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Abstract
A shortcoming of persistent homology is that when two domains have different num-
bers of components or holes the persistence diagrams of any filtration will have an
infinite distance between them. We address this issue by revisiting the theory of
extended persistence, initially developed by Cohen-Steiner, Edelsbrunner andHarer in
2009 to quantify the support of the essential homology classes for Morse functions on
manifolds. We simplify the mathematical treatment of extended persistence by formu-
lating it as a persistence module derived from a sequence of relative homology groups
for pairs of spaces. Then, for n-manifolds with boundary embedded in R

n , we use
Morse theory to show that the extended persistent homology of a height function over
M can be deduced from the extended persistent homology of the same height function
restricted to ∂M . As an application, we describe the extended persistent homology
transform (XPHT); a topological transform which takes as input a shape embedded in
Euclidean space, and to each unit vector assigns the extended persistence module of
the height function over that shape with respect to that direction. We define a distance
between two shapes by integrating over the sphere the distance between the respective
extended persistence modules. By using extended persistence we get finite distances
between shapes even when they have different numbers of essential classes. We study
the application of the XPHT to binary images; outlining an algorithm for efficient
calculation of the XPHT exploiting relationships between the PHT of the boundary
curves to the extended persistence of the foreground.
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1 Introduction

The fundamental goal in statistical shape analysis is to define and compute meaning-
ful distances between different subsets of Euclidean space. A recent landmark-free
approach to quantify both the geometry and topology of a shape is to use a topological
transform such as the Persistent Homology Transform (PHT) or the Euler Character-
istic Transform (ECT). Both of these transforms take a shape M , viewed as a subset
R
n , and associate to each direction v ∈ Sn−1 a shape summary obtained by scanning

M in the direction v, calculating the persistent homology (PH(M, v)) and the Euler
curve respectively.

Different formulations of the PHT and ECT have been demonstrably useful in
diverse applications including prediction of disease progression from the shapes of
tumours (Crawford et al. 2020; Shboul et al. 2019), identification of different cultivars
from the shapes of leaves (Zhang et al. 2021), quantification ofmorphological variation
of barley seeds (Amézquita et al. 2022), and identification of structural differences
among proteins (Tang et al. 2022). This paper introduces an improved variant of this
topological transform called the extended persistent homology transform (XPHT) and
establishes properties that significantly reduce the time required to compute it.

A limitation of the PHT is it does not work well with shapes that have different
Betti numbers (the ranks of the homology groups). For M1, M2 ⊂ R

n , the p-distance
between their persistent homology transforms is defined as

dist p(PHT(M1),PHT(M2))
p =

∫
Sn−1

Wp(PH(M1, v),PH(M2, v))p dv

where Wp(·, ·) is the p-Wasserstein distance. If M1 and M2 have different Betti num-
bers, then

Wp(PH(M1, v),PH(M2, v)) = ∞,

for all v, and thus

dist p(PHT(M1),PHT(M2)) = ∞.

One potential work-around would be to replace the Wasserstein distance with a dif-
ferent metric on the space of persistence modules, one where having different Betti
numbers does not enforce infinite distance. A more satisfying approach is to replace
persistent homology with extended persistent homology.

The theory of extended persistence for functions over a manifold X was developed
in Cohen-Steiner et al. (2009b) to quantify the support of the essential homology
classes of X (these essential classes are the elements of H∗(X)). Even when the
domains have different Betti numbers we still have a finite Wasserstein distance
between their extended persistence modules. This motivates the Extended Persistent
Homology Transform (XPHT) as a topological transform, which is defined in exactly
the same manner as the PHT but replacing regular persistent homology with extended
persistent homology. By quantifying the size of essential classes it is possible for the
XPHT to be stable with respect to the addition or removal of “small” essential classes
in the different domains. For example, if we add an isolated noisy pixel to a binary
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image then the change in the XPHT will be commensurate with the size of a pixel.
This extra stability can provide greater power and robustness to statistical methods
that use distances between shapes derived from the XPHT. As this paper is focused
on computational aspects of the XPHT, comprehensive stability results are left as a
future research direction.

We believe that extended persistence is currently under-utilised within applied
topology and this paper addresses three potential obstacles. Firstly, we make extended
persistencemodulesmore theoretically accessible byplacing themwithin a generalised
framework that includes both regular persistence as well as extended persistence. Sec-
ondly, we provide motivation with an important example (in the form of the XPHT)
where using extended persistence provides a qualitative improvement in usefulness.
Lastly, we provide insights on how to ease the computation of extended persistence in
the important case of height functions, with implemented code for binary images.

1.1 Outline of paper

The mathematical treatment of the XPHT and algorithms to compute it requires the
adaption and extension ofmany standard definitionswithin applied topology.We cover
this material in some detail to make the paper more self-contained and to provide a
cohesive perspective on results from different areas of the literature.

The original definition of extended persistence in Cohen-Steiner et al. (2009b) is
made for functions defined on a smooth or piecewise-linear (PL)manifold and concate-
nates two homology sequences, the standard inclusion-induced persistent homology
sequence for the sublevel set filtration, followed by a descending relative homology
sequence for superlevel sets. In Sect. 2, we reformulate this as a persistence module
over a totally ordered set, with all transition maps defined as those induced on relative
homology by inclusions of a pair of spaces. These spaces are defined by a real-valued
function on a triangulated manifold with boundary, f : M → R. We then establish
a relationship between the intervals of extended persistence modules of f and (− f ),
which is one of the results required to reduce computation time for the XPHT.

In Sect. 3 we generalise the definition of Wasserstein and bottleneck distances
between persistence diagrams to apply to persistence modules over a totally ordered
metric space, with a defined set of ephemeral (zero-length) intervals. The Wasserstein
and bottleneck distances are optimal transport metrics with transport plans that include
a bijection between chosen subsets of intervals and then subsets of unmatched intervals.
To define the cost of a transportation plan we need a distance between intervals and
cost of having an interval unmatched. We show our definition agrees with the existing
definitions of bottleneck distance between extended persistence diagrams.

A key theoretical insight of our work, and one which makes the XPHT feasible to
compute, is that for manifolds with boundary embedded inRn the extended persistent
homology of a height function over M can be deduced from the extended persistent
homology of the same height function restricted to ∂M . This is the topic of Sect. 4. The
proof of this insight requires ideas fromMorse theory for manifolds with boundary, in
both the smooth and piecewise-linear settings. This background material is covered in
Sect. 4.1. We also precisely state the relationship between birth and death parameters
of extended persistence in terms of the different kinds of critical points of a smooth
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or PL Morse function on a manifold with boundary. Section4.2 then develops results
specifically for the case of a directional height function. It is worth noting that any
subset of Rn with positive weak feature size is arbitrarily close to a n-manifold with
boundary by taking an ε expansion. This means the restriction to n-manifolds with
boundary is reasonable from an application standpoint.

Adapting the definition of the persistent homology transform (PHT) to extended
persistence is straightforward. We cover this material in Sect. 5.

Shape analysis of objects in digital images is an application domain with wide
interest. Objects in binary images can be modelled as two dimensional manifolds with
boundary lying in the plane, so our XPHT results apply. In Sect. 6 we define boundary
curves that separate foreground and background connected components consistent
with a chosen digital adjacency, and show that these boundary curves are disjoint
simple closed PL 1-manifolds. Digital grids create degeneracy in the height func-
tion critical values, so we derive additional results that establish the correctness of
our implemented algorithms. Finally, in Sect. 7 we illustrate our R-package imple-
mentation by comparing the XPHT of the letters ‘A’ and ‘g’ rendered in a variety of
standard fonts. We find the XPHT of the upper case ‘A’ naturally separates the serif
and sans-serif fonts, and that the XPHT of the lower case ‘g’ naturally separates the
single-storey and the double-storey fonts.

1.2 Relation to Alexander duality for extended persistence

A form of Alexander Duality for extended persistence was proved in Edelsbrunner and
Kerber (2012). That paper considers the decomposition of the sphere into two setsU , V
withU ∪V = Sn andU ∩V a (n−1)-manifold, and proves results about the extended
persistence of a perfect Morse function f over these sets. A perfect Morse function
over Sn is a smooth function with exactly two critical points, one minimum and one
maximum. Edelsbrunner and Kerber prove that the extended persistence module of
U ∩ V is the direct sum of those for U and V (with minor adjustments for degree-0
homology). The statement of our Theorem 4.17 is effectively a special case of their
result. However, our proof is very different as it is based on Morse theory instead
of Alexander Duality. Another key difference in our results is that we show how the
extended persistence module for U ∩ V splits into the two different parts (Theorem
4.18); this is not established in Edelsbrunner and Kerber (2012). Since our ultimate
goal is to calculate the extended persistence of U from that of U ∩ V this splitting
criterion is pivotal.

2 Extended persistencemodules

2.1 Persistencemodules over totally ordered sets

Commonly, persistence modules are defined with an underlying parameter space a
subset of R but they can be defined where the parameter space is any totally ordered
set. This approach makes working with extended persistence substantially cleaner and
more intuitive as it facilitates the split of the single parameter space into ordinary and
relative homology parameter types.
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Definition 2.1 A totally ordered set (�,≤) is a set � with a relation ≤ which is

• Reflexive: that is α ≤ α for all α ∈ �,
• Antisymmetric: that is α ≤ β and β ≤ α implies α = β,
• Transitive: that is α ≤ β and β ≤ γ implies α ≤ γ , and
• Comparable: for all α, β either α ≤ β or β ≤ α.

Definition 2.2 Fix a field F and let � be a totally ordered set. A persistence module
P over � is a family {Vα}α∈� of F-vector spaces indexed by elements of �, together
with a family of homomorphisms {ϕβ

α : Vα → Vβ} such that ϕ
γ
α = ϕ

γ
β ◦ ϕ

β
α for all

α ≤ β ≤ γ , and ϕα
α = idVα . We call the ϕ

β
α transition maps. We say P is pointwise

finite dimensional if the Vα are finite dimensional for all α ∈ �.

In the algebraic theory of persistence modules there are often technical require-
ments about tameness, and being pointwise finite dimensional is generally a sufficient
condition. This is a reasonable assumption in almost any application. The most impor-
tant algebraic result is the decomposition theorem. This gives a complete yet discrete
description of a persistencemodule up to isomorphism.Wewill decompose persistence
modules into sums of interval modules, but first we must define interval persistence
modules.

We are all familiar with intervals that are subsets of the real line. We generalise this
notion to any totally ordered set as follows.

Definition 2.3 An interval in a totally ordered space (�,≤) is a subset I ⊂ � such
that for all α ∈ � either α ∈ I , or α ≤ θ for all θ ∈ I , or θ ≤ α for all θ ∈ I . An
interval module over an interval I is a persistence module II with vector spaces

Vα =
{
F for α ∈ I

0 for α /∈ I

and transition maps ϕ
β
α = idF when both α, β ∈ I and 0 otherwise.

For each interval module II we call b(II ) = inf I the birth parameter and d(II ) =
sup I the death parameter.

The nomenclature of “interval”was introduced for persistencemoduleswith param-
eter space R but it is still reasonable even in the generalised setting of totally ordered
sets. If we can map the totally ordered set to a subset of the real line, say f : � → R,
in a way that respects the order relation, then we can view each interval module as
having support f −1(I ) where I ⊂ R is some interval.

Theorem 2.4 (Crawley-Boevey (2015) Theorem 1.1) A pointwise finite dimensional
persistence module over any subset of R admits an interval decomposition. That is,
there is a multiset of intervals S such that the module is isomorphic to a direct sum of
interval modules

⊕
I∈S

II

where each II is an interval module. This decomposition is unique up to isomorphism.
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For the rest of the paper we assume all persistence modules are pointwise finite
dimensional and that the underlying parameter space is equivalent to a subset of
R (with respect to the order relation), and thus we can always assume an interval
decomposition occurs.

Given a persistence module P = ⊕
I∈SP

II we will use

b(P) = {b(II ) : I ∈ SP } and d(P) = {d(II ) : I ∈ SP }

to denote the multiset of birth parameters and death parameters in the interval decom-
position of P .

Readers may be familiar with the terms persistence barcode and persistence
diagram. Barcodes and diagrams are graphical representations of the interval decom-
position of a persistence module. In particular, a persistence diagram consists of a
multiset of points in R2, with each point (x, y) recording the birth and death parame-
ters of an interval from the decomposition. We use all three terms in this paper.

2.2 Extended persistence

Extended persistence combines the regular filtration of sublevel sets for f : M → R

with a filtration of relative homology groups of M with respect to superlevel sets of
f . This provides a wealth of extra information about the structure of M , especially in
the case that M is a manifold with boundary.

We first recall the definition of relative homology, and the maps induced by the
inclusion of a pair. Given a subcomplex X ⊂ Y we observe that the boundary map on
C∗(Y ) leaves C∗(X) invariant. This means we can define a chain complex C∗(Y , X)

where Ck(Y , X) = Ck(Y )/Ck(X) and the boundary map is

∂
(Y ,X)
k (α + Ck(X)) = ∂(α) + Ck−1(X).

We can then define the relative homology groups by

Hk(Y , X) = ker ∂(Y ,X)
k / im ∂

(Y ,X)
k+1 .

Relative homology is a generalisation of normal homology as Hk(Y ) = Hk(Y ,∅).
If X ⊂ Y ⊂ B and X ⊂ A ⊂ B we have an inclusion of pairs (Y , X) ⊂ (B, A).

This inclusion of pairs induces a map between their relative homology groups, ι∗ :
Hk(Y , X) → Hk(B, A), with ι(α + Ck(X)) = α + Ck(A).

We are now ready to define the extended persistent homology module as a form
of persistence module. The parameter space over which this module is constructed
is the union of two sets—one corresponding to ordinary homology and the other
corresponding to relative homology. Set O = {(t,Ord) : t ∈ R} and R = {(t,Rel) :
t ∈ R}. Let � = O ∪ R. We define a total order over � by

(s,Ord) < (t,Ord) when s < t
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Fig. 1 An illustration of extended persistence intervals for a rather abstract snail, M . The function f :
M → R is simply the x-coordinate and the function value is denoted by the blue-green colour gradient. We
have drawn a copy of M with its x-coordinate reflected to illustrate the superlevel sets used in the relative
part of the sequence (color figure online)

(s,Rel) < (t,Rel) when s > t

(s,Ord) < (t,Rel) for all s, t

We then assign vector spaces to each θ ∈ � defined by taking homology of suitable
pairs of sublevel and superlevel sets. As input we have a topological space M with
a bounded function f : M → R. Let Ms = f −1(−∞, s] and Ms = f −1[s,∞)

denote the sublevel and superlevel sets of f : M → R. We assign the vector spaces as
V(t,Ord) = Hk(Mt ,∅) and V(t,Rel) = Hk(M, Mt ). The transition maps are the natural
ones induced by inclusions of a pair. The composition of two such transition maps
corresponds exactly to themap on homology induced by the composition of inclusions.
This means that the transition maps commute as needed and we have constructed a
persistence module.

Each element of the interval decomposition will be supported over some interval
of �. These intervals are of three types. If the support contains only parameters in O
we call it ordinary, if the support is a subset of parameters in R we call it relative.
Finally, the persistent homology class might exist for parameters spanning both O and
R, in which case we call it essential. Essential persistent homology classes exist in the
vector space Hk(M,∅) = Hk(M) and in classical persistent homology are assigned a
death parameter of infinity. The object in Fig. 1 illustrates the parameter space � and
has classes of each type.

Remark 2.5 To preempt any confusion, we note a difference in our nomenclature from
some papers, including (Cohen-Steiner et al. 2009b). What we call essential classes
above are instead called “extended”. We prefer the term “essential” as these classes
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do indeed correspond to the essential classes of M . Furthermore it means we can use
“extended” to refer to any class in the extended persistence module.

We also partition the elements of the interval decomposition of extended persistent
homology into three sets depending on whether they are ordinary, relative or essential.
Following (Carlsson et al. 2019) we further split the essential classes into positive and
negative types. For an essential class with birth time (s,Ord) and death time (t,Rel),
we say it is positive if s < t and negative if s > t .

We can express the extended persistencemodule as a direct sum of ordinary, relative
and essential persistence modules. For an extended persistence module constructed
from sublevel and superlevel set filtrations of f : M → R denote these submodules
by Ordk(M, f ), Relk(M, f ) and Ess+k (M, f ) and Ess−k (M, f ), which are each per-
sistence modules over R. For Relk(M, f ) and Ess−k (M, f ) the order of parameters in
R is reversed—that is, the real value associated with the birth time is larger than the
real value associated with the death time. Note that in the case of height functions over
subsets of R2 (cf. the example in Fig. 1) Proposition 4.20 implies that Ess0 = Ess+0
and Ess1 = Ess−1 .

2.2.1 Duality

There is a form of duality between the ordinary persistent homology of f : M → R

and the relative persistent homology of (− f ) : M → R. This follows from results
in De Silva et al. (2011) but that paper uses substantially different notation to us.
Furthermore, that paper considers filtrations of simplicial complexes, a context where
we cannot naively switch between sublevel and superlevel sets. For these reasons, we
rewrite their proposition to suit the requirements of our setting.

Proposition 2.6 (Proposition 2.4 in De Silva et al. (2011)) Let M = {Mt } be a fil-
tration of simplicial complexes. Let PHk(M) be the persistence module of degree-k
persistent homology of the filtration M. Let PH0

k(M) be the restriction of PHk(M) to
persistence classes with finite lifetimes. Let PHk+1(M∞,M) be the persistencemodule
of relative homology classes Hk+1(M∞, Mt ) and let PH0

k+1(M∞,M) be the restric-
tion of PHk+1(M∞,M) to persistence classes with finite lifetimes. Then PH0

k(M) and
PH0

k+1(M∞,M) are isomorphic.

Corollary 2.7 Let M be a finite simplicial complex, with vertex set V , and geometric
realisation |M |. Let f : |M | → R be a continuous map such that on each cell
f is the linear interpolation of the values on its vertices. We have a bijection ρ

between the interval modules in the interval decomposition of Ordk(M, f ) to that of
Relk+1(M, (− f )) with

ρ(I[(b,ord),(d,ord))) = I[(−b,rel),(−d,rel))

Proof The PH0
k+1(M∞, Mt ) of De Silva et al. (2011) is the relative homology of M

with respect to the (increasing t) sequence Mt = f −1 (−∞, t]. But f −1 (−∞, t] =
(− f )−1 [−t,∞), so the sequence Mt of sublevel sets of f is identical to a sequence of
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superlevel sets, Ms , of (− f ), with s = −t . Note that when the filtration is expressed
as superlevel sets of (− f ), the parameter s is a decreasing one, as used in the relative
part of an extended persistence module.

From Proposition 2.6, we have a bijection between the intervals in the interval
decompositions with I[b,d) ⊂ PH0

k(M) matched to I[b,d) ⊂ PH0
k+1(M,M). Com-

posing this with the reparameterisation to superlevel set notation we have I[b,d) ⊂
PH0

k+1(M,M) rewritten as I[(−b,rel),(−d,rel)) ⊂ Rel(M, (− f )). �

We note that this duality result is quite different from the duality theorem of Cohen-

Steiner et al. (2009b), which is proved in the case that M is a triangulated d-manifold.
That paper goes on to also establish a symmetry theorem for extended persistence
for functions over manifolds without boundary, which we discuss in our notation and
context below.

2.2.2 Symmetry

In the case that M is a manifold we find that the information content in extended per-
sistence modules is greatly reduced by the isomorphisms established in the following
result.

Proposition 2.8 (Symmetry theorem of Cohen-Steiner et al. (2009b)) Let M be a
triangulated d-manifold and f : M → R be a piecewise-linear function interpolating
the values on the vertices of M. There are bijections, ψ•, between submodules of
extended persistence for f and (− f ) as follows:

ψO : Ordk(M, f ) → Ordd−k−1(M,− f ) I[(b,ord),(d,ord)) �→ I[(−d,ord),(−b,ord))

ψE : Essk(M, f ) → Essd−k(M,− f ) I[(b,ord),(d,rel)) �→ I[(−d,ord),(−b,rel))

ψR : Relk(M, f ) → Reld−k+1(M,− f ) I[(b,rel),(d,rel)) �→ I[(−d,rel),(−b,rel))

Remark 2.9 We note that Cohen-Steiner et al. (2009b) has a typographical error in
the dimensions for the relative homology classes, that was corrected in Cohen-Steiner
et al. (2009a).

Proof As in Cohen-Steiner et al. (2009b), first use Lefschetz duality Hk(X , ∂X) ↔
Hd−k(X ,∅) with X = Mt and the excision theorem to see that

Hk(M, Mt ) = Hk(Mt , ∂Mt ) = Hd−k(Mt ,∅).

Combined with the inclusion-induced maps on homology, this gives a bijection
between the finite intervals of ordinary and relative homology in complementary
dimensions: Relk(M, f ) ↔ Ordd−k(M, f ), with I[(b,rel),(d,rel)) �→ I[(d,ord),(b,ord)).
The same relationship holds for the essential homology classes: Essk(M, f ) ↔
Essd−k(M, f ), with I[(b,ord),(d,rel)) �→ I[(d,ord),(b,rel)). Note these bijections are those
established by the duality theorem of Cohen-Steiner et al. (2009b). Combined with
the duality result 2.7 above, we now see that

Relk(M, f ) ↔ Ordd−k(M, f ) ↔ Reld−k+1(M,− f )
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Essk(M, f ) ↔ Essd−k(M, f ) ↔ Essd−k(M,− f )

Ordk(M, f ) ↔ Reld−k(M, f ) ↔ Ordd−k−1(M,− f )

Composing the two bijections establishes the maps ψ• in each case. �

Remark 2.10 Our application to binary images has data M that are manifolds with
boundary, so the duality and symmetry theorems of Cohen-Steiner et al. (2009b) do
not apply directly. We use the duality result of De Silva et al. (2011) (expressed
as Corollary 2.7) to reduce the number of directions required when computing the
extended persistent homology transform, since it gives a bijection between the inter-
vals for height filtrations in opposite directions. Since the boundary ∂M of a manifold
with boundary (M, ∂M) is a manifold we use the above symmetry result to charac-
terise the essential classes of a height filtration in Ess0(∂M, f ) and Essn−1(∂M, f )
in Proposition 4.20.

3 Wasserstein distance between extended persistencemodules

3.1 Wasserstein distances between persistencemodules

There are many possible metrics between persistence modules, and various repre-
sentations of them. In this paper we restrict our attention to Wasserstein distances.
Wasserstein distances between persistence modules are usually defined in terms of
the points in their corresponding persistence diagrams. However, given our desire to
study extended persistence, we rephrase the definitions here in terms of persistence
modules over a totally ordered set. Wasserstein distances are a form of optimal trans-
port metric. A transportation plan between two persistence modules matches subsets
of intervals from each, with the remaining unmatched intervals paired with ephemeral
intervals. Since every persistence module considered in this paper is isomorphic to a
direct sum of intervalmodules it is sufficient to define our transportation plans between
persistence modules written in this form.

Definition 3.1 Let � be a totally ordered set and P = ⊕
Ii∈SP IIi and Q =⊕

I j∈SQ II j persistence modules over �. A transportation plan between P and Q
is a triple T = (ŜP , ŜQ, ρ) where ŜP ⊂ SP , ŜQ ⊂ SQ and ρ : ŜP → ŜQ is a
bijection. We call the intervals in ŜP and in ŜQ matched intervals in T , and we call
the intervals in SP\ŜP and in SP\ŜQ unmatched intervals in T .

Each transportation plan has an associated cost, constructed analogously to an L p

function metric. This in turn depends on the metric used to measure distance between
points in �, which we define below.

Definition 3.2 We call (�,≤, dist) a totally ordered metric space if (�,≤) is a totally
ordered set, and dist is an extended metric over � such that dist(β, γ ) ≤ dist(α, γ )

and dist(α, β) ≤ dist(α, γ ) whenever α ≤ β ≤ γ .

From the metric on � we obtain a p-distance between intervals over �, analogous
to the l p distance between points in R

2. Given two intervals I and I ′, the p-distance
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(for p ∈ [1,∞)) is defined as

dist p(I, I ′) = (
dist(b(I), b(I ′))p + dist(d(I), d(I ′))p

)1/p
.

The bottleneck, or ∞-distance, between intervals is

dist∞(I, I ′) = max{dist(b(I), b(I ′)), dist(d(I), d(I ′))}.

Note that for general interval modules this is actually a pseudo-distance as it cannot
distinguish between intervals with open or closed endpoints. However, if the persis-
tencemodules are constructed fromfiltrations involving closed sublevel and superlevel
sets then the intervals are always half-open, including the birth parameter and not
including the death parameter. When restricted to such half-open interval modules the
above definition of dist p will satisfy the identity of indiscernibles, making it an actual
distance. Throughout this paper we will work exclusively with persistence modules
that have these half-open intervals.

The final ingredient we need before defining the transportation plans and their costs
is the notion of an “empty interval”. For persistence diagrams these are points on the
diagonal, corresponding to intervals of zero length in the usual setting of persistence
modules over R. In the general definition of Wasserstein distance we are allowed to
fix any subset of interval modules to perform this role. We call this set the ephemeral
intervals denoted Eph. This name is inspired by the definition of an ephemeral persis-
tence module as one with distance zero to the trivial persistence module (see Chazal
et al. 2014).

We now define the cost of a transportation plan using p-distances between intervals
which are matched, and to each unmatched interval we assign a cost which is the
distance to its closest ephemeral interval.

Definition 3.3 Let � be a totally ordered set; P = ⊕
a∈SP Ia andQ = ⊕

b∈SQ Ib be
persistence modules over the ordered metric space (�,≤, dist). Let Eph denote the set
ephemeral intervals over �. Let T = (ŜP , ŜQ, ρ) be a transportation plan between
P and Q. For p ∈ [1,∞) we define the p-cost of T by

cp(T )p =
∑
a∈ŜP

distp(Ia, Iρ(a))
p +

∑
a∈SP\ŜP

inf
I∈Eph

{distp(Ia, I)p}

+
∑

b∈SQ\ŜQ
inf

I∈Eph
{distp(Ib, I)p}

and

c∞(T ) = max
{

sup
a∈ŜP

{dist∞(Ia, Iρ(a))}, sup
a∈SP\ŜP

{ inf
I∈Eph

{dist∞(Ia, I)}},

sup
b∈SQ\ŜQ

{ inf
I∈Eph

{dist∞(Ib, I)}}
}
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Observe that c∞(T ) is the limit of cp(T ) as p goes to infinity. The Wasserstein
distance is defined as the infimum of the costs of all transportation plans. Note that
there is always at least one possible transportation plan as we can choose ŜP and ŜQ
to be empty.

Definition 3.4 Fix p ∈ [1,∞). Let� be a totally ordered set andP = ⊕
a∈SP Ia and

Q = ⊕
b∈SQ Ib be persistence modules over the ordered metric space (�,≤, dist).

The p-Wasserstein distance between P and Q is

Wp(P,Q) = inf{cp(T ) | T a transportation plan between P and Q}.

The bottleneck distance between P and Q is

W∞(P,Q) = inf{c∞(T ) | T a transportation plan between P and Q}.

This definition agrees with the standard definitions of Wasserstein and bottleneck
distances between persistence diagrams when � is the real line with its standard
order, dist(s, t) = |s − t |, and Eph = {[t, t] : t ∈ R}. More generally, for any
totally ordered metric space and any choice for the set of ephemeral intervals, the
Wasserstein distance defined above will determine an extended metric. Again, for
general persistence modules this will be, strictly speaking, a pseudo-distance. But, as
discussed earlier, in this paper the persistence modules will only contain appropriate
half-open intervals and Wp(P,Q) satisfies the identity of indiscernibles.

3.2 Wasserstein distance for extended persistence

The Wasserstein distance between persistence modules is specified by the ordered
metric space and set of ephemeral intervalmodules. Recall fromSect. 2.2 that extended
persistent modules have parameter set � = O ∪ R, with O = {(t,Ord) : t ∈ R} and
R = {(t,Rel) : t ∈ R}, and the total order over P is

(s,Ord) < (t,Ord) when s < t

(s,Rel) < (t,Rel) when s > t

(s,Ord) < (t,Rel) for all s, t .

We make � an ordered metric space by constructing an appropriate extended metric
over �. A natural choice is

dist((s,Ord), (t,Ord)) = |s − t | for all s, t .
dist((s,Rel), (t,Rel)) = |s − t | for all s, t .
dist((s,Ord), (t,Rel)) = ∞ for all s, t .

Wealso need to define the set of ephemeral intervalmodules; there are three different
types: ordinary, relative and essential. We set

Eph ={I[(t,Ord),(t,Ord)) : t ∈ R} ∪ {I[(t,Rel),(t,Rel)) : t ∈ R}
∪ {I : b(I) = (t,Ord) and d(I) = (t,Rel) for some t ∈ R}.
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Fig. 2 Optimal transport
between the degree-1 essential
classes in the pretzel (three
non-trivial degree-1 essential
classes) and the donut (one
non-trivial degree-1 essential
class). The height function is the
horizontal coordinate. The
optimal matching pairs the green
essential classes to each other.
The red and blue essential
classes of the pretzel are
matched to ephemeral classes
for the donut—these are zero
length with height parameter
located at the mid-point of birth
and death parameters for the
corresponding essential class of
the pretzel. That is, we match
[(bi ,Ord), (di ,Rel)) to
[( bi+di

2 ,Ord), ( bi+di
2 ,Rel))

(color figure online)

An example that illustrates how essential classes are paired with ephemeral classes is
shown in Fig. 9.

For computational purposes it is much easier to split the calculation of distances
between extended persistence modules into separate calculations for the submodules
of the types Ord, Rel, Ess+ and Ess−. This is justified by the following proposition.

Proposition 3.5 Let P and Q be extended persistence modules in a single homology
degree and let P = Ord(P) ⊕ Rel(P) ⊕ Ess+(P) ⊕ Ess−(P) and Q = Ord(Q) ⊕
Rel(Q) ⊕ Ess+(Q) ⊕ Ess−(Q) be their decomposition into the four types of classes.
Then

Wp(P,Q)p =Wp(Ord(P),Ord(Q))p + Wp(Rel(P),Rel(Q))p

+ Wp(Ess
−(P),Ess−(Q))p + Wp(Ess

+(P),Ess+(Q))p

for p ∈ [1,∞) and

W∞(P,Q) = max
{
W∞(Ord(P),Ord(Q)),W∞(Rel(P),Rel(Q)),

W∞(Ess−(P),Ess−(Q)),W∞(Ess+(P),Ess+(Q))
}
.

Proof The right hand side of the both equations is the infimum of transportation costs
over the set of transportation plans which never match any intervals of different types.
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It is thus sufficient to show that for any transportation plan between P and Q there
is another transportation T with the same or lesser cost such that any matched pair
within T keeps to the same type. Any two intervals of different types of Rel, Ord or
Ess are an infinite distance apart. Since every interval module has finite distance to
some ephemeral interval it will always be more efficient to change any interval that is
matched to a different type to instead be unmatched. Similarly there is a higher cost
to match positive with negative essential classes than to leave both unmatched. �


It is worth observing that in previous work, such as Carlsson et al. (2019), Bauer
et al. (2020), the extended persistent homology modules are represented by multiple
persistence diagrams, separating the different types into their own persistence dia-
grams. The ordinary persistence diagram has points above the diagonal, the relative
persistence diagram has points only below the diagonal, and the essential persistence
diagram has points on both sides—positive above and negative below. The bottleneck
distance in Bauer et al. (2020) is then defined as the formula within Proposition 3.5.

Remark 3.6 We believe that the Wasserstein distance could also be defined analogous
to the algebraic Wasserstein distance in Skraba and Turner (2020) but adapted to
extended persistence, and that these two versions of Wasserstein distances would be
equivalent. Given the enormous homological algebra set up required to prove such a
result it is beyond the scope of this paper and left as a future direction of research.

4 Morse theory for manifolds with boundary and extended
persistence

This section contains the main theoretical results relating extended persistence of a
height function over amanifold with boundary to that of the same function restricted to
the boundary.We establish these results usingMorse theory, a standard techniquewhen
working with persistence modules built from sublevel set filtrations. Previous results,
however, apply only to functions on manifolds, and not to functions on manifolds with
boundary. The presence of a boundary requires extra analysis to characterise critical
points located on this boundary. We start by summarising the necessary definitions
and results fromMorse theory covering both the smooth and piecewise-linear settings.

4.1 Background: smooth and PLMorse theory

We need our results about extended persistent homology to hold for both the smooth
(theoretical) case, and the piecewise-linear setting relevant to numerical computations.
Most of the theorems and their proofs are effectively the same but we must first set
up the definitions and relevant lemmas about critical points. The background theory
is covered for the smooth case in Braess (1974), Jankowski and Rubinsztejn (1972),
and the piecewise linear case in Grunert et al. (2019). We direct readers interested in
more details to these references.

Although regular and critical points and their indices in Morse theory are more
commonly defined in terms of the derivatives and Hessian of a function, this approach
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does not translate well to the PL setting. There is, however, an equivalent approach
to defining critical points and indices that uses polynomial functions over charts, and
this can be easily adapted to the PL setting. To make this paper self-contained we start
by recalling the definitions of smooth and PL manifold (with or without boundary) in
terms of charts.

Definition 4.1 For a topological space, M , and an open subset U ⊂ M , a chart is
a homeomorphism φ : U → φ(U ) where φ(U ) is a subset of Euclidean space. An
atlas for M is an indexed family of charts {(Uα, φα}) that cover M , i.e., ∪Uα = M . A
topological n-manifold is a second countable, Hausdorff space equipped with an atlas
where the codomain of each φα is an open subset of Rn . A topological n-manifold
with boundary is a second countable, Hausdorff space equipped with an atlas where
the codomain of each φα is an open subset of [0,∞) × R

n−1.

To introduce the adjectives smooth and piecewise linear (PL) we need to discuss
the compatibility of φα and φβ on the intersections of their domains. Given two charts
(Uα, φα) and (Uβ, φβ) where Uα ∩ Uβ has non-empty intersection we can define
two different maps by restricting the domains of φα and φβ to Uα ∩ Uβ . The new
homeomorphisms are φα ◦ (φβ)−1 : φβ(Uα ∩Uβ) → φα(Uα ∩Uβ) and φβ ◦ (φα)−1 :
φα(Uα ∩Uβ) → φβ(Uα ∩Uβ). These are called the transition maps between charts.

Definition 4.2 A topological n-manifold, with or without boundary, is called smooth
if its transition maps are smooth. It is called piecewise-linear (PL for short) if its
transition maps are piecewise-linear.

We say that {(Uα, φα)} is maximal if there does not exist another atlas containing
it with more charts. A maximal atlas is often referred to as the smooth structure, or
respectively, the PL structure of a manifold. Once we have a smooth (or PL) structure
we can define what it means for a function f : M → R to be smooth or piecewise
linear.

Definition 4.3 Let M be a smooth n-manifold, with or without boundary, with smooth
(respectively PL) structure {(Uα, φα)}. A function f : M → R is smooth (respectively
PL) if φ−1

α ◦ f : φα(Uα) → R is smooth (respectively PL) for all charts (Uα, φα).

An example to keep in mind is M being a smooth or piecewise linear n-dimensional
subset of Rd with its structure inherited from the embedding. A simple function on
such a manifold is the height function with respect to some unit vector v ∈ Sd−1, i.e.,
f (x) = v · x .
The classical approach to defining critical points in Morse theory is as follows. For

a manifold M without boundary and a smooth function f : M → R. Let p ∈ M
and choose a chart (U , φ) with p ∈ U . We say that p ∈ M is a critical point of f
if d( f ◦ φ−1)(φ(p)) = 0. A critical point is non-degenerate if the Hessian of f ◦ φ

at p is non-singular. We then say the Morse index of f at p is the number of negative
eigenvalues of the Hessian, counting multiplicity. A point is regular if it is not critical.
These definitions are well defined as they do not depend on the choice of chart (see
Milnor 1963).
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Instead of using definitions for critical and regular points in terms of the derivative,
we need an alternative that will be more adaptable to the PL setting. By using the
implicit function theorem we can redefine regular points by the existence of a linear
function over some chart. We can also remove the need to reference the Hessian for
defining the index of a critical point by using the Morse Lemma.

Lemma 4.4 (Morse Lemma) Let M be a smooth n-manifold without boundary and
f : M → R a smooth function. The point p ∈ M is a regular point of f if and only if
there is a chart (U , φ) where φ(p) = 0 and

f ◦ φ−1(x1, x2, . . . xn) = f (p) + xn

in some neighbourhood of 0.
The point p ∈ M is a non-degenerate critical point of f with Morse index k if and

only if there is a chart (U , φ) where φ(p) = 0 and

f ◦ φ−1(x1, x2, . . . xn)= f (p)−(x1)
2−(x2)

2 − . . . − (xk)
2+(xk+1)

2 + . . . + (xn)
2

in a neighbourhood of 0.

The proof of this lemma is covered in Milnor (1963). We use it as an equivalent
definition of a regular point and a non-degenerate critical point of Morse index k. In
the piecewise linear setting the only modification is to replace squares with absolute
values.

Definition 4.5 Let M be an n-dimensional PL manifold without boundary and f :
M → R a PL function. The point p ∈ M is a regular point of f if and only if there
is a chart (U , φ) containing p of the form

f ◦ φ−1(x1, x2, . . . xn) = f (p) + xn .

The point p ∈ M is a non-degenerate critical point of f with Morse index k if and
only if there is a chart (U , φ) with φ(p) which is of the form

f ◦ φ−1(x1, x2, . . . xn) = f (p) − |x1| − |x2| − . . . − |xk | + |xk+1| + . . . + |xn|

in a neighbourhood of 0.

We now need to generalise the definitions of regular and critical points to the
case of a function over a manifold with boundary (M, ∂M). Points in the interior
of M are treated exactly as above, so we need only discuss the case for points on
the boundary. We again phrase the definitions using charts to make it easy to move
between smooth and PL settings, following the terminology and notation in Grunert
et al. (2019). Recall that a chart containing a point, p ∈ ∂M is homeomorphic to a
subset of {(x1, x2, . . . , xn) ∈ R

n | x1 ≥ 0}, with φ(p) = (0, x2, . . . , xn).
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Definition 4.6 Let (M, ∂M) be a smooth (respectively PL) n-manifold with boundary
and f : M → R a smooth (respectively PL) function. The point p ∈ ∂M is a
regular point of f if and only if there is a chart (U , φ) with φ(p) = 0 of the form
f ◦ φ−1(x1, x2, . . . xn) = f (p) + xn .

A point on the boundary is critical if it is critical for f restricted to ∂M , but
the definition of its index requires additional information about whether the function
increases or decreases as we move into the manifold.

Definition 4.7 Let (M, ∂M) be a smooth n-manifold with boundary and f : M → R

a smooth function. The point p ∈ ∂M is a non-degenerate critical point of f with
index (k, η) if only if there is a chart (U , φ) with φ(p) = 0 such that

f ◦ φ−1(x1, x2, . . . xn) = f (p) + ηx1 − (x2)
2

− . . . − (xk+1)
2 + (xk+2)

2 + . . . + (xn)
2.

The second term of the index, η ∈ {−1, 1}, defines the sign of the critical point: if
η = 1 we say that p is (+)-critical, and if η = −1, then p is (−)-critical.

The analogous definition for the piecewise linear case is:

Definition 4.8 Let (M, ∂M) be a PL n-manifold with boundary and f : M → R a PL
function. The point p ∈ ∂M is a non-degenerate critical point of f of index (k, η) if
there is a chart (U , φ) with φ(p) = 0 of the form

f ◦ φ−1(x1, x2, . . . xn) = f (p) + ηx1 − |x2| − . . . − |xk+1| + |xk+2| + . . . + |xn|.

Again, p is (+)-critical when η = +1 and (−)-critical when η = −1.

Please note that there is inconsistency within the literature in terms of sign conven-
tions for critical points on the boundary and our choice may differ from sources the
reader is familiar with.

Now we have the definitions for all the different types of critical point, we can
define what a Morse function is for both the smooth and PL settings.

Definition 4.9 Given a smooth (respectively PL) manifold with boundary (M, ∂M),
we say that f : M → R is aMorse function if

• f is smooth (respectively PL)
• None of the critical points of f |int(M) and f |∂M are degenerate.
• All the critical values for f |int(M) and f |∂M combined are distinct and finite in
number.

In the following we describe the (persistent) homology in terms of the signs of
critical points so it is useful to have notation for this.

Definition 4.10 Suppose f : (M, ∂M) → R is a Morse function. Let Crit( f , k)
denote the set of index-k critical points of f ; these points must lie in the interior
of M . Let Crit( f , (k, η)) denote the set of critical points of f |∂M with index (k, η).
If p ∈ ∂M is a critical point of f |∂M , with index (k, η) denote the sign of p by
sgn( f , p) = η.
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Highly analogous to the well-known theory of Morse functions on manifolds, we
can use the index of critical points to compute the relative homology of nearby sublevel
sets of f .

Proposition 4.11 Let (M, ∂M) be a smooth (respectively PL) manifold with boundary
and f : M → R a smooth (respectively PL) Morse function. We consider homology
with coefficients in a field F, and use Kronecker delta notation δki below.

• If t is not a critical value of either f or f |∂M then Hi (Mt+ε, Mt−ε) = 0 for all i
and all ε > 0 sufficiently small.

• If p ∈ Crit( f , k) then Hi (M f (p)+ε, M f (p)−ε) = δki F for all i and for all ε > 0
sufficiently small.

• If p ∈ Crit( f , (k,−1)) then Hi (M f (p)+ε, M f (p)−ε) = 0 for ε > 0 sufficiently
small.

• If p ∈ Crit( f , (k,+1)) then Hi (M f (p)+ε, M f (p)−ε) = δki F for all i , for ε > 0
sufficiently small.

For the smooth case, this proposition is proved in Braess (1974) and in Jankowski
and Rubinsztejn (1972). Please note that in Jankowski and Rubinsztejn (1972) they
use the term “m-function” for Morse function. Some minor massaging is needed to
convert their results to the homology statements above as they describe the changes
in terms of glueing cells. The PL version of this proposition is proved in Grunert et al.
(2019).

We can determine critical points and indices of (− f ) from those of f using charts, as
summarised in the following lemma which holds for both the smooth and PL settings.

Lemma 4.12 Let (M, ∂M) be an n-manifold with boundary and f : M → R a
Morse function. Then (− f ) : M → R is also a Morse function with Crit((− f ), k) =
Crit( f , n − k) and Crit((− f ), (k, η)) = Crit( f , (n − k − 1,−η)) for η = ±1.

This facilitates analogous homology results as in Proposition 4.11 but for relative
homology of superlevel sets.

Corollary 4.13 Let (M, ∂M) be a smooth (respectively PL) n-manifold with boundary
and f : M → R a smooth (respectively PL) Morse function.

• If t is not a critical value of either f or f |∂M then Hi (Mt−ε, Mt+ε) = 0 for all i
and all ε > 0 sufficiently small.

• If p ∈ Crit( f , n − k) then Hi (M f (p)−ε, M f (p)+ε) = δki F for all i and for all
ε > 0 sufficiently small.

• If p ∈ Crit( f , (n− k − 1,+1)) then Hi (M f (p)−ε, M f (p)+ε) = 0 for all i and for
ε > 0 sufficiently small.

• If p ∈ Crit( f , (n − k − 1,−1)) then Hi (M f (p)−ε, M f (p)+ε) = δki F for all i and
for ε > 0 sufficiently small.

Proof We first want to write the superlevel sets of f in terms of sublevel sets of (− f ).
We have Ms = (− f )−1(−∞,−s], and thus
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Hi (M
f (p)−ε, M f (p)+ε)

= Hi
(
(− f )−1(−∞, (− f )(p) + ε], (− f )−1(−∞, (− f )(p) − ε]).

If t is not a critical value for f nor f |∂M then by Lemma 4.12 (−t) is not a critical
value of (− f ) nor (− f )|∂M . By Proposition 4.11 we know

Hi ((− f )−1(−∞,−t + ε], (− f )−1(−∞,−t − ε]) = 0

for all i and all ε > 0 sufficiently small.
If p ∈ Crit( f , n − k), then by Lemma 4.12 we have p ∈ Crit((− f ), k). If p ∈

Crit( f , (n− k−1,−1)) then by Lemma 4.12 p ∈ Crit((− f ), (k,+1)). In both cases
we can apply Proposition 4.11, with (− f ) at p, which implies that

Hi
(
(− f )−1(−∞, (− f )(p) + ε], (− f )−1(−∞, (− f )(p) − ε]) = δki F.

If p ∈ Crit( f , (n − k − 1,+1)), then by Lemma 4.12 we have p ∈
Crit((− f ), (k,−1)). By Proposition 4.11, with (− f ) at p, we know

Hi
(
(− f )−1(−∞, (− f )(p) + ε], (− f )−1(−∞, (− f )(p) − ε]) = 0.

for ε > 0 sufficiently small. �

As might be expected, there is a direct relationship between the critical values

of Morse functions and the endpoints of intervals in the barcode decomposition of
extended persistent homology. We will need to distinguish between endpoints lying
in the ordinary and relative parameter spaces as they behave differently.

Let XPH(M, f ) be the extended persistencemodule constructed from f : M → R.
To ease notation let

bordk (M, f ) := b(Ordk(M, f ) ⊕ Essk(M, f ))

and

brelk (M, f ) := b(Relk(M, f ))

These are the sets of parameters {(t, ord)} and {(t, rel)} respectively where a new
interval begins in the interval decomposition of XPH(M, f ). Similarly let

dordk (M, f ) := d(Ordk(M, f ))

and

drelk (M, f ) := d(Relk(M, f ) ⊕ Essk(M, f )).

These are the sets of parameters {(t, ord)} and {(t, rel)} respectively where an interval
finishes in the interval decomposition of XPH(M, f ). Furthermore let bk(M, f ) =
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bordk (M, f ) ∪ brelk (M, f ) and dk(M, f ) = dordk (M, f ) ∪ drelk (M, f ) denote the
sets of birth and death parameters respectively for the extended persistence mod-
ule XPH(M, f ). In constructing these sets we use the fact that every essential class
is born somewhere in the ordinary parameter range and then dies somewhere in the
relative parameter range.

The following corollary follows from Proposition 4.11 and Lemma 4.13.

Corollary 4.14 Let (M, ∂M) be an n-dimensional manifold with boundary and let
f : M → R be a Morse function. Then

bordk (M, f ) ∪ dordk−1(M, f ) = {( f (p), ord)| p ∈ Crit( f , k) ∪ Crit( f , (k,+1))}.

and

brelk (M, f ) ∪ drelk−1(M, f ) = {( f (p), rel)| p ∈ Crit( f , n − k) ∪ Crit( f , (n − k − 1, −1))}.

4.2 Relating the extended persistent homology of amanifold to that of its
boundary

We can now restrict to the situation of interest for the XPHT; that of computing
the extended persistent homology of a height function over a compact n-dimensional
manifoldwith boundary embedded inRn . The results in this section start by comparing
the sets of birth and death parameters for the height filtration of the manifold and for
its boundary, in Propositions 4.15 and 4.16. The next step is to show that these births
and deaths are paired consistently as endpoints of intervals in the relevant persistence
modules (Theorem 4.17). We finish with a complete characterisation of the extended
persistent homology for the manifold as a submodule of that for its boundary in
Theorem 4.18.

The height function is specified in a direction v and restricted to various subsets
of Rn . That is, hv : Rn → R with hv(x) = x · v. To ease notation let hSv denote the
restriction of the height function to S ⊂ R

n , that is hSv = hv|S .
Proposition 4.15 Let M ⊂ R

n be a compact n-manifold with boundary. Suppose that
hM

v : M → R, the height function in direction v, is a Morse function. For each critical
value t let p(t) be the unique critical point of hM

v or h∂M
v with hv(p) = t . For all

k > 0 we have

bordk (M, hM
v ) = {(t, ord) ∈ bordk (∂M, h∂M

v ) : sgn(hM
v , p(t)) = +1))}

brelk (M, hM
v ) = {(t, rel) ∈ brelk (∂M, h∂M

v ) : sgn(hM
v , p(t)) = −1}

dordk (M, hM
v ) = {(t, ord) ∈ dordk (∂M, h∂M

v ) : sgn(hM
v , p(t)) = +1}

drelk (M, hM
v ) = {(t, rel) ∈ drelk (∂M, h∂M

v ) : sgn(hM
v , p(t)) = −1}

Proof Choose R > 0 large enough so thatM ⊂ B(0, R)where B(0, R) is the open ball
of radius R centred on the origin. Let L = B(0, R)\ int(M). As there are only finitely
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many critical points of hM
v and h∂M

v there is an ε > 0 such that all the critical values are
at least ε apart. The critical values lie within [inf(hv(M)), sup(hv(M))] ⊂ (−R, R)

so we can reduce ε to be small enough that no critical value is within ε of −R or R.
The function hv defined over all of Rn has no critical points, so there will be no

critical points in the interior of M . This means we need only consider critical points
of h∂M

v .
For each s ∈ R we consider the sublevel sets of hv restricted to the three subsets:

Ms , (∂M)s and Ls . By construction Ms ∩ Ls = (∂M)s and Ms ∪ Ls = h−1
v (−∞, s]∩

B(0, R). For each k > 0we therefore have Hk+1(Ms∪Ls) = 0 = Hk(Ms∪Ls). Using
this in the Mayer–Vietoris sequence shows us that Hk((∂M)s) and Hk(Ms)⊕ Hk(Ls)

are isomorphic and hence

βk(Ms) + βk(Ls) = βk((∂M)s) (1)

for all s ∈ R. For k = 0 we know H0(Ms ∪ Ls) = 1 whenever s ≥ −R. Mayer–
Vietoris then gives the short exact sequence

0 → H0((∂M)s) → H0(Ms) ⊕ H0(Ls) → H0(Ms ∪ Ls) → 0.

By comparing the ranks we have

β0(Ms) + β0(Ls) = β0((∂M)s) + 1 (2)

whenever s > −R.
Suppose that (t, ord) ∈ bordk (M, hv) and thus βk(Mt+ε) − βk(Mt−ε) = 1. By

Proposition 4.11 we know sgn(hM
v , p(t)) = +1 and this implies sgn(hLv , p(t)) = −1.

Proposition 4.11 now implies that βk(Lt+ε) = βk(Lt−ε). For k > 0 we can use (1) to
calculate

βk((∂M)t+ε) − βk((∂M)t−ε)

= (βk(Mt+ε) + βk(Lt+ε)) − (βk(Mt−ε) + βk(Lt−ε))

= 1.

If k = 0 we instead use (2) to calculate

β0((∂M)t+ε) − β0((∂M)t−ε)

= (β0(Mt+ε) + β0(Lt+ε) − 1) − (β0(Mt−ε) + β0(Lt−ε) − 1)

= 1.

This is where we use the requirement that ε is small enough that all critical points
of M are greater than −R + ε. Since h∂M

v is Morse and t is the only critical value
of h∂M

v in [t − ε, t + ε] we thus conclude that there is a birth event at t , that is
(t, ord) ∈ bordk (∂M, hv).
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Now suppose that (t, ord) ∈ bordk (∂M, hv) with sgn(hM
v , p(t)) = +1. This means

βk((∂M)t+ε) − βk((∂M)t−ε) = 1, and sgn(hLv , p(t)) = −1. Proposition 4.11 again
tells us that βk(Lt+ε) = βk(Lt−ε) and using (1) we calculate

βk(Mt+ε) − βk(Mt−ε)

= (βk((∂M)t+ε) − βk(Lt+ε)) − (βk((∂M)t−ε) − βk(Lt−ε))

= 1.

If k = 0 then we instead use (2) to calculate

β0(Mt+ε) − β0(Mt−ε)

= (βk((∂M)t+ε) − βk(Lt+ε) + 1) − (βk((∂M)t−ε) − βk(Lt−ε) + 1)

= 1.

We have again used t−ε > −R. Since t is the only critical value of h∂A
v in [t−ε, t]

we conclude that (t, ord) ∈ bordk (M, hv).
When considering the sets of births and deaths in the relative parameter range we

need to use a relative version of the Mayer–Vietoris sequence. For this recall that
M ∩ L = ∂M , and Ms ∩ Ls = ∂Ms . The relative version of the Mayer–Vietoris
sequence states that there is a long exact sequence

· · · → Hk+1(M ∪ L, Ms ∪ Ls) → Hk((∂M), (∂M)s) → · · ·
→ Hk(M, Ms) ⊕ Hk(L, Ls) → Hk(M ∪ L, Ms ∪ Ls) → · · ·

Since M ∪ L = B(0, R), and Ms ∪ Ls = B(0, R) ∩ h−1
v [s,∞) we have (for k ≥ 0

this time) Hk+1(M ∪ L, Ms ∪ Ls) = 0 = Hk(M ∪ L, Ms ∪ Ls) for s < R. This
implies Hk((∂M), (∂M)s) and Hk(M, Ms) ⊕ Hk(L, Ls) are isomorphic and hence

βk(∂M, (∂M)s) = βk(M, Ms) + βk(L, Ls)

for all s < R.
Suppose (t, rel) ∈ brelk (M, hM

v ) and thus βk(M, Mt−ε) − βk(M, Mt+ε) = 1. As
(t, rel) ∈ brelk (M, hM

v ) we have sgn(hM
v , p(t)) = −1 we thus sgn(hLv , p(t)) = +1.

From Corollary 4.13 we know that βk(L, Lt−ε) = βk(L, Lt+ε). We then calculate

βk(∂M, (∂M)t−ε) − βk(∂M, (∂M)t+ε)

= (βk(M, Mt−ε) + βk(L, Lt−ε)) − (βk(M, Mt+ε) + βk(L, Lt+ε))

= 1.

Since t is the only critical value of h∂M
v in [t − ε, t + ε] we conclude that (t, rel) ∈

brelk (∂M, hv).
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Now suppose that (t, rel) ∈ bk(∂M, hv) with sgn(hM
v , p(t)) = −1 These facts

imply βk(∂M, (∂M)t ) − βk(∂M, (∂M)t+ε) = 1 and sgn(hLv , p(t)) = +1. By Corol-
lary 4.13 we therefore have βk(L, Lt−ε) = βk(L, Lt+ε) and can calculate

βk(M, Mt−ε) − βk(M, Mt+ε)

= (βk(∂M, (∂M)t−ε) − βk(L, Lt−ε)) − (βk(∂M, (∂M)t+ε) − βk(L, Lt+ε))

= 1.

Since t is the only critical value of h∂M
v in [t − ε, t + ε] we conclude that (t, rel) ∈

brelk (M, hv).
The proof for the sets of death critical values is highly analogous; the difference of

the Betti numbers is −1 instead of 1. �


Throughout the following collection of results we fix the following sets: Let A be
a compact subset of Rn whose boundary ∂A = X is a finite collection of disjoint
n − 1 manifolds. Let R > 0 such that A ⊂ B(0, R). Let B be the set such that
A ∪ B = B(0, R) and A ∩ B = X .

Let SR denote the sphere of radius R. We can observe that ∂A = X and ∂B =
X ∪ SR . Let hv be the height function in the direction v ∈ Sn−1, with v such that hX

v

is a Morse function.

Proposition 4.16 Let A ⊂ R
n be a compact n-dimensional manifold with boundary.

Let hv : Rn → R be the height function in direction v such that hX
v is aMorse function.

Let R > 0 be such that A ⊂ B(0, R). Let B be the set such that A ∪ B = B(0, R)

and A ∩ B = X. Let SR denote the sphere of radius R. Then we have the equality of
the following disjoint unions:

b0(X , v) 
 {(−R, ord)} = b0(A, v) 
 b0(B, v)

bk(X , v) = bk(A, v) 
 bk(B, v) for k > 0

d0(X , v) 
 {(R, ord)} = d0(A, v) 
 d0(B, v)

dk(X , v) = dk(A, v) 
 dk(B, v) for k > 0

Proof Since ∂A = X we can use Proposition 4.15 to say

bk(A, hv) ={(t, ord) ∈ bk(X , hv)| sgn(hA
v , p(t)) = +1}

∪ {(t, rel) ∈ bk(X , hv)| sgn(hA
v , p(t)) = −1}

dk(A, hv) ={(t, ord) ∈ dk(X , hv)| sgn(hA
v , p(t)) = +1}

∪ {(t, rel) ∈ dk(X , hv)| sgn(hA
v , p(t)) = −1}.

Since ∂B = X 
 SR we can again apply Proposition 4.15 (now with B playing the
role of M) to say
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bk(B, hv) ={(t, ord) ∈ bk(X 
 SR, hv)| sgn(hB
v , p(t)) = +1}

∪ {(t, rel) ∈ bk(X 
 SR, hv)| sgn(hB
v , p(t)) = −1}

dk(B, hv) ={(t, ord) ∈ dk(X 
 SR, hv) sgn(h
B
v , p(t)) = +1}

∪ {(t, rel) ∈ dk(X 
 SR, hv)| sgn(hB
v , p(t)) = −1}.

The critical points of hB
v which lie on SR are well understood. There are two critical

points; one birth in ordinary homology degree 0 at p1 = −Rv with value hv(p1) =
−R, and a death in relative homology degree 0 at p2 = Rv with hv(p2) = R. We
thus can rewrite the birth and death sets of B as

b0(B, hv) = {(−R, ord)} ∪ {(t, ord) ∈ b0(X , hv)| sgn(hB
v , p(t)) = +1}

∪ {(t, rel) ∈ b0(X , hv)| sgn(hB
v , p(t)) = −1}

d0(B, hv) = {(R, rel)} ∪ {(t, ord) ∈ d0(X , hv) sgn(h
B
v , p(t)) = +1}

∪ {(t, rel) ∈ d0(X , hv)| sgn(hB
v , p(t)) = −1}.

and for k > 0 we have

bk(B, hv) ={(t, ord) ∈ bk(X , hv)| sgn(hB
v , p(t)) = +1}

∪ {(t, rel) ∈ bk(X , hv)| sgn(hB
v , p(t)) = −1}

dk(B, hv) ={(t, ord) ∈ dk(X , hv) sgn(h
B
v , p(t)) = +1}

∪ {(t, rel) ∈ dk(X , hv)| sgn(hB
v , p(t)) = −1}.

Since every critical point p(t) ∈ X must be either (+)-critical or (−)-critical, by
taking the union we get the statement of the proposition. �


Propositions 4.15 and 4.16 have shown how the sets of birth and death parameters
for X , A, and B are related. The following theorem proves the much stronger result
that the pairing of endpoints of the bars is consistent, and so we have isomorphisms
between various extended persistence modules. This theorem is not a new result—it
was proved using Alexander duality in Edelsbrunner and Kerber (2012). We believe
our Morse-theoretic proof may be more readily adapted to other scenarios.

Theorem 4.17 Let A, B, and X be as in Proposition 4.16. We have

XPHk(X , v) ⊕ XPHk(A ∪ B, v) = XPHk(A, v) ⊕ XPHk(B, v).

That isXPH0(X , v))⊕I((−R,ord),(R,rel)) = XPH0(A, v)⊕XPH0(B, v) and for k > 0
we have XPHk(X , v)) = XPHk(A, v) ⊕ XPHk(B, v).

Proof Let us first consider the case where k > 0. Since X ⊂ A and X ⊂ B we have
an induced morphisms on persistence modules

ϕ : XPHk(X , v) → XPHk(A, v) ⊕ XPHk(B, v).
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Furthermore from the ordinary and relative versions of the Mayer–Vietoris sequence
we know ϕ(t,ord), and ϕ(t,rel) are both isomorphisms for all t ∈ R. This implies that
ϕ is must be injective.

Injective morphisms between persistence modules were studied extensively in
Bauer et al. (2014). Bauer and Lesnick showed that an injective morphism will induce
an injectivemap ρ on the sets of intervals in the interval decomposition of XPHk(X , v)

to those in the interval decomposition of XPHk(A, v) ⊕ XPHk(B, v) such that every
interval in [b, d) in XPHk(X , v) is mapped to an interval ρ([b, d)) = [b′, d) with the
same death time and b′ ≤ b.

By Proposition 4.16 we know that the sets of start and end parameters for the
barcode decompositions satisfy bk(X , v) = bk(A, v) ∪ bk(B, v). As the two persis-
tence modules have the same number of intervals, the matching ρ must in fact be a
bijection. Observe that if f : S → S is a bijection from a finite set to itself such
that f (s) ≤ s for all s ∈ S then we are forced to have f the identity. This argu-
ment shows ρ([b, d)) = ρ([b, d)) and the interval decompositions of XPHk(X , v)

and XPHk(A, v) ⊕ XPHk(B, v) are the same and they are isomorphic as persistence
modules.

For the case where k = 0 we need to consider the complication of the homol-
ogy class corresponding to the sphere SR . We know from Proposition 4.16 that
b0(X , v) 
 {(−R, ord)} = b0(A, v) 
 b0(B, v), which we will denote b, and
d0(X , v) 
 {(R, ord)} = d0(A, v) 
 d0(B, v), which we will denote d. This means
that we can define a bijection ρ : b → b such that ρ(b) = b′ if there exists a d such
that

(b, d] ∈ XPH0(X , v)) ⊕ I((−R,ord),(R,rel))

and

(b′, d] ∈ XPHk(A, v) ⊕ XPHk(B, v).

Observe that [(−R, ord), (R, rel)) is an interval in the interval decomposition of
XPH0(B, v), it corresponds to the connected component containing SR . This implies
that ρ((−R, ord)) = (−R, ord). Just as in the case for k > 0 we can consider the
ordinary and relativeMayerVietoris sequences to show that themorphisms H0(Xt ) →
H0(At ) ⊕ H0(Bt ) and H0(X , Xt ) → H0(A, At ) ⊕ H0(B, Bt ) induced by inclusions
are injective for all t and hence the morphism ϕ : XPH0(X , v) → XPH0(A, v) ⊕
XPH0(B, v) is injective. Again this implies there is an injective map which pairs each
interval [b, d) inXPH0(X , v) to an interval [b′, d)with the samedeath time and b′ ≤ b.
This implies that our function ρ : b → b has ρ(b) ≤ b for all b ∈ b0(XPH0(X)).
Together these imply ρ(b) ≤ b for all b ∈ b which, since b is finite, implies ρ is
the identity. Hence the interval decompositions of XPH0(X , v) ⊕ I[(−R,ord),(R,rel))

and XPH0(A, v) ⊕ XPH0(B, v) are the same and they are isomorphic as persistence
modules. �


Combining Theorem 4.17 with Proposition 4.16 allows us to express the extended
persistent homology of a height function over A as a nice submodule of the extended
persistent homology of that same height over ∂A.
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Fig. 3 A is a connected subset of the plane with one interior boundary component X1 in orange, and one
exterior boundary component Y1 in blue. Maximum and minimum values and critical points for the height
function hv are marked for both boundary components (color figure online)

Theorem 4.18 Let A ⊂ R
n be an n-manifold with boundary X = ∂A. Let v be a

direction such that hA
v : A → R is a Morse function. Let the interval decomposition

of the degree-k extended persistent homology of hX
v : X → R be

XPHk(X , hv) =
⊕

[bi ,di )∈SX
I[bi ,di ).

Let J kA be the subset of intervals [bi , di ) such that bi = (hv(p), ord) for some
p ∈ Crit(hA

v , (k,+1)), or bi = (hv(p), rel) for some p ∈ Crit(hA
v , (n − k − 1,−1)).

Then

XPHk(A, hv) =
⊕

[bi ,di )∈J kA

I[bi ,di ).

We can more readily describe the essential classes in degrees 0 and n − 1 in terms
of the minimum and maximum values on the different connected components of the
boundary. Observe that a compact connected (n−1)-dimensional manifold Y embed-
ded in R

n separates Rn into two connected open sets, one of which is ‘inside’ Y and
one ofwhich is ‘outside’ (this is the unbounded component of the two). This theorem is
known as the Jordan-Brouwer separation theorem.We use this to define the connected
components of X = ∂A as interior or exterior boundary components.

Definition 4.19 Let A ⊂ R
n be a compact n-dimensional manifold with boundary

∂A = X . Let X̂ be a connected component of X , and Â the connected component of
A that contains X̂ . We say that X̂ is an interior boundary component if Â\X̂ is con-
tained in the unbounded connected component of Rn\X̂ . We say that X̂ is an exterior
boundary component if Â\X̂ is contained in the bounded connected component of
R
n\X̂ .

See Fig. 3 for an illustration of the above definition and the following proposition.
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Proposition 4.20 Let A ⊂ R
n be an n-manifold with boundary X = ∂A. Let v be a

direction such that hA
v : A → R is a Morse function. Let {X1, . . . Xk} be the interior

boundary components of X and {Y1, . . . Yl} be the exterior boundary components of
X. Then

Ess0(A, hv) =
l∑

j=1

I[(min{hv(Y j )},ord),(max{hv(Y j )},rel))

and

Essn−1(A, hv) =
k∑

i=1

I[(max{hv(Xi )},ord),(min{hv(Xi )},rel)).

Proof If A is the disjoint union of A1, . . . Al then XPH(A) = ⊕l
i=1 XPH(Ai ). This

means that it is sufficient to prove the case where A is connected. We assume A is
connected for the remainder of the proof.

Observe that for M a connected (n − 1)-dimensional manifold we have β0(M) =
1 = βn−1(M) so there is exactly one essential persistent homology interval module in
each of these homology degrees for extended persistent homology of M with respect
to hv .

The interval in Ess0(M, hv) is born at the first appearance of M , that is at
(min{hv(M)}, ord). Since M is connected we have this homology class is trivial in
H0(M, L) for any non-empty subset L ⊂ M . This implies that the death of this interval
in Ess0(M, hv) is at parameter (max{hv(M)}, rel). We have shown that

Ess0(M, hv) = I[(min{hv(M)},ord),(max{hv(M)},rel)).

Using the symmetry of extended persistent homology for manifolds (Proposition 2.8)
we have

Essn−1(M, hv) = I[(max{hv(M)},ord),(min{hv(M)},rel)).

Since X is the disjoint union of the interior boundary components {X1, . . . Xk} and
the exterior boundary component Y we have

Ess0(X , hv) =( ⊕n
i=1 I[(min{hv(Xi )},ord),(max{hv(Xi )},rel))

)
⊕ I[(min{hv(Y )},ord),(max{hv(Y )},rel))

and

Essn−1(X , hv) =( ⊕n
i=1 I[(max{hv(Xi )},ord),(min{hv(Xi )},rel))

)
⊕ I[(max{hv(Y )},ord),(min{hv(Y j )},rel))

)
.
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We can use Theorem 4.18 to deduce Ess0(A, hv) and Essn−1(A, hv) from the
various persistence modules Ess0(Xi , hv),Essn−1(Xi , hv),Ess0(Y , hv) and
Essn−1(Y , hv).

Consider an interior boundary component Xi , and let pi ∈ Xi be the global min-
imum of hXi

v . We know that A is contained in the infinite component of Rn\Xi ,
and pi must be a (−)-critical point for hA

v . This implies that [(min{hv(Xi )}, ord),
(max{hv(Xi )}, rel)) is not included in J 0A (where J kA is defined in the statement of
Theorem 4.18). Similarly let x̂i denote the global maximum of hv over Xi . We know
that A is contained in the infinite component of Rn\Xi , and p̂i must be a (+)-critical
point for hA

v . This implies that

[(max{hv(Xi )}, ord), (min{hv(Xi )}, rel)) ∈ Jn−1
A .

If we instead consider the exterior boundary component Y then the global minimum
of hYv will be a (+)-critical point for hA

v and the global maximum of hYv will be a (−)-
critical point for hA

v . This implies that

[(min{hv(Y )}, ord), (max{hv(Y )}, rel)) ∈ J 0A

but we do not include [(max{hv(Y )}, ord), (min{hv(Y )}, ord)) in Jn−1
A . �


5 The extended persistent homology transform

5.1 Background

The persistent homology transform (PHT) maps the space of shapes embedded in
Euclidean space into a space of topological summaries. Instead of comparing the
original shapes we can compare their topological transforms. The philosophy is that
the persistent homology of a height function in some direction v records geometric
information from the perspective of direction v. As v changes, the persistent homology
classes track geometric features in M . The key insight behind the persistent homology
transform (PHT) is that by considering the persistent homology from every direction,
we preserve all information about the shape.

Before giving the formal definition we should first identify the subsets of space
which are allowable shapes, that is the domain of the PHT.We will want our subsets to
be reasonably nice. The most general setting for which theoretical properties about the
PHT are proved are compact o-minimal sets, which are called constructible in Curry
et al. (2022). For the purposes of this paper it is sufficient to know that compact and
semi-algebraic or piecewise linear are sufficient conditions for a subset of Euclidean
space to be constructible. We will denote the space of constructible subsets of Rn by
CS(Rn).

Given an constructible set M ⊂ R
n , and v ∈ Sn−1, let hv be the corresponding to

a height function in direction v,

hv : M → R
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hv : x �→ 〈x, v〉.

where 〈·, ·〉 denotes the inner product. We can construct a persistence module
PHk(M, hv) by filtering M by the sub-level sets of hv and taking degree-k homology
groups. The underlying parameter set for the persistence module is R, the attached
vector space at t ∈ R is Hk(h−1

v (−∞, t]), and for s ≤ t the transition map ϕt
s is the

induced map on homology from the inclusion h−1
v (−∞, s] ⊆ h−1

v (−∞, t].
Let PM(R) denote the standard space of persistence modules over parameter space

R.

Definition 5.1 The Persistent Homology Transform PHT of a constructible set M ∈
CS(Rn) is the map PHT(M) : Sn−1 → PM(R)n that sends a direction to the set of
persistence modules by filtering M in the direction of v:

PHT(M) : v �→
(
PH0(h

M
v ),PH1(h

M
v ), . . . ,PHn−1(h

M
v )

)

where hv : M → R, hv(x) = 〈x, v〉 is the height function on M in direction v.

Various properties of the PHT have been proved in Turner et al. (2014), Ghrist et al.
(2018), Curry et al. (2022). Stability results bound the distance betwen hv and hw

when v,w ∈ Sn−1 are close. This implies that for each M ∈ CS(Rn), its persistent
homology transform, PHT(M), is a continuous function over Sn−1 when we equip
PM with a Wasserstein metric.

Another very important property about the PHT is its injectivity, that is that for
M1, M2 ⊂ R

n , if PHT(M1) = PHT(M2) then M1 = M2 as subsets of Rn . This
was originally proved in Turner et al. (2014) for piecewise linear compact subsets
in R

2 and R
3, and then the more general proof was given in Curry et al. (2022) and

independently in Ghrist et al. (2018).
We can now define a distance betweenM1, M2 constructible sets via their persistent

homology transforms. We basically just integrate the Wasserstein distances over all
the possible directions.

Definition 5.2 Fix p ∈ [1,∞) and ambient dimension n. Define the distance function
dPHTp : CS(Rn) × CS(Rn) → R by

dPHTp (M1, M2)
p =

∫
v∈Sn−1

n−1∑
k=0

Wp(PHk(M1, hv),PHk(M2, hv))
p dv.

5.2 Nowwith extended persistence

We can define a new distance function over CS(Rn) by replacing the normal persis-
tent homology with extended persistent homology. We can construct a definition of a
distance between extended persistent homology transforms by replacing the Wasser-
stein distance between the original persistence modules with those between extended
persistence modules.

123



K. Turner et al.

Definition 5.3 Fix p ∈ [1,∞) and ambient dimension n. Define the distance function
dXPHTp : CS(Rn) × CS(Rn) → R by

dXPHTp (M1, M2)
p =

∫
v∈Sn−1

n−1∑
k=0

Wp(XPHk(M1, hv),XPHk(M2, hv))
p dv.

For the PHT one theoretical result was the continuity of the PHT(M) as a function
from Sn−1. This continuity justified the approximation of the PHT by a finite subset
of directions. The proofs for the continuity of the PHT can be easily modified to show
continuity of theXPHT. LetE denote the space of extended persistencemodules. Then
for all M ∈ CS(Rn), the function XPHTk(M) : Sn−1 → E is continuous when we
equip E with the p-Wasserstein distance (for p ∈ [1,∞)), or the bottleneck distance.

In Skraba and Turner (2020) a stability result for the PHT was proven in the case
where M1 and M2 were different embeddings of the same simplicial complex. This
bounded the distance between PHT(M1) and PHT(M2) in terms of the distances
between the sets of vertices in the embedding. The proof of this stability theorem
can be easily modified to prove an analogous statement for the extended persistent
homology transform.

Since the extended persistence module for a filtration by a height function contains
strictly more information than the regular persistence module for that height function,
the injectivity results for the PHT will automatically also hold for the XPHT.

6 Application to binary images

In this section we describe how to interpret a binary digital image as a PL-manifold
with boundary, construct boundary curves as PL 1-manifolds, and adapt the results of
Sect. 4 to this setting using a simulation of simplicity methodology (Edelsbrunner and
Mücke 1990).

6.1 Boundary curves

A binary digital image is a two-dimensional array, P , with elements called pixels
taking values in {0, 1}. The array is indexed by integers 1 ≤ i ≤ m and 1 ≤ j ≤ n,
so that P(i, j) is the element in the i th row and j th column of P . We can also treat
pixels as points in the plane by mapping the array index to a Cartesian coordinate (the
first axis is oriented down the page and second from left to right). Those pixels taking
the value ‘1’ are defined to be the foreground F := P−1[1] and those with value
‘0’ are the background G := P−1[0]. A small patch of such a binary image array is
illustrated in Fig. 4.

To answer questions about the connectivity of objects represented by the image,
we must define a neighbourhood or adjacency relation for each pixel. Two standard
options called 4- and 8-connectivity in digital topology are defined as follows.

123



The extended persistent homology transform…

Fig. 4 The rows and columns of
a binary digital image are
indexed by i and j respectively.
Foreground pixels are labelled
‘1’ and connected when
8-adjacent. Background pixels
are labelled ‘0’ and connected
when 4-adjacent. Segments of
the boundary curves are drawn
in orange and the boundary point
labelled ‘p’ has coordinates
(i + 1

2 , j) (color figure online)

Definition 6.1 A pixel (k, l) is said to be a 4-adjacent or direct neighbour of (i, j) if
their �1 distance is exactly 1: |i − k| + | j − k| = 1. Pixels are 8-adjacent neighbours
if the �∞ distance is 1: max{|i − k| , | j − k|} = 1. The 4-neighbourhood of pixel
(i, j) consists of its four 4-adjacent neighbours and the 8-neighbourhood is defined
similarly.

The connectivity of a set of pixels is then determined according to a specified
adjacency relation. If we choose to use the 8-neighbourhood for pixels in both the
foreground and the background, however, counter-intuitive situations may arise such
as a simple closed digital curve that does not separate the plane into two pieces.
The resolution of this within digital topology is to treat pixels in the foreground as
connected with respect to the 8-neighbourhood and pixels in the background with the
4-neighbourhood, or vice-versa (Kong and Rosenfeld 1989).

We now proceed to construct a set, C, of piecewise-linear curves that subdivide the
plane so that each connected component of R2 \ C contains pixels of only one type
(either foreground or background), and such that the digital connected components of
F and G are in one-to-one correspondence with those of R2 \ C. As described above,
we use 8-connectivity for the foreground and 4-connectivity for the background. We
assume (and in practice add) a layer of background pixels to any given rectangular
array, P , to ensure there is a single connected background component surrounding all
other components.

Definition 6.2 Boundary points. For every pair of 4-adjacent pixels such that P(i, j) =
1 and P(k, l) = 0, define the boundary point p = ( 12 (i + k), 1

2 ( j + l)).

There are only four possible configurations. For example if (i, j) ∈ F and its
direct neighbour (i + 1, j) ∈ G, then p = (i + 1

2 , j); the other three cases are
simple adjustments to this pattern. Note that since (i, j) and (k, l) are 4-adjacent, the
boundary point has only one coordinate with the 1

2 offset and one remaining an integer.
See Fig. 4 for an illustrative example.
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Fig. 5 Each of the 24 possible 2× 2 binary-valued pixel patches showing the associated oriented boundary
edges for the case that foreground pixels connect when 8-adjacent. The edge orientation always has the
foreground on the left

The next step is to connect pairs of boundary points by line segments in such a
way that the foreground and background pixel connectivities are respected. This is
achieved by exhaustive enumeration of 2 × 2 pixel patches as illustrated in Fig. 5.

Lemma 6.3 Let C ⊂ R
2 be the union of boundary points and edges derived from a

binary digital array P. The set C is a disjoint union of simple closed piecewise linear
curves.

Proof Let P be the nr × nc array with rows indexed by i = 1, . . . , nr and columns by
j = 1, . . . , nc. By assumption, the outermost rows and columns of P are background,
i.e., P(1, j) = P(nr , j) = P(i, 1) = P(i, nc) = 0. Each boundary point sits half-
way between two 4-adjacent pixels with distinct values, so every boundary point has
first coordinate 1 < p1 < nr and second coordinate 1 < p2 < nc. It follows that
every boundary point must belong to exactly two adjacent 2 × 2 pixel patches and
that every boundary point connects to exactly two boundary edges, by construction.
As a combinatorial object then, each component of C is a discrete closed 1-manifold.
Also by construction (see Fig. 5) any two boundary edges can only intersect at their
endpoints and we conclude that each component of C is a simple closed PL-curve. �

Lemma 6.4 Let A be the union of components of R2 \ C that contain at least one
foreground pixel of the binary image array P. Then A is a bounded manifold with
boundary ∂A = C.
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Proof A is bounded because the image array is finite. Each connected component
Ca ∈ C is a simple closed PL-curve, so R

2 \ Ca consists of two open domains. Each
connected component of R2 \ C is formed by the intersection of a finite number of
these domains so is also open and it follows that A is open. Clearly ∂A ⊂ C, we must
now show that ∂A ⊃ C. Let p ∈ C, i.e., p is an arbitrary point on one of the boundary
edge segments. We can write the coordinates of p as (i + ε, j + η) for integers i, j
and fractional parts ε, η ∈ [0, 1). We know that each boundary edge divides the 2× 2
patch with corners (i, j), (i + 1, j), (i + 1, j + 1), (i, j + 1), into two pieces such
that at least one of these corners has P(k, l) = 1 and this implies that p ∈ ∂A. �


The above results show that cl(A) and X = ∂A satisfy the conditions for the
theorem(s) of Sect. 4.2 as X is a finite union of disjoint piecewise-linear 1-manifolds.
We then define B to be the closed complement of A in the rectangular domain of the
image, B = ([1, nr ]×[1, nc])\A. A straightforward argument by contradiction shows
that no background pixel lies in A, so we have P−1[0] ⊂ B.

Remark 6.5 Given a three-dimensional binary array of voxels, V (i, j, k), there are
analogous definitions of direct-adjacency between elements, and results that require
foreground and background to be viewedwith complementary adjacencies tomaintain
topological consistency (Kong and Rosenfeld 1989). There are also established meth-
ods to construct a triangular mesh surface that separates the connected components of
foreground and background. These are termed ‘marching cubes algorithms’ (Newman
and Yi 2006).

6.2 Breaking ties and other practical considerations

In this section we derive additional results required to extend theorems from Sect. 4 so
that they hold for the digital boundary curves. In particular, Theorem 4.18 specified
that the height function in direction v is a Morse function, i.e., that the critical points
are isolated and the critical values are distinct. Both these conditions are challenged
by the geometry of a digital grid as the boundary curve points lie at integer and half-
integer coordinates, and the boundary curve edges are either horizontal, vertical or
in one of two diagonal directions. Additionally, the direction vectors v are typically
chosen to be equal-spaced rational fractions of π , and will often be perpendicular to
some boundary edges. This means that when computing the XPHT for equiangular
directions v we expect many vertices of the boundary curves to have the same height
with respect to any given v.

Our computations of persistent homology involve height filtrations of boundary
curves considered as simplicial complexes. The algorithm for computing persistent
homology of simplicial complexes orders simplices by theirmaximal vertex valuewith
lower-dimensional simplices added before higher-dimensional ones if their maximal
values are the same. It is well understood that the persistent homology of this discrete
filtration of complexes gives the same persistence diagram as that of a continuous
filtration of a PL-embedding of the complex. We do, however, need to explore how
a filtration with multiple simplices taking the same height with respect to direction v
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relates to the critical points of a piecewise-linear Morse function constructed from an
arbitrarily close direction vt .

We first need to generalise the notion of 0-critical point to allow for line segments

Definition 6.6 Let γ be a piecewise-linear simple closed curve in R2 with m vertices
traversed in cyclic order, x0, x1, . . . , xm = x0. Note that in the following text the
indices are assumed to be given as integersmodulom.We say xi is an isolated 0-critical
vertex if hv(xi−1) > hv(xi ) and hv(xi ) < hv(xi+1). We say that the line segment from
x j to xk is a 0-critical segment if hv(xi ) = hv(x j ) for all i = j, j + 1, . . . , k and that
hv(x j−1) > hv(x j ) and hv(xk) < hv(xk+1). Denote this line segment as e(x j , xk).

Observe that if e = e(x j , xk) is a 0-critical segment for hv then the vector xk − x j
must be perpendicular to v, and hv is constant over e. Recall that 0-critical points on the
boundary correspond to local minima, and the 0-critical points which are (+)-critical
will be local minima as points in A. To go from 0-critical points to 0-critical segments
we need to relax this notion of minima to have non-strict inequalities.

Definition 6.7 We say that a vertex xi lying on a 0-critical segment e is (+)-critical for
hA

v if there exists an ε > 0 such that for all a ∈ B(xi , ε)∩ A we have hv(xi ) ≤ hv(a).
Given the definition of manifold with boundary, if any vertex on a 0-critical segment
e is (+)-critical then every vertex on it will be, and we say that the 0-critical segment
is (+)-critical.

We now distinguish which of the 0-critical points and segments on a piecewise
linear boundary curve are (+)-critical. We will use the fact that the orientation of
planar triangles is defined by the sign of the determinant of a matrix formed from edge
vectors as follows. First let DET (x, y) be the determinant of a 2 × 2 matrix with
columns x and y. Given a triangle �(a, b, c) with positive area, the vertices a, b, c
are in an anticlockwise order if DET (c − b, a − b) > 0 and in a clockwise order if
DET (c − b, a − b) < 0.

The following two geometric lemmas cover the cases where one or both of the
edges adjacent to a local minimum is perpendicular to the direction v.

Lemma 6.8 Let A ⊂ R
2 be a bounded subset whose boundary is the disjoint union

of piecewise linear closed curves. Let γ = (x0, x1, x2, . . . xm = x0) be a piecewise
linear boundary curve of A with vertices listed anticlockwise with respect to A. Fix
v ∈ S1. If xi is an isolated 0-critical vertex of h

γ
v , or an endpoint of a 0-critical segment

e, then xi is (+)-critical for hA
v if and only if DET (xi+1 − xi , xi−1 − xi ) > 0.

Proof There is some ε > 0 such that the interior of the triangle bounded by xi , xi +
ε(xi−1 − xi ) and xi + ε(xi+1 − xi ) is either entirely contained in A or is entirely
contained in the complement of A. For the sake of computations let yi−1 = xi +
ε(xi−1−xi ) and yi+1 = xi +ε(xi+1−xi ). By assumption we have hv(yi+1) ≥ hv(xi )
and hv(yi−1) ≥ hv(xi ) with at least one of these inequalities strict, which implies that
the convex hull of xi , yi−1 and yi+1 has positive area and DET (yi+1−xi , yi−1−xi ) �=
0.

Suppose that xi is (+)-critical for hA
v which implies that �(yi−1, xi , yi+1) is a

subset of A. Since γ traces a boundary curve that is going anticlockwise around A we
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must have vertices yi−1, xi , yi+1 in an anticlockwise order. This implies DET (yi+1−
xi , yi−1 − xi ) > 0.

If xi is not (+)-critical then the opposite holds: we have �(yi−1, xi , yi+1) is not
contained in A, that yi−1, xi , yi+1 are in a clockwise order and thus DET (yi+1 −
xi , yi−1 − xi ) < 0. �


If the point xi is contained strictly inside a 0-critical segment then we need an
alternative approach. This will also be useful when successive points are close to co-
linear with respect to a direction v, because we want to avoid any possible issues with
floating point errors in computations.

Lemma 6.9 Let A ⊂ R
2 be a bounded subset whose boundary is the disjoint union

of piecewise linear closed curves. Let γ = (x0, x1, x2, . . . xm = x0) be a piecewise
linear boundary curve of A with vertices listed anticlockwise with respect to A. Fix
v ∈ S1. Let xi be an isolated 0-critical vertex or a vertex in a 0-critical segment e
with respect to the function hγ

v . Furthermore, suppose that �(xi−1, xi , xi+1) has an
obtuse angle αi at xi . Let wi denote the rotation of the vector xi+1 − xi anticlockwise
by π/2. Then xi is (+)-critical for hA

v if and only if wi · v > 0.

Proof If wi · v = 0 then we deduce that hv(xi ) lies strictly between hv(xi−1) and
hv(xi+1) contradicting the assumption xi is 0-critical, so we know wi · v �= 0.

Since γ is traced anticlockwise around A and π/2 < αi ≤ π we know that wi ,
the rotation of xi+1 − xi anticlockwise by π/2, will point into A from xi , and if we
rotate anticlockwise around xi from the direction wi we encounter xi−1 − xi at an
angle strictly less than π . Set y = xi + wi . Since wi points into A from xi , for small
ε > 0, we can cover A ∩ B(xi , ε) by triangles �(xi−1, xi , y) and �(y, xi , xi+1).

If wi · v > 0 then hv(y) > hv(xi ). Every point a ∈ �(xi−1, xi , y) can be written
as a convex combination a = a1xi−1 + a2xi + a3y. For this a,

hv(a) = a1hv(xi−1) + a2hv(xi ) + a3hv(y) ≥ hv(xi )

as hv(xi−1), hv(y) ≥ hv(xi ). Similarly every point a ∈ �(y, xi , xi+1) also satisfies
hv(a) ≥ hv(xi ). Together these imply that xi is (+)-critical.

If wi · v < 0 then hv decreases along t �→ xi + twi , showing that for all ε > 0
there are points in aε ∈ A ∩ B(xi , ε) with hv(aε) < hv(xi ). This implies xi is not
(+)-critical. �


We are now ready to generalise Theorem 4.18 to PL subsets of the plane where we
drop the Morse condition.

Theorem 6.10 Let A ⊂ R
2 be a 2-dimensional piecewise linear manifold with bound-

ary X = ∂A. Fix v ∈ S1. The degree-0 persistent homology of hX
v : X → R can be

written as

PH0(X , hX
v ) = ⊕m

i=1I[hv(y ji ),di )

where y j1 , . . . y jm are vertex representatives for each persistent 0-cycle, and
d1, . . . dm ∈ R ∪ ∞. Here we have only included intervals with positive length.
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Let J ord be the subset of {1, 2, . . .m} such that di is finite and y ji is (+)-critical
for hA

v . Then

Ord0(A, hA
v ) = ⊕i∈J ordI[(hv(y ji ),ord),(di ,ord))

.

Now let J rel be the subset of {1, 2, . . .m} such that di is finite but yi is not (+)-
critical for hA

v .

Rel1(A, hA
v ) = ⊕i∈J relI[(di ,rel),(hv(y ji ),rel))

.

Proof If hA
v is a Morse function the result follows directly from Theorem 4.18, so

suppose that hA
v is not a Morse function. Recall that since A ⊂ R

2 is a 2-dimensional
piecewise linear manifold with boundary X = ∂A, a sufficient condition for hA

v to be
Morse will be that all the vertices in X have distinct values under hA

v .
Let vt be the rotation of v anticlockwise by t . Given v there is an ε > 0 such that

for all t < ε we have hv(x) < hv(y) implies hvt (x) < hvt (y). We can now break the
ties that imply hA

v is not Morse; where hv(x) = hv(y) we have hvt (x) �= hvt (y). We
choose ε > 0 small enough that hA

vt
is a Morse function for all t < ε.

A vertex y ji will be an isolated 0-critical vertex for h
X
v if and only if it is an isolated

vertex for hX
vt
, as the order of the heights of y ji−1, y ji and y ji+1 are the same under

both hv and hvt . Since DET (y ji+1 − y ji , y ji−1 − y ji ) > 0 is independent of v we
know that whether or not y ji is (+)-critical is the same under hA

v and hA
vt
by Lemma

6.8. For notational purposes we set x ji = y ji to be the vertex representative for hX
vt
.

Now suppose e(xk, xl) is a 0-critical segment for hX
v with y ji ∈ e(xk, xl). Since hA

vt

is Morse, all the vertices in e(xk, xl) take distinct values for hX
vt
, with exactly one of

xk or xl now an isolated 0-critical point. Denote this endpoint by x ji . Since we choose
vt to be a small anticlockwise rotation of v, this choice will be a consistent tie-break
for all 0 < t < ε. Again since DET (x ji+1 − x ji , x ji−1 − x ji ) > 0 is independent
of v we know that whether or not x ji is (+)-critical is the same under hA

v and hA
vt
by

Lemma 6.8. Note that by construction, hv(x ji ) = hv(y ji ).
The above arguments show that we have

PH0(X , hX
v ) = ⊕m

i=1I[hv(x ji ),di )
.

The remainder of the proof is an argument in continuity. For t ∈ (0, ε) we have

PH0(X , hX
vt

) = ⊕m
i=1I[hvt (x ji ),di,t )

for some di,t ∈ R. Since limt→0+ vt = v we have limt→0+ PH0(X , hX
vt

) =
PH0(X , hX

v ) and thus limt→0+ di,t = di for all i .
Since each x ji is (+)-critical with respect to hA

v if and only if it is (+)-critical with
respect to hA

vt
we can apply Theorem 4.18 to say for all t ∈ (0, ε) that

Ord0(A, hA
vt

) = ⊕i∈J ordI[(hvt (y ji ),ord),(di,t ,ord))
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and

Rel1(A, hA
vt

) = ⊕i∈J relI[(di,t ,rel),(hvt (y ji ),rel))
.

Taking the limit as t → 0+ completes the proof. �


7 Implementation details

Algorithm 1 Computing the XPHT from a binary image.
Require: A binary image I, number of directions K = 4k.

1: Extract directed edges from I
2: Form boundary curves from directed edges

3: Assign interior and exterior labels to boundary curves

4: Initialise Ord0, Rel1, Ess0, Ess1 as lists of length 4k with each element an empty

list.

5: for i = 1, . . . 2k do

6: v = (cos(π i
2k ), sin(π i

2k ))

7: for each boundary curve do

8: compute degree-0 persistence pairs for the lower-level set filtration of

hv(x) = 〈x, v〉
9: assign (+)-critical or (−)-critical flags to each finite-lifetime persistence pair

10: determine maximum and minimum values and critical points for hv(x)

11: Ord0(i) ← (+)-critical persistence pairs � the symbol ← here means

‘append’

12: Rel1(i) ← (−)-critical persistence pairs

13: Ord0(i + 2k) ← reversed (−)-critical persistence pairs

14: Rel1(i + 2k) ← reversed (+)-critical persistence pairs

15: if boundary curve is exterior then

16: Ess0(i) ← min, max pair

17: Ess0(i + 2k) ← -max, -min pair

18: if boundary curve is interior then

19: Ess1(i) ← max, min pair

20: Ess1(i + 2k) ← -min, -max pair

21: return Ord0, Rel1, Ess0, Ess1
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Fig. 6 The input binary image A
with foreground in grey. The
boundary curves ∂A are oriented
anticlockwise with the interior
curve in orange and the exterior
curves in blue. These curves are
constructed using the rules
illustrated in Fig. 5 (color figure
online)

Using the theory developed in the previous sectionswe have implemented a package
in Rwhich takes as input a binary image and outputs the extended persistent homology
transform of the foreground of that image. The R-package is available at https://
github.com/james-e-morgan/xpht. The paragraphs below describe a simple example
to illustrate the sequence of steps followed when using the package. We finish this
section with a fun application using the XPHT to cluster the shapes of letters from
various standard fonts.

Let A denote the foreground of the binary image and X the boundary between
the foreground and background as constructed in the previous section. The user
chooses the number of directions K , and the unit vectors are set to vi =
(cos(2π i/K ), sin(2π i)/K ). We can compute the extended persistent homology of
A for directions v and −v from the regular persistent homology of X in direction v

together with knowledge of the minimum and maximum values of hX
v on each bound-

ary curve. Therefore, when the number of directions is even, the computational time
for the XPHT is halved. If the user has a collection of shapes that require centring
(Turner et al. 2014) then K is required to be a multiple of four. The main steps used
in the R-code are summarised in Algorithm 1 and illustrated with an example below.

The first step is to construct the oriented boundary curves around each of the compo-
nents, labelling which curves are interior and which are exterior. Note that by Lemma
6.3 the boundary between the foreground and background is a collection of disjoint
closed curves. This set of boundary curves is independent of direction vector and is
computed only once. For an example see Fig. 6. Constructing the set of all oriented
edges using the 2 × 2 image patch lookup table in Fig. 5 requires O(N ) steps where
N is the number of pixels. Building the boundary curves as ordered lists of vertices
from these edges is O(n) where n ≤ 2N is the number of edges. Determining the
interior/exterior status of a boundary curve is O(1). The overall cost of constructing
the oriented boundary curves of the foreground is therefore O(N ) where N is the
number of pixels.

For each direction v the regular degree-0 persistent homology of the boundary
curves can be computed very efficiently using the union-find data structure. The com-

123

https://github.com/james-e-morgan/xpht
https://github.com/james-e-morgan/xpht


The extended persistent homology transform…

Fig. 7 The critical points for
PH0(∂A, v) for the given
direction v. The vertices marked
with crosses are 0-critical points
and correspond to birth events in
PH0(∂A, v). Vertices marked
with circles are 1-critical and
cause a death in PH0(∂A, v).
The same letter label is given to
the paired birth and death events
of a persistent homology class
from PH0(∂A, v)

Fig. 8 Identifying the boundary
curve local minima that are also
local minima of hv on the
foreground. The 0-critical points
for X that correspond to births of
finite lifetime persistence classes
in PH0(X , v) are c, e, f , g, h
and i . We have of these c, e, f
and h are local minima for A
and thus (+)-critical points. The
remaining (g and i) are
(−)-critical

plexity is known to be O(nA−1(n)) where A−1(n) is the inverse Ackermann function
and n is the total number of boundary edges. Our implementation also identifies the 0-
critical vertices that represent births of components of ∂A with respect to the filtration
direction v; see Fig. 7.

Using Lemma 6.8 or 6.9 we determine which 0-critical points are positive critical
or negative critical for the foreground and label the ordinary persistent homology
classes as either (+)-critical or (−)-critical. This is illustrated for the example in
Fig. 8. Determining the sign at each critical point has constant complexity, O(1).

Using Theorem 6.10 we can compute the ordinary and relative persistent homology
for hA

v from the persistent homology of hX
v together with information about which 0-

critical isolated vertices and 0-critical segments are (+)-critical. Applying the duality
result from Corollary 2.7 we deduce the ordinary and relative persistence modules for
direction −v from those for direction v. In our worked example:

Ord0(A, v) =I[(hv(c),ord),(hv(c′),ord)) ⊕ I[(hv(e),ord)(hv(e′),ord))
⊕ I[(hv( f ),ord)(hv( f ′),ord)) ⊕ I[(hv(h),ord)(hv(h′),ord))
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Fig. 9 The minima and maxima
points of hXv for each boundary
curve in X . The exterior curves
have (minimum,maximum) pairs
labelled (m1, M1) and (m2, M2)

and the interior curve has the
pair of (m3, M3)

Rel1(A, v) =I[(hv(i ′),rel),(hv(i),rel)) ⊕ I[(hv(g′),rel)(hv(g),rel))

Ord0(A, (−v)) =I[(−hv(i ′),ord),(−hv(i),ord)) ⊕ I[(−hv(g′),ord)(−hv(g),ord))

Rel1(A, (−v)) =I[(−hv(c),rel),(−hv(c′),rel)) ⊕ I[(−hv(e),rel)(−hv(e′),rel))
⊕ I[(−hv( f ),rel)(−hv( f ′),rel)) ⊕ I[(−hv(h),rel)(−hv(h′),rel)).

To compute the essential classes we use Proposition 4.20. Each of the boundary
curves is labelled as interior or exterior. We compute the essential classes by finding
the minimum and maximum values of hX

v on these boundary curves. This is illustrated
for our running example in Fig. 9.

Using the notation of the figure, the essential classes for the foreground A are
therefore

Ess0(A, v) = I[(hv(m1),ord),(hv(M1),rel) ⊕ I[(hv(m2),ord),(hv(M2),rel)

and

Ess1(A, v) = I[(hv(M3),ord),(hv(m3),rel).

We then infer the essential persistence modules for direction −v to be

Ess0(A,−v) = I[(−hv(M1),ord),(−hv(m1),rel) ⊕ I[(−hv(M2),ord),(−hv(m2),rel)

and

Ess1(A,−v) = I[(−hv(m3),ord),(−hv(M3),rel).

The overall complexity of the algorithm is O(N ) for computing the oriented bound-
ary curves, where N is the number of pixels, and then 2kO(n) to compute the extended
persistent homology in 4k directions, where n is the total number of edges in the
boundary curves.
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Fig. 10 Upper case ‘A’ rendered in a variety of fonts. The letter shapes are numbered 1–95 reading left
to right, top to bottom in the 10 by 10 grid. The 1-Wasserstein distances between each pair of letters are
visualised using MDS with two dimensions. This shows a separation between serif ‘A’ and sans serif ‘A’
fonts plotted with blue and red respectively. The upper outlier labelled 69 is ‘Noteworthy-Light’, a large
round simple script font. The lower outlier labelled 87 is ‘Trattatello’ and has the smallest height and counter
in this set. In the upper left corner hiding in the legend is letter 1, ‘Academy-Engraved’ which has outlined
strokes giving it three holes. On the far right is letter 59 (‘Impact’), notable for having a narrow body width
but heavy weight (color figure online)

Example 7.1 We now briefly describe results from an XPHT analysis of the capital
letter A and the lower-case letter g rendered using over 90 standard fonts. Each letter
was created as a small binary image (130× 130 pixels) using an 84pt font size; these
are shown in Figs. 10 and 11. The XPHT for each letter was computed using K = 32
directions. Fonts vary in their letter placement with respect to a baseline, so we centred
the XPHT summary for each shape using the method outlined in Turner et al. (2014).
We did not need to consider angular alignment as the images are generated with a
consistent orientation. The letters all have the same specified font size so we discuss
the XPHT results without any scaling which allows the different heights and widths
to serve as characteristics of the font. We can also scale the XPHT summaries so that
each letter has the same diameter which changes the pairwise distances between these
shapes a little; the results are given as supplementary figures in the appendix.

We computed all pairwise distances between the XPHT summaries using both the
1- and 2-Wasserstein metrics. Results for the 1-Wasserstein case are presented and
discussed here; the other plots are given in the appendix. To demonstrate the types
of shape features the XPHT captures, we use multi-dimensional scaling (MDS) to
assign planar coordinates to each letter. The plots in Figs. 10 and 11 show that the
XPHT distances capture the difference between serif and sans-serif versions of the
letter A, and between single- and double-storey versions of the letter g. Of particular
note is the font ‘Chalkduster’ (label 32) which has a textured look with small holes
and rough boundary; the XPHT distances don’t make this a significant outlier for the
letter As. Chalkduster g is an outlier for that set because the bowl doesn’t create a
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Fig. 11 Lower case ‘g’ rendered in the same fonts and same order as used for ‘A’. The 1-Wasserstein
distances between each pair of letters are again visualised using MDS in two dimensions. In this case, there
is good separation between single storey ‘g’ and double storey ‘g’ font shapes. The upper right outlier
labelled 32 is ‘Chalkduster’ and has no essential 1-cycles. The lower left outlier labelled 1 is ‘Academy
Engraved’, it has additional essential 1-cycles due to its outlined stroke style. There is one green data point,
36 ‘Copperplate’, which is rendered in upper-case form. The red, double-storey ‘g’ fonts form two distinct
clusters. The fonts placed to the right are those where the lower tail doesn’t quite form a closed loop. At
the lower right are letters 15 and 16 (forms of ‘Avantgarde’); these have the roundest bowls and largest
counters, i.e., large circular upper holes (color figure online)

closed 1-cycle. It’s also worth noting that the XPHT distances create two clusters for
the double-storey letter ‘g’s with those that have β1 = 2 on the left and those, such as
fonts labelled 62 and 89, which look double-storey but have β1 = 1 clustered on the
right and closer to the single-storey fonts. We emphasize that an ordinary PHT shape
analysis could not replicate this clustering because the distances between single-storey
and true double-storey ‘g’s would be infinite.

These letters are included in the R-package release and more details about the
analysis are provided in the vignettes.

8 Future directions

This paper presents a new approach to computing persistent homology for manifolds
with boundary by exploiting relationships between the extended persistent homology
of a manifold with boundary to that of just the boundary. Although the focus here
has been on height functions of embedded shapes in Euclidean space it is reasonable
to expect that similar results could hold for other kinds of functions, such as radial
functions. One application already described, is the use of the XPHT in detecting
symmetries of 2D shapes (Bermingham et al. 2023). Future directions of research also
include considering generalisations to stratified spaces, adapting ideas from stratified
Morse theory as developed by Goresky and MacPherson (1988).
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Other areas to explore are theoretical properties of theXPHT. Stability results for the
PHT for different embeddings of the same simplicial complex were proved in Skraba
and Turner (2020) and these should hold for the XPHT by the same arguments. More
generally, we expect better stability results for the XPHT than for the PHT as we can
introduce new essential classes with small support without dramatically changing the
extended persistent homology transform.
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