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Abstract
The depth of a cell in an arrangement of n (non-vertical) great-spheres in S

d is the
number of great-spheres that pass above the cell. We prove Euler-type relations, which
imply extensions of the classic Dehn–Sommerville relations for convex polytopes to
sublevel sets of the depth function, and we use the relations to extend the expressions
for the number of faces of neighborly polytopes to the number of cells of levels in
neighborly arrangements.

Keywords Arrangements of great-spheres · Euler characteristics ·
Dehn–Sommerville relations · Discrete Morse theory · Neighborly polytopes ·
Counting
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1 Introduction

The use of topological methods to study questions in discrete geometry is a well estab-
lished paradigm, as documented in survey articles (Björner 1995; Živaljević 2017) and
books (Matoušek 2008). This paper contributes by viewing questions about splitting
finite point sets through the lens of the discrete depth function defined on a cor-
responding arrangement. To avoid the case analysis needed to distinguish bounded
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and unbounded cells, we work with arrangements of great-spheres on S
d rather

than of hyperplanes in R
d . Assuming non-vertical great-spheres (which do not pass

through the north-pole and the south-pole) the depth function maps every cell of the
arrangement to the number of great-spheres that separate the cell from the north-pole.

Aspects of this function have been studied in the past, such as themaximum number
of chambers (top-dimensional cells) at a given depth,which relates to counting k-sets in
a set of n points, which are subsets of k points that can be separated from the remaining
n − k points by a straight line; see e.g. Erdős et al. (1973). Giving tight bounds on the
number of k-sets is still open, with substantial gaps between the current best upper
and lower bounds in all dimensions larger than or equal to 2. We propose to focus on
the topological aspects of the depth function, in particular the occurrence of critical
cells of different types; see Definition 1. In the top dimension, we have a chamber
containing the north-pole (a minimum at depth 0), a chamber containing the south-
pole (a maximum at depth n), and otherwise only non-critical chambers connecting
the minimum to the maximum. There is nothing much topological to learn from such a
bi-polar depth function, but its restrictions to common intersections of great-spheres
display a richer topology, which can be studied with methods from discrete Morse
theory (Forman 1998) and persistent homology (Edelsbrunner and Harer 2010). The
core result in this paper is a system of Dehn–Sommerville type relations for level sets
of the depth function. This is different but related to the more direct generalization
of the Dehn–Sommerville relations to levels in arrangements proved by Linhart et al.
(2000). We refer to Grünbaum (1967, Sect. 9.2) for an introduction to the Dehn–
Sommerville relations for convex polytopes. Similar to their classic relatives and the
generalization in Linhart et al. (2000), our relations are based on double-counting, but
instead counting cells, we take sums of topological indicators. To state the relations,
letA be an arrangement of n great-spheres in Sd , and write C p

k (A) for the number of
p-cells at depth k inA. For each p-cell, consider the alternating sum of its faces at the
same depth, and write E p

k (A) for the sum of such alternating sums over all p-cells at
depth k. IfA is simple (see Sect. 2.1 for a definition), then we have a system of linear
relations for 0 ≤ p ≤ d and 0 ≤ k ≤ n − d + p:

∑p

i=0
(−1)i (d−i

d−p

)
Ei

k(A) = C p
k (A) =

∑p

i=0

(d−i
d−p

)
Ei

k+i−p(A), (1)

which we refer to as Dehn–Sommerville–Euler relations. The system has applications
to cyclic polytopes—which are convex hulls of finitely many points on the moment
curve—and the broader class of neighborly polytopes—which are characterized by
the property that every (q − 1)-simplex spanned by q ≤ d/2 vertices is a face of
the polytope. A celebrated result in the field is the Upper Bound Theorem proved by
McMullen (1970), which states that every cyclic polytope has at least as many faces
of any dimension as the convex hull of any other set of n points in R

d . All cyclic
polytopes with n vertices in Rd have isomorphic face complexes with a structure that
is simple enough to allow for counting the faces, and expressions for these numbers
can be found in textbooks, such as Ziegler (1995). In contrast, neighborly polytopes
with n vertices in R

d can have non-isomorphic face complexes, but they still have
the same number of faces in every dimension. Within our framework, the structural
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simplicity is expressed by having bi-polar restrictions of the depth function to the
intersection of any q ≤ d/2 great-spheres. We call an arrangement in Sd that has this
property a neighborly arrangement. Writing p = d − q and counting only the cells
of the subarrangement, B, in the intersection of the q great-spheres, straightforward
topological arguments imply

E p
k (B) =

⎧
⎨

⎩

1 for k = 0,
0 for 1 ≤ k ≤ n + p − d − 1,
(−1)p for k = n + p − d.

(2)

Together with the Dehn–Sommerville–Euler relations in (1), this implies expressions
in n, d, p, and k for the number of p-faces, for every 0 ≤ p ≤ d, and thus generalizes
the result for convex polytopes to levels in neighborly arrangements. Surprisingly, the
neighborly property not only determines the number of faces of the convex hull but in
fact of every level of the corresponding dual arrangement. The special case of cyclic
polytopes, in which the hyperplanes are dual to points on the moment curve, has been
solved in Andrzejak and Welzl (2003).

Outline Sect. 2 presents the background needed for the results in this paper. Section3
studies the face and coface structure of a cell in an arrangement. Section4 uses the
technical lemmas in Sect. 3 to prove the system of relations (1), which it compares with
the more classic extension of the Dehn–Sommerville relations in Linhart et al. (2000).
Section5 reproduces known bounds on the size of higher-orderVoronoi tessellations in
two and three dimesions from our system of relations. Section6 uses (1) to generalize
results for neighborly polytopes to neighborly arrangements. Section7 concludes the
paper.

2 Background

In this section, we introduce the main geometric and topological concepts studied in
this paper: arrangements, depth functions, and sublevel sets.

2.1 Arrangements

As mentioned in Sect. 1, we study the properties of a finite point set in the dual
setting, where each point is represented by a non-vertical hyperplane. To further
finesse the inconvenience of unbounded cells, we map every point in Rd to a (d − 1)-
dimensional great-sphere and consider the arrangement formed by these great-spheres
in S

d . Besides having only bounded cells, the great-sphere arrangement is centrally
symmetric and thus has two antipodal cells for each bounded cell and each pair of dia-
metrically opposite unbounded cells in the hyperplane arrangement. A possible such
transformation maps a point a = (a1, a2, . . . , ad) ∈ R

d to the hyperplane defined
by the equation xd + ad = a1x1 + a2x2 + · · · + ad−1xd−1 and further to the great-
sphere in Sd obtained by intersecting the unit-sphere inRd+1 with the (d-dimensional)
hyperplane defined by xd + ad xd+1 = a1x1 + a2x2 + · · · + ad−1xd−1; see Fig. 1.
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Fig. 1 An arrangement of four lines inR2 on the left and the corresponding arrangement of four great-circles
in S2 on the right

Two points in S
d are distinguished: the north-pole at the very top and the south-

pole at the very bottom of the sphere. By construction, none of the great-spheres
passes through the two poles. Letting σ be a great-sphere in S

d , we write σ− for
the closed lower hemisphere bounded by σ , which contains the south-pole, and we
write σ+ for the closed upper hemisphere, which contains the north-pole. Letting
A be the collection of great-spheres, each cell in the arrangement corresponds to a
tri-partition, A = A− � A0 � A+, such that the cell is the common intersection of
the lower hemispheres σ−, with σ ∈ A−, the great-spheres σ , with σ ∈ A0, and the
upper hemispheres σ+, with σ ∈ A+. We write A for the arrangement defined by A,
we refer to a cell of dimension p as a p-cell, and for p = 0, 1, 2, d − 1, d, we call it
a vertex, edge, polygon, facet, chamber, respectively. The faces of a cell are the cells
contained in it, which includes the cell itself.

The intersection of great-spheres is again a great-sphere, albeit of a smaller dimen-
sion. To avoid any confusion, we will explicitly mention the dimension if it is less than
d − 1. We call the arrangement simple if all great-spheres avoid the two poles and the
common intersection of any d − p great-spheres is a p-dimensional great-sphere in
S

d . This implies that any d great-spheres intersect in a pair of antipodal points, and any
d +1 or more great-spheres have an empty common intersection. For each 0 ≤ p ≤ d,
we write C p = C p(A) for the number of p-cells in the arrangement, and C p(n, d) for
the maximum over all arrangements of n great-spheres in Sd . Importantly, the number
of cells is maximized if the arrangement is simple, and in this case it depends on the
number of great-spheres but not on the great-spheres themselves.

Proposition 1 (Number of cells) Any simple arrangement of n ≥ d great-spheres in

S
d has C p(n, d) = 2

[(d
p

)(n
d

) + (d−2
p−2

)( n
d−2

) + · · · + (d−2i
p−2i

)( n
d−2i

)]
p-cells, in which

i = �p/2�.

The formula for the number of p-cells is not new and can be derived from similar
formulas for arrangements in d-dimensional real projective space (Grünbaum 1967,
Sect. 18.1) or in d-dimensional Euclidean space (Edelsbrunner 1987, Sect. 1.2).
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2.2 Depth function

Given a set A of n great-spheres in Sd , none passing through the two poles, we define
the depth of a point x ∈ S

d as the number of great-spheres σ ∈ A with x ∈ σ− \ σ .
In words, the depth of the point is the number of great-spheres that cross the shortest
arc connecting x to the north-pole. If x and y are two interior points of the same cell,
then they have the same depth. Recalling that A is the arrangement defined by A, we
introduce the depth function, θ : A → [0, n], which we define by mapping each cell to
the depth of its interior points. Depending on the situation, we think of θ as a discrete
function on the arrangement or a piecewise constant function on Sd , namely constant
in the interior of every cell in A.

Let c be a p-cell in A, with corresponding tri-partition A− � A0 � A+. The depth
of every interior point x ∈ c is θ(x) = θ(c) = #A−, and if the arrangement is simple,
then p = d − #A0. Let b ⊆ c be a face of dimension i ≤ p, with corresponding
tri-partition B− � B0 � B+. We have B− ⊆ A−, A0 ⊆ B0, B+ ⊆ A+, and if the
arrangement is simple, we also have i = d − #B0. Given the depth of c, this implies
the following bounds on the depth of b:

Lemma 1 (Depth of face) Let A be a simple arrangement of great-spheres in S
d . For

every i-face, b, of a p-cell, c, we have max{0, θ(c) + i − p} ≤ θ(b) ≤ θ(c), and both
bounds on the depth of b are tight.

Proof Since the arrangement is simple, we have #B− ≥ #A− − [#B0 − #A0] =
#A− + i − p, which implies the first inequality. The second inequality follows from
#B− ≤ #A−, which holds for general and not necessarily simple arrangements.

To prove the second inequality is tight, we show the existence of a p-cell that
shares b with c and has the same depth as b. To this end, consider the tri-partition
(B+ ∪ X) � (B0\X) � B−, in which X ⊆ B0 has cardinality p − i . The cell defined
by this tri-partition is non-empty because it contains b as a face. Furthermore, this cell
has dimension p and the same depth as b. The proof that the first inequality is tight is
symmetric and omitted. ��

To relate this concept to the prior literature, we mention that Edelsbrunner (1987,
Chapter 3) introduces the k-th level of an arrangement of n non-vertical hyperplanes
in d dimensions as the points x ∈ R

d below fewer than k and above fewer than n−k of
the hyperplanes. In other words, the k-th level consists of all facets at depth k − 1 and
all their faces. Assuming the arrangement is simple, Lemma 1 implies that a p-cell
belongs to the k-th level iff its depth is between k − d + p and k − 1.

2.3 Sublevel sets

Assume that A has at least one vertex, which in the simple case is implied by n ≥ d.
For 0 ≤ k ≤ n, we write Ak = θ−1[0, k] for the sublevel set of θ at k. It consists of
all cells in A whose depth is k or less. Recall that θ is monotonic, by which we mean
that the depth of every cell is at least as large as the depth of any of its faces. It follows
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that Ak is a complex, with well defined Euler characteristic:

χ(Ak) =
∑

c∈Ak
(−1)dim c. (3)

The right-hand side of (3) explains how the Euler characteristic changes fromAk−1 to
Ak , namely by adding the alternating sum of all cells at depth k. By Lemma 1, every
cell at depth k is a face of a chamber at depth k. We can therefore construct Ak from
Ak−1 by adding all chambers at depth k together with their faces at the same depth.
This motivates the following two definitions.

Definition 1 (Relative Euler and depth characteristic) For a cell c ∈ A, let F =
F(c) be the complex of faces, which includes c, and let F0 ⊆ F be a subcom-
plex. The relative Euler characteristic of the pair of complexes is χ(F, F0) =∑

b∈F\F0
(−1)dim b.

If F0 is the set of faces b ⊆ c with θ(b) < θ(c), denoted U = U (c), we call
ε(c) = χ(F, U ) the depth characteristic of c, and we call c critical for θ if ε(c) �= 0.

For example, if all faces have the same depth as c, then the depth characteristic of c
is ε(c) = χ(F,∅) = 1, and if all proper faces have depth strictly less than c, then
the depth characteristic of c is ε(c) = χ(F, F\{c}) = (−1)dim c. In both cases, c is
critical.

Lemma 2 (Relative and absolute Euler characteristic) Let F = F(c) be the face
complex of a cell, c, in an arrangement, and let F0 ⊆ F be a subcomplex. Then the
relative Euler characteristic of the pair is χ(F, F0) = 1 − χ(F0).

Proof By definition,χ(F, F0)+χ(F0) is the sum of (−1)dim b over all cells b ∈ F \F0
as well as all b ∈ F0, and therefore over all b ∈ F . Hence, this sum is χ(F), which is
equal to 1 because c is closed and convex. The claimed equation follows. ��

We write C p
k = C p

k (A) for the number of p-cells at depth k, and E p
k = E p

k (A) =∑
c ε(c) for the sum of depth characteristics over all p-cells at depth k. To see the

motivation behind taking sums of depth characteristics, consider the subcomplex of
cells at depth at most k in a p-dimensional subarrangement of the d-dimensional
arrangement. It is pure p-dimensional, by which we mean that every cell in this
subcomplex is a face of a p-cell. Furthermore, the Euler characteristic of this pure
complex is the sum of depth characteristics of its p-cells. In other words, we can
construct the subarrangement by adding its p-cells in the order of non-decreasing
depth. Whenever we add a p-cell, c, we also add the yet missing faces, and we know
that ε(c) is the increment to the Euler characteristic of the subcomplex. Hence, E p

k is
the increment to the total Euler characteristic of the subcomplexes in the p-dimensional
subarrangements when we add the p-cells at depth k together with their yet missing
faces.
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Fig. 2 The neighborhood of the
origin in R

3 and the dual cube
centered at the origin. The labels
of the sides are the depths of the
corresponding cells in the
arrangement of coordinate
planes

3 Local configurations

Most arguments in the subsequent technical sections accumulate local quantities, each
counting faces or cofaces of a cell. In a simple arrangement, the coface structure
depends only on the dimension, so we study it first.

3.1 Coface structure

In the generic case, the local neighborhood of a vertex in an arrangement in Sd looks
like that of the origin in the arrangement of the d coordinate planes in R

d . Each of
these (d −1)-planes bounds an open half-space in which the corresponding coordinate
is strictly negative. Accordingly, we define the depth of a point x ∈ R

d as the number
of negative coordinates, and the depth of a cell in the arrangement as the depth of
its interior points. To study this arrangement, consider [−1, 1]d ⊆ R

d and let S p(d)

be the number of q-sides of the d-cube, in which we write q = d − p. The dual
correspondence provides an incidence reversing bijection between the p-cells of the
arrangement and the q-sides of the cube.

We label each side with the depth of the corresponding cell in the arrangement, and
write S p

k (d) for the number of q-sides labeled k. As illustrated in Fig. 2, this amounts

to labeling Sd
k (d) = (d

k

)
vertices with k, for 0 ≤ k ≤ d, and labeling each side with the

minimum label of its vertices. Note that the label of a q-side cannot exceed d −q = p.

Lemma 3 (Coface structure of vertex) Consider the arrangement defined by the d
coordinate planes in R

d .

(i) For 0 ≤ k ≤ p ≤ d, the number of p-cells at depth k is S p
k (d) = (d−k

d−p

)(d
k

)
.

(ii) There is one cell at depth d, namely the negative orthant, and for 0 ≤ k < d, the
alternating sum of cells at depth k vanishes; that is:

∑d
p=k(−1)p S p

k (d) = 0.

Proof The p-cells counted in (i) correspond to the q-sides with label k, in which
p + q = d. To count these q-sides, we recall that the d-cube has

(d
k

)
vertices at depth

k. For each such vertex, u, consider the largest side for which u is the vertex with
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minimum label. This largest side is a cube of dimension d − k, which contains
(d−k

q

)

q-sides incident to u. We thus get

S p
k (d) = (d−k

q

)(d
k

) = (d−k
d−p

)(d
k

)
(4)

q-sides with label k, which proves (i).
To see (ii), consider a (d − k)-cube with label k. The alternating sum of sides with

the same label is
∑d−k

q=0(−1)q
(d−k

q

)
, which vanishes for d − k > 0, and equals 1 for

d − k = 0. Likewise, the sum of alternating sums over all (d − k)-sides with label k
vanishes for d − k > 0 and equals 1 for k = d. This implies (ii) by duality. ��

It is easy to generalize Lemma 3 from a vertex to a cell of dimension i ≥ 0. To see
this geometrically, we slice the i-cell and its cofaces with a (d − i)-plane orthogonal
to the i-cell. In this slice, the i-cell appears as a vertex, and each coface of dimension
p appears as a (p − i)-cell.

Corollary 1 (Coface structure of cell) Consider the arrangement defined by the d
coordinate planes in R

d , and let c be an i-cell at depth 0 ≤ � ≤ i .

(i) For 0 ≤ k − � ≤ p − i ≤ d − i , the number of p-cells at depth k that contain c is
S p−i

k−� (d − i) = (d−i−k+�
d−p

)(d−i
k−�

)
.

(ii) There is one cell at depth d, and for � ≤ k < d, the alternating sum of cells at
depth k that contain c vanishes; that is:

∑d
p=k(−1)p S p−i

k−� (d − i) = 0.

3.2 Face structure

The face structure of a cell in a simple arrangement is not quite as predictable as its
coface structure. Nevertheless, we can say something about it. As before, we write
F = F(c) for the face complex of a cell, c, and we let F0 ⊆ F be a subcomplex.
Furthermore, we write

X(F, F0) =
∑

b∈F\F0
(−1)dim bχ(F(b), F0 ∩ F(b)) (5)

for the alternating sum of relative Euler characteristics.

Lemma 4 (Face structure of cell) Let c be a cell in a simple arrangement of great-
spheres in S

d , and let F0 ⊆ F(c) be a subcomplex of the face complex of the cell.
Then X(F, F0) = 1 if F0 �= F and X(F, F0) = 0 if F0 = F.

Proof If F0 = F , then X(F, F0) is a sum without terms, which is 0. We can therefore
assume F0 �= F , which implies c ∈ F\F0. Fix a cell a ∈ F\F0 with dimension
i = dim a less than or equal to p = dim c. It contributes (−1)i+ j for every j-cell
b ∈ F \ F0 that contains a as a face. The contribution of a to X(F, F0) is therefore
(−1)i ∑p

j=1(−1) j
(p−i

j−i

)
, which vanishes for all i < p and is equal to 1 for i = p.

Hence, the only non-zero contribution to X(F, F0) is for a = c, which implies the
claim. ��
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There is a symmetric form of the lemma, which we get by introducing the codepth
function, ϑ : A → [0, n] defined by ϑ(x) = n − q − θ(x), where q is the number of
great-spheres that pass through x . Observe that ϑ(x) is the number of great-spheres
that cross the shortest arc connecting x to the south-pole. We write B p

� (A) for the
number of p-cells with codepth �. If the arrangement is simple, then

B p
� (A) = C p

k (A), with k + � + (d − p) = n. (6)

Indeed, there are d − p great-spheres that contain a p-cell, c, and if k great-spheres
pass above c, then � = n − (k + d − p) great-spheres pass below c. Recall that
ε(c) = χ(F, U ) is the depth characteristic, in which F = F(c) is the face complex,
and U ⊆ F is the subcomplex of faces at depth strictly less than θ(c). Symmetrically,
we call δ(c) = χ(F, L) the codepth characteristic of c, in which F = F(c) as before,
and L ⊆ F is the subcomplex of faces at codepth strictly less than ϑ(c). In a simple
arrangement, the two characteristics agree on even-dimensional cells, and they are the
negative of each other for odd-dimensional cells.

Lemma 5 (Depth and codepth characteristics) For a p-cell in a simple arrangement
of great-spheres, we have δ(c) = (−1)pε(c).

Proof The boundary of c is a (p − 1)-sphere, which is decomposed by the complex
of proper faces of c. We write L for the proper faces with codepth strictly less than
ϑ(c), and U for the proper faces with depth strictly less than θ(c). L and U exhaust
the proper faces of c. More precisely, L and U partition the (p −1)-faces, and each of
the two subcomplexes is the closure of its set of (p − 1)-faces. Hence, L ∩ U consists
of all (p − 2)-faces shared by a (p − 1)-face in L and another (p − 1)-face in U ,
together with all faces of these (p − 2)-faces. Since the arrangement is simple, the
cells in L ∩ U decompose a (p − 2)-manifold.

Case 1: p is odd. Then L ∩ U decomposes an odd-dimensional manifold. By
Poincaré duality, χ(L ∩ U ) = 0. The Euler characteristic of the boundary of c is
2, which implies χ(L) + χ(U ) − χ(L ∩ U ) = χ(L) + χ(U ) = 2. By Lemma 2,
ε(c) = 1− χ(U ) and therefore δ(c) = 1− χ(L) = 1− [2 − χ(U )] = −ε(c), as
claimed.
Case 2: p is even. The boundary of c is an odd-dimensional sphere, so its Euler
characteristic vanishes. By Alexander duality, χ(L) = χ(U ), and by Lemma 2,
ε(c) = 1− χ(U ) and δ(c) = 1− χ(L), which implies δ(c) = ε(c), as claimed.��

4 Relations

In this section, we prove linear relations for the cells at given depths. The relations
are similar to the classic Dehn–Sommerville relations for convex polytopes, and we
prove them the same way by straightforward double counting; see Grünbaum (1967,
Sect. 9.2). We begin with the easy bi-polar case.
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4.1 Bi-polar depth functions

We recall that the depth function on an arrangement of great-spheres is bi-polar if there
is a chamber above all great-spheres. By construction, the arrangement and its depth
function are antipodal, which implies that there is also a chamber below all great-
spheres. With the great-spheres given in S

d , the depth function on S
d is necessarily

bi-polar, but its restrictions to subarrangements inside the common intersection of one
or more great-spheres are not necessarily bi-polar.

Theorem 1 (Bi-polar depth functions) Let A be a simple arrangement of n ≥ d great-
spheres in S

d , let B be the p-dimensional subarrangement inside the intersection of
d − p of the great-spheres, and assume that the restriction of the depth function to B
is bi-polar. Then

E p
k (B) =

⎧
⎨

⎩

1 for k = 0,
0 for 1 ≤ k ≤ n − d + p − 1,
(−1)p for k = n − d + p.

(7)

Proof Let cN be the (p-dimensional) chamber at depth 0 in B, and let cS be the
antipodal chamber at depth n − d + p. We write Sp for the intersection of the d − p
great-spheres, fix a point N ∈ S

p inside the interior of cN , and let S ∈ S
p in the interior

of cS be the antipodal point.We partition Sp \{N , S} into open fibers, each half a great-
circle connecting N to S. Along each fiber, the depth is non-decreasing. Consider the
set of fibers that intersect a chamber c �= cN , cS . They partition the boundary of c into
the upper boundary, along which the fibers enter the chamber, the lower boundary,
along which the fibers exit the chamber, and the silhouette, along which the fibers
touch but do not enter the chamber. Since c is p-dimensional and spherically convex
(the common intersection of closed hemispheres) this implies that the silhouette is a
(p −2)-sphere, and the upper and lower boundaries are open (p −1)-balls. The depth
characteristic of c is (−1)p−1—for the open lower boundary—plus (−1)p—for the
chamber itself. It follows that the depth characteristic of c vanishes, and so does the
depth characteristic of every other chamber, except for cN and cS . Because cN has
the same depth as its entire boundary, we have ε(cN ) = 1, and because cS has larger
depth than its entire boundary, we have ε(cS) = (−1)p. This implies (7). ��

4.2 Alternating sums of depth characteristics

In the general case, the restrictions of the depth function to subarrangements are
not necessarily bi-polar. The depth characteristics may therefore violate (7), but they
satisfy a system of linear relations, as we prove next.

Theorem 2 (Dehn–Sommerville–Euler for levels) Let A be a simple arrangement of
n ≥ d great-spheres in S

d . Then for every dimension 0 ≤ p ≤ d, we have

∑p

i=0
(−1)i (d−i

p−i

)
Ei

k(A) = C p
k (A)
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=
∑p

i=0

(d−i
p−i

)
Ei

k+i−p(A) for 0 ≤ k ≤ n − d + p.

(8)

Proof Let c be a p-cell at depth k, let F = F(c)be the face complex of c, and letU ⊆ F
be the subcomplex of faces at depth strictly less than k. Note that U does not contain
c, so U �= F , and Lemma 4 implies X(F, U ) = 1. Taking the sum over all p-cells at
depth k thus gives the number of such p-cells, which is C p

k (A). By Corollary 1 (i), a

single i-cell contributes to the alternating sums of S p−i
0 (d − i) = (d−i

p−i

)
p-cells, which

implies that the first sum in (8) is the total alternating sum of depth characteristics over
all cells at depth k and dimension at most p.

The second relation in (8) is the upside-down version of the first relation. Indeed,
we can substitute codepth for depth and get the following relation using the notation
of Sect. 3.2:

B p
� (A) =

∑p

i=0
(−1)i (d−i

p−i

)
Di

�(A). (9)

To translate this back in term of depth, we set � = n − (k + d − p) so that a p-cell at
codepth � has depth n − (� + d − p) = k. Hence, B p

� (A) = C p
k (A). To write the Ds

in terms of the Es, we multiply with (−1)i because of Lemma 5, and we change the
index from � = n − (k + d − p) to k + i − p = n − (� + d − i) because of (6). This
gives the right relation in (8). ��

As an example consider the case d = 2. We get equations (10)–(12) by setting
p = 0, 1, 2 in (8):

E0
k = C0

k = E0
k , (10)

2E0
k − E1

k = C1
k = 2E0

k−1 + E1
k , (11)

E0
k − E1

k + E2
k = C2

k = E0
k−2 + E1

k−1 + E2
k , (12)

Equation (10) just says that the depth characteristic of every vertex is 1. (11) implies
E1

k = E0
k − E0

k−1, and (12) implies E1
k + E1

k−1 = E0
k − E0

k−2, which follows from
the relation implied by (11). Note that adding the depth characteristics of the edges
gives a telescoping series, which implies E1

0 + E1
1 + . . . + E1

k = E0
k .

4.3 Alternating sums of cells

For comparison, we state the more traditional version of the Dehn–Sommerville rela-
tions, which apply to cell complexes; see Mulmuley (1993) and Linhart et al. (2000,
Theorem 1). It counts the p-cells at depth k, which together with all their faces form
a cell complex. For each dimension 0 ≤ i ≤ p, this includes all i-cells at depths
k + i − p to k.
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Proposition 2 (Dehn–Sommerville for levels)LetA be a simple arrangement of n ≥ d
great-spheres in S

d . For every dimension 0 ≤ p ≤ d, we have

C p
k (A) =

∑p

i=0
(−1)i (d−i

d−p

)∑p−i

j=0

( p−i
p−i− j

)
Ci

k+i−p+ j (A) for 0 ≤ k ≤ n − d + p.

(13)

We get a non-trivial relation in (13) for p = 1, which asserts C1
k = dC0

k−1+dC0
k −

C1
k . Indeed, twice the number of edges is the sum of vertex degrees. For p = 2, we

get

C2
k = (d

2

)
C0

k − (d − 1)C1
k + C2

k + (d − 1)dC0
k−1 − (d − 1)C1

k−1 + (d
2

)
C0

k−2, (14)

in which the polygons cancel and the rest is equivalent to the relation for p = 1. More
generally, the term on left-hand side of (13) cancels whenever p is even.

5 Application to higher-order Voronoi tessellations

In this section, we give evidence for the unifying power of the system of Dehn–
Sommerville–Euler relations by rederiving cell-counting formulas for higher-order
Voronoi tessellations proved in Biswas et al. (2021) and Lee (1982). The difference
forms of the relations are particularly convenient, which we present in dimensions 3
and 4.

5.1 Two dimensions

Before discussing the 2-dimensional order-k Voronoi tessellations, we introduce the
3-dimensional difference relations implied by Theorems 1 and 2.

Corollary 2 (Difference relations in S
3) Let A be a simple arrangement of n ≥ 3

great-spheres in S
3. Then

E1
k (A) = 3

2 [E0
k (A) − E0

k−1(A)], for 0 ≤ k ≤ n, (15)

E2
k (A) = 1

3 [E1
k (A) − E1

k−1(A)] + 2, for 0 ≤ k ≤ n, (16)

E3
k (A) =

⎧
⎨

⎩

1 for k = 0,
0 for 1 ≤ k ≤ n − 1,
−1 for k = n.

(17)

Proof We get (15) by setting d = 3 and p = 1 in (8) and (17) by setting d = p = 3
in (7). To get (16), we begin by setting d = p = 3 in (8), which gives

E2
k − E2

k−1 = [E0
k−3 − E0

k ] + [E1
k−2 + E1

k ] + 2E3
k

= 1
3 [E1

k − 2E1
k−1 + E1

k−2] + 2E3
k , (18)
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inwhichweuse E0
k−3−E0

k = − 2
3 [E1

k +E1
k−1+E1

k−2] implied by (15).Moving E2
k−1 to

the right-hand side and substituting it recursively implies (16) because
∑k

�=0 E3
� = 1

by (17). ��
If every 2-dimensional subarrangement is bipolar, then each arrangement of n − 1

great-circles inside a great-sphere has polygons of predictable depth characteristics,
namely a minimum (with depth characteristic 1) at depth 0, a maximum (with depth
characteristic 1) at depth n − 1, and otherwise only non-critical polygons connecting
the minimum to the maximum. Hence,

E2
k (A) =

{
n for k = 0, n − 1,
0 for 1 ≤ k ≤ n − 2,

(19)

E1
k (A) = 3n − 6(k + 1) for 0 ≤ k ≤ n − 2, (20)

E0
k (A) = 2n(k + 1) − 4

(k+2
2

)
for 0 ≤ k ≤ n − 3, (21)

in which we get (20) from (19) and (16), and we get (21) from (20) and (15). For
values of k outside the given limits, the sums of Euler characteristics are zero.

As defined in Shamos and Hoey (1975), the order-k Voronoi tessellation of n points
in R

2 is a decomposition of the plane into closed convex regions such that any two
points in a region share the same k nearest points in the given set; but see also Toth
(1976). It can be obtained by mapping each of the n points, u = (u1, u2), to the
plane x3 = u1x1 + u2x2 + 1

2 (u
2
1 + u2

2), forming the arrangement of the n planes, and
projecting the chambers at depth k to the regions of the tessellation. The boundaries of
the regions are obtained by projecting the edges at depth k−1 and the vertices at depths
k −2 and k −1. Lee counted the regions, edges, and vertices in these tessellations (Lee
1982), and found that the numbers depend on n and k but barely on how the points are
placed in the plane. Indeed, if we modify the setting slightly by turning the planes into
great-spheres—as explained in Sect. 2—then a general position assumption suffices
for these numbers to depend solely on n and k. Using Theorem 2 and the expressions
for E p

� in the case of bipolar 2-dimensional subarrangements given in (21), (20), (19),
(17), we get

C0
k−2 + C0

k−1 = E0
k−2 + E0

k−1 = 2(n − k)(2k − 1) − 2k, (22)

C1
k−1 = 3E0

k−2 + E1
k = 3(n − k)(2k − 1) − 3k, (23)

C3
k = E0

k−3 + E0
k−2 + E0

k−1 + E0
k = (n − k)(2k − 1) − k + 2 (24)

for the number of vertices, edges, and regions. Modulo the difference betweenR2 and
S
2, these are the same expressions as in Lee (1982).

5.2 Three dimensions

Before discussing the 3-dimensional order-k Voronoi tessellations, we introduce the
4-dimensional difference relations implied by Theorems 1 and 2.
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Corollary 3 (Difference relations in S
4) Let A be a simple arrangement of n ≥ 4

great-spheres in S
4. Then

E1
k (A) = 2[E0

k (A) − E0
k−1(A)], for 0 ≤ k ≤ n, (25)

E2
k (A) = 1

2 [E1
k (A) − E1

k−1(A)] +
∑k

�=0
E3

� , for 0 ≤ k ≤ n, (26)

E4
k (A) =

{
1 for k = 0, n,

0 for 1 ≤ k ≤ n − 1.
(27)

Proof We get (25) by setting d = 4 and p = 1 in (8), and we get (27) by setting
d = p = 4 in (7). To get (26), we begin by setting d = 4 and p = 3 in (8), which
gives

E2
k − E2

k−1 = 2[E0
k−3 − E0

k ] + 3
2 [E1

k−2 + E1
k ] = 1

2 [E1
k − 2E1

k−1 + E1
k−2] + E3

k ,

(28)

in which we use 2[E0
k−3 − E0

k ] = −[E1
k + E1

k−1 + E1
k−2] implied by (25). Moving

E2
k−1 to the right-hand side and substituting iteratively, we get (26). ��
Note the absence of any relation for E3

k . However, if we assume that all 3-
dimensional subarrangements are bipolar, there is additional information about the
facets and therefore also about the polygons:

E3
k (A) =

⎧
⎨

⎩

n for k = 0,
0 for 1 ≤ k ≤ n − 2,

−n for k = n − 1,
(29)

E2
k (A) = 1

2 [E1
k (A) − E1

k−1(A)] + n, for 0 ≤ k ≤ n − 2, (30)

in which we get (30) from (29) and (26).
By straightforward generalization from 2 to 3 dimensions, the order-k Voronoi

tessellation of n points in R3 decomposes space into convex regions, each associated
with the k nearest of the n points. In analogy to the 2-dimensional case, we map
the points to 3-planes in R

4—or to great-spheres in S
4—so that the tessellation is

the projection of a subset of the cells. Despite this similarity, the expressions for
the number of cells of the 2-dimensional tessellations derived by Lee (1982) have
been extended to 3 dimensions only recently. The main reason for such delay is that
the number of cells do not only depend on n and k, but also on how the points are
distributed in space. Indeed, compared to the 2-dimensional case, we have the same
number of relations but one more variable. Specifically, we have relations (25), (30),
(29), (27), andwe count vertices, edges, polygons, and (3-dimensional) regions, which
are obtained by projecting theC0

k−1+C0
k−2+C0

k−3 vertices at depths k−1, k−2, k−3,
the C1

k−1 + C1
k−2 edges at depths k − 1, k − 2, the C2

k−1 polygons at depth k − 1, and
the C4

k chambers at depth k. Using Theorem 2 and the four mentioned relations for
bipolar 3-dimensional subarrangements, we get

E0
k−3 + E0

k−2 + E0
k−1 = E2

k−3 + E2
k−2 + E2

k−1 − n
2 [3k2 − 3k + 2], (31)

123



Depth in arrangements: Dehn–Sommerville–Euler relations...

4E0
k−2 − E1

k−2 + 4E0
k−1 − E1

k−1 = 2E2
k−2 + 4E2

k−1 + 2E2
k − 2n[2k2 − 2k + 1],

(32)

6E0
k−1 − 3E1

k−1 + E2
k−1 = E2

k−2 + E2
k−1 − 3n[k2 − k], (33)

E0
k − E1

k + E2
k − E3

k + E4
k = E2

k−2 − n
2 [k2 − k + 2] (34)

for the number of vertices, edges, polygons, and regions in the order-k Voronoi tes-
sellation for 1 ≤ k ≤ n − 1, in which E2

k = ∑k
m=0

∑m
�=0 E2

� . To see that these are the
same expressions as in Biswas et al. (2021), we note that E2

k = Nk+1 and E2
k = Jk+1

in the notation of that paper.

6 Application to neighborly arrangements

Recall that an arrangement in S
d is neighborly if the great-spheres are dual to the

vertices of a neighborly polytope. Equivalently, all subarrangements of dimension
p ≥ d/2 have bi-polar depth functions. We generalize the face-counting formulas
for neighborly polytopes to the levels in neighborly arrangements. In particular, we
show that the number of p-cells at depth k is a function of n, d, p, and k alone. For
the special case of cyclic polytopes, this was proved before by Andrezejak and Welzl
(2003, Theorem 5.1), who also derived explicit formulas for the number of cells.

6.1 Equations inmatrix form

We write d = 2t − 1 for odd d and d = 2t for even d. Let A be a neighborly
arrangement of n great-spheres in Sd , so all subarrangements of dimension t ≤ p ≤ d
are bi-polar. By Theorem 1, the E p

k are simple functions in n, d, p, and k, for all
t ≤ p ≤ d. In addition, we get t independent relations for every k from Theorem 2.
Specifically, for every odd p between 0 and d, we get a relation by equating the left-
hand side of (1) with the right-hand side of (1). This gives what we call a giant linear
system with variables E0

k to Et−1
k for 0 ≤ k ≤ n. To describe it, we introduce the t × t

matrices Md . For odd d, it is a straightforward configuration of binomial coefficients,
which is however interrupted by −2s replacing −(2t− j

2i−2

) = −1 in row i and column j
whenever 2t − j = 2i − 2:

M2t−1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

(2t−1
0

) −(2t−2
0

) (2t−3
0

) −(2t−4
0

)
. . . ±(t

0

)
(2t−1

2

) −(2t−2
2

) (2t−3
2

) −(2t−4
0

)
. . . ±(t

2

)

...
...

...
...

. . .
...

(2t−1
2t−4

) −(2t−2
2t−4

) (2t−3
2t−4

) −2 . . . 0
(2t−1
2t−2

) −2 0 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (35)

These replacements will be important shortly. For even d, the matrix M2t has the same
number of entries, with

(2t− j+1
2i−1

)
in row i and column j replacing

(2t− j
2i−2

)
in M2t−1.

The −2s and 0s are the same in both matrices. In d dimensions, the giant system is
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given by a t(n + 1) × t(n + 1) matrix, with n + 1 copies of Md along the diagonal.
All entries to the lower left of this diagonal of t × t blocks are zero, while there are
sporadic non-zero entries to the upper right.

Lemma 6 (Invertible blocks imply invertible systems) For every d ≥ 1, if Md is
invertible, then the giant system of linear relations in d dimensions is invertible.

Proof If Md is invertible, then we can use row and column operations to turn Md

into an upper triangular matrix with non-zero entries along the diagonal. Applying
the same operations to the giant matrix, we get a giant upper triangular matrix with
non-zero entries along the entire diagonal. ��

6.2 Everythingmodulo 2

Weprove the invertibility of M2t−1 by proving that its determinant is odd. Equivalently,
we write P2t−1 for the matrix M2t−1 in which every entry is replaced by its parity, and
we show that the mod 2 determinant of P2t−1 is 1. Before doing so, we show that the
invertibility of M2t−1 implies the invertibility of M2t . Let N2t be the matrix M2t after
dividing each column by the largest power of 2 that divides all its entries, and write
P2t for the matrix N2t in which every entry is replaced by its parity.

Lemma 7 (Odd imply even invertible blocks) P2t = P2t−1.

Proof Recall that the entry in row i and column j is
(2t− j
2i−2

)
in M2t−1 and

(2t− j+1
2i−1

)

in M2t , unless this entry is −2 or 0, in which case it is the same in the two matrices.
Assuming the former case, the ratio of the two entries is

(2t− j+1
2i−1

)
/
(2t− j
2i−2

) = (2t −
j + 1)/(2i − 1). Since 2i − 1 is odd, the largest power of 2 that divides

(2t− j+1
2i−1

)

is the largest power of 2 that divides
(2t− j
2i−2

)
times the largest power of 2 that divides

2t − j + 1. The latter is the same for all entries in a column. We thus divide column j
in M2t by the largest power of 2 that divides 2t − j + 1, which is 1 for all even j . The
even columns of M2t are the ones that contain the −2s, so after dividing, the parities
of corresponding terms in M2t and M2t−1 are the same. Equivalently, P2t = P2t−1. ��

Henceforth, we focus on the odd case.We use a consequence of Kummer’s theorem
(Kummer 1852) to get the parity version of M2t−1:

Lemma 8 (Odd binomial coefficients) For all 0 ≤ k ≤ n,
(n

k

)
is odd iff the binary

representations of n, k, and n − k satisfy n2 = k2 xor (n − k)2.

In words: the 1s in the binary representations of k and n−k are at disjoint positions.
It follows that the positions of the 1s in the binary representation of k are a subset of
the positions of the 1s in the binary representation of n, and similarly for n − k and
n. A compelling visualization of Lemma 8 is the Pascal triangle in binary, whose 1s
form the Sierpinski gasket as shown in Fig. 3.

To transform the Sierpinski gasket into amatrix that contains P2t−1, for every t ≥ 1,
we drop every other up-slope (whose label, given along the down-slope in Fig. 3, is
odd), we draw the remaining up-slopes as rows, and we draw the horizontal lines in
the gasket as columns. Finally, we convert the last 1 in each row to a 0. These are the
binomial coefficients that change from −1 to −2 in M2t−1; see Fig. 4.
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Fig. 3 The Pascal triangle in modulo 2: the blue bricks are odd entries, and the white bricks (not shown)
are even entries (colour figure online)

Fig. 4 Each blue and pink square is a 1 in the matrix, and each white square is a 0 (only those originally
equal to −2 are shown). The bold black frames mark the exponential blocks, the bold red frame marks
the 11-th block, P21, and the pink boxes inside the red frame mark the tops and bottoms of the NE- and
SW-incursions that arise in its reduction (colour figure online)

6.3 Reducing exponential blocks

Observe that P2t−1 is the submatrix consisting of the rows labeled 2i , for 0 ≤ i ≤ t−1,
and the columns labeled j , for t ≤ j ≤ 2t − 1; see Fig. 4. We call this the t-th block.
For the time being, we focus on exponential blocks, for which t is a power of 2. Note
the symmetry between the upper and lower halves of an exponential block: the bottom
is a copy of the top, except that the last 1 in each row is turned into a 0. We use this
property to reduce exponential blocks.
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Reduction 1 (Exponential block) Let P2t−1 be an exponential block, with t = 2n, and
write s = 2n−1. We reduce P2t−1 in three steps:

1. For 0 ≤ i ≤ s − 1, add the row with label 2i + 2s to the row with label 2i .
Thereafter, we have a 1 in each row and each even column, and otherwise only 0s
in the upper half of the exponential block.

2. Zero out the even columns in the lower half using the rows in the upper half. After
consolidating the lower half by removing the even columns, which are all zero, we
get an upper triangular matrix with 1s in the diagonal.

3. Reduce this upper triangular matrix to the s × s identity matrix. Adding the even
columns back, we have a 1 in each row and each odd column, and otherwise only
0s in the lower half of the exponential block.

Assuming t = 2n , the above reduction algorithm turns P2t−1 into a t × t permutation
matrix, whose determinant is of course 1. This is the parity of the determinant of
M2t−1, which is therefore non-zero. To extend this result to integers, t , that are not
necessarily powers of 2, we need a few properties of an exponential block. Being a
square matrix with t = 2n rows and columns, it decomposes into four quarters of
s = 2n−1 rows and columns each. By combining the NE- and NW-quarters, we get
the northern half of the exponential block, and we draw the line from its bottom-left
to top-right corners, calling it the northern diagonal; see Fig. 4. Similarly, we merge
the SE- and SW-quarters to get the southern half and draw the southern diagonal
from the bottom-left to top-right corner. Note that the southern half of P2t−1 is a copy
of everything to the right of the northern half, namely the exponential blocks of size
1, 2, 4, . . . , 2n−1 plus the 0s below and to the right of them.

An NE-incursion is a submatrix whose bottom-left corner lies on the southern
diagonal and whose top-right corner is the top-right corner of the exponential block.
As an example consider the rows labeled 0 to 20 and columns labeled 21 to 16,
which is an NE-incursion of P31 in Fig. 4. We decompose the NE-incursion into three
rectangular matrices stacked on top of each other: the top, the middle, and the bottom,
in which the top and bottom are twice as wide as they are high, and the middle fills the
space in between. Importantly, the middle is zero, and the top and bottom combine to
a square matrix whose structure is such that Reduction 1 can reduce it to the identity
matrix.

Symmetrically, an SW-incursion is a submatrix whose top-right corner lies on the
northern diagonal and whose bottom-left corner is the bottom-left corner of the expo-
nential block. As an example consider the rows labeled 6 to 14 and columns labeled
15 to 14, which is an SW-incursion of P15 in Fig. 4. As before, we decompose the
SW-incursion into three rectangular matrices, in which the top and bottom are twice
as wide as they are high, and the middle consists of the remaining rows in between.
The top and bottom combine again to a square matrix that can be reduced to the iden-
tity matrix by Reduction 1. However, the middle is not necessarily zero. On the other
hand, all entries to the right of the top but still within the exponential block are zero.
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6.4 Reducing general blocks

We thus have the necessary ingredients to reduce a not necessarily exponential block,
P2t−1. Assuming t is not a power of 2, let u be the power of 2 such that u/2 < t < u,
and write s = u/2. The overlap of P2t−1 with P2u−1 is an NE-incursion of the latter.

Reduction 2 (NE-incursion) Let I be the overlap of P2t−1 and P2u−1. We reduce I
and zero out portions of P2t−1 outside I :

1. Combine the top and bottom of I and reduce it using Reduction 1.
2. Add back the middle, which we recall is 0.
3. Use the columns of the reduced I to zero out the rectangular regions of P2t−1 to

the right of the top and bottom of I .

Step 1 may contaminate the regions to the right of the bottom of I with non-zero
entries, but Step 3 cleans up the contamination at the end. We are thus left with an un-
reduced submatrix of size (u − t)× (u − t), which we denote P ′

2t−1. It is a bottom-left
submatrix but not necessarily an SW-incursion of P2s−1. Assuming s < 2(u−t), there
is a largest SW-incursion of P2s−1 contained in P ′

2t−1, which has the same number of
rows as P ′

2t−1.

Reduction 3 (SW-incursion) Assume s < 2(u − t) and let J be the largest
SW-incursion of P2s−1 contained in P ′

2t−1. We reduce J as follows:

1. Combine the top and bottom of J and reduce it using Reduction 1.
2. Add back the middle and zero it out using row operations.

We note that the regions of P ′
2t−1 to the right of the top and bottom of J are zero

because J is an SW-incursion, and P ′
2t−1 is contained in P2s−1. Step 1 preserves

this property, so Step 2 can zero out the middle without contaminating the remaining
un-reduced matrix of size (s − u + t) × (s − u + t), which we denote P ′′

2t−1.
It is also possible that s ≥ 2(u − t), in which case there is no non-empty SW-

incursion of P2s−1 contained in P ′
2t−1. We thus substitute the SW-quarter of P2s−1 for

P2s−1, or the SW-quarter of that SW-quarter, etc. This square matrix is a copy of the
exponential block of the same size, so Reduction 3 still applies. Similarly, P ′′

2t−1 is a
copy of the (s − u + t)-th block. Since s − u + t < t , we can reduce it by induction.
The correctness of the reduction algorithms implies

Lemma 9 (Blocks are invertible) For every d ≥ 1, Md is invertible.

Proof For d = 2t − 1, Reductions 1–3 together with induction imply that P2t−1 can
be reduced to the identity matrix. By Lemma 7 this is also the case for P2t . Since Pd

is the parity version of Md , this implies that Md is invertible. ��

6.5 Number of cells

The invertibility of the blocks implies the invertibility of the giant linear systems,
which implies that the number of cells in the levels of neighborly arrangements are
independent of the geometry of the great-spheres defining the arrangement.
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Theorem 3 (Neighborly arrangements) Let A be a neighborly arrangement of n ≥ d
great-spheres in S

d . Then the E p
k (A) and the C p

k (A) are functions of n, d, p, and k.

Proof By Lemma 9, the matrix Md is invertible, which by Lemma 6 implies that the
giant linear system created from Theorems 1 and 2 is invertible. Hence, the E p

k (A)

of the d-dimensional arrangement are determined; that is: they are functions of n, d,
p, and k, but not of the great-spheres defining the arrangement. By Theorem 2, the
C p

k (A) are determined by the E p
k (A), so they are also functions of n, d, p, and k. ��

As an example, consider a neighborly arrangement of n great-spheres in S
4. All

subarrangements of dimension 2, 3, and 4 have bi-polar depth functions, so we get the
E p

k for p = 2, 3, 4 from Theorem 1, and we use Theorem 2 to get them for p = 0, 1:

E0
k = 1

2 (k + 1)n(n − k − 3) for 0 ≤ k ≤ n − 4, (36)

E1
k = n(n − 2k − 3) for 0 ≤ k ≤ n − 3, (37)

E2
k = (n

2

)
, 0,

(n
2

)
for k = 0, 1 ≤ k ≤ n − 3, k = n − 2, (38)

E3
k = n, 0, − n for k = 0, 1 ≤ k ≤ n − 2, k = n − 1, (39)

E4
k = 1, 0, 1 for k = 0, 1 ≤ k ≤ n − 1, k = n. (40)

Using the relations C0
k = E0

k , C1
k = 4E0

k − E1
k , etc., from Theorem 2, we get the

number of cells with given depth:

C0
k = 1

2 (k + 1)n(n − k − 3) for 0 ≤ k ≤ n − 4, (41)

C1
k = n[n(2k + 1) − 2k2 − 6k − 3] for 0 ≤ k ≤ n − 3, (42)

C2
k = (n

2

)
, 3nk(n − k − 2),

(n
2

)
for k = 0, 1 ≤ k ≤ n − 3, k = n − 2, (43)

C3
k = n, n[(2k − 1)n − 2k2 − 2k + 3], 6

(n
2

)
, 2

(n
2

)
, n

for k = 0, 1 ≤ k ≤ n − 4, k = n − 3, k = n − 2, k = n − 1, (44)

C4
k = 1, 1

2n[n(k − 1) − k2 + 3], n(n − 3),
(n
2

)
, n, 1

for k = 0, 1 ≤ k ≤ n − 4, k = n − 3, k = n − 2, k = n − 1, k = n.

(45)

7 Discussion

Themain contribution of this paper is the introduction of the discrete depth function as
a topological framework to approach questions in discrete geometry, and the establish-
ment of the system of Dehn–Sommerville–Euler relations for levels of this function.
We have illustrated the use of this system by rederiving known cell-counting formulas
for order-k Voronoi tessellations in R

2 and R
3, and by extending the classic face-

counting formulas for neighborly polytopes to the levels in neighborly arrangements.
This work suggests further research to deepen our understanding of the framework:

• Establish effective relations expressing the connections between the restrictions
of the depth function to subarrangements.
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• Relate the stability of the persistence diagrams of restrictions of the depth function
to combinatorial questions in geometry.

While our framework sheds new light on well studied questions in discrete geometry,
there is plenty of work that remains. The following questions are of particular interest:

• Give bounds on the topological quantities that arise in counting the regions of
order-k Voronoi tessellations. As established in Biswas et al. (2021), the relevant
quantity inR3 is the double sum of depth characteristics of the 2-dimensional cells
(the polygons) in the corresponding arrangement of great-spheres in S

4. How do
these results extend beyond 3 dimensions?

• Generalize the results on neighborly arrangements to counting the k-sets of gen-
eral sets of n points in R

d . Specifically, use the framework of depth functions to
improve the current best upper bounds on the maximum number of k-sets, which
are O(n4/3) in R

2 (Dey 1998), O(n5/2) in R
3 (Sharir et al. 2001), and O(nd−εd )

for a small constant εd > 0 in Rd (Živaljević and Vrećica 1992).
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Erdős, P., Lovász, L., Simmons, A., Straus, E.G.: Dissection graphs of planar point sets. In: Srivastava, J.N.,

et al. (eds.) A Survey of Combinatorial Theory, pp. 139–149. North-Holland, Amsterdam (1973)
Fejes Toth, G.: Multiple packing and covering of the plane with circles. Acta Math. Acad. Sci. Hung. 27,

135–140 (1976)

123

http://creativecommons.org/licenses/by/4.0/


R. Biswas et al.

Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)
Grünbaum, B.: Convex Polytopes. Wiley, London (1967)
Kummer, E.E.: Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. J. ReineAngew.Math.

44, 93–146 (1852)
Lee, D.-T.: On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput. 31, 478–487 (1982)
Linhart, J.,Yang,Y., Philipp,M.:Arrangements of hemispheres andhalfspaces.DiscreteMath.223, 217–226

(2000)
Matoušek, J.: Using the Borsuk–Ulam Theorem. Lectures on Topological Methods in Combinatorics and

Geometry, 2nd edn. Universitext, Springer, Heidelberg (2008)
McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17, 179–184 (1970)
Mulmuley, K.: Dehn–Sommerville relations, upper bound theorem, and levels in arrangements. In: Proc.

9th Ann. Sympos. Comput. Geom., pp. 240–146 (1993)
Shamos, M.I., Hoey, D.: Closest-point problems. In: Proc. 16th Ann. IEEE Symp. Found. Comput. Sci.,

pp. 151–162 (1975)
Sharir, M., Smorodinsky, S., Tardos, G.: An improved bound for k-sets in three dimensions. Discrete

Comput. Geom. 26, 195–204 (2001)
Ziegler, G.M.: Lectures on Polytopes. Springer, New York (1995)
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