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Abstract We propose a new model formulation for a three-echelon supply network
design problem incorporating the concept of relocatable modular capacities. A ro-
bust supply network configuration must be determined based on uncertain demand.
Furthermore, by incorporating the conditional value at risk (CVaR), the risk induced
by uncertain demand is explicitly considered. The derived supply network configu-
ration should maximize the weighted sum of the expected net present value and the
CVaR. The resulting nonlinear model formulation is approximated by a piecewise
linearization. Our numerical investigation shows that the derived supply network
configuration is robust and stable in the presence of uncertain demand.

Keywords Supply network reconfiguration · Modular capacities · Stochastic
demand · Conditional value at risk

1 Introduction

The location of production facilities, the selection of vendors, and the assignment
of retailers to production facilities are strategic decisions often faced by managers.
Due to changes in a company’s environment, supply networks must be dynamically
reconfigurable. Such changes might include changes in demand or cost structures
over time. For example, to meet a geographical shift in demand, companies might
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want to move their production facilities from regions with decreasing demand to
regions with increasing demand to reduce transportation expenses.

To enable the rapid relocation of production facilities, the concept of modular
capacities arises. According to this concept, production facilities consist of freely
combinable modules of different types that can easily be relocated. This enables the
relocation of individual modules or even the entire production facility. The ability
to relocate modular capacities and reuse them at different locations is an important
aspect when considering the ecological effects of (re)designing supply networks, as
the waste of raw materials and resources can be reduced by relocating and reusing
these modules. In addition, while the modules rarely have to be relocated, numerous
regular transports of the products to the retailers over long distances can be avoided.

As an example, relocatable modular capacities will be used for the production
of the mRNA-based COVID-19 vaccine in Africa; see BioNTech (2022). The ca-
pacity of each production facility can be expanded by additional modules. In this
way, further production sites can easily be added to the production network of the
COVID-19 vaccine. A further example is the final assembly of cars; see Bala (2014).
Different module types can be used to form a complete modular production line and
therefore establish flexible production facilities. The modules can easily be stowed
in containers for transportation purposes. If demand increases, modules can be added
at the site to establish an additional production line, whereas if demand decreases,
production capacity can be reduced by removing lines (i.e., by removing/relocating
the respective modules).

Because of the long-term planning horizon related to strategic decisions, uncer-
tainty must be considered when decisions regarding the supply network structure
are made. One source of uncertainty is future demand. Thus, to sustain profitability,
a supply network must be configured that is robust to changes in future demand.
Figs. 1 and 2 present a comparative example that illustrates the concept of (relocat-
able) modular capacities in the presence of shifting (un)certain demand.

In Fig. 1, the demand is assumed to be deterministic, and relocating modules
is not possible. Due to the shift in demand in the second period, modules from
production facility 1 are sold, and an equivalent number of modules is purchased
for the newly established production facility 3. However, in the case of stochastic
demand, as shown in Fig. 2, a completely different supply network structure appears
when the relocation of modules is enabled. Due to the demand’s uncertainty, more
modules are acquired during the first period. During the second period, modules are
relocated from the existing production facility 1 to the newly established production
facilities 2 and 3. The resulting supply network differs considerably from the network
described in Fig. 1.

To develop an effective supply network, decisions regarding the location of pro-
duction facilities, the selection of vendors, and the allocation of retailers must be
made simultaneously. The effectiveness of a supply network depends on the relations
between the production and distribution echelons and, importantly, on the acquisi-
tion echelon of the network. For example, considerable distances between vendors
and production facilities can have a significant impact on payments for acquiring
components. Thus, a three-echelon supply network planning problem is presented
in this paper. Furthermore, the production facilities consist of relocatable modules;
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Fig. 1 Configuration of a sup-
ply network with deterministic
demand without relocation of
modular capacities

therefore, the supply network can be reconfigured according to the acquisition, al-
location, and relocation of modules.

Because of the long-term planning horizon, it is necessary to consider the net
present value (NPV) of discounted cash flows. Furthermore, because risk is induced
by uncertain demand, risk is explicitly taken into account by incorporating the
conditional value at risk (CVaR). Thus, the weighted sum of the expected NPV of
discounted cash flows and the CVaR is maximized in the objective function.

The consideration of uncertain demand leads to a nonlinear model formulation
for supply network planning. Thus, following Helber et al. (2013), piecewise lin-
ear functions are used to approximate the stochastic nonlinear model formulation.
A small number of linearization segments already allows for an adequate approx-
imation without a substantial increase in numerical effort. A two-stage stochastic
programming approach is applied and allows decisions to be revisited after a given
period of time.

The remainder of this paper is structured as follows. In Sect. 2, we present a lit-
erature overview of strategic supply network planning in the presence of adaptable
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Fig. 2 Configuration of a sup-
ply network with stochastic de-
mand with relocation of modular
capacities

capacities. In Sect. 3, the stochastic network design problem with modular capacities
underlying our model is presented. The model assumptions are stated in Sect. 3.1,
and the piecewise approximation method is described in Sect. 3.2. In Sect. 4, our
stochastic programming approach is presented. The linearized model formulation
for the robust supply network design problem with modular capacities is stated
in Sect. 4.1, and the two-stage stochastic programming approach is described in
Sect. 4.2. In Sect. 5, we report the results of our numerical investigation. This paper
ends with a summary and outlook in Sect. 6.

2 Literature review

To respond to dynamic changes in a company’s environment, supply networks must
be adjustable. This section presents an overview of papers that allow a supply
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network to be reconfigured by adjusting the facilities’ capacities and/or relocating
capacities. An overview of these papers is presented in Table 1.

The mathematical models in the stated papers vary widely regarding the integra-
tion of capacities and the possibility of changing them. We therefore focus on this
characteristic in the following and present some of the methods used in more de-
tail. Due to the single-period nature of the work of Lee (1991), capacity expansion,
reduction, and relocation are not considered. The author does, however, consider
modular capacities by incorporating the selection of a subset of possible facility
types at a facility site. Facility types differ based on their specified capacity for the
production of a particular product and their setup costs. Shulman (1991) presented
a facility location problem that considers modular capacities to allow discrete ex-
pansion and reduction in the sizes of the considered plants. He defines a plant as
a collection of facilities at the same location. The facilities differ by their capacities
to produce the only considered product and by their installation costs. The number
of facilities of a particular type at each location is limited. Antunes and Peeters
(2001) introduced a dynamic model for modular capacitated school network plan-
ning. In their model, decisions are made regarding the opening of new schools and
expanding, reducing, or closing existing schools. The facility sizes can be expanded
or reduced according to a set of predefined standards (i.e., modules with a given
capacity). A deterministic model formulation for a single-period network design
problem is presented by Paquet et al. (2004). They introduce capacity options that
can be implemented at a facility. These capacity options differ by capacity, required
space, and their associated fixed and variable costs in the facilities. Troncoso and
Garrido (2005) allow for capacity expansion at a site according to predefined levels.
The number of expansions along the planning horizon is restricted. Martel (2005)
presents a network design problem that incorporates capacity options for the design
of a facility layout. In this paper, Martel (2005) assumes that a facility consists of
a fixed part and a variable part. This variable part of the facility layout provides an
area that can be used to install a number of capacity options. Capacity options differ
by capacity, the required floor space, fixed costs and variable costs per product. The
use of these capacity options enables the expansion or reduction of a facility. Vila
et al. (2006) also use capacity options in their model to enable facility expansion
and reduction in the lumber industry. In their model, the plant’s capacity depends on
the chosen capacity option, which can be seasonally shut down. Melo et al. (2006)
consider a model in which capacities are assumed to be modular. The module types
differ by size and relocation costs. Thanh et al. (2008) consider the possibility of
enlarging the manufacturer’s facilities. To enable this enlargement, decision mak-
ers can choose to add predefined capacity options. The capacity options vary by
production and storage capacity, as well as fixed costs for opening and operating
an option. In Wilhelm et al. (2013), capacity is modeled modularly, and various
capacity alternatives are introduced. Each alternative is associated with a certain
number of capacity modules, and capacity alternatives are defined as an integer
multiple of the capacity of a basic module. A model that focuses on the redesign
of an existing supply chain is presented by Hammami and Frein (2014), who con-
sider capacity expansion/reduction, as well as capacity relocation. To achieve this
purpose, the authors decompose the production process into different activities that
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come along with certain capacity requirements (e.g., a certain number of machines
or production lines) that can be acquired either from an external source or relocated.
Activities differ by acquisition, operation and relocation costs, production capacity
and portfolio. A model formulation to find the optimal number, location and size of
logging camps to accommodate changes in harvest areas is presented by Jena et al.
(2015). In their work, the facilities are camps composed of trailers. Camp capacity
can be expanded by adding trailers or reduced by closing trailers. In a more general
version of this problem, Jena et al. (2015b) use capacity levels to implement mod-
ular capacities. Based on this modeling, Jena et al. (2016, 2017) focus on solving
the dynamic facility location problem. The authors Silva et al. (2021) also develop
heuristics for the model presented by Jena et al. (2015b). Becker et al. (2019) con-
sider modular capacities for volume and process flexibility. The authors work with
a set of production module configurations consisting of different process modules
that differ by acquisition and installation costs as well as operating costs. Costs also
occur when modules are reconfigured from one configuration to another. A similar
approach is used by Allman and Zhang (2020). In their work, configurations are
chosen for facilities. These configurations determine which modules are necessary
for the production of one unspecified product. Modules differ by acquisition, setup
and relocation costs. Relocation costs also depend on origin and destination.

The contribution of our paper is as follows: In our model, we divide capacity
into modules of different module types. Module types differ not only by size and
production capacity and acquisition, holding, relocation and production costs but
also by production portfolio. Each module type can be used to produce a number
of specified different products with a capacity consumption factor that also depends
on the module type.

Furthermore, stochastic information is rarely considered in model formulations
for the reconfiguration of supply networks, as indicated in Table 1. However, be-
cause of the long-term nature of strategic decisions regarding the reconfiguration of
the supply network, the available information is typically characterized by high un-
certainty at the time decisions must be made. Thus, decisions based on deterministic
values can turn out to be very unfavorable due to information changes in the fu-
ture. It is therefore advisable to explicitly consider the uncertainty of information in
models regarding the supply network configuration. In our model, we consider two
different forms of uncertainty for the demand. First, a period’s demand is considered
to be a normally distributed random variable with an expected mean value and stan-
dard deviation. Second, we consider the estimate of the mean value of the random
demand to be uncertain, i.e., the mean value for each period of the planning horizon
may be either lower or higher (recession or boom). Thus, the uncertain demand is
modeled as a mixture of normal distributions. This second form of uncertainty is
especially important when entering a new market. Aghezzaf (2005) consider uncer-
tain demand through the commonly used sample average approximation by using
specific demand scenarios containing realizations of the random demand and their
probability of occurrence. Akbari et al. (2018) use a goal programming technique
to consider multiple objectives for locating maritime search and rescue vessel sta-
tions and allocating modular vessels. An aspiration level is chosen for each of the
three objectives and the deviation considered in three respective restrictions under
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the presence of uncertain demand, i.e., occurrence of an emergency event. Uncer-
tain demand is captured by a set of randomly generated demand scenarios, and
each objective is calculated as the weighted average over all scenarios. The authors
then minimize the weighted sum over all three objectives, i.e., all deviations. How-
ever, a significant number of scenarios is required to accurately describe the normal
distribution of our random demand, which increases the numerical effort.

Hence, we use a piecewise linear approximation to incorporate the first form of
uncertainty induced by the normally distributed random demand. This approximation
allows a leaner model compared to the sample average approach. For the second
form of uncertainty, we consider future scenarios, e.g., scenarios with overall low,
normal and high expected mean values of demand. However, our future scenarios
do not contain demand realizations. Instead, within each scenario, the demand is
described by the aforementioned normally distributed random variable reflecting the
first form of uncertainty. This requires the piecewise linear approximation method
within each future scenario. Additionally, to further address the uncertainty, we
present a two-stage stochastic programming approach that enables a recourse, i.e.,
decisions are made to be revisited after a given period of time. Although some
of the papers’ proposals penalize shortfalls to a customer in the objective function
through penalty costs, we ensure demand satisfaction by incorporating a service-
level constraint.

Although costs or profit are often considered in the objective function despite the
long-term planning horizon in the literature, we believe that such problems require
consideration of the NPV, i.e., discounted incoming and outgoing payments. This
NPV should also include the salvage value of modules and facilities at the end
of the planning horizon. Additionally, when facing an uncertain environment, it is
important for the decision maker to estimate the risk regarding the reliability of his
objective. Because all but one of the proposed models are deterministic, none of the
cited authors explicitly account for the risk induced by the uncertainty of informa-
tion. Thus, we consider the risk induced by the second form of uncertain demand
by including the CVaR in our objective function to avoid substantial negative devi-
ations from the expected NPV. This enables the decision maker to further evaluate
the generated solution and adjust the structure according to his risk propensity.

3 A stochastic supply network design problem with relocatable
modular capacities

3.1 Model Assumptions

The aim of the robust supply network design problem with modular capacities
(RSNDPMC) is to configure a three-echelon supply network according to a number
of model assumptions, divided into the following categories:
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3.1.1 Objective and risk awareness

Several future scenarios .s 2 S/ for the demand are defined in advance, each with
an estimated occurrence probability �s . Each future scenario describes a possible
development of random demand. Despite the introduction of future scenarios, the
scenarios do not contain demand realizations, but the demand within a scenario is
represented by a normally distributed random variable, described later in this chapter.
The configuration of the supply network should maximize the weighted sum of the
expected NPV of payments and the CVaR (according to Rockafellar and Uryasev
(2002)). The NPV is discounted by the internal interest rate iwacct in period t derived
from the weighted average cost of capital (WACC).

3.1.2 Selection of production facilities

When potential production facility f 2 F is established (i.e., opened for the first
time) in period t , i.e., 'est

ft D 1, a payment payestft arises. In each period in which an
established production facility f is open, i.e., 'open

ft D 1, a payment payopenft occurs.
This payment occurs in each period as long as facility f remains available for
production – even if no production occurs during a respective period t . A payment
paycloseft occurs when facility f is closed at the beginning of period t , i.e., 'close

ft D 1.
However, a facility can be reestablished after having been closed in a previous period.

3.1.3 Installation of modular capacities at production facilities

Each production facility f must be equipped with a suitable production system. The
production system considered is decomposable into several types of modules .m 2
M/. Module types differ by production portfolio. A module type subset Mp can
be used to produce end product p 2 P . An end product subset Pm can be produced
on a module of type m. The acquisition and installation of one module of type m
at production facility f in period t leads to a payment payMacqu

mft . The number of
acquired modules of type m at production facility f at the beginning of period t is
given by the integer variable NMacqu

mft . NMhold
mft describes the number of modules of

type m held at production facility f at the end of period t . A payment payMhold
mft is

induced per module. These payments include the cost for maintaining the modules up
to a certain standard in each period. Each module of type m has a space requirement
of spm. A production facility f with a maximum available space of SPmax

ft in period t
consists of a number of freely combinable modules. The number of modules of
type m relocated from production facility f and installed at production facility f 0
at the beginning of period t is given by NMreloc

mff’t . The relocation process leads to
a payment payMreloc

mff’t per relocated module. Due to their regular maintenance, modules
can be sold at an unspecified aftermarket for a period-independent incoming payment
payMsell

mf ; however, payMsell
mf � payMacqu

mft for each period t . Thus, trading modules are
not profitable.NMsell

mft provides the number of modules of typem sold from production
facility f at the beginning of period t .
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3.1.4 Production process

The production quantity of end product p on any module of type m at facility f

is given by qPprodpmfrts for retailer r in period t and future scenario s. The production
of one unit of end product p on any module of type m at production facility f in
period t induces a payment payPprodpmft . The production of one unit of end product p
on any module of type m at facility f in period t requires a capacity consumption
cfPprodpmft . The production capacity of one module of type m is restricted by capMmax

m in
each period. The production capacity capMmax

m of a module of type m at production
facility f in period t is also affected by the installation of a newly acquired module,
cfMacqu

mft , or the relocation of a module, cfMreloc
mf’ft . cfMreloc

mf’ft includes the installation and
the capacity loss due to transportation lag. The relocation capacity consumption is
accounted for at the receiving facility.

3.1.5 Vendor selection to procure components

For the production of one unit of end product p, ucp units of component c 2 C,
offered by vendors v 2 Vc � V , are needed. The subset Pc contains those end prod-
ucts that require component c. The procurement of component c from vendor v in
period t induces a payment payCacqucvt per unit. The transportation quantities are indi-
cated by qCtranscvfts . A payment payCtranscvft arises for transporting one unit of component c
from vendor v to facility f in period t . For each future scenario s and each period t
in which an order of component c is placed at vendor v, i.e., #Corder

cvts D 1, a pay-
ment payCordercvt occurs. The procurement quantity of component c from vendor v
must be between the minimum capCmincv and the maximum capCmaxcv if the respective
component is procured during the actual period.

3.1.6 Consideration of stochastic demand

At retailer r , end product p can be sold according to the demand for an incoming
payment payPsellprt per unit in period t . Transporting one unit of end product p from
facility f to retailer r in period t yields a payment payPtranspfrt . The random variable
Dprts describes the demand for end product p at retailer r 2 R in period t 2 T
for each future scenario s. It is assumed that Dprts is normally distributed and
the expected value EŒDprts� and variance VARŒDprts� are known. Furthermore, the
random variables Dprts are pairwise stochastically independent. If the demand Dprts

for end product p at retailer r exceeds the cumulated quantity of products produced
in period t and future scenario s, lost sales LSprts may occur, i.e.,

LSprts D max

8
<

:
0;Dprts �

X

m2Mp

X

f 2F
q
Pprod
pmfrts

9
=

;
: (1)

Expected lost sales EŒLS� can be derived by the first-order-loss function. The fol-
lowing explanations relate to a normally distributed demand D � N .�D ; �D/. For
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a given (cumulative) production quantity q, the expected standardized lost sales
E

�
fLS

�
for the standardized (cumulative) production quantity v D q��D

�D
corre-

sponds to the value of the nonlinear first-order loss function ˆ1.v/, which is defined
as

ˆ1.v/ D
Z 1

v
.x � v/ � �.x/ � d x D �.v/ � v � f1 �ˆ.v/g; (2)

where ˆ.x/ is the cumulated distribution function of a standardized normally dis-
tributed random variable X � N .0,1/ with X D D��D

�D
. We refer to Tempelmeier

(2020) for a more detailed description.
Furthermore, a ˇ-service level is incorporated to ensure the satisfaction of the

predetermined portion ˇpr of expected demand EŒDprts�.

3.2 Approximation via piecewise linear functions

To address the nonlinearity of the expected lost sales, we suggest an approximation
approach based on piecewise linear functions. This results in a mixed-integer linear
model formulation that can be solved by any standard solver. Following Helber et al.
(2013), the nonlinear function of expected lost sales is replaced by a piecewise linear
function. Based on the chosen number of segments, this nonlinear function can be
approximated with arbitrary precision. The linearization of the expected lost sales
is illustrated in Fig. 3.

The expected lost sales EŒLSprts� can be linearized by defining L segments
.l D 0; :::; L/. The upper limit of each segment corresponds to supporting points
.elsprtls; cq

Pprod
prtls / where the expected lost sales elsprtls can be calculated by the first-

Fig. 3 Linearization of the expected lost sales function, according to Sahling and Kayser (2016)
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order-loss function (2) for a given cumulated production quantity cqPprodprtls . The first
supporting point is required at the point of zero cumulative production, and the last
supporting point is required at the point of maximum possible cumulative produc-
tion. In accordance with Helber et al. (2013), the remaining L� 1 supporting points
are defined around the expected value of demand, i.e., in the area of the strongest
nonlinearity.

Thus, the expected lost sales EŒLSprts� can be approximated as follows:

EŒLSprts� � eEŒLSprts� Delsprt0s C
X

l2L
�LS

prtls � wPprod
prtls

8p 2 P ; r 2 R; t 2 T ; s 2 S;
(3)

where the slope �LS
prtls of the linearized function is defined as

�LS
prtls D elsprtls � elsprt,l-1,s

cq
Pprod
prtls � cqPprodprt,l-1,s

:

The parameter elsprt0s describes the expected lost sales in the case of no cumu-

lated production. Furthermore, the additional decision variable wPprod
prtls represents the

portion of the cumulated production quantity related to linearization segment l .
Note that due to the direction of optimization and the convexity of the nonlinear

function of expected lost sales proved by Rossi et al. (2014), this approximation
approach ensures that the variables wPprod

prtls are correctly determined, i.e., wPprod
prtls take

values starting at the first segment.

4 A programming approach for the RSNDPMC

4.1 A linear model formulation of the RSNDPMC

Based on the presented assumptions, the piecewise linear approximation of the
RSNDPMC, RSNDPMC-PLA, can be stated using the notation in 1:

4.1.1 Objective function

In the objective function (4), the weighted sum of the expected NPV of discounted
cash flows and the CVaR is maximized.

maxZ D  �
X

s2S
�s � NPVs C .1 �  / � CVaR (4)

The decision maker’s risk propensity is described by the parameter  2 Œ0,1�. In the
case of a highly risk-aware decision maker . D 0/, only the CVaR is maximized.
With an increasing  , which may take any value in the interval �0,1�, the risk
awareness decreases, and only the expected NPV is maximized if  D 1.
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4.1.2 NPV-related constraints

The future-scenario-specific expected net present value NPVs of discounted cash
flows is defined in (4a) to (4i).

NPVs D
X

t2T

1
Qt
�D1

�
1 C iwacc�

� �
0

@
X

p2P

X

r2R
payPsellprt � �

EŒDprts� � eEŒLSprts�
�

(4a)

C
X

m2M

X

f 2F
payMsell

mf �NMsell
mft (4b)

�
X

m2M

X

f 2F
.payMacqu

mft �NMacqu
mft CpayMhold

mft �NMhold
mft C

X

f 02Fnf
payMreloc

mff’t �NMreloc
mff’t /

(4c)
�

X

f 2F
.payestft � 'est

ft C payopenft � 'open
ft C paycloseft � 'close

ft / (4d)

�
X

p2P

X

m2Mp

X

f 2F

X

r2R
payPprodpmft � qPprodpmfrts (4e)

�
X

p2P

X

m2Mp

X

f 2F

X

r2R
payPtranspfrt � qPprodpmfrts (4f)

�
X

c2C

X

v2Vc

payCordercvt � #Corder
cvts (4g)

�
X

c2C

X

v2Vc

X

f 2F
.payCacqucvt C payCtranscvft / � qCtranscvfts

1

A (4h)

C 1
QT+1
�D1

�
1 C iwacc�

�

�
0

@
X

m2M

X

f 2F

payMacqu
mf,T+1 C payMsell

pf

2
�NMhold

mfT C
X

f 2F

payestf,T+1 � payclosef,T+1

2
� 'open

fT

1

A

(4i)

8s 2 S
The first part of (4a) to (4b) includes the expected incoming payments. Eq. (4a)
represents the incoming payments for selling end products at the retailers, whereas
(4b) represents incoming payments due to the selling of modules. The second part
(4c) to (4h) contains all the remaining (outgoing) payments made by the company.
In (4c), payments are considered for the acquisition, holding and relocation of mod-
ules. The term (4d) incorporates the payments for establishing, running and closing
production facilities. (4e) contains payments for producing end products, whereas
(4f) represents payments for the transportation of end products from the facilities to
the retailers. The terms (4g) and (4h) are payments regarding the acquisition of com-
ponents from vendors. In (4g), payments are considered for ordering components.
The term (4h) incorporates payments for acquiring and transporting components.
The last part of the objective function, (4i), represents the salvage value of the mod-
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ules and the salvage value of the production facilities owned by the company at the
end of the planning horizon.

For simplification purposes, the salvage values are calculated as the unweighted
average of two events. First, the module in hold turns out to be unnecessary in the
first period T C1 after the end of the planning horizon and would then be sold. Thus,
it is worth its selling price payMsell

m,f . Second, if this module would not be in hold in
period T C 1 and had to be acquired instead, the module is worth payMAcqu

m,f,T+1. The
same applies for the salvage value of the facilities. Here, the payments for closing
�payclosef,T+1 and establishing payestf,T+1 must be taken into account.

4.1.3 CVaR-related constraints

For a given probability ˛ 2 .0,1/, the unbounded decision variable CVaR gives the
mean value of the expected NPV of those future scenarios, whose NPV belongs to the
worst .1�˛/�100% scenario-specific NPVs . Following Fábián (2008) and Koberstein
et al. (2013), jSj C 1 auxiliary decision variables are introduced for the calculation
of the CVaR. The unbounded auxiliary decision variable !0 gives a threshold value.
For future scenarios whose expected NPV lies below the value of !0, the jSj positive
auxiliary decision variables !s take the value of the difference between !0 and the
respective future scenario-specific expected NPV. The CVaR is incorporated through
constraints (5) and (6).

CVaR D !0 � 1

1 � ˛ �
X

s2S
�s � !s (5)

!0 � !s � NPVs 8s 2 S (6)

In combination with the objective function (4), the constraints (5) and (6) ensure
that the CVaR indeed gives the average of the worst .1�˛/ �100% scenario-specific
NPVs .

4.1.4 Demand fulfillment

eEŒLSprts� D elsprt0s C
X

l2L
�LS

prtls � wPprod
prtls 8p 2 P ; r 2 R; t 2 T ; s 2 S (7)

X

s2S
�s � eEŒLSprts� � .1 � ˇpr/ �

X

s2S
�s � EŒDprts� 8p 2 P ; r 2 R; t 2 T (8)

X

m2Mp

X

f 2F
q
Pprod
pmfrts D

X

l2L
w

Pprod
prtls 8p 2 P ; r 2 R; t 2 T ; s 2 S (9)

w
Pprod
prtls � cq

Pprod
prtls � cqPprodprt,l-1,s 8p 2 P ; r 2 R; t 2 T ; l 2 L; s 2 S (10)

Equalities (7) yield the approximated lost sales function presented in Sect. 3.2.
Using inequalities (8), lost sales are restricted by a target ˇ-service level. According
to equations (9), the cumulated production quantity over all facilities must equal
the cumulated production quantity of all linearization segments. The cumulated
production wPprod

prtls must not exceed the difference of the upper and lower bounds
related to segment l ; see (10).
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4.1.5 Vendor-related constraints

X

v2Vc

qCtranscvfts D
X

p2Pc

X

m2Mp

X

r2R
ucp � qPprodpmfrts 8c 2 C; f 2 F ; t 2 T ; s 2 S (11)

X

f 2F
qCtranscvfts � capCmincv � #Corder

cvts 8c 2 C; v 2 Vc ; t 2 T ; s 2 S (12)

X

f 2F
qCtranscvfts � capCmaxcv � #Corder

cvts 8c 2 C; v 2 Vc ; t 2 T ; s 2 S (13)

Eqs. (11) ensure that a sufficient amount of component c is acquired to manufacture
end products. Furthermore, the constraints (12) and (13) are the minimum and
maximum capacity constraints for the components at vendors.

4.1.6 Constraints regarding modular capacities

Eqs. (14) to (16) consider the modular capacities in the model.

NMhold
mf,t-1 CN

Macqu
mft C

X

f 02Fnff g
NMreloc

mf’ft �
X

f 02Fnff g
NMreloc

mff’t �NMsell
mft D NMhold

mft

8m 2 M; f 2 F ; t 2 T
(14)X

m2M
NMhold

mft � spm � SPmax
ft � 'open

ft 8f 2 F ; t 2 T (15)

cf
Macqu
mft � NMaqcu

mft C
X

p2Pm

X

r2R
cf

Pprod
pmft � qPprodpmfrts C

X

f 02Fnff g
cf Mreloc

mf’ft �NMreloc
mf’ft

� capMmax
m �NMhold

mft 8m 2 M; f 2 F ; t 2 T ; s 2 S
(16)

The balance constraints (14) determine the number of modules held at a facility in
a period, considering the acquisition, relocation and selling of modules. Eqs. (15)
ensure that the required space of the modules held at a production facility does
not exceed its available space if the facility is open. Eqs. (16) represent the capac-
ity consumption. Capacity consumption due to the acquisition of new modules, the
relocation of modules, and the production of end products must not exceed the avail-
able production capacity according to the number of modules held at the respective
production facility. Therefore, a facility must be equipped with modules to allow for
production.

4.1.7 Selection of production facilities

'
open
ft D '

open
f,t-1 C 'est

ft � 'close
ft 8f 2 F ; t 2 T (17)

Eqs. (17) ensure that production facility f can operate only .'open
ft D 1/ in period t if

the facility was established in the respective period .'est
ft D 1/ or if it was open during

the previous period .'open
f,t-1 D 1/. Payments for an open facility do not depend on the

number of modules, i.e., payments may occur even if no modules are assigned (see
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(4d)). After a facility has been shut down, it can be reestablished in a later period.
In combination with equations (15), modules must be removed from a facility in
the case of a shut down. Furthermore, our approach can also be used to reconfigure
a given supply network configuration, i.e., 'open

f0 D 1 for some f 2 F .

4.2 A two-stage stochastic programming approach

The sole solution of the RSNDPMC-PLA leads to a robust supply network config-
uration over all future scenarios. However, it is realistic to assume that the arising
future scenario becomes apparent in the course of the ongoing planning horizon.
Thus, the remodifications of the supply network configuration may become rea-
sonable. Therefore, a two-stage stochastic programming approach is proposed that
enables this future scenario-specific modification.

In the first stage, the complete RSNDPMC-PLA is solved to generate a robust
supply network configuration that maximizes the weighted sum of the expected
NPV over all future scenarios and the CVaR according to (4). It is assumed
that after t? periods, the upcoming future scenario s? is known. Thus, the sup-
ply network configuration determined in the first stage is fixed for the periods
t D 1; :::; t?, i.e., the respective discrete variables are fixed for those periods,
whereas the remaining discrete variables are not fixed. It is worth noting, that
it is not mandatory to fix the real-valued decision variables, since they have no
influence on subsequent periods. Hence, a future-scenario-specific variant of the
RSNDPMC-PLA, called RSNDPMC-PLAs , is formulated. The RSNDPMC-PLAs
resembles the RSNDPMC-PLA except that it omits the CVaR-specific constraints
(5) and (6). In place of the original objective function (4), a future scenario-specific
NPVs according to (4a) to (4i) is maximized in the second stage. Furthermore,
slack variables are incorporated into the ˇ-service-level constraints (8) to always
enable a mathematically feasible solution. However, these additional variables are
penalized in the objective function. Thus, by solving the RSNDPMC-PLAs for the
upcoming future scenario s?, an adapted future scenario-specific supply network
configuration is generated for the periods t D t? C 1; :::; T in the second stage. This
two-stage stochastic programming approach is outlined in Algorithm 1.

Note that we focus on the supply network configuration in the two-stage stochas-
tic programming approach. In a subsequent tactical or operational planning step,
production and transportation quantities can be further adapted to be in line with the
determined capacities of the supply network configuration.
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5 Numerical results

5.1 Description of the test design

Two problem classes (PCs) are defined for our numerical investigation. These PCs
differ with respect to the number of components C , vendors V , products P , facili-
ties F , module types M , retailers R and periods T , as shown in Table 2.

There are two spatially different activity regions; each contains half the vendors,
facilities and retailers. On average, demand is forecast to shift from one activity
region to the other along the planning horizon. For our numerical study, three fu-
ture scenarios (low, normal and high demand) are considered, as described in 2.
For the definition of test instances (TIs), two parameters—each with two different
values—are varied. The coefficient of variation, VCd , which is related to uncertain
demand, corresponds to VCd 2 f0.3, 0.5g, and two target ˇ-service levels, where
ˇ 2 f0.9, 0.95g, are used. The variation in both parameter values results in 4 pa-
rameter settings. For each setting, 10 TIs are randomly generated. Thus, each PC
consists of 40 different TIs. The TIs are described in detail in 2.

Sahling and Kayser (2016) noted that 10 linear segments already ensure a suf-
ficient accuracy of the approximation approach without a substantial increase in
the numerical effort. Thus, L D 10 segments are also used in our numerical ex-
periments. For the two-stage stochastic programming approach, the supply network
configuration is fixed after t? D 3 for PC 1 and t? D 5 for PC 2 in the second stage.

For the numerical analysis, an additional variant of the RSNDPMC-PLA is
defined, where relocations of modular capacities are omitted. In this so-called
RSNDPMC-NRL, the corresponding integer variables NMreloc

mff’t are fixed to zero.
Due to this fixation, the consideration of relocatable modules almost doubles the
number of discrete variables in the case of PC 1 and more than triples the number
of discrete variables in the case of PC 2.

Numerical experiments were conducted on the cluster TANE of the LUIS in
Hannover using 2 parallel threads, each with a 2.93 GHz processor and a maximum
of 16 GB of RAM. The described variants of the RSNDPMC-PLA are implemented
in GAMS 24.5.4, and each TI is solved to (sub)optimality using CPLEX 12.6. The
optimization process is terminated by CPLEX if a given time limit TLim is reached.

In Table 3, the solution qualities of the RSNDPMC-PLA, the RSNDPMC-PLAs ,
and the RSNDPMC-NRL are reported for PC 1 and PC 2.

Notably, with an average gap of less than 0.05% in the case of PC 1 and less than
0.24% for PC 2, (near) optimal solutions are obtained by CPLEX for all considered
TIs within the given time limit.

Table 2 Sizes of problem classes

C V P F M R T #TI

PC 1 5 10 5 6 5 6 6 40

PC 2 5 10 10 10 10 6 12 40
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Table 3 Solution qualities of the RSNDPMC-PLA, -PLAs , and -NRL

TLim TCPU OptSol

[s] [s] [%]

RSNDPMC-PLA PC 1 21,600 6,311 80.0

PC 2 43,200 41,348 5.0

RSNDPMC-PLAs PC 1 3,600 68 98.8

PC 2 3,600 2,721 37.5

RSNDPMC-NRL PC 1 21,600 751 100.0

PC 2 43,200 38,580 17.5

TLim Given time limit, TCPU Average solution time, OptSol Percentage of optimally solved TIs

5.2 Analysis of the relocatability of modules

For the numerical study, we use all TIs described in Sect. 5.1. To demonstrate the
impact of the possibility of relocating modules among production facilities, we ana-
lyze the average number of newly acquired modulesNumAcq, relocationsNumReloc,
and sold modules NumSell for four variants of the RSNDPMC, i.e., RSNDPMC-
PLA, RSNDPMC-PLAs , RSNDPMC-NRL and RSNDPMC-NRLs. The last model
variant follows the two-stage approach described in Sect. 4.2, but relocations are
not permitted. The results for PC 1 are presented in Figs. 4 and 5. Furthermore, the
results for PC 2 are quite similar, and only the overall dimensions differ.

These results show that for RSNDPMC-PLA, where relocations are possible, the
average number of acquired modules can be reduced by more than 25% for PC 1 and
by more than 17% for PC 2 compared to RSNDPMC-NRL, which does not include
relocations. This is an important result when considering ecological effects. The use
of relocatable modular capacities leads to a substantial decrease in the number of
required modules and therefore to protection of the resources required to build new
modules.

The introduction of the two-stage approach leads to different effects according to
the respective future scenario. In the case that after t? periods, it becomes evident
that future scenario FS1 has arisen, i.e., an overall low demand, and the (using
the RSNDPMC-PLA) originally planned number of modules to be acquired was
overestimated. Therefore, in this future scenario, modules are sold. In the case of
future scenario FS2 (i.e., an overall normal demand), almost no changes are made
to the structure derived by the RSNDPMC-PLA. This shows that for the FS2, the
future scenario with the highest probability, the RSNDPMC-PLA already gives good
results. For future scenario FS3 (i.e., an overall high demand), we observe a different
effect. In this case, the number of modules to be acquired was underestimated. The
number of acquired modules thus increases to meet the increased demand, and
modules are not sold. Note that in the version where no relocations are possible, the
number of acquired modules, as well as the number of sold modules, exceeds the
respective numbers when relocations are allowed for all future scenarios.

To analyze the impact of the difference in the number of acquired and relocated
modules on the NPV, a simulation study is conducted with 1,000 replications. For
each replication, different realizations of the uncertain demand are randomly gener-
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Fig. 4 Number of acquired, relocated and sold modules for PC 1 after the first stage

ated for each future scenario. To evaluate this simulation, all the discrete variables
are fixed according to their values after the optimization, i.e., all strategic decisions
regarding

� the location of production facilities, i.e., establishing, running and closing,
� and the assignment of modular capacities, i.e., the acquisition, holding, and selling

of modules and, if applicable, their relocation

cannot be modified. However, all real-valued decision variables regarding trans-
portation quantities are not fixed. We also use slack variables in the ˇ-service-
level constraints (8) to ensure a mathematically feasible solution. These additional

Fig. 5 Number of acquired, relocated and sold modules for PC 1 for the two-stage approach
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variables are penalized in the objective function. The remaining linear program is
solved to optimality using CPLEX for each replication. Note that in the case of the
RSNDPMC-PLAs , the future scenario-specific supply network configuration of the
second stage is used.

The results of this simulation show that the NPV increases on average by more
than 5% for PC 1 and by more than 3% for PC 2 in the case of RSNDPMC-PLA
compared to RSNDPMC-NRL. After recourse, the RSNDPMC-PLAs still generates
an on average more than 5% higher NPV than the RSNDPMC-NRLs for PC 1 and
more than 2% higher NPV for PC 2.

5.3 Simulation-based analysis of the robustness

As discussed above, the transportation and production quantities can be adapted in
subsequent planning steps with respect to the supply network configuration derived
by the described variants of the RSNDPMC, i.e., RSNDPMC-PLA, RSNDPMC-
PLAs and RSNDPMC-NRL. To analyze the robustness of the determined supply net-
work configuration, the same simulation study is used as was presented in Sect. 5.2.

In Table 4, the portion SimFeas of those scenarios that are feasibly solved in the
simulation, i.e., the incorporated slack variables are equal to zero for all product-
retailer-period combinations P 	 R 	 T , is provided. Furthermore, we report the
average portion P 	R 	 T�Vio of product-retailer-period combinations for which
the target ˇ-service level is violated.

For all variants of the RSNDPMC, the derived supply network configurationmeets
the target ˇ-service level in more than 82% of the simulation scenarios. However,
in the cases where the target service level is not met, the ˇ-service level is fulfilled
for more than 99.8% of the product-retailer-period combinations. On average, when
the supply network configuration is adjusted, an improvement can be achieved in
terms of feasibility. It is, however, worth looking at the respective future scenarios
separately in greater detail because the effects regarding feasibility vary. The results
regarding the number of feasibly solved simulation scenarios are given exemplary
for PC 2 in Fig. 6. In Fig. 7, the percentage of infeasibilities arising before and after
the recourse are shown exemplarily for PC 2 again. The results for PC 1 differ only
slightly.

As analyzed in Sect. 5.2, for future scenario FS1, i.e., when overall low demand
occurs, the number of acquired modules was too high for the first t? periods. Ac-
cordingly, the number of held modules is reduced after t? periods. Therefore, for
PC 1 and PC 2, a feasibility of nearly 100% can be achieved after the first-stage
optimization for future scenario FS1. After the second stage (i.e., after adaptation),
this feasibility decreases slightly. All infeasibilities arise after t?. This result shows
that because fewer modules are in the system after adaptation, a very small number
of infeasibilities occur that were covered by the extra modules in stage one and,
therefore, did not arise. For future scenario FS2 (i.e., an overall normal demand),
the supply network configuration hardly changes after the recourse; therefore, the
feasibility is hardly influenced as well. A feasibility of more than 99% is reached
for FS2 before and after the recourse for PC 1 and a feasibility of more than 96% for
PC 2. Infeasibility occurs both before and after the recourse. For future scenario FS3
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Table 4 Robustness of supply network design

SimFeas P � R � T�Vio

[%] [%]

RSNDPMC-PLA PC 1 90.0 0.14

PC 2 84.3 0.12

RSNDPMC-PLAs PC 1 92.0 0.09

PC 2 86.4 0.07

RSNDPMC-NRL PC 1 91.8 0.10

PC 2 84.2 0.12

(i.e., an overall high demand), we found in Sect. 5.2 that the number of modules for
the system generated in the first stage was too low. Therefore, in the second stage,
additional modules are acquired after t? to cover the high demand. For this future
scenario, the first-stage configuration generates the smallest number of feasible so-
lutions. Only 61.1% of the scenarios of FS3 can feasibly be solved for PC 1 and
41.6% for PC 2. The recourse can improve these results. After the recourse, 69.2%
of the scenarios can feasibly be solved for PC 1 and 54.4% for PC 2. Because more
than 97% of the infeasibilities arise in the periods before the recourse, this value
cannot be improved further. This number shows that hardly any infeasibilities arise
after the adaptation of the supply network configuration, and therefore, a very robust
solution was found. Even in this case, only 0.31% and 0.24% of the product-retailer-
period combinations are violated for PC 1 and PC 2, respectively.

The relocatability of modules does not considerably influence the number of
feasible solutions. The infeasibilities depend on the providedmodule capacities at the
facilities. The consideration of greater uncertainty, i.e., a higher value for VCd , leads
to more robust solutions, i.e., the number of feasibly solved simulation scenarios
increases. Greater uncertainty results in a supply network configuration with higher

Fig. 6 Percentage of feasibly solved simulation scenarios for the different future scenarios for PC 2
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Fig. 7 Percentage of infeasibilities arising before and after the recourse for PC 2

capacity allocations, i.e., more installed modules. However, greater maximum and
average violations of the target service level are observable. The results of the ˇ-
service level show, that a higher service level yields a greater number of feasibly
solvable simulation scenarios. In this case, more modules are also provided with
higher capacity, where the maximum and average violations of the target service
level are lower.

In summary, the simulation-based analysis shows that all variants of the
RSNDPMC that consider uncertainty generate robust solutions, as shown by the
high number of feasible solutions in the simulation study. By using the two-stage
approach, this robustness can be increased further.

5.4 The impact of ˛ and  

To investigate the impact of the parameters ˛, i.e., the probability related to the
CVaR, and  , the weighting coefficient in the objective function (4), on the number
of acquired modules and their relocation, we considered different values for ˛ and
 for a TI from PC 1 that could be solved to optimality within the given time limit.
We discovered that there is a significant impact on the number of acquired and sold
modules for the RSNDPMC-NRL (see Figs. 8 and 9) and on the number of relocated
modules for the RSNDPMC-PLA (see Fig. 10).

Fig. 8 shows that the number of acquired modules increases with decreasing
values of ˛. It is mentionable that the lowest NPV is generated in future scenario FS1
due to the lowest realized demand. Therefore, for an ˛ close to 1, only the NPV
of this worst scenario is considered in the CVaR-part of the objective function. Our
study in Sect. 5.2 demonstrated that the number of necessary modules is smallest
for this future scenario. Hence, to generate a high CVaR for an ˛ close to 1, it is
a good strategy to only acquire a small number of modules. As shown in Fig. 8, the
number of acquired modules is smallest for an ˛ close to 1. This means that, on
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Fig. 8 Average number of ac-
quired modules for RSNDPMC-
NRL regarding ˛ and  

the other hand, the more, i.e., .1 � ˛/ � 100%, “bad” scenarios that are considered
to calculate the CVaR, the more modules that are acquired to yield a better CVaR
for the objective function. In this case, modules are acquired for being able to
cover the high demand in future scenario FS3, thereby yielding a high NPV. The
inverted effect is evident with the parameter  . With a decreasing value of  , the
number of acquired modules also decreases. The smaller the value for  , the more
weight is given to the CVaR in the objective function. This means that the decision
maker is risk averse. Therefore, the investment for expensive modules is not made.
In accordance with the number of acquired modules, the number of sold modules
shows the same characteristics (see Fig. 9).

Fig. 10 shows that the effect on the number of relocated modules for the
RSNDPMC-PLA is similar to the effects just described. With increasing values
of ˛, the number of relocated modules decreases, and the number decreases with
decreasing values of  , i.e., with increasing risk aversion. However, the number
of acquired modules for the RSNDPMC-PLA is hardly affected by ˛ and  . This
shows that in the case where relocations are possible, the expenses for the relocation
of the modules strongly impact the objective value and therefore the reconfiguration
of the supply network under uncertainty. Again, in the case whereby ˛ is close to
1, the CVaR resembles the NPV of future scenario FS1. Due to the low demand
in this scenario, it is not necessary to relocate many modules to fulfill the low
demand. Relocating more modules than necessary only yields high payments for
the relocation of the modules, while there is no demand and therefore no incoming
payments for products produced on these modules. Hence, for an ˛ close to 1, the
number of relocated modules approaches the small number of relocations in FS1.

Fig. 9 Average number of sold
modules for RSNDPMC-NRL
regarding ˛ and  
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Fig. 10 Number of relocated
modules for RSNDPMC-PLA
regarding ˛ and  

On the other hand, if ˛ is close to 0, the number of relocated modules resembles
the relocation structure of FS3. Therefore, many modules are relocated—following
the shift in demand—to avoid high payments for transporting the high number of
products over a great distance to the retailer. The same effects observed with the
RSNDPMC-PLA are noticeable for the RSNDPMC-PLAs .

6 Conclusion

In this paper, a new model formulation for robust supply network reconfiguration is
presented. In this model formulation, the concept of relocatable modular capacities
is incorporated for the first time in the presence of twofold uncertain demand in-
formation. Due to the explicit consideration of uncertain demand and the resulting
induced risk, a generic nonlinear model formulation arises. Nonlinear functions of
expected lost sales are approximated by piecewise linear functions according to Hel-
ber et al. (2013). The solution of the resulting mixed-integer linear program results
in a robust supply network configuration. Furthermore, a two-stage stochastic pro-
gramming approach is proposed that enables a future scenario-specific modification
of the determined supply network configuration.

In our numerical studies, we have observed that the consideration of relocatable
modular capacities has a significant effect on the supply network structure and on
the resulting NPV. The possibility of relocating modules provides the opportunity
to significantly decrease the number of newly acquired modules, which results in
a measurable increase in the NPV and has an as yet unquantified positive ecological
effect. Furthermore, the number of newly acquired modules and the number of
relocations increase under higher target service levels and higher uncertainty, i.e.,
with a higher coefficient of variation. The recourse enables an even better adaptation
to the demand situation, resulting in even better values of NPV.

Additionally, our studies have revealed that the robustness of the supply network
design increases with higher target service levels and higher coefficients of variation.
Again, the consideration of the two-stage approach with recourse provides better
results, this time regarding feasibility.

The analysis of the impact of the parameter ˛, i.e., the probability related to the
CVaR, and  , the weighting coefficient in the objective function, on the network
configuration has shown that both parameters have a great impact. With an ˛ close

K



26 Schmalenbach Journal of Business Research (2023) 75:1–35

to 1, the configuration approaches the optimal configuration of future scenario FS1,
while a small ˛ close to 0 leads to a configuration approaching the optimal configu-
ration for FS3. For a decreasing value of  , the decision maker is increasingly risk
averse, and large investments for the acquisition and relocation of modules are not
made.

Future research should address a scenario-specific retail price. Future scenarios
may affect the retail price as well; thus, it becomes uncertain. A demand function
must be assumed to determine the scenario-specific retail price. Hence, further non-
linearities occur in the model formulation. An uncertain retail price may also have
an effect on both the expected net present value and the supply network config-
uration. Furthermore, a life-cycle assessment should be processed to evaluate the
environmental impact of the relocatable modules.
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7 Appendix

7.1 Notation of the RSNDPMC

Indices and Sets:

c 2 C Set of components .c D 1; :::;C /

f; f 0 2 F Set of potential production facilities .f D 1; :::; F /

l 2 L Set of linearization segments .l D 0; :::; L/

m 2 M Set of module types .m D 1; :::;M/

p 2 P Set of end products .p D 1; :::; P /

r 2 R Set of retailers .r D 1; :::; R/

s 2 S Set of future scenarios .s D 1; :::; S/

t; � 2 T Set of periods .t D 1; :::; T /

v 2 V Set of vendors .v D 1; :::; V /

Subsets:

Mp � M Set of module types that can produce end product p

Pc � P Set of end products requiring component c

Pm � P Set of end products producible on module typem

Vc � V Set of vendors providing component c

Parameters:

˛ Probability related to CVaR

ˇpr Target ˇ -service level for end product p at retailer r

�LS
prtls Slope for expected lost sales of end product p at retailer r in pe-

riod t for segment l and future scenario s

�s Probability of future scenario s

 Level of risk aversion

capCmaxcv Maximum ordering capacity of component c at vendor v per pe-
riod

capCmincv Minimum ordering capacity of component c at vendor v per pe-
riod

capMmax
m Total maximum production capacity per module of type m per

period

cfMacqu
mft Capacity consumption factor of installing a module of typem af-

ter acquisition at facility f in period t

cfMreloc
mff ’t Capacity consumption factor of relocating one module of type m

from facility f and installing it at facility f 0 in period t including
transportation lag

cf
Pprod
pmft Capacity consumption factor of manufacturing one unit of end

product p on a module of typem at facility f in period t

cqPprodprtls Maximum production quantity of end product p for retailer r in
period t for segment l cumulated over all facilities for future sce-
nario s

elsprtls Expected lost sales of end product p at retailer r in period t for
segment l and future scenario s

iwacct Company-specific rate of interest in period t

paycloseft Payment for closing facility f in period t (outgoing payments for
the closing process – incoming payments from the selling process)

K



28 Schmalenbach Journal of Business Research (2023) 75:1–35

payCacqucvt Payment for acquiring one unit of component c from vendor v in
period t

payCordercvt Payment for ordering component c from vendor v in period t

payCtranscvft Payment for transporting one unit of component c from vendor v
to facility f in period t

payestft Payment for establishing facility f in period t

pay
Macqu
mft Payment for acquiring and installing one module of type m in

facility f in period t

payMhold
mft Payment for holding one module of type m in facility f in pe-

riod t

payMreloc
mff ’t Payment for relocating a module of type m from facility f and

installing it at facility f 0 in period t

payMsell
mf (Incoming) payment for selling a module of type m from facil-

ity f (including outgoing payments for deinstalling the module)

payopenft Payment for open facility f in period t

pay
Pprod
pmft Payment for manufacturing one unit of end product p on a module

of typem at facility f in period t

payPsellprt (Incoming) payment for selling one unit of product p at retailer r
in period t

payPtranspfrt Payment for transporting one unit of end product p from facil-
ity f to retailer r in period t

spm Required space by one module of typem

SPmax
ft Maximum available space at facility f in period t

ucp Number of units of component c required to produce one unit of
end product p

Random variables:

Dprts Demand of end product p at retailer r in period t for future sce-
nario s

LSprts Lost sales of end product p at retailer r in period t for future
scenario s

Binary decision variables:

'close
ft 1 if facility f is closed at the beginning of period t ; 0 otherwise

'est
ft 1 if facility f is established at the beginning of period t ; 0 other-

wise

'
open
ft 1 if facility f is open in period t ; 0 otherwise

#Corder
cvts 1 if component c is ordered at vendor v in period t for future

scenario s; 0 otherwise

Positive integer decision variables:

N
Macqu
mft Number of modules of typem acquired at facility f at the begin-

ning of period t

NMhold
mft Number of modules of typem held at facility f in period t

NMreloc
mff ’t Number of modules of typem relocated from facility f to facility

f 0 at the beginning of period t

NMsell
mft Number of modules of type m sold at facility f at the beginning

of period t
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Positive real-valued decision variables

!s Auxiliary variable for the calculation of the CVaR for future sce-
nario s

qCtranscvfts Transportation quantity of component c from vendor v to facil-
ity f in period t for future scenario s

q
Pprod
pmfrts Production quantity of end product p on any module of typem at

facility f for retailer r in period t for future scenario s

w
Pprod
prtls Production quantity of end product p for retailer r in period t in

segment l cumulated over all facilities for future scenario s

Real-valued decision variables

!0 Auxiliary variable for the calculation of the CVaR

CVaR Conditional value-at-risk

eEŒLSprts� Approximated expected lost sales of end product p at retailer r in
period t for future scenario s

NPVs Net present value of future scenario s

7.2 Description of the test instances

The described procedure for the generation of our test instances depends primarily
on Sahling and Kayser (2016). To simulate a shift in demand, as further described
below, two spatially different activity regions are defined. The coordinates of each
vendor v, production facility f and retailer r are defined randomly in two quadratic
grids. Half of the vendors, facilities and retailers are generated in the grid Œ0,100�	
Œ0,100� using a uniform distribution; see Melkote and Daskin (2001). The other
half is generated in the grid Œ300,400� 	 Œ0,100� using a uniform distribution. We
define the region in the grid Œ0,100�	 Œ0,100� to be a region with decreasing demand
over time, whereas the region in the grid Œ300,400� 	 Œ0,100� is assumed to have
an increasing demand over time. The distance between vendors and facilities distvf,
between two different facilities distff’ and between facilities and retailers distfr are
based on Euclidean distance measures. The internal rate of interest iwacct is equal to
8%. To consider risk propensity, we assume a risk-neutral decision maker as ˛ D 0.5
and  D 0.5.

In the following, a continuous uniform distribution between a and b is described
by the expression U Œa; b�, whereas a discrete uniform distribution between a and b
is denoted by U fa; bg.

The components are randomly assigned to vendors such that each component c
is provided by 3 to 6 vendors, i.e., jVcj � U f3,6g. Each vendor v provides 1
to 3 components. Furthermore, the components are also randomly assigned to end
products such that end product p contains 1 to 3 components, and each component c
is required by 3 to 5 products, i.e., jPcj � U f3,5g. For each p 2 Pc , the respective
ucp is set to 1. The set of required components Cp for end product p contains those
components c with ucp > 0. To generate several module types with different product
portfolios, end products are randomly assigned to module types such that each end
product p can be manufactured by at least two module types m. Furthermore, each
module type m can manufacture at least two end products p.
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The scenario-specific time series of the expected demand EŒDprts� is generated
as follows. We first estimate the maximum expected demand EŒDmax

p � for each end
product p, where EŒDmax

p � � U f500,700g. To consider retailer dependencies, the
maximum expected demand EŒDmax

pr � of end product p at retailer r is calculated
by EŒDmax

pr � D U Œ0.75,1.25� � EŒDmax
p �. To simulate the shift in the period-specific

expected demand EŒDprt�, a linear function is used. In the region of decreasing
demand over the planning horizon, the EŒDprt� decreases from EŒDmax

pr � linearly over
time until it nearly vanishes in the last planning period. Otherwise, in the region of
increasing demand, the expected demand EŒDprt� increases linearly from nearly no
demand until EŒDmax

pr � is reached in the last planning period. In the next step, the
three future scenarios s 2 flow, normal, highg with their respective demand factors
�low D 0.7, �normal D 1.0 and �high D 1.3 are incorporated. The probability of the
normal scenario is �normal D 0.5, and the probability of the remaining scenarios
is �low/high D 0.25. To account for slight fluctuations in the linear demand curve,
the scenario-specific expected demand EŒDprts� can then be derived from a normal
distribution with mean �s �EŒDprt� and standard deviation U Œ0.1,0.2� � �s �EŒDprt� for
each end product p, retailer r and period t .

Using this scenario-specific expected demand EŒDprts� and the given coefficient
of variation VCd , the uncertain demand Dprts is normally distributed with mean
EŒDprts� and standard deviation �prt D VCd � EŒDprts�.

To allow different dimensions of vendors, we define a capacity factor capCfaccv for
each vendor v and component c, where

capCfaccv D U f1; jVc jg
jVc j :

The capacity capCmaxcv can be determined using the average expected demand ADp

of end product p as follows:

capCmaxcv D capCfaccv �
X

p2Pc

ucp � ADp � .1 C VCd /

with

ADp D
X

r2R

X

t

EŒDprt�

T
:

In this way, it is ensured that components are available in a sufficient number and
do not describe a bottleneck. The minimum capacities capCmincv are assumed to be
zero.

For each module typem, we generate a capacity factor capMfac
m to enable different

sizes for module types, where

capMfac
m D jPmj

P
m’jPm’j :
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The capacity consumption factor of manufacturing one unit of end product p on

module type m at facility f in period t is determined by cfPprodpmft D U f1,2g. Using
this consumption factor, the capacity capMmax

m can be derived as follows:

capMmax
m D 0.1 � capMfac

m �
X

p2Pm

ADp � .1 C VCd / �
P
m02Mp

P
f

P
tcf

Pprod
pm’ft

jMpj � jF j � jT j ;

to force the acquisition of more than one module. The capacity consumption due to

the acquisition of module m at facility f in period t cf Macqu
mft D 0.1 � capMmax

m . De-
pending on the distance between two facilities in relation to the distances among all
facilities, the consumption factor due to the relocation of a module can be calculated
as follows:

cf Mreloc
mff’t D cf

Macqu
mft � .1 C distff’

P
f”

P
f”’>f”distf”f”’

/:

The required space per module type spm D 100 � capMfac
m .

For each facility f , we randomly generate a capacity factor capFfac
f

, where

capFfac
f

D U f1; F g
F

;

leading to differently dimensioned facilities. Furthermore, more than one production
facility has to be established. Based on the required space per module, we generate
the maximum available space at a facility as follows:

SPmax
ft D .1 C capFfac

f
/ �

P
mspm � P

pADp � .1 C VCd /
P
mcap

Mfac
m

:

In Table 5, we describe the determination of several payment parameters similar
to Cordeau et al. (2006), Cortinhal and Captivo (2003), and Thanh et al. (2008).

Note that the following calculations for the different payments take the size of
the facility and/or module into account. The production payments payPprodpmft of end
product p on module type m at facility f in period t are proportional to the average
payments payCp for acquiring all required components for end product p, i.e.,

payCp D
X

c

ucp �
P
v2Vc

P
tpay

Cacqu
cvt

jVcj � T :

Based on payCp, the production payments payPprodpmft are defined as follows:

payPprodpmft D payCp � U
"

max

(

0.5,1 � capMfac
m

P
m’cap

Mfac
m’

)

; 1

#

:

For a better understanding of the following calculations, we refrain from reducing
fractions. To determine the (incoming) payments payPsellprt , it is essential to estimate
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Table 5 Determination of the parameters for payments

Parameter Value

paycloseft = 2 �UŒ0.9,1.1� � payopenft �
q

.1 C cap
Ffac
f
/ � P

pADp � .1 C VCd /

payCacqucvt = UŒ5,10� �UŒmaxf0.5I 1 � capCfaccv g; 1�
payCordercvt = UŒ1,10� � p

capCmaxcv

payCtranscvft = 0.05 � distvf
payestft = 3 �UŒ0.9,1.1� � payopenft �

q

.1 C cap
Ffac
f
/ � P

pADp � .1 C VCd /

payMacqu
mft = UŒ100; 000; 500; 000� � .1 C capMfac

m /

payMhold
mft = 0.2 � payMacqu

mft

payMreloc
mff ’t = 0.05 � payMacqu

mft � .1 C distff ’P
f”

P
f”’>f”distf”f”’

/

payMsell
mf = 0.1 �

P
t pay

Macqu
mft

T

payopenft = UŒ10,50� �
q

.1 C capFfac
f
/ � P

pADp � .1 C VCd /

payPtranspfrt =
P

c2Cp
ucp � distfr

the retailer-specific mean (outgoing) payments per unit of end product p in each
period t in advance. Therefore, in the first step, the mean payments for ordering

(payCacqupt ) and transporting (payCtranspt ) components and the mean payments for

producing (payPprodpt ) and transporting (payPtransprt ) end products are evaluated for
one unit of end product p as follows:

payCacqupt D
X

c

ucp �
X

v2Vc

payCacqucvt

jVc j ; (18)

payCtranspt D 0.5 �
X

c

ucp �

0

B
B
B
B
B
@

X

v�
l
jVc j
2

m

X

f�
l
jF j

2

m
payCtranscvft

jVc j
2

� jF j
2

C

X

v>
l
jVc j
2

m

X

f >
l
jF j

2

m
payCtranscvft

jVc j
2

� jF j
2

1

C
C
C
C
C
A

;

(19)

payPprodpt D
P
f

P
m2Mp

payPprodpmft

jF j � jMpj ; (20)

payPtransprt D
P

f �
l
jF j

2

mpayPtranspfrt

jF j
2

8r �
� jRj

2

�

; (21)

payPtransprt D
P

f >
l
jF j

2

mpayPtranspfrt

jF j
2

8r >
� jRj

2

�

: (22)

Note that the overall mean payments for transporting components are calculated as
the mean over both demand regions. The payments for transporting end products
are calculated as the mean for each demand region. In the next step, we determine

the mean payments payMacqu
pt for acquiring modules for each end product p:
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payMacqu
pt D

ADp �
P

m2Mp

P
f cf

Pprod
pmft

jMpj�jF j
P

m2Mp
capMmax

m

jMpj
�

P
m2Mp

P
f pay

Macqu
mft

jMpj � jF j � 1

T � ADp
: (23)

In the first term, we estimate the mean number of modules required to fulfill the
mean demand for end product p. The second term describes the mean payments per
unit for acquiring the modules for the production of end product p.

The mean payments payMhold
pt for holding modules at a facility for each end

product p are calculated as follows:

payMhold
pt D

ADp �
P

m2Mp

P
f cf

Pprod
pmft

jMp j�jF j
P

m2Mp
capMmax

m

jMp j
�

P
m2Mp

P
f pay

Mhold
mft

jMpj � jF j � 1

ADp
: (24)

The estimated number of required facilities NumF is derived as follows:

NumF D
P
pADp

P
f

.1Ccap
Ffac
f
/�PpADp�.1CVCd /

jF j
: (25)

This estimation is used to determine the mean payments payfacpt for establishing and
running facilities to produce one unit of end product p in period t .

payfacpt D NumF �
0

@

P
f

payestft

jF j
T � P

p’ADp’

C
P
f

pay
open
ft

jF j
P

p’ADp’

1

A : (26)

Furthermore, end-product-specific additional mark-ons W P
p � U Œ0.3,0.5� and re-

tailer-specific additional mark-ons W R
r � U Œ0.05,0.1� are defined to determine

(incoming) payments paysellprt as follows:

payPsellprt D �
1 CW P

p CW R
r

� �
�
payCacqupt C payCtranspt C payPprodpt C payPtransprt C payMacqu

pt C payMhold
pt C payfacpt

	
:

(27)
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