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Abstract
Persistent homology is a popular and useful tool for analysing finite metric spaces,
revealing features that can be used to distinguish sets of unlabeled points and as input
into machine learning pipelines. The famous stability theorem of persistent homology
provides an upper bound for the change of persistence in the bottleneck distance
under perturbations of points, but without giving a lower bound. This paper clarifies
the possible limitations persistent homology may have in distinguishing finite metric
spaces, which is evident for non-isometric point sets with identical persistence. We
describe generic families of point sets inmetric spaces that have identical or even trivial
one-dimensional persistence. The results motivate stronger invariants to distinguish
finite point sets up to isometry.
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1 Motivations, problems, and outline of results

Topological Data Analysis (TDA) summarises geometric and topological features in
unstructured data and was pioneered by Serguei Barannikov (1994), Claudia Frosini
and Landi (1999), Vanessa Robins (1999), and Edelsbrunner et al. (2000). The key
papers of Gunnar Carlsson (2009), Robert Ghrist (2008), and Shmuel Weinberger
(2011) were followed by substantial developments of Fred Chazal et al. (2016) and
others.
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Fig. 1 Many non-isometric sets have the same 0D persistence and trivial 1D persistence. Theorem 4.4
extends these examples to generic families of sets by adding ‘tails’ at red corners (colour figure online)

The main tool of TDA (Edelsbrunner and Harer 2008) is persistent homology,
which is defined below via a filtration of complexes on a point cloud (a finite set
A of unordered points). One can also consider filtrations of sublevel sets of a scalar
function.

Definition 1.1 (A filtration of complexes {C(A;α)}) Let A be any finite set.
(a) A simplicial complex C on A is a finite set of subsets σ ⊂ A (simplices) such that
all subsets of σ ⊂ A and hence all intersections of simplices are simplices of C .
(b) The dimension of a simplex σ on k + 1 points is k. We assume that all points
of A are 0-dimensional simplices, sometimes called vertices of C . A 1-dimensional
simplex (or edge) e between points p, q ∈ A is the unordered pair denoted as [p, q].
(c) An ascending filtration {C(A;α)} is a family of complexes on the vertex set A,
paremetrised by a scale α ∈ R so that C(A;α′) ⊆ C(A;α) for α′ ≤ α. �
Definition 1.2 (1D persistence and barcode) For any filtration {C(A;α)} of com-
plexes on a cloud A in a metric space, a homology class γ ∈ H1(C(A;αi )) is
born at αi = birth(γ ) if γ is not in the full image under the induced homo-
morphism H1(C(A;α)) → H1(C(A;αi )) for any α < αi . The class γ dies at
α j = death(γ ) ≥ αi when the image of γ under H1(C(A;αi )) → H1(C(A;α j ))

merges into the image under H1(C(A;α)) → H1(C(A;α j )) for some α < αi .
Let α1, . . . , αm be all scales when a homology class is born or dies in H1(C(A;α)).

Letμi j be the number of independent classes in H1(C(A;α)) that are born atαi and die
at α j . The 1D persistence diagram PD1{C(A;α)} ⊂ R

2 is the multi-set consisting of
the pairs (αi , α j ) with integer multiplicities μi j ≥ 1. The 1Dbarcode is the unordered
multi-set of intervals [αi , α j ) with multiplicities μi j . �

The birth-death pairs from Definition 1.2 can be similarly defined for any k-
dimensional homology groups Hk with k ≥ 0 and coefficients in a field, though
the coefficients in Z2 = {0, 1} are used in practice and in this paper.

Standard filtrations of (Vietoris-Rips, Čech and Delaunay) complexes on a point
cloud A are introduced in Definition 2.1. For all these filtrations in dimension 0, the
homology group H0(C(A;α)) is generated by the single-linkage clusters of A formed
by all points that can be connected through inter-point distances up to 2α. Then all
homology classes of H0(C(A;α)) are born at α = 0 (isolated dots) and die at α equal
to half-lengths of all edges in a Minimum Spanning Tree MST(A). Figure 1 shows
the edges of MST(A) in green: one edge of length 2 and eight edges of length 1 for
each vertex set A.

In all examples of Fig. 1, the 1-dimensional persistence is trivial (empty due to no
pairs with death > birth) because all rectangular ‘dominoes’ do not create cycles in
the 1D homology for the standard filtrations of complexes.
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Finite metric spaces with identical or trivial 1D persistence…

Fig. 2 The set A of 10 points in the centre is extended by four tails going out from red points. All such sets
have trivial 1D persistence by Corollary 4.5, but all such sets in general position are not isometric to each
other. The black edges form a minimum spanning tree (colour figure online)

In any dimension for filtrations based only on inter-point distances, the resulting
persistence diagram is invariant under isometry preserving inter-point distances, not
up to more general continuous deformations.

Hence most persistence-based classifications distinguish point clouds only up to
isometry, which is an important equivalence due to the rigidity of many real-life
structures. Figure 1 shows sets A ⊂ R

2 whose points (in blue and red) form 1 × 2
‘dominoes’ that have identical persistence in dimensions 0 and 1.

To understand the strength of persistence as an isometry invariant, the following
problem asks to fully describe the inverse of the persistence map.

Problem 1.3 (Inverting persistence) For a givenfiltration of complexes, find necessary
and sufficient conditions for finite metric spaces to have a given persistence diagram
in each dimension. In particular, describe all 1D homologically trivial point sets that
(by definition) have a trivial (empty) 1D persistence diagram. �

The analogue of Problem 1.3 was solved for 0-dimensional persistence of Morse-
like functions on the interval (Curry 2018), see also (Catanzaro et al. 2020). Main
Theorem 4.4 will show how any number of points can be added to any finite point set
whilst leaving the 1-dimensional persistence unchanged, see Fig. 2 extending Fig. 1.

Corollary 4.5 describes generic families of finite metric spaces that have trivial 1-
dimensional persistence for the standard filtrations of simplicial (Vietoris-Rips, Čech
and Delaunay) complexes in Definition 2.1. For high-dimensional data, usually only
the Vietoris-Rips complex (determined by its 1D skeleton) is computationally feasible
(Bauer 2021). Problem 1.3 for point clouds and persistence in dimensions more than
1 will be discussed in future work.

In the context of Problem 1.3, the resulting families of point clouds inRN form vast
open subspaces (in the space of isometry classes of all point clouds in RN ), which are
mapped by to a single 1D persistence diagram. This result complements the famous
stability theorem (Cohen-Steiner et al. 2005) stating that under bounded noise, the
bottleneck distance between persistence diagrams of a point set and its perturbation
has an upper bound depending on the magnitude of the perturbation. However, there
is no lower bound, so a perturbation of a point set can result in the corresponding
persistent homology remaining unchanged.
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Section 4 introduces definitions and proves auxiliary lemmas needed for our main
Theorem 4.4, which describes how, given a finite point set, we can add an arbitrarily
large point set without affecting the one-dimensional persistent homology. Section5
summarises large-scale experiments that reveal important information on the preva-
lence, or more likely lack, of significant persistent features occurring in randomly
generated point clouds in many dimensions.

Since persistence is preserved under small perturbations of many point clouds, we
might be interested in stronger isometry invariants discussed in Sect. 6. Indeed, many
applications (Edelsbrunner et al. 2021) need to reliably distinguish point sets up to
isometry or similar equivalence relations such as rigid motion or uniform scaling. A
uniform scaling also scales persistence, but a more general continuous deformation of
data changes persistence rather arbitrarily.

2 Edges that are important for 1D persistence

This section introduces three classes of edges (short, medium, and long) that will
help build point sets with identical 1D persistence. Since persistent homology can be
defined for any filtration of simplicial complexes on an abstract finite set A, the most
general settings are recalled in Definition 1.1. Definition 2.1 introduces Vietoris-Rips,
Čech and Delaunay complexes on a finite set A in any metric space M or for A ⊂ R

N

for Delaunay complexes.
Let M be any metric space with a distance d satisfying all metric axioms. An

example of a metric space is RN with the Euclidean metric. For any points p, q ∈
A ⊂ M , the edge e = [p, q] has the length d(p, q). For a point cloud A ⊂ R

N ,
e = [p, q] has the Euclidean length |p − q| and can be geometrically interpreted as
the straight-line segment connecting the points p, q ∈ A ⊂ R

N .
Definition 2.1 introduces the simplicial complexes VR(A;α) and Čech(A;α) on

any finite set A inside an ambient metric space M , although A = M is possible. For
a point p ∈ A and α ≥ 0, let B̄(p;α) ⊂ M denote the closed ball with centre p and
radius α. A Delaunay complex Del(A;α) ⊂ R

N will be defined for a finite set A only
in R

N because of extra complications arising if a point set A lives in a more general
metric space (Boissonnat et al. 2018).

Definition 2.1 (Complexes VR, Čech, and Del) Let A be any finite set in a metric
space M . Fix a scale α ≥ 0. Each complex C(A;α) below has the vertex set A.

(a)TheVietoris-Rips complexVR(A;α)has all simplices onpoints p1, . . . , pk ∈ A
whose pairwise distances are at most 2α, so d(pi , p j ) ≤ 2α for i 	= j in {1, . . . , k}.
(b) The Čech complex Čech(A;α) has all simplices on points p1, . . . , pk ∈ A such
that the full intersection ∩k

i=1 B̄(pi ;α) is not empty.
(c) For any finite set of points A ⊂ R

N , the convex hull of A is the intersection of all
closed half-spaces of RN containing A. Each point pi ∈ A has the Voronoi domain

V (pi ) = {q ∈ R
N | |q − pi | ≤ |q − p j | for any point p j ∈ A, p j 	= pi }.
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TheDelaunay complexDel(A;α) has all simplices on points p1, . . . , pk ∈ A such that
∩k
i=1(V (pi ) ∩ B̄(pi ;α)) 	= ∅ (Delaunay 1934). Alternatively, a simplex σ on points

p1, . . . , pk ∈ A is called aDelaunay simplex if there is an (N−1)-dimensional sphere
SN−1 that passes through the points p1, . . . , pk and does not enclose any points of A
(Shewchuk 2000).

In a degenerate case, the smallest (k − 2)-dimensional sphere Sk−2 above can
contain more than k points of A. If σ is enlarged to the convex hull H of all points in
A ∩ Sk−2, then Del(A;α) becomes a polyhedral Delaunay mosaic.

For simplicity, we can choose any triangulation of H into Delaunay simplices.
When the scale α becomes too large, Del(A;α) ⊂ R

N stops growing and becomes a
Delaunay triangulation of the convex hull of A, which is unique in general position.
The complexes of the types above will be called geometric complexes for brevity. �

Both complexes VR(A;α) and Čech(A;α) are abstract and so are not embedded
in R

N , even if A ⊂ R
N . Though Del(A;α) is embedded into R

N , its construction
has a near-linear time or quadratic time in the size of A only in dimensions N = 2, 3
(Cignoni et al. 1998). For high dimensions N > 3 or any metric space M , the simplest
complex to build and store is VR(A;α). Indeed, the Vietoris-Rips complex VR(A;α)

is a flag complex determined by its 1-dimensional skeleton VR1(A;α) so that any
simplex of VR(A;α) is built on a complete subgraph whose vertices are pairwise
connected by edges in VR1(A;α).

The key idea of persistence is to view any point cloud A ⊂ R
N through the lens

of a variable scale α ≥ 0. When the scale α is increasing from the initial value 0, we
can form a new topological space from A by replacing points with closed balls of a
radius α. Then persistent homology identifies topological features of these spaces that
’persist’ over a long interval of the scale α.

More formally, for any fixed scale α ≥ 0, the union ∪p∈A B̄(p;α) of closed balls
is homotopy equivalent to the Čech complex Čech(A;α) and also to the Delaunay
complex Del(A;α) ⊂ R

N by the Nerve Lemma (Hatcher 2002, Corollary 4G.3), see
also the persistent version in (Chazal and Oudot 2008, Lemma 3.4).

For any geometric complexC(A;α) fromDefinition 2.1, all connected components
of C(A;α) are in a 1–1 correspondence with all connected components of the union
∪p∈A B̄(p;α) of the closed balls centred at all p ∈ A. If an edge e = [p, q] enters a
complex C(A;α) at a scale α, then α = d(p, q)/2.

Definition 2.2 makes sense for any filtration of simplicial complexes from
Definition 1.1, not only for geometric complexes from Definition 2.1.

Definition 2.2 (Short, medium, long edges in a filtration) Let {C(A;α)} be any filtra-
tion of complexes on a finite vertex set A, see Definition 1.1. Let an edge e = [p, q]
between points p, q ∈ A enter the complex C(A;α) at the scale α = d(p, q)/2.
(a) Consider the 1-dimensional graph C ′(A;α) with vertex set A and all edges from
C(A;α) except the edge e. If the endpoints of e are in different connected components
of C ′(A;α), then the edge e is called short in the filtration {C(A;α)}.
(b) The edge e is called long in {C(A;α)} if A has a vertex v such that C(A;α) has
the 2-simplex 
pqv and both edges [p, v], [v, q] are in C(A;α′) for some α′ < α.
(c) If e is neither short nor long, then the edge e is called medium in {C(A;α)}. �
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Definition 2.2(b) implies that any long edge entersC(A;α)with a 2-simplex
pqv

at the same scale α and the boundary of this 2-simplex is homologically trivial in
C(A;α) due to the other two edges [p, v] and [v, q] that entered the filtration at a
smaller scale α′ < α.

Lemma 2.3 (Classes of edges) For any finite set A and a filtration {C(A;α)} from
Definition 2.1, all edges are split into disjoint classes: short, medium, long. �

Proof ByDefinition 2.2(b), the endpoints p, q of any long edge e = [p, q] ⊂ C(A;α)

are connected by a chain of two edges [p, v] ∪ [v, q] that entered the filtration at a
smaller scale α′ < α. Hence the long edge e cannot be short by Definition 2.2(a). So
the three classes of edges in Definition 2.2 are disjoint. ��

Definition 2.2 defined classes of edges for any filtration of complexes. Proposi-
tion 2.4 interprets long edges in VR and Cech filtrations via distances.

Proposition 2.4 (Long edges in VR, Čech, Del) Let A be a finite metric space.
(a) An edge e = [p, q] in the Vietoris-Rips filtration {VR(A;α)}, is long if and only
if A has a point v such that e = [p, q] is strictly longest in the 2-simplex 
pqv.
(b) An edge e = [p, q] in the Čech filtration {Čech(A;α)} is long if and only if A has
a point v such that e = [p, q] is strictly longest in the 2-simplex 
pqv and the triple
intersection B̄(p;α) ∩ B̄(q;α) ∩ B̄(v;α) is not empty for α = d(p, q)/2.
(c) For A ⊂ R

N , an edge e = [p, q] in the Delaunay filtration {Del(A;α)} is long
if and only if A has a point v such that e = [p, q] is strictly longest in the 2-simplex

pqv and V (p)∩ B̄(p;α)∩V (q)∩ B̄(q;α)∩V (v)∩ B̄(v;α) 	= ∅ for α = |p−q|/2.
(d) For A ⊂ R

N and any filtration from Definition 2.1 and an edge [p, q] in C(A;α),
if A has a point v such that the angle at v in 
pqv is not acute, then [p, q] is long. �
Proof For all filtrations from Definition 2.1, an edge e enters C(A;α) at the scale
α = d(p, q)/2. By Definition 2.2(b), a long edge enters C(A;α) together with a
2-simplex 
pqv for some v ∈ A, while the other two edges [p, v], [v, q] entered the
filtration at a smaller scale α′, the edge e = [p, q] is longest in the 2-simplex 
pqv.
(b) For the Čech filtration, the triple intersection B̄(p;α) ∩ B̄(q;α) ∩ B̄(v;α) is
non-empty to guarantee that Čech(A;α) includes 
pqv by Definition 2.1(b).
(c) For the Delaunay filtration, V (p) ∩ B̄(p;α) ∩ V (q) ∩ B̄(q;α) ∩ V (v) ∩ B̄(v;α)

is not empty to guarantee that Del(A;α) includes 
pqv by Definition 2.1(c).
(d) For all filtrations (Vietoris-Rips, Čech and Delaunay) and A ⊂ R

N , if the angle
at v in 
pqv is not acute, then [p, q] is strictly longest in 
pqv, which finishes the
proof for the Vietoris-Rips filtration by part (a). The closed ball B̄(u;α) centred at
the mid-point u of [p, q] contains all p, q, v, so the point u belongs to B̄(p;α) ∩
B̄(q;α) ∩ B̄(v;α, which finishes the proof for the Čech filtration by part (b).

For the Delaunay filtration, since the edge [p, q] entered Del(A;α) at the scale α,
Definition 2.1(c) gives an (N − 1)-dimensional sphere SN−1 that passes through p, q
and does not enclose any point of A. Let S(v) be the smallest (N − 1)-dimensional
sphere that passes through p, q, v. If S(v) encloses (strictly inside) no points of A, then
the 2-simplex 
pqv is Delaunay by Definition 2.1(c) and enters Del(A;α) together
with [p, q] at α = |p−q|/2, so [p, q] is long by Definition 2.2(b). Otherwise, we will
find another empty sphere circumscribing a non-acute Delaunay 2-simplex on [p, q].
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Fig. 3 Left: an edge [p, q] opposite to a non-acute angle in a 2-simplex 
pqw, see the proof of
Proposition 2.4(d). Middle and Right: classes of edges by Definition 2.2 in Example 2.5

The centres of the spheres SN−1 and S(v) lie in the (N−1)-dimensional hyperspace
H that perpendicularly splits the edge [p, q] at its mid-point u. Connect these centres
by the straight-line path of points Ot , t ∈ [0, 1], within H . For every centre Ot ∈ H ,
consider the (N −1)-dimensional sphere St with the radius Rt = |Ot − p| = |Ot −q|
so that St passes through p, q for all t ∈ [0, 1], see Fig. 3(left).

Then the continuous family of spheres deforming from SN−1 to S(v) should contain
a sphere St that passes through a point w ∈ A − {p, q} and encloses no points of
A. This point w should lie inside the spherical segment bounded by S(v) and the
(N − 1)-dimensional hyperspace H1 passing through [p, q] orthogonally to [u, O1].

Since this segment is not larger than a half-ball bounded by S(v), any such point w
has a non-acute angle∠pwq on the diameter [p, q] of the (N−2)-dimensional sphere
S(v)∩ H1. Then the non-acute 2-simplex
pqw is Delaunay by Definition 2.1(c) and
enters Del(A;α) together with [p, q], so [p, q] is long by Definition 2.2(b). ��
Example 2.5 (Classes of edges on 3 and 4 points) For any 3-point set A ⊂ R

N , let the
edges of A have lengths |e1| ≤ |e2| < |e3|. By Definition 2.2, in {VR(A;α)} the edge
e3 is long whilst the edges e1, e2 are short, see Fig. 3 (middle). If |e1| < |e2| = |e3|,
then the edge e1 is short but both edges e2, e3 are medium, not long. If |e1| = |e2| =
|e3|, then all three edges are medium. Let C(A;α) be any geometric complex from
Definition 2.1 on a finite set A ⊂ R

2. If the set A consists of four vertices of the unit
square, all square sides are medium whilst both diagonals are long, see Fig. 3 (right).
If the set A consists of four vertices of a rectangle that is not a square, the two shorter
sides are short, the longer sides are medium and both diagonals are long. �

3 Tails without medium edges in ametric space

As usual, we consider homology groups with coefficients in a field, say Z2.

Proposition 3.1 (No medium edges ⇒ trivial H1) For any filtration {C(A;α)} on a
finite set A from Definition 1.1, when a scale α ≥ 0 is increasing, a new homology
cycle in H1(C(A;α)) can be created only due to a medium edge in C(A;α). Hence,
if {C(A;α)} has no medium edges, then H1(C(A;α)) is trivial for α ≥ 0. �

Proof When building the complex C(A;α), if we add a short edge e, by Defini-
tion 2.2(a), the previously disjoint components of C1(A;α) containing the endpoints
p, q of e become connected. Hence no 1-dimensional cycle in C1(A;α) is created.

For any α, let a cycle γ have just appeared in H1(C(A;α)), represented by several
edges including e1, ...ek that have appeared at the same scale α. By Lemma 2.3 each
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Fig. 4 A tail T around a ray R with vertex v in R
2, see Definitions 3.4 and 3.6. Left: all angles are not

greater than the angular deviation ω(T ; R). Right: the angular thickness θ(T ; R) can be smaller than the
angular deviation ω(T ; R)

ei is either short, medium or long. By Definition 2.2(b) any long edge e = [p, q]
enters C(A;α) strictly after two shorter edges [p, v], [v, q], and at the same time as
the triangle 
pqv. The cycle γ including the edge [p, q] is homologically equivalent
to the cycle with [p, q] replaced with the chain [p, v] ∪ [v, q]. Hence we can assume
that all e1, . . . , ek are either short or medium. Since the endpoints of ei are connected
by the complementary path γ − ei , each ei cannot be short by Definition 2.2(a) for
i = 1, . . . , k. So γ contains at least one medium edge. Since only medium edges lead
to non-trivial cycles, if A has no medium edges, then H1(C(A;α)) is trivial.

Definition 3.2 (Tail of points) For a fixed filtration {C(A;α)} on a finite set A from
Definition 1.1, a tail T in ametric spaceM is any ordered sequence T = {p1, . . . , pn},
where p1 is the vertex of T , any edge [pi , pi+1] between successive points is short,
and any edge [pi , p j ] between non-successive points is long for any 1 ≤ i < j ≤ n.

�

Proposition 3.3 (Tails have trivial PD1) Any tail T from Definition 3.2 for a filtration
{C(T ;α)} of complexes from Definition 1.1 has trivial 1D persistence.

Proof Since any tail T has no medium edges by Lemma 2.3, the tail T has trivial
H1(C(T ;α)) for any α ≥ 0 by Proposition 3.1, hence trivial 1D persistence. ��

If vectors are not explicitly specified, all edges and straight lines are unoriented.We
measure the angle between unoriented straight lines as their minimum angle within
[0, π

2 ], see Fig. 4(left).
Definition 3.4 (Angular deviation ω(T ; R) from a ray R) In R

N , a ray is any
half-infinite line R going from a point v (the vertex of R). For any sequence
T = {p1, . . . , pn} of ordered points in R

N , the angular deviation ω(T ; R) of T
relative to R is the maximum angle ∠(R, [p, q]) ∈ [0, π

2 ] over all distinct points
p, q ∈ T . �

Lemma 3.5 (Tails in RN ) In RN , let R be a straight infinite ray with a vertex v = p1
and T be any sequence of points p1, . . . , pn with an angular deviation ω(T ; R) < π

4 .
(a) For any i < j < k, the angle ∠pi p j pk is non-acute. The edge between the
non-successive points pi , pk is long in any filtration {C(T ;α)} in Definition 2.1.
(b) Any edge between successive points p j−1, p j , j = 2, . . . , n, is short in {C(T ;α)}.
Hence T has no medium edges in {C(T ;α)} and is a tail by Definition 3.2.

Proof (a) The condition ω(T ; R) < π
4 implies that all points of T can be ordered by

their distance from the vertex v = p1 to their orthogonal projections in the ray R.
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Apply a parallel shift to pi , p j , pk so that p j ∈ R. In the 2-simplex 
pi p j pk , the
angle

∠pi p j pk = π − ∠(R, [p j pi ]) − ∠(R, [p j pk]) ≥ π − 2ω(T ; R) >
π

2

is non-acute due to ω(T ; R) < π
4 , hence strictly largest. By Proposition 2.4(d) the

edge [pi , pk] is long in any filtration {C(T ;α)} in the sense of Definition 2.2(b). In
particular, the edge [pi , pk] is longer than both [pi , p j ] and [p j , pk] for any i < j < k.
(b) The points p j−1, p j remain in disjoint components of C1(T ;α) after adding all
other edges of the same length |p j − p j−1|. Indeed, we proved above that any other
edge connecting non-successive points pi , pk for i ≤ j − 1 < j ≤ k is longer than
the edge [p j−1, p j ] between intermediate successive points. ��

Figure 4 (right) illustrates the angular thickness below for Theorem 4.4 later.

Definition 3.6 (Angular thickness θ ) Let R ⊂ R
N be a ray with a vertex v = p1,

T = {p1, . . . , pn} be a finite sequence of points. The angular thickness θ(T ; R) of T
with respect to R is the maximum angle ∠(R, [p1, pi ]) for i = 2, . . . , n. �

4 Persistence for long wedges and with tails

This section proves main Theorem 4.4 saying that the 1D persistence for a point cloud
A remains unchanged under adding a suitable tail T of points to A. The key step is
Theorem 4.2 describing how to compute the 1D persistence for a union of point clouds
∪k
i=1Ai sharing a single point as defined below.

Definition 4.1 (A long wedge) Let A1, . . . , Ak be finite point clouds sharing one
common point v. In a filtration {C(∪k

i=1Ai ;α)} from Definition 1.1, call a simplex
heterogeneous if its vertices don’t include v and belong to at least two different clouds
Ai for i = 1, . . . , k. Assume that any heterogeneous edge of {C(∪k

i=1Ai ;α)} is long
in the sense of Definition 2.2(b). Also assume that if any heterogeneous 2-simplex
abc enters the filtration {C(∪k

i=1Ai ;α)} at a scale α, then C(∪k
i=1Ai ;α) includes the

2-simplices abv, bcv, cav. Then the union ∪k
i=1Ai is called a long wedge. �

In topology, a wedge (or bouqet) ∨k
i=1C(Ai ;α) of complexes, each with a base

point v j , is the quotient of the disjoint �k
i=1C(Ai ;α), where all base points v1, . . . , vk

are collapsed to one point v. (Hatcher 2002, Corollary 2.25) proves an isomorphism
H1(∨k

i=1C(Ai ;α)) → ⊕k
i=1H1(C(Ai ;α)). Theorem 4.2 proves a similar isomor-

phism for the larger complex C(∪k
i=1Ai ;α) of a long wedge ∪k

i=1Ai of point clouds
instead of the wedge ∨k

i=1C(Ai ;α) of smaller complexes.

Theorem 4.2 (Persistence of a long wedge) For any filtration {C(∪k
i=1Ai ;α)} of a

long wedge from Definition 4.1, H1(C(∪k
i=1Ai ;α)) is isomorphic to the direct sum

⊕k
i=1H1(C(Ai ;α)) for all α. Hence the 1D persistence diagram PD1{C(∪k

i=1Ai ;α)}
is the union of the 1D persistence diagrams PD1{C(Ai ;α)} for i = 1, . . . , k. �
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Proof Due to the isomorphism H1(∨k
i=1C(Ai ;α)) ∼= ⊕k

i=1H1(C(Ai ;α)) by
(Hatcher 2002, Corollary 2.25), it suffices to prove that H1(∨k

i=1C(Ai ;α)) ∼=
H1(C(∪k

i=1Ai ;α)).
The inclusion ∨k

i=1C(Ai ;α) ⊂ C(∪k
i=1Ai ;α) induces the homomorphism

H1(∨k
i=1C(Ai ;α)) → H1(C(∪k

i=1Ai ;α)) whose bijectivity is proved below.
Surjectivity of h. By Definition 2.2(b) any long edge e = [p, q] belongs to a

complex C(∪k
i=1Ai ;α) together with a 2-simplex pvq whose edges [p, v] and [q, v]

have already entered C(∪k
i=1Ai ;α′) for some α′ < α.

Replace the edge [p, q]with the homologous chain [p, v]∪[v, q] inC(∪k
i=1Ai ;α).

Continue applying these replacements for other long edges until any cycle of edges in
C(∪k

i=1Ai ;α) becomes homologous to a sum of non-long edges.
By Definition 4.1, both endpoints of any remaining non-long edge inC(∪k

i=1Ai ;α)

belong to the same cloud Ai . Then the resulting cycle is a sum of k sums s1, . . . , sk ,
where each si is a sum of only edges from C(Ai ;α). Since all clouds Ai share a
single point, the resulting cycle is a wedge (1-point union) of the sums s1, . . . , sk ,
which should be cycles in C(Ai ;α) for i = 1, . . . , k, respectively. So any cycle in
H1(C(∪k

i=1Ai ;α)) is homologous to an element in H1(∨k
i=1C(Ai ;α)).

Injectivity of h. It remains to prove that if any 1-dimensional cycle γ in
∨k
i=1C(Ai ;α) is bounded by a 2-dimensional chain σ ∈ C(∪k

i=1Ai ;α), then γ is
bounded by a chain τ in ∨k

i=1C(Ai ;α). By Definition 4.1 replace any heterogeneous
2-simplex [abc] in the closure of C(∪k

i=1Ai ;α) − (∨k
i=1C(Ai ;α)) with the sum of

non-heterogeneous simplices [abv] + [bcv] + [cav], whose total boundary is ∂[abc].
After all such replacements, we get a chain τ that has the same boundary ∂τ = γ

and has no heterogeneous simplices. The boundary ∂τ also has no heterogeneous
edges [p, q] with p ∈ Ai −{v} and q ∈ A j −{v} for i 	= j , else γ = ∂τ is not within
the wedge ∨k

i=1C(Ai ;α) of complexes. Hence every 2-simplex of τ is within a single
cloud Ai for some i = 1, . . . , k, so the whole chain τ is within ∨k

i=1C(Ai ;α). ��
Definition 4.3 is needed by (Bauer and Edelsbrunner 2017, Theorem 5.10)

to guarantee that the filtration of Čech and Delaunay complexes have the same
persistence.

Definition 4.3 (A cloud in general position) A finite cloud A ⊂ R
N is in general

position if every subset P ⊂ A of at most N + 1 points is affinely independent, and
no point of A − P lies on the smallest (N − 1)-dimensional circumsphere of P . �

Theorem 4.4 can be considered a Euclidean example of Theorem 4.2 and describes
sufficient conditions for a cloud A and a tail T to guarantee that three types of filtrations
on A ∪ T and A have the same persistence PD1.

Theorem 4.4 (A long wedge with a tail) Let A ⊂ R
N be a finite set, v ∈ A be

on the boundary of the convex hull of A, and R be a ray with a vertex v so that
μ(R; A) = min

p∈A−{v} ∠(R, [v, p]) ≥ π
2 . Let T be a tail with the vertex v such that

μ(R; A) ≥ θ(T ; R) + π
2 and A ∪ T is in general position by Definition 4.3. For any

filtration from Definition 2.1, we have that PD1{C(A ∪ T ;α)} = PD1{C(A;α)}. �
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Fig. 5 Left: the cloud A in Theorem 4.4 can be a single red point extendable by tails of blue points along
straight rays that form non-acute angles. Then all Delaunay triangles are obtuse, circumscribed by orange
circles, meaning that PD1{Del(C; α)} = ∅. Right: a tail T can be generically perturbed under conditions
of Theorem 4.4 without changing PD1 (colour figure online)

Proof Any heterogeneous edge [p, q] with p ∈ A and q ∈ T has a non-acute angle
at v

∠pvq ≥ ∠(R, [v, p]) − ∠(R, [v, q]) ≥ μ − ∠(R, [v, q]) ≥ μ − θ(T ; R) >
π

2
.

Due to the point v, the heterogeneous edge [p, q] is long in {C(A ∪ T ;α)} by Propo-
sition 2.4(d). To prove that A ∪ T is a long wedge by Definition 4.1, consider any
heterogeneous 2-simplex abc in the complex {C(A∪ T ;α)}. In the boundary ∂[abc],
any heterogeneous edge, say [a, b], is strictly the longest by the argument above, while
the edges [a, v], [b, v] are no longer heterogeneous, so A ∪ T is a long wedge.

In the case of a Čech filtration, let 
abc be any heterogeneous 2-simplex in
Čech(A ∪ T ;α) such that (say) a ∈ A and b, c ∈ T . For the heterogenous edges
[a, b] and [a, c], the earlier proved inequalities ∠avb ≥ π

2 and ∠avc ≥ π
2 implies

that v belongs to the smallest closed circumballs of [a, b] and [a, c], hence to the
smallest closed circumball of 
abc. Then the 3-simplex abcv and all its faces belong
to Čech(A ∪ T ;α). All conditions of Definition 4.1 hold, so A ∪ T is a long wedge.

Since the tail T has the trivial (empty) 1D persistence by Proposition 3.3, The-
orem 4.2 implies that PD1{C(A ∪ T ;α)} = PD1{C(A;α)} for any filtration form
Definition 2.1. By (Bauer and Edelsbrunner 2017, Theorem 5.10), the Delaunay and
Čech filtrations have the same persistence for clouds in general position, which finishes
the proof. ��

Figure 5 (left) illustrates a Delaunay filtration on a cloud A ⊂ R
2. All blue points

lie on rays that have pairwise angles 120◦ and emanate from a red point v so that all
green Delaunay triangles are obtuse with all orange circumcircles not enclosing any
points of A, which implies that PD1{C(A;α)} is empty.

Corollary 4.5 (Clouds with PD1 = ∅) If a point cloud A has PD1{C(A;α)} = ∅, then
any long wedge A ∪ T with a tail T has PD1{C(A ∪ T ;α)} = ∅. �

Proof Since the tail T has trivial 1D persistence by Proposition 3.3, Theorem 4.2
implies that PD1{C(A ∪ T ;α)} = PD1{C(A;α)} = ∅, see Fig. 5 (right).
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Fig. 6 Histograms of the persistence p = death−birth in 1000 point sets in nine configurations of the
parameters n and N . The x-axis is the persistence p, the y-axis is the percentage of pairs (birth,death) with
the given persistence p. Top row: N = 2; middle row: N = 5; bottom row: N = 8. Left column: n = 10;
middle column: n = 15; right column n = 20

5 Experiments on persistence of random sets

The experiments in this section use the Vietoris-Rips filtration whose 1-dimensional
persistence is computed by Bauer (2021), a fast implementation of Vietoris-Rips
persistence. The code of the first author is available in Smith (2022).

The aim is to understand how often random point sets have trivial persistence
or cycles with only low persistence, see more general conjectures (Bobrowski and
Skraba 2022). The experiments depend on two parameters, the size n of a set, and the
dimension N that the point set lies in. For each n, N in the ranges chosen, we generate
1000 point sets of n points uniformly sampled in a unit N -dimensional cube.

Figure 6 shows histograms of the 1-dimensional persistence (death−birth) for nine
configurations of the parameters: set sizes n = 10, 15, 20 and dimensions N = 2, 5, 8.
Each histogramhighlights that one-dimensional persistent features are skewed towards
a low persistence. Geometrically, the pairs (birth,death) would be close to the diagonal
in a persistence diagram.

Recall that highly persistent features (birth,death) are naturally separated from
others with lower persistence p = death−birth by the widest diagonal gap in the
persistence diagram, see (Smith and Kurlin 2021). If we order all pairs (birth,death)
by their persistence 0 < p1 ≤ · · · ≤ pk , the widest gap has the largest difference
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Fig. 7 The median gap ratio of a point set with at least two 1D persistent features, as the set size varies
from n = 10 to n = 40 and the dimension N varies from N = 2 to N = 10

pi+1−pi over i = 1, . . . , k−1. Thiswidest gap can separate several pairs (birth,death)
from the rest, not necessarily just a single feature.

However, the first widest gap is significant only if it can be easily distinguished from
the second widest gap. So the significance of persistence can be measured as the ratio
of the first widest gap over the second widest gap. This invariant up to uniform scaling
of given data is called the gap ratio. Figure7 shows the median gap ratio calculated
over 1000 random point clouds in a unit cube for dimensions N = 2, . . . , 10 and point
set sizes n = 10, . . . , 40.

Figure 7 implies that for higher dimensions N, the median gap ratio quickly
decreases to within the range [1,2] as the number n of points is increasing. Hence, for
pure randomcloudswhen a persistence diagramcontains at least twopairs (birth,death)
above the diagonal, it is harder to separate highly persistent features from noisy
artefacts that are close to the diagonal.

Figure 7 also seems to suggest a limiting distribution as N → +∞.

6 Conclusions and discussion of other invariants

Main Theorem 4.4 showed how one can add an arbitrarily long tails to an existing point
set without affecting the 1-dimensional persistent homology. Corollary 4.5 implies that
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families of sets with trivial 1D persistence form vast continuous subspaces in the space
of isometry classes of finite sets.

The bottleneck distance between persistence diagrams vanishes on these subspaces
and cannot have a lower bound.We conjecture that Theorem 4.4 extends to any higher-
dimensional persistence in the following open problem.

Problem 6.1 (Adding tails preserves any persistence) Check if, for any point cloud
A ⊂ R

N and a tail satisfying Theorem 4.4, adding the tail T to A preserves any
k-dimensional persistence, so PDk{C(A ∪ T ;α)} = PDk{C(A;α)} for k ≥ 1. �

Theorem 4.4 gave only sufficient conditions that guarantee the same 1D persistence
under adding a tail. Problem 6.2 asks to weaken these conditions.

Problem 6.2 (Necessary conditions for preserving persistence) For each filtration
from Definition 2.1, find sufficient a necessary conditions on a cloud A and its tail T
such that PDk{C(A ∪ T ;α)} = PDk{C(A;α)} for k ≥ 1. �

Oudot and Solomon (2020) previously asked to find one point cloud for a given
persistence: “If a given persistence module does come from a point cloud, can that
point cloud be computed effectively?” Corollary 4.5 described a generic family of
clouds A ∪ T that all have trivial persistence PD1 = ∅. The deeper problem below
requires us to geometrically interpret persistence as an equivalence of clouds.

Problem 6.3 (Persistence as equivalence) Geometrically describe an equivalence
relation on point clouds A. e.g. as transformations of the ambient space, whose classes
are in a 1–1 correspondence with persistence diagrams PDk{C(A;α)} for k ≥ 1. �

Theorem 4.4 motivated comparisons of persistent homology with other isometry
invariants of point clouds. For finite sets of m ordered points, a complete isome-
try invariant is a classical distance m × m matrix whose brute-force adaptation to

unlabelled points requiresm! permutations. The simpler collection of
m(m − 1)

2
pair-

wise distances (with repetitions) between m unlabeled points is complete for sets in
general position (Boutin and Kemper 2004) but do not distinguish infinitely many
non-isometric m-point sets for m ≥ 4.

The local distribution of distances (Mémoli 2011) was recently studied under the
name of the Pointwise Distance Distribution (PDD) for finite and periodic sets (Wid-
dowson andKurlin 2022). The completeness of the PDD is easy for finite sets in general
position in R

N (Widdowson et al. 2022, Theorem 16) and was recently extended to
the much harder periodic case (Widdowson and Kurlin 2022, Theorem 4.4). The PDD
is conjectured to be complete for N = 2 but cannot distinguish counter-examples
(Pozdnyakov et al. 2020) for N = 3, which were classified by higher order invariants
in appendix C of the first version of Widdowson and Kurlin (2021) in 2021.

The recent even stronger invariants (Kurlin 2022, 2024)were proved to be Lipschitz
continuous (Kurlin 2023) and complete under rigid motion in any Euclidean spaceRN

(Widdowson andKurlin 2023), extended tometric spaceswithmeasures (Kurlin 2023).
The Lipschitz continuity is important for accurate predictions of material properties
(Ropers et al. 2022; Balasingham et al. 2024a, b).
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Another advantage of the PDD is its near-linear time based on a new algorithm
for nearest neighbours (Elkin and Kurlin 2023), which corrected gaps in the past
proofs for cover trees (Elkin and Kurlin 2022). The actual speed is so fast that more
than 200 billion pairwise comparisons of all 660K+ periodic crystals in the world’s
largest database of real materials were done within two days on a modest desktop.
This experiment detected physically impossible isometric duplicateswhose underlying
publications are investigated by five journals for data integrity (Widdowson et al. 2022,
section 7).

More importantly, the above experiment justified the Crystal Isometry Principle
(CRISP) saying that all real periodic crystals have unique locations determined by
their complete isometry invariants in a common Crystal Isometry Space continuously
parametrised by complete isometry invariants. Even if examples of periodic sets with
the same PDD emerge, the slower isoset invariant is provably complete (Anosova and
Kurlin 2021) and has continuous metrics (Anosova and Kurlin 2022).
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