papers on time series
and demand prediction. However, we do not include these papers in our review
to keep the focus on production systems. The foundational literature on RNNs is
presented in Sect. 3. Altiparmak et al. (2002) apply an ANN together with sim-
ulated annealing to optimize the buffer sizes in a closed asynchronous assembly
system. Tsadiras et al. (2013) develop a decision support system based on an ANN
for the evaluation and a myopic algorithm for the optimization of the buffer alloca-
tion of reliable stochastic production lines. Jang et al. (2003) propose an ANN for the
identification of variation patterns and the reduction of variability in an automotive
assembly process. Li et al. (2016) apply a combination of grey model and ANN to
predict the throughput of a multi-product production line with parallel machines and
rework loops. Tan and Khayyati (2021) propose a machine learning framework for
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the implementation of data-driven control policies. A survey of recent deep learning
algorithms, especially those with applications to smart manufacturing, is provided
in Wang et al. (2018) and Arinez et al. (2020).

Consequently, the contribution of our article is the connection of the three litera-
ture streams in terms of applying an RNN to evaluate a complex stochastic system
that cannot be modeled analytically since it implies mutual interdependence be-
tween the flow line and the milkrun material supply. Further, we use the approach
for a holistic optimization of the system parameters with gradient and local search
techniques. This paper is an extension with new numerical results of the working
paper Südbeck et al. (2022) and represents some of the results of the German-
language dissertation Südbeck (2023).

3 Performance Evaluation Using RNN

3.1 Configuration of the RNN for Predicting the Throughput

The goal of a neural network is to learn an underlying function from given data.1

Therefore, the network needs a data set containing features as inputs and a label
for each data point, which will be returned as the output. The algorithm learns to
predict the labels of the data points. In our case, a data point describes a complete
flow line configuration, and the label is the corresponding throughput of this line,
as determined via the discrete-event simulation.

In general, ANNs consist of so-called neurons that receive, process, and transmit
information. In a simple feedforward neural network, the neurons are arranged in
layers and are connected by directed and weighted links to all neurons of the subse-
quent layer. Due to the fixed structure of ANNs it is only possible to apply them to
flow lines with a fixed length. In recurrent artificial neural networks (RNNs) (Rumel-
hart et al. 1986), there are additional feedback loops to neurons of the same layer,
so that a recurrence structure from a layer to itself is established. Such networks
can be used to process sets of sequential data of variable size. In our approach, we
have a sequence of production stages with different parameters per stage. Hence, it
is possible to process flow lines with different lengths. The training data set consists
of one matrix per flow line with the following structure:

X D

2

6

6

6

4

X1

X2
:::

XI

3

7

7

7

5

D

2

6

6

6

4

r �1 S1 C1

r �2 S2 C2
:::

:::
:::

:::

r �I SI CI

3

7

7

7

5

(10)

This matrix comprises one vector per machine. The input vector for each machine
consists of the milkrun cycle length r , the processing rate �i , the order-up-to level
Si and the buffer size Ci . Note that the entry CI in equation (10) does not represent
a physical buffer size as there is no buffer behind station I . That entry is a completely

1 For more information about this section refer to Südbeck (2023, Chapt. 4, pp. 65).
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Fig. 3 An RNN (left) and its
unfolded architecture (right) (cf.
Géron 2019, p. 507)

artificial artefact used only to conserve the formal structure of that equation. The
performance of the RNN improves if a large value, instead of no value, is selected
for CI . We chose CI D 100 as in our numerical studies we never considered a larger
buffer. The input of r for each machine is redundant for a milkrun supply, but we
need this value to again obtain a unified structure of the inputs for all machines.

In our study, we use Gated Recurrent Units (GRUs) (Cho et al. 2014). A deep
RNN consists of several layers with GRU cells. Fig. 3 shows such a four-layer RNN
for predicting the throughput on the left side. The information is passed through
subsequent layers (from bottom to top), and the neurons also receive information
from themselves from the previous step. On the right side of Fig. 3, the RNN is
unfolded. RNNs can unroll depending on the length of the given input vector of the
explicit data point. Hence, they do not need fixed input lengths but can operate on
vectors of different sizes. There is no restriction on the input length during training
or when using the trained RNN for prediction, as long as it has the same structure for
each element. In the input layer, the RNN can process the 4� 1 parameter vector of
a single machine and unrolls along with the length of the flow line, i.e., the number
of rows in the input matrix. In Fig. 3, the information of one column is forwarded
to the corresponding cells in the subsequent column. Additionally, external new
information about the subsequent production stage is given to the network in the
first layer of each column. The last layer provides the output of the throughput
prediction.

To train a neural network on a given task, the weights between the neurons
are adjusted according to the gradients of the loss function (4) to achieve a high
prediction accuracy and, hence, to “learn”. An efficient way to compute the gradients
is backpropagation (Rumelhart et al. 1986).

Based on a random search, we configure the RNN with 2 layers each with 100
neurons. Within the learning process, we use a batch size of 500 and a learning rate
of 0.001. Furthermore, we apply the Mean Squared Error (MSE) as a loss function
and the Adam optimizer (Kingma and Ba 2015). During training, we use 90% of
the data to adjust the network and 10% to validate the performance. For all other
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configurations, we use the default settings of Keras (Chollet et al. 2015; Abadi et al.
2015).

3.2 Generating Training Data with Orthogonal Latin Hypercube Sampling
(OLHS)

The training of machine learning algorithms requires a large amount of data to learn
the function relating the labels to the data point values, in our case, the throughput
function. The training data set should cover the whole space of possible flow line
specifications. Without an adequate training data set, the algorithm cannot learn
the relationship. Hence, data generation is an important aspect. The data should be
equally distributed within the parameter space. In previous studies, we observed that
simple random sampling is insufficient for generating training data for the systems
studied in this work. To cover the entire space to a sufficient degree would require an
enormous amount of data, which is not practicable. Thus, we use Orthogonal Latin
Hypercube Sampling (OLHS) to generate training data that systematically cover the
entire space.

OLHS aims to achieve a roughly equal distribution of data points across the
entire parameter space. Due to orthogonal arrays, the number of required data points
increases as the number of dimensions within the parameter space increases. Each
further stage of the flow line leads to three additional parameters �i ; Si ; and Ci

and, hence, three additional dimensions of the hypercube. As a result, the number of
required data points to achieve an overall balanced data set (i.e., simulated flow line
configurations with corresponding throughput labels) increases exponentially with
the length of the flow line.

For this study, we created two separate data sets with OLHS and later merge
them. The first consists of flow lines with four machines, and the second consists of
flow lines with six machines. A flow line consisting of four machines has a total of
3 � 4 D 12 parameters. In our data generation process, all parameters are uniformly
distributed within the given ranges. Therefore, we divide each dimension into two
subsets and create hypercubes with all combinations of subsets. This process results
in 23�4 D 4,096 hypercubes. For the training process, we need a large amount of
data. Hence, we decided to create at least 1 million data points, each representing
one randomly created flow line with its corresponding throughput, as determined
via simulation. In total, the number of training data points is the smallest multiple of
the number of hypercubes that is larger than or equal to one million, which results
in a data set with 1,003,520 data points. Hence, there are 1,003,520

4,096 D 245 samples in
each hypercube.

We repeat this process for the second data set with flow lines consisting of six
machines. These lines have a total of 3 � 6 D 18 parameters. Again, we divide each
dimension into two subsets which results in 262,144 hypercubes. Due to the number
of parameter dimensions and hypercubes, we duplicated the required number of data
points to two million flow lines. Hence, this data set consists of 2,097,152 samples,
with 8 data points located in each hypercube. Afterward, we merge the two data sets
to obtain one training data set that consists of 3,100,672 flow lines. Due to the large
number of hypercubes, including longer flow lines in the training data set was not
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Table 2 Parameter ranges for flow line configurations

Parameter LB UB

Processing rate �i 0.8 1.2

Buffer size Ci 0 80

Milkrun cycle length r 30 120

Order-up-to level Si 15 180

Material ratio Si
r

0.5 1.5

practicable. Nevertheless, with a data set consisting of two lengths of flow lines of
four or six machines, we can achieve a promising accuracy with a trained recurrent
neural network, even for longer lines, as our numerical results will demonstrate.

We create a separate validation data set with the same procedure which has a size
of approx. 10% of the training data set.

Table 2 shows the parameter ranges of the training data set with the lower bound
(LB) and the upper bound (UB). The order-up-to level Si is calculated according
to the material ratio and is dependent on the milkrun cycle length r . In this way,
we ensure that the machines receive a moderate supply of material. The label for
each data point, i.e., the throughput of the flow line, is computed with a discrete-
event simulation model coded in the C programming language. Since there is no
analytical model for the evaluation of the considered systems, we need a simulation
model for generating training data.

Fig. 4 shows the distribution of the simulated throughput, i.e., the labels corre-
sponding to the different data points (flow line configurations), within the training
data set. Due to the random selection and combination of parameters of the flow
lines within the training data set, the throughput is limited by at least one param-
eter in most of the cases. Therefore, 50% of the flow lines have a throughput of
0.55–0.72 products per time unit, with a mean of 0.64 products per time unit. Since
the underlying training data are essential for the performance of the trained RNN,
we assume that the prediction will perform well in areas with a high number of data
points and poor for lower or higher throughputs. Specifically, accurate prediction of

Fig. 4 Distribution of the
throughput within the training
data set
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throughputs below the minimum of 0.46 and above the maximum of 1.13 is probably
not possible.

4 Numerical Study on the Accuracy of an RNN

After training the RNN for 50 epochs with about 3 million data points consisting
of flow lines with 4 and 6 machines, we obtain an MSE on the training data set
of 4.85 � 10�6 and on the validation data set of 4.20 � 10�6.2 The training required
approximately 29.76 minutes on the GPU partition of the cluster system of the
Leibniz University of Hannover, Germany (Intel Xeon Gold 6230 CPU with 20
cores, 2.1GHz and 27,5MB Cache and NVIDIA Tesla V100 GPU with 2 GB
memory).

Fig. 5 illustrates the training and validation loss. Since the two error measures
do not differ significantly from each other, especially in the later epochs, the model
does not overfit the training data. Further training of the model might reduce both
losses, but the last epochs suggest that the improvement is only marginal while the
computation costs are high. Additionally, a validation loss of 4.20 � 10�6 suggests
good performance on new data points.

To analyze the performance, we apply the trained RNN to new data points that are
not included in the training data set and compare the prediction with the simulated
throughput. In Fig. 6, we apply the trained RNN to four and six-machine flow lines
with processing rate �i D 1TU�1, buffer size Ci D 20 and length of the replen-
ishment interval r D 60TU and compare it with the simulation. Fig. 6a shows the
variation in order up-to level Si for four-machine lines, while Fig. 6b illustrates the
same analysis for six-machine lines. In both cases there is no observable difference
between the curves of the throughput predicted with the RNN and the simulated
throughput. The RNN can predict the throughput of new four and six-machine lines
with parameter configurations that lie within the training data set very accurately.
Hence, the RNN can interpolate, and the prediction accuracy is high.

The advantage of using RNNs is their ability to accept inputs of different lengths.
Thus, we are not limited to flow lines with four and six machines. We also apply the
trained network to longer and shorter flow lines to gain insights into the extrapolation
capabilities of the RNN. Table 3 shows the mean time in seconds for the prediction
of one out of 1000 flow lines randomly generated flow lines with varying lengths
and parameters within the ranges of Table 2, as well as the achieved MSE and Mean
Absolute Percentage Error (MAPE) compared to the simulation of these lines. For
the unbalanced lines, all parameters are drawn independently and randomly. In the
case of balanced lines, we draw only one value for all processing rates, all buffer sizes
and all order-up-to levels, respectively. For all different lengths of flow lines, an MSE
below 0.09 can be achieved. For unbalanced flow lines with 4 to 6 machines, the MSE
is comparable with the final validation loss of the training process after 50 epochs,
and the MAPE is around 1%. (Note, that the training objective was to minimize the
MSE: the MAPE was not considered during the training process.) For longer lines

2 The following results correspond to the numerical study in Südbeck (2023, Chapt. 4.3, pp. 74).
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Fig. 5 Training and validation loss

a b

Fig. 6 Throughput of 4- and 6-machine lines with processing rate �i D 1TU�1, buffer size Ci D 20
and length of the replenishment interval r D 60TU with variation in order up-to level Si predicted via
RNN and simulation. a 4-machine line, b 6-machine line

both error measures increase slightly. The main advantage of using neural networks
for the prediction of the throughput is the reduction in computation time compared
to the simulation of such systems. In all cases, the throughput prediction of one flow
line takes less than 0.002 seconds and does not grow substantially as the length of
the flow lines increases, while the simulation time of longer flow lines increases
substantially. The MSE and MAPE values in Table 3 lead to the conclusion that
the prediction accuracy can be very high, even for flow lines with more than 4
or 6 machines for which the RNN was initially trained. The prediction accuracy
decreases for short lines with only two or three machines (cases that had not been
included in the training data). For balanced lines, we observe smaller error measures
for lines with 2 to 10 machines but higher errors for longer lines.
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Table 3 Prediction time and MSE and MAPE of the RNN for randomly generated flow lines with differ-
ent lengths (1000 instances each)

Simulation RNN Unbalanced flow lines Balanced flow lines

jIj Time [s] Time [s] MSE MAPE MSE MAPE

2 0.3012 0.0001 0.0110 10.3850% 0.0024 4.8126%

3 0.4232 0.0001 0.0011 2.8260% 0.0003 0.9985%

4 0.6347 0.0002 1.61 � 10�4 1.0105% 6.02 � 10�5 0.5943%

5 0.7714 0.0002 1.25 � 10�4 0.9207% 1.07 � 10�4 0.7793%

6 0.8829 0.0003 1.34 � 10�4 0.9251% 9.61 � 10�5 0.7569%

8 1.1158 0.0004 0.0002 1.0736% 0.0001 0.8562%

10 1.3756 0.0004 0.0002 1.2150% 0.0002 1.1388%

15 2.1097 0.0007 0.0002 1.3247% 0.0003 1.3947%

20 2.7902 0.0009 0.0003 1.5153% 0.0004 1.7215%

25 3.3674 0.0012 0.0002 1.5896% 0.0005 1.9007%

30 4.8685 0.0015 0.0002 1.6955% 0.0006 2.1079%

If we apply the network to concrete examples of flow lines of different lengths,
we obtain the results of Fig. 7. The default configuration of these lines is r D 60,
�i D 1 and Ci D 20 and for all machines i . As the number of machines within
the flow line increases, the prediction accuracy decreases slightly. The evaluation of
flow lines with 10 machines in Fig. 7a is very accurate except for large order up-
to levels. With increasing flow line length the accuracy decreases for small order
up-to levels. The RNN systematically overestimates the throughput for high order
up-to levels and underestimated the throughput for small order up-to levels. For
moderate order up-to levels, we obtain an accurate approximation of the simulated
throughput for all considered flow line lengths. In all four figures, the two curves
for the simulation and the RNN converge at a throughput of approximately 0.70
products per time unit, which is near the mean throughput in the training data set.
This observation supports the assumption that prediction accuracy is high in ranges
with many training data points. In these ranges, extrapolation to longer flow lines is
possible. Outside of these ranges, the ability to extrapolate decreases as the number
of machines increases. Additionally, the RNN is trained with unbalanced flow lines,
where the throughput is determined mainly by the bottleneck of the flow line. In
contrast, the flow line in Fig. 7d is balanced. For balanced systems, the prediction
of the throughput is more complex because all machines and buffers have the same
influence, while in unbalanced systems the throughput is determined mainly by one
parameter of the bottleneck machine.

Fig. 8a shows the percentage error of the prediction with the RNN of 1000 ran-
domly generated, unbalanced flow lines with 4 machines as a function of the simu-
lated throughput of the line. The MAPE for these lines is around 1%. We observe
higher deviations from the simulated throughput for flow lines with a comparably
small or large throughput. The RNN provides more accurate results for flow lines
with a throughput between 0.5 and 0.8. In this range, we have most of the training
data. Hence, we could decrease the errors with including more training data. Fig. 8b
shows the same analysis for 1000 randomly generated, unbalanced flow lines with
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a b

c d

Fig. 7 Throughput of flow lines with different lengths with variation in all order-up-to levels predicted
via RNN and simulation. a 10-machine line, b 15-machine line, c 20-machine line, d 30-machine line

a b

Fig. 8 Percentage error in the throughput prediction of 1000 randomly generated, unbalanced flow lines
with 4 and 30 machines. a 4-machine lines, b 30 machine lines

30 machines. We observe a significant increase in the percentage error and in the
scattering compared to those for 4 machine lines. The observed effect for flow lines
with low throughput increases with increasing line length.
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5 Simultaneous and Successive Optimization of Buffer Allocation and
Material Supply

5.1 Optimization Approaches

To solve the optimization problem as described in Sect. 2.3, we propose two different
approaches that both utilize the RNN to evaluate a given flow line configuration:3

� Gradient Search (GS)
� Simulated Annealing (SA)

Both methods are frequently and efficiently used for solving the buffer allocation
problem (see e.g. Helber (2000, 2001) and Spinellis et al. (2000)). It is possible to
use a GS approach because the RNN is an approximation of a high-dimensional
continuous function, and we can hence easily determine numerical approximations
of the gradients of the throughput function and use this information for the optimiza-
tion process. Unlike a discrete-event simulation, the RNN can evaluate even non-
integer values for the buffer sizes and order up-to levels, which facilitates the nu-
merical approximation of those gradients. Additionally, we use both approaches for
a simultaneous as well as a successive optimization. In the successive optimization,
we firstly optimize the buffer allocation and secondly the material supply.

In the next part, we describe the procedures for the simultaneous optimization
approaches. Both approaches can be easily adapted to the successive approach with
fixing the material supply in the first iteration and the buffer sizes in a second
iteration of the optimization procedure.

The idea of the Gradient Search algorithm (see Figure 9) is to start with a solution
which is feasible in terms of the required throughput as it has large buffer sizes C ,
high order-up-to levels S and a high milkrun frequency 1

r
. We then iterate between

two phases of gradient-based moves in which we simultaneously modify buffer
sizes, order-up-to levels and milkrun frequencies.

In the Phase-I move, we have a current solution with a throughput estimate
(determined via the RNN) which exceeds the required throughput THmin. During
the Phase I, we use as the move direction the gradient

rf

�

C ; S;
1

r

�

D �

kB
1 ; kB

2 ; :::; kB
I�1; kM

1 ; kM
2 ; :::; kM

I ; kT � T
�

(11)

of the objective function (5) multiplied by (-1). Moving against the direction of
this gradient rf .C ; S; 1

r
/, we reduce the investment sum until we just meet the

desired minimum throughput THmin of the system. This can easily be organized as
a bisection search. After the Phase-I move, we have found a solution which is less
costly than our initial solution and just meets the throughput requirement.

In the subsequent Phase-2 moves, we try to re-allocate the investment sum for the
Phase-I solution in such a way that we get a system configuration which requires
the same investment, but yields a higher throughput. To this end, we aim at redis-

3 Further explanations of the optimization approaches can be found in Südbeck (2023, Chapt. 6, pp. 143).

K



Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung

tributing the investment in buffers, order-up-to levels and the delivery frequency.
In other words, we want to make sure that the current investment budget is held
constant while the throughput of the system should increase again. To achieve this,
we first determine a numerical approximation of the gradient rTH.C ; S; 1

r
/ of

the throughput function. However, if we now took this gradient as a move direction,
we would not only increase the throughput, but also the required investment. In
order to make sure that the net effect of the change of the system configuration on
the required budget is zero, we have to project this gradient rTH.C ; S; 1

r
/ of

the throughput function on the constraint that the net change of the objective func-
tion (5) is zero. This can be done using Rosen’s gradient projection method (Rosen
(1960); Rosen (1961)). To obtain the projected gradient which locally increases the
throughput while keeping the required investment constant, we apply formula (12),
where N D .kB

1 ; :::; kB
I�1; kM

1 ; :::; kM
I ; kR � T /T is a vector of the cost coefficients

and rTH.C ; S; 1
r
/ the numerical approximation of the gradient of the throughput

function stemming from the RNN.

s D �
h

I � N
�

N T N
��1

i

� rTH

�

C ; S;
1

r

�

(12)

With the information of the projected gradients s and starting solution y D
.C ; S; 1

r
/, i.e, a system configuration, we can determine solution y2. All solu-

tions between solution y and y2 in the direction of s have the same cost but differ
with respect to the throughput. We can apply the golden section search (Kiefer
1953) to try to increase the throughput while spending the same budget.

Within GS, we therefore perform an iterative combination of a bisection search
(to reduce the investment budget while retaining feasibility) and a golden section
search (to increase the throughput while retaining the investment budget). In all
steps, we simultaneously update all variables Ci , Si and 1

r
. The procedure is sum-

marized in Algorithm 9. We know that the throughput is a concave function in buffer
sizes C , order-up-to levels S and the (milkrun) delivery frequency 1

r
. If buffer

sizes and order-up-to levels could in reality be real-valued and if the RNN repre-
sented a perfectly accurate representation of the throughput function, this procedure
would always find the globally optimal solution to any required degree of accuracy.
However, our RNN is only giving us an approximation cTH of the throughput. This
approximation is not entirely accurate and in particular, not perfectly concave. We
stop the Golden Section Search in the Phase-II moves if we cannot find an improving
solution. The resulting solution usually contains non-integer buffer sizes and order-
up-to levels. By rounding up all those fractional values, we can achieve feasibility.
For instances in which we want to have rather small buffer sizes, this can be a quite
crude approach, but for those with larger buffer sizes, it should work well. This will
be confirmed in our numerical results.

As a second approach, we use SA to simultaneously optimize the buffer alloca-
tion and material supply. We apply the following simple neighborhood operators to
generate a new solution nearby a given solution:
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Fig. 9 Gradient Search

1. Remove/add one buffer at a random machine.
2. Remove/add one material unit at a random machine.
3. Remove/add one material unit at a random machine and add/remove one buffer

space at the buffer in front of this (another random) machine.
4. Remove a random amount of buffer units from a random buffer.
5. Remove/add a random amount of buffer units from a random buffer and add/

remove the amount to/from another randomly selected buffer.
6. Add/subtract a random number to/from the milkrun cycle length and add/subtract

the same number multiplied with the corresponding processing rate �i (rounded)
to/from the material levels of all machines i .

7. Subtract a random number from the milkrun cycle length.

In each iteration, we select with equal probabilities one operator randomly and
evaluate the new solution with the RNN. Within SA, we accept worse solutions
with a given probability and depending on the solution quality to escape local
optima. Analogous to the cooling process of metal, this probability reduces in each
iteration. We use a logarithmic cooling schedule and the Metropolis acceptance
criterion (Metropolis et al. 1953). We terminate the SA when a given time limit is
reached.

5.2 Effect of parameter variation on optimization outcomes

We now use the two optimization algorithms in the simultaneous and successive
approach to optimize the configuration of a balanced flow line with I D 6 machines
and 5 buffers.4 The machines i 2 f1; :::; I g share a common processing rate of�i D 1
and order-up-to level cost coefficient of kM

i D 100monetary units (MU) and buffer
cost coefficient of kB

i D 500MU. We set the cost per delivery kR D 10.98MU and
the system lifetime T D 100,000. We compute all optimization results on an Intel
Cascade Lake Xeon Gold 6230N CPUwith 20 cores, a 2.3GHz processor and 30MB

4 The following results correspond to the numerical study in Südbeck (2023, Chapt. 7.1, pp 177).
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Table 4 Costs of best solution found for initial configuration

Time
Limit

GSsim[MU] SAsim[MU] GSsucc[MU] SAsucc[MU]

1s 65,721.15 68,507.42 64,363.23 64,129.15

10s 65,721.15 68,507.42 64,363.23 64,129.15

100s 65,721.15 68,353.42 64,363.23 64,127.56

of cache of the cluster system of the Leibniz University Hannover, Germany. The SA
algorithm was implemented in Python, compatible with the RNN implementation in
Keras, the Python deep learning API. While the GS approach was implemented in
C++. In the starting solution, we set all buffers to 40, all order up-to levels as well
as the milkrun cycle length to 90. For the initial solution, the RNN approximates
a throughput of 0.9406 and the simulation obtains a throughput of 0.9420 with costs
of 16222.22MU. The minimum throughput required is 80% of the slowest machine.
In this case THmin D 0.8. Hence, the starting solution of the optimization approach
is feasible. We execute the SA with three different time limits of 1, 10, and 100
seconds. Table 4 shows the total costs of the best-found configurations. Please note,
that we cannot set a time limit within GS since the search procedure ends when the
algorithm converges. For this configuration, the algorithm took about 1.5032 seconds
in the simultaneous approach and 0.1396 seconds in the successive approach to find
the best solution it can find.

Table 4 shows that all procedures can find very good solutions within a short
time. GSsim finds the best solution with the simultaneous optimization approach, and
SAsucc finds the overall best solution. This configuration includes for the five buffers
a buffer allocation pattern of .6; 7; 8; 5; 6/ and order-up-to levels of 40–42 units at all
machines with a milkrun cycle length of 46.95TU. The corresponding throughput
predicted with the RNN is 0.8000. To check the feasibility of this solution, we
simulate the configuration and get a throughput of 0.8046. Thus, the solution is very
close to the boundary throughput but is still feasible. We can observe an inverted
bowl shape in the buffer sizes with one outlier behind machine 4, while the material
is supplied to all machines uniformly. Since the material ratio Si

r
differs between

Table 5 Comparison of performance for both approaches with increasing required throughput THmin for
a time limit of 10 seconds

GSsim SAsim GSsukz SAsukz

THmin

[TU�1]

ZGS
�Zbest

Zbest [%] ZSA
�Zbest

Zbest [%] ZGS
�Zbest

Zbest [%] ZSA
�Zbest

Zbest [%]

0.50 52.8739 1.6347? 5.1560 0?

0.55 45.2761 0? 5.1336 0.2780?

0.60 35.2469? 0 3.7886 0.0616?

0.65 34.1639 1.9918 4.0287 0

0.70 29.9677 3.2056 2.3337 0

0.75 4.6734 3.2546 4.9547 0

0.80 2.4825 6.8273 0.3650 0

0.85 1.2532 5.5380 0.6390 0

0.90 0 4.5954 5.8035 4.2585?
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Table 6 Analysis for increasing order up-to level cost kM
i

for a time limit of 10 seconds

GSsim SAsim GSsukz SAsukz Summary of best solution

kM
i

[GE]

ZGS
�Zbest

Zbest

[%]

ZSA
�Zbest

Zbest

[%]

ZGS
�Zbest

Zbest

[%]

ZSA
�Zbest

Zbest

[%]
r

PI
iD1Si

I

PI�1
iD1Ci

I�1

10 4.7769 3.8080 1.3678 0 137.79 119.17 6.4

100 2.4825 6.8273 0.3650 0 47.77 41.83 6.4

200 0.7790 5.3041 1.3719 0 32.03 28.67 6.4

300 3.7658 11.1363 1.6297 0 27.13 24.67 6.4

400 1.1558 5.7747 2.3543 0 24.08 21.83 6.4

500 4.7385 23.6798 1.1653 0 20.85 19.33 6.4

600 3.6688 7.6545 0.7083 0 19.15 18 6.4

700 4.9081 21.3800 1.3046 0 18.28 17.33 6.4

800 4.4501 8.2942 0.0675 0 17.90 17.33 6.4

900 2.1475 4.3479 0 0.2329 16.26 15.83 6.6

1000 1.0220 1.7667 0.9676 0 16.44 16.17 6.4

0.8519 and 0,8945 for all machines i , there are no material shortages. Based on this
solution, we now analyze the system behavior when varying individual parameters.

First, we analyze the effect of the required minimum throughput THmin on the
performance of the approaches. Table 5 shows the relative deviations from the best
solution found for all four approaches for increasing minimum throughput THmin.
The star (?) indicates that the 95% confidence interval of the simulation lies be-
low the minimum throughput THmin. In theses cases, the inaccuracy of the RNN
leads to the fact that the minimum throughput is just no longer fulfilled. However,
the deviations are very small, and therefore do not have to be significant, and may
also be attributed to the simulation. This arises for very low and very high required
minimum throughput THmin. For moderate cases, the simulated solutions meet the
minimum throughput THmin. We observe a superiority of the successive solutions
over the simultaneous ones, especially when using the SA approach. For low min-
imum throughput THmin, the throughput as a function of the small buffer sizes is
somewhat angular, which has to pose problems for a gradient search. The perfor-
mance of GSsim increases with increasing THmin. The higher minimum throughput
results in higher required buffer spaces within the flow line. For these configura-
tions, rounding all values up to the next integer leads to a small increase relative to
the total costs. Additionally, the underlying function approximated by the RNN is
more smooth for large buffers (see Fig. 2a), so the gradients provide more reliable
information at these points. Thus, the GS can perform more accurately if a relatively
high throughput is desired.

Second, we analyze the influence of the material cost parameter. Table 6 shows the
performance analysis for increasing order up-to level cost coefficient kM

i on the left
side and the changes in the best solution found on the right side. The cost parameters
for buffer sizes and delivery remain constant. The required minimum throughput is
0.8. Therefore, as order up-to level cost kM

i increases, both the relationship to buffer
costs kB

i and to delivery cost kR
i changes. Again, the successive optimization with

SA find the best results in most cases. The simulated throughput meets the minimum
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Table 7 Deviation of the best found solution and the simulated throughput with increasing flow line
length for a time limit of 10 seconds

GSsim SAsim GSsukz SAsukz

jIj ZGS
�Zbest

Zbest [%] ZSA
�Zbest

Zbest [%] ZGS
�Zbest

Zbest [%] ZSA
�Zbest

Zbest [%]

2 28.4663? 0? 1.5423? 0.1283?

4 1.0841 4.8353 0.2456 0

6 2.4825 6.8273 0.3650 0

10 1.5215 14.3628 0 25.1841

20 19.0693 20.5696? 2.2169 0

30 19.0599 26.3569? 2.4979 0?

throughput in all cases. The right side of Table 6 shows aggregated information on
the best solution found. At low order up-to level cost kM

i , we observe high order up-
to levels and a long milkrun cycle length r . When kM

i rises, this leads to a decrease
of order up-to levels with more frequent deliveries. Hence, the material ratio Si

r

remains constant. Within SA, our operator # 6 (see Sect. 5.1) tends to maintain
approximately the relationship between cycle length and order up-to levels. Thus,
the results of SA are superior to those of GS. Furthermore, the results in the last
column of Table 6 show that high order up-to levels can not substitute expensive
buffers. However, each of these solutions was found by a successive optimization
procedure in which order up-to level costs are not taken into account in the first
step. In the simultaneous optimization, slightly higher buffers can be observed.

Table 7 shows the performance of the four approaches for different flow line
lengths and for a time limit of 10 seconds. Again, successive approaches lead to
better solutions than simultaneous ones. For two machine lines none of the found
solutions are feasible concerning the minimum throughput (as stated by the star ?).
This results from the higher prediction error of the RNN (see Table 3). A similar
problem arises for long flow lines with 30 machines as the accuracy of the RNN de-
creases with increasing flow line length. To counteract this, the minimum throughput
could be minimally increased within the optimization process so that the solutions
remain feasible even with minor deviations from the simulation which are, as stated
above, extremely accurate.

Both successive approaches SA and GS lead to promising results. The problem
knowledge included in the SA approach can be helpful especially for frequent de-
livery and expensive line-side material. The GS worked well for instance where we
can assume a smooth curve of the throughput. In steeper and more angular areas of
small buffer sizes, it suffers from the regression accuracy of the RNN because the
gradients are less meaningful there. For further numerical analyses on this system
refer to Südbeck (2023, Chapt. 7.1, pp 177).

6 Conclusion and Further Research

In this article, we proposed an RNN to evaluate the throughput of a stochastic
milkrun-supplied flow line. We showed how to configure the RNN in an efficient
manner and how the selection of a flexible RNN as a special ANN allows us to ana-
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lyze flow lines of variable length with a high accuracy and a speed that outperforms
any discrete-event simulation. Furthermore, we showed how to systematically create
the required training data for the neural network using orthogonal latin hypercube
sampling. A large number of simulated flow lines can serve as a sufficient database
to train the neural network. The most accurate results for extrapolating to longer
flow lines have been achieved for parameter ranges with many training data points.

In addition, we showed how to use the RNN within different optimization ap-
proaches for milkrun-supplied flow lines. We developed a method that uses the
approximation of a curve by the RNN to obtain better solutions using the gradi-
ents. Additionally, we implemented an SA approach with customized neighborhood
operators. We tested these approaches in successive and simultaneous optimization
procedures. These approaches turned out to be feasible methods to achieve an op-
timized flow line design in a short time using a well-trained RNN. The resulting
systems show a structure that agrees well with established theoretical knowledge
about flow line behavior, e.g., the bowl-shaped allocation of buffers for balanced
lines. Further, optimal material supply design implies frequent replenishment cycles
and lower material levels in case of expensive material storage costs.

Due to its speed, the proposed approaches can be applied for a variety of practi-
cal decision problems in production. They are especially valuable in dynamic time-
dependent settings as e.g. in ramp-up production. Future research should address
further applications of ANNs to stochastic production systems with different con-
figurations and requirements. Specifically, the combination of exact or analytical
methods with ANNs should be investigated.
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