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Abstract
In this paper we consider the generalized anchored configuration spaces on n labeled
points on a graph. These are the spaces of all configurations of n points on a fixed
graph G, subject to the condition that at least q vertices in some pre-determined set K
of vertices of G are included in each configuration. We give a non-alternating formula
for the Euler characteristic of such spaces for arbitrary connected graphs, which are not
trees. Furthermore, we completely determine the homology groups of the generalized
anchored configuration spaces of n points on a circle graph.

Keywords Graphs · Configuration spaces · Topological combinatorics · Applied
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1 Introduction

The study of the anchored configuration spaces was initiated in Kozlov (2021) and
continued in Hoekstra-Mendoza (2022), Kozlov (2022). These spaces are motivated
by certain considerations in logistics and differ from classical configuration spaces in
a crucial way. The formal definition is as follows.

Definition 1.1 Let X be a non-empty topological space, let K be a set of distinct points
in X , and let n be an arbitrary positive integer. An anchored configuration space,
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denoted �(X , K , n), is defined as the subspace of the direct product Xn , consisting
of all tuples (x1, . . . , xn), such that K ⊆ {x1, . . . , xn}.

In this paper we continue with this line of research and generalize Definition 1.1,
by relaxing the conditions on the allowed n-tuples (x1, . . . , xn).

Definition 1.2 As above, let X be a non-empty topological space, let K be a set of k
distinct points in X , k ≥ 0, and let n be an arbitrary positive integer. Furthermore, let q
be an arbitrary integer, such that k ≥ q ≥ 0. A generalized anchored configuration
space, denoted �(X , K , n, q), is defined as the subspace of the direct product Xn ,
consisting of all tuples (x1, . . . , xn), such that |K ∩ {x1, . . . , xn}| ≥ q.

Clearly, the case k = q in Definition 1.2 corresponds to Definition 1.1.
So far, the anchored configuration spaces have been studied in the situation when X

is a geometric realization of a graphG, and K is a subset of the set of the vertices ofG.
These spaces are of particular interest for the logistics, since they formalize networks
with moving goods, with the extra condition that at each point in time a certain set
of nodes is securely supplied with the goods. Accordingly, the generalized anchored
configuration spaces relax this condition and only require that at each point in time at
least q nodes out of some previously fixed set K are supplied.

The case of the anchored spaces, where the graph G is a tree has been settled in
Kozlov (2021), where the homotopy type of �(X , K , n) has been completely deter-
mined. Accordingly, in this paper, we consider the case when G is not a tree.

As a first result we provide a non-recursive formula for the Euler characteristic of
�(G, K , n, q), expressed as a sum of positive terms (rather than a sign-alternating
sum). After that we turn to study the topology of these spaces.

We consider the case whenG is a circle graph, which appears to be the most natural
next step, after the case ofG being a tree. This is the same as to consider the case when
the topological space X is homeomorphic to a circle, since changing the positions of
the points in K will produce homeomorphic anchored configuration spaces. Since all
we need to record is the cardinality of K , we let �(k, n) denote �(G, K , n), where
G is a cycle graph with k vertices, and K is the set of vertices of G. Passing on to the
generalized anchored configuration spaces, we let �(k, n, q) denote �(G, K , n, q)

in this case.
The spaces�(2, n)were the focus of investigations in Kozlov (2022) and in [HM].

More specifically, the homology of these spaces was calculated in Kozlov (2022)
using discrete Morse theory. This work was continued in [HM], where the cup product
structure was completely described, and connection to the topological complexity was
established.

In this paper we study the spaces �(k, n) of an arbitrary k, and more generally
�(k, n, q), for an arbitrary q ≤ k, and calculate their homology groups in all dimen-
sions. Rather than using discrete Morse theory, our method is to consider classical
long sequences for the corresponding combinatorially given chain complexes. For
the standard concepts of Algebraic Topology we refer to (Fulton 1995; Greenberg and
Harper 1981; Hatcher 2002; Munkres 1984). Our study lies within the field of Applied
Topology, see (Carlsson 2009; Edelsbrunner and Harer 2010; Kozlov 2008, 2020) for
more information.
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2 The Euler characteristic of the generalized anchored configuration
spaces

Let G be a non-empty connected graph,1 which is not a tree, and let V and E denote
its sets of vertices and edges, respectively. Let K be an arbitrary subset of V , and let
q ≤ |K |. In this section we give a theorem which provides a complete non-recursive
and non-alternating formula for the Euler characteristic of the spaces �(G, K , n, q).
Before we proceed with its formulation and its proof, let recall the following concepts.

First, for arbitrary positive integers a ≥ b the Stirling numbers of the second kind,
denoted

{a
b

}
, count the number of ways to partition a set of a labelled objects into b

nonempty unlabelled subsets. Clearly, then b!{ab
}
is the number of ways to partition a

set of a labelled objects into b nonempty labelled subsets.
Second, if we have a setU , a subset S ⊆ U and an element x ∈ U , we let SXOR x

denote the subset ofU obtained from S by the exclusive or operation with respect to x .
Formally, we set

SXOR x :=
{
S \ x, if x ∈ S;
S ∪ x, if x /∈ S.

We can now formulate the main result of this section.

Theorem 2.1 Let G be an arbitrary non-empty connected graph, whose set of vertices
is V , and whose set of edges is E. Let K be an arbitrary non-empty subset of V , and
let q be a positive integer, such that q ≤ |K |. Finally, let n be a natural number, such
that n ≥ q.

Assume the graph G is not a tree. Then, the Euler characteristic of the cell complex
�(G, K , n, q) is given by the formula2

(−1)n−q

q! χ(�(G, K , n, q)) =
ε+k−q∑

λ=ε

n−q∑

t=0

(
λ − ε + q − 1

q − 1

)(
n

t

){
n − t

q

}
λt , (2.1)

where k := |K | and ε := |E | − |V |.
Before proceeding with the proof of Theorem 2.1, we would like to make a couple

of remarks. First of all note that, since G is a non-empty connected and not a tree, it
must have some vertices and some edges, and ε = |E | − |V | ≥ 0.

Consider the simplest case whereG has one vertex and one loop edge.We then have
ε = 0 and k = q = 1. The right hand side of (2.1) then reads

∑n−1
t=0

(n
t

)
0t = 1, where

we use the convention for 0t from Footnote 2. On the other hand, the cell complex
�(G, K , n, q) in this case is obtained from an n-torus by removing an n-cell, so the
Euler characteristic of it is equal to (−1)n−1.

1 Note, that we do not assume that the graph G is simple. In other words, it may have multiple edges, as
well as loops.
2 Note, that in the formula (2.1) we use the convention 00 = 1, while of course 0t = 0, for t > 0.

123



D. N. Kozlov et al.

For a slightly more involved situation, assume G has a single vertex and d loops,
d ≥ 2. In that case, the right hand side of (2.1) becomes

n−1∑

t=0

(
n

t

)
(d − 1)t = dn − (d − 1)n .

The cell complex �(G, K , n, q) is the (n − 1)-skeleton of the cubical complex Gn .
The Euler characteristic is multiplicative, so χ(Gn) = χ(G)n = (−1)n(d − 1)n . The
cell complex �(G, K , n, q) is obtained from Gn by removing dn n-cells, so we get

χ(�(G, K , n, q)) = χ(Gn) − (−1)ndn = (−1)n−1(dn − (d − 1)n),

which agrees with the right hand side of (2.1).
In general, the cubical complex �(G, K , n, q) has dimension n − q. So, it makes

sense to mention the lowest dimensional case, which is n = q. Clearly, the complex
�(G, K , q, q) is a disjoint union of q!(kq

)
points, because we just need to choose

which q of the k points in K will be covered by the n points, and after that permute
arbitrarily these n points. On the other hand, in the right hand side of (2.1) we must
have t = 0, so it becomes

ε+k−q∑

λ=ε

(
λ − ε + q − 1

q − 1

){
q

q

}
=

(
q − 1

q − 1

)
+

(
q

q − 1

)
+ · · · +

(
k − 1

q − 1

)
=

(
k

q

)
,

which agrees with our computation.

Proof of Theorem 2.1 Set α := |V |, β := |E |, and let us write V = {v1, . . . , vα},
E = {e1, . . . , eβ}. Since G is a connected graph which is not a tree, we have β ≥ α,
or, using our notation ε = β − α ≥ 0. Without the loss of generality we can assume
that K = {v1, . . . , vk}.

We can think about the Euler characteristic χ(�(G, K , n, q)) as a sum of±1, more
precisely (−1)dim σ , ranging over the set of all cells σ in �(G, K , n, q). By definition
of �(G, K , n, q), each such cell is indexed by a function ϕ : V ∪ E → 2[n], which
satisfies two conditions:

(1) The number of vertices v ∈ K , for which ϕ(v) 	= ∅ is at least q;
(2) The set of images {ϕ(x) | x ∈ V ∪E} is a partition of [n] = {1, . . . , n} into disjoint

sets.

Let us now introduce some further notation. Consider the following collection of
sets:

Ai := ϕ(vi ) ∪ ϕ(ei ), for 1 ≤ i ≤ α,

U :=
β⋃

i=α+1

ϕ(ei ).
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Set Pσ := (A1, . . . , Aα,U ). Clearly, the tuple Pσ is an ordered set partition of [n],
in which we allow empty sets. We shall now group all the cells σ ∈ �(G, K , n, q)

according to their tuple Pσ , and calculate the contribution to the Euler characteristic
separately in each group.

Consider first an arbitrary tuple Pσ , such that ∪α
i=k+1Ai 	= ∅. Let M be the set of

all cells with this tuple. Let l be the minimal element of ∪α
i=k+1Ai , and let t denote

the index k + 1 ≤ t ≤ α, for which l ∈ At = ϕ(vt ) ∪ ϕ(et ). We can then define an
involution μ : M → M , by moving the element l from ϕ(vt ) to ϕ(et ), and vice versa.
Formally, we set

μ(ϕ)(u) :=
{

ϕ(u)XOR l, if u = vt , or u = et ;
ϕ(u), otherwise.

Since k + 1 ≤ t ≤ α, there are no conditions on ϕ(vt ), so the involution μ is well-
defined. It produces a perfect matching on the set M . The difference of dimensions
of any two matched cells is 1, so their contributions to the Euler characteristic of
�(G, K , n, q) have opposite signs. It follows that the contribution of each matched
pair is 0, and hence also the total contribution of all the cells in M is 0.

This means, that when computing the Euler characteristic of�(G, K , n, q)we can
limit ourselves to considering the tuples Pσ , for which Ak+1 = · · · = Aα = ∅, which
we do for the rest of the argument.

Assume now σ is one of the remaining cells. Set

{i1, . . . , im} := {1 ≤ i ≤ k | ϕ(vi ) 	= ∅}, where i1 < · · · < im,

and set r(σ ) := iq . This is well-defined since by condition (1) above, we know that
m ≥ q.

Let us now fix the following data �:

• The index set {i1, . . . , iq}, where i1 < · · · < iq ,
• The non-empty sets Ai1 , . . . , Aiq .

Let M denote the set of all cells with this data � (and with Ak+1 = · · · = Aα =
∅). Note, that for each cell σ ∈ M , we have r(σ ) = iq . Let us calculate the total
contribution of the cells in M to the Euler characteristic of �(G, K , n, q).

Let M̃ denote the subset of M consisting of all cells σ for which the union⋃s
j=r(σ )+1 A j is not empty. For σ ∈ M̃ , set ρ(σ) := min

⋃s
j=r(σ )+1 A j . Let

s ≥ t > r(σ ) be the index, for which ρ(σ) ∈ At . In a complete analogy to the
above, we define a matching μ : M̃ → M̃ by moving the element ρ(σ) from ϕ(vt ) to
ϕ(et ) and vice versa. This is a perfect matching on M̃ , since t ≥ iq + 1, so there is no
restriction ϕ(vt ) being non-empty. The difference of the dimensions of the matched
cells is equal to 1. This implies that the total contribution to the Euler characteristic
by the cells from M̃ is 0. We can therefore from now on concentrate on the cells from
M \ M̃ .

For 1 ≤ j ≤ q, we set l j to be the minimum of Ai j . Since Ai j 	= ∅, the element l j
is well-defined.
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We now partition the set M \ M̃ into the sets M1, M2, . . . , Mq+1 as follows. For
each cell σ ∈ M \ M̃ we define h(σ ) to be the index z, uniquely determined by the
following condition:

ϕ(viz ) 	= lz, and ϕ(vi j ) = l j , for all j < z.

Here, if ϕ(vi j ) = l j , for all 1 ≤ j ≤ k, we set h(σ ) = q + 1. Clearly 1 ≤ h(σ ) ≤
q + 1, and we define the above partition of M \ M̃ by saying that σ ∈ Mi if and only
if h(σ ) = i .

Next, fix an index 1 ≤ d ≤ q, and calculate the contribution of the cells in Md .
Same way as earlier in the proof, we can define an involution μ : Md → Md . This
time it is shifting ld from ϕ(vid ) to ϕ(eid ) and back. Formally,

μ(ϕ)(u) :=
{

ϕ(u)XOR ld , if u = vid , or u = eid ;
ϕ(u), otherwise.

Since ϕ(vid ) 	= ld , the involution μ is well-defined. As before, it matches cells with
dimension difference 1, so the contribution of these two cells, and hence also the
contribution of the total set Md to the Euler characteristic of �(G, K , n, q) is 0.

The only interesting contribution occurs in Mq+1. Note, that all cells in Mq+1 have
dimension n − q. Indeed, if σ ∈ Mq+1, we have ϕ(vi j ) = l j , for all 1 ≤ j ≤
q, and ϕ(vt ) = ∅, for t /∈ {i1, . . . , iq}. It follows that

∑
v∈V |ϕ(v)| = q, hence∑

e∈E |ϕ(e)| = n − q.
This means that each σ ∈ Mq+1 gives the contribution (−1)n−q , and we need to

compute the cardinality |Mq+1|. Set W := [n] \ ⋃q
j=1 Ai j . The cells σ ∈ Mq+1 are

obtained by arbitrarily distributing the elements of W among the sets ϕ(e j ), for

• Either j ∈ {1, . . . , r(σ )} \ {i1, . . . , iq},
• Or α + 1 ≤ j ≤ β.

In total, there are β − α + r(σ ) − q = ε + r(σ ) − q such sets, so we have
|Mq+1| = (ε + r(σ ) − q)|W |.

At this point, let us specifically consider what happens when ε + r(σ ) − q = 0,
which of course is equivalent to saying that ε = 0 and r(σ ) = q. In this case, there are
no sets to distribute the elements ofW to. Therefore, the number of ways to distribute
the elements of W , and hence also the cardinality of Mq+1, is equal to 0, unless, of
course, the set W itself is empty, in which case the cardinality of Mq+1 is equal to 1.
Note, how this is compatible with our convention for 0t , cf. the footnote on page 3.

Summing over all choices of �, we have

χ(�(G, K , n, q)) =
∑

�

(−1)n−q(ε + iq − q)|W |. (2.2)

To further evaluate (2.2) we can choose the data� in the following order. First, pick
r , such that q ≤ r ≤ k. Set iq := r and choose the remaining elements i1, . . . , iq−1,
such that i1 < · · · < iq−1 < iq , in

(r−1
q−1

)
ways. After that, choose the cardinality
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t := |W |, we have 0 ≤ t ≤ n − q. Proceed by choosing W itself, there are
(n
t

)

possibilities. Finally, distribute the elements of [n] \ W into the sets Ai1 , . . . , Aiq , so
that they are non-empty. The number of ways to do that is q!{n−t

q

}
.

Summarizing, we obtain

χ(�(G, K , n, q)) = (−1)n−q
k∑

r=q

(
r − 1

q − 1

) n−q∑

t=0

(
n

t

)
q!

{
n − t

q

}
(ε + r − q)t .

Now, set λ := ε + r − q. Then r = q, . . . , k translates to λ = ε, . . . , ε + k − q, and
r − 1 = λ − ε + q − 1, so we obtain (2.1). ��

WecannowspecializeTheorem2.1 to the case of the regular anchored configuration
spaces.

Corollary 2.2 The Euler characteristic of �(G, K , n) is given by the formula

(−1)n−k

k! χ(�(G, K , n)) =
n−k∑

t=0

(
n

t

){
n − t

k

}
εt

=
{
n

k

}
+

(
n

1

){
n − 1

k

}
ε +

(
n

2

){
n − 2

k

}
ε2 + · · · +

(
n

n − k

){
k

k

}
εn−k . (2.3)

Proof Substitute q := k into (2.1). We then have λ = ε, so the first summation is
trivial, and the

(
λ−ε+q−1

q−1

) = (q−1
q−1

) = 1. This yields (2.3). ��

3 The chain complexes for the generalized anchored configuration
spaces on circle graphs

Let us fix positive integers k and n, such that n ≥ k ≥ 2. Let Ck be a cycle graph
with k vertices and k edges. Let E denote its set of edges, and let V denote its set
of vertices. We can choose the index set to be Zk , and write E = {e1, . . . , ek} and
V = {v1, . . . , vk}, in such a way that the adjacency map ∂ : E → 2V is given by
∂(ei ) = {vi , vi+1}.3
Definition 3.1 Given n, a vertex-edge n-tuple is an n-tuple σ = (σ1, . . . , σn), such
that σi ∈ V ∪ E , for all i .

For a vertex-edge n-tuple σ = (σ1, . . . , σn) we define two subsets of Zk , which we
call vertex and edge support sets, and which we denote suppV (σ ) and suppE (σ ), as
follows:

suppV (σ ) := {i ∈ Zk | vi ∈ {σ1, . . . , σn}},
and

suppE (σ ) := { j ∈ Zk | e j ∈ {σ1, . . . , σn}}.
3 Of course, k + 1 = 1 in Zk .
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Finally, thedimensionofσ is defined to be dim σ := |{i | σi ∈ E}|. So, in particular,
we have 0 ≤ dim σ ≤ n. ��

Clearly, for any vertex-set n-tuple σ = (σ1, . . . , σn), the set {σ1, . . . , σn} is a
disjoint union of the sets {vi | i ∈ suppV (σ )} and {e j | j ∈ suppE (σ )}.

The direct product Ck × · · · × Ck︸ ︷︷ ︸
n

has a natural structure of the cubical complex,

whose geometric realization is an n-torus. Its cells are indexed by the vertex-edge n-
tuples, whose dimensions, as described in Definition 3.1, coincide with the geometric
dimension of the corresponding cells. Therefore, the chain complex whose chain
groups are generated by the vertex-edge n-tuples, with appropriately defined boundary
operators, will calculate the homology of an n-torus.

We shall now consider the chain complexes whose chain groups are generated by
the vertex-edge n-tuples, satisfying additional conditions on the vertex support set
suppV (σ ).

Definition 3.2 Assume we are given an arbitrary subset P ⊆ Zk , and a nonnegative
integer q, such that q ≤ |P|. We define a chain complex CP,q = (CP,q∗ , ∂∗), where
CP,q∗ are free abelian groups, as follows.

(1) For each d, the free abelian group CP,q
d is generated by the vertex-edge n-tuples

σ = (σ1, . . . , σn), with dim σ = d, satisfying the following two conditions:

• suppV (σ ) ⊆ P;
• |suppV (σ )| ≥ q.

(2) The boundary operator takes the vertex-edge n-tuple σ , and replaces, with an
appropriate sign, any of the edges σi ∈ E by any of its boundary vertices, subject
to the condition that the index of that vertex lies in P . Formally we have

∂σ =
∑

i∈suppE (σ )

∑

σ̃i∈∂σi∩VP

(−1)ρ(σ,i)(σ1, . . . , σi−1, σ̃i , σi+1, . . . , σn), (3.1)

where VP := {v j | j ∈ P}, and ρ(σ, i) := |suppE (σ ) ∩ {1, . . . , i − 1}|.
Note the special case when |P| = q, when the chain groups CP,q

d are generated by
all σ , satisfying dim σ = d and suppV (σ ) = P .

For convenience, we introduce additional notation for the complement set H :=
Zk \ P , and h := |H | = n − |P|.
Remark 3.3 Obviously, CP,q

i = 0, for i < 0. Furthermore, if a vertex-edge n-tuple

σ = (σ1, . . . , σn) satisfies |suppV (σ )| ≥ q, then dim σ ≤ n − q, so CP,q
i = 0 also

for all i > n − q.

In what follows, we shall compute the homology groups of the chain complexes
CP,q . When P is a proper subset ofZk , the complexes CP,q do not correspond to topo-
logical spaces, and play here an auxilliary role. Accordingly, the case which interests
us most is when P = Zk , since it gives us the homology of the generalized anchored
configuration spaces �(k, n, q). We stress this observation for a later reference.
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Fact 3.4 The chain complex CZk ,q is isomorphic to the cubical chain complex of the
generalized anchored configuration space�(k, n, q). In particular, the chain complex
CZk ,k is isomorphic to the cubical chain complex of the anchored configuration space
�(k, n).

Our calculation will proceed by induction, and we shall compute the homology
groups for all values of P and q.

4 Calculation of the homology groups of CP,q

4.1 The case q = 0

Let us start with the case q = 0. When q = 0 the condition |suppV (σ )| ≥ q is void,
which radically simplifies the situation. The homology is then given by the following
proposition.

Proposition 4.1 (1) The chain complex CZk ,0 calculates the homology of an n-torus.
In fact, it is a chain complex of the cubical complex obtained as an n-fold direct
product of the k-cycle.

(2) When P is a proper subset ofZk , we have Hn(CP,0) ≈ Z
hn , and all other homology

groups are trivial.

Proof Statement (1) is trivial and simply formalizes our earlier observation, so we
proceed to proving the statement (2).

Let C̃k be the graph which is in a sense dual to Ck . It is also a cycle graph with k
vertices and k edges, but with a different indexing. Let Ẽ denote its set of edges, and
let Ṽ denote its set of vertices. Both again are indexed by Zk , Ẽ = {ẽ1, . . . , ẽk} and
Ṽ = {ṽ1, . . . , ṽk}, but now in such a way, that the boundary map ∂ : Ẽ → 2Ṽ is given
by ∂(ẽi ) = {ṽi−1, ṽi }. So, compared to Ck , the relative indexing is shifted by 1.

Let G denote the subgraph of the cycle graph C̃k , obtained by deleting all edges
indexed by H . Consider the cubical complex Gn = G × · · · × G︸ ︷︷ ︸

n

, and consider the

cochain complex of Gn , let us call it C̃∗. It is easy to see that CP,0 is isomorphic to
this cochain complex, with the isomorphism ϕ given by ϕ(vi ) := ẽi , and ϕ(ei ) := ṽi ,
for all i ∈ Zk . In particular, we have Hi (CP,0) ≈ Hn−i (C̃∗), for all i .

On the other hand, we assumed that h ≥ 1, so topologically, the graph G consists
of h disjoint intervals. In particular, the direct product Gn is homotopy equivalent to
the discrete space with hn points. Therefore, we have

Hi (C̃∗) =
{
Z
hn , if i = 0;

0, otherwise,
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and it follows that

Hi (CP,0) =
{
Z
hn , if i = n;

0, otherwise.

��

4.2 Structure of the relative chain complexes

Assume now q ≥ 1, and consider the chain complex CP,q−1. The condition as to
which vertex-edge n-tuples are allowed to be taken as generators of the chain groups
is weaker for CP,q−1, than it is for CP,q , so the latter is its chain subcomplex. The
following lemma states that their quotient can be decomposed as a direct sum of chain
complexes of the same type.

Lemma 4.2 For any P ⊆ Zk , and any q ≥ 1, we have the following chain complex
isomorphism:

CP,q−1/CP,q ≈
⊕

S

CS,q−1, (4.1)

where the sum is taken over all subsets of P of cardinality q − 1.

Proof For each d, the relative chain group Cd(CP,q−1/CP,q) = CP,q−1
d /CP,q

d is

generated by the cosets of CP,q
d , whose representatives are the vertex-edge n-tuples

σ = (σ1, . . . , σn), satisfying |suppV (σ )| = q − 1.
Call such a coset σ̄ . The relative boundary operator in CP,q−1/CP,q is then given

by the following formula, cf. (3.1),

∂σ̄ =
∑

i∈suppE (σ )

∑

σ̃i∈∂σi∩V̄
(−1)ρ(σ,i)(σ1, . . . , σi−1, σ̃i , σi+1, . . . , σn), (4.2)

where V̄ = {v j | j ∈ suppV (σ )}, and ρ(σ, i) is the same as in (3.1).
In other words, when taking the boundary, we are allowed to replace an edge with

any of its boundary vertices, subject to the condition, that this does not change the
vertex support set.

Since the boundary operator preserves the vertex support set, the chain complex
CP,q−1/CP,q decomposes as a direct sum, with direct summands indexed by all
possible choices of suppV (σ ), which is the same as to say all possible choices of
(q − 1)-subsets of P . This proves (4.1). ��

4.3 The case P �= Zk

When P is a proper subset ofZk , it turns out that all the homology of the chain complex
CP,q is concentrated in its top dimension.
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Theorem 4.3 Assume P is a proper subset of Zk . Then, the homology of CP,q is
concentrated in dimension n − q, in other words, Hi (CP,q) = 0, for i 	= n − q.

Proof The proof proceeds by induction on q. For the base case q = 0, this has been
proved in Proposition 4.1(2).

Assume now q ≥ 1. Since the chain complex CP,q is a subcomplex of CP,q−1, we
have the following long exact sequence:

. . . → H∗(CP,q) → H∗(CP,q−1) → H∗(CP,q−1/CP,q)
∂→ H∗−1(CP,q) → . . .

(4.3)
Note, that by induction assumption, the homology of the complex CP,q−1 is con-

centrated in dimension n − (q − 1) = n − q + 1. Furthermore, due to dimensional
reasons, see Remark 3.3, the homology of CP,q must be 0 in dimension n− q + 1 and
above.

By Lemma 4.2 we have CP,q−1/CP,q ≈ ⊕SCS,q−1, where the sum is taken over all
subsets of P of cardinality q − 1. Since each S is a proper subset of Zk , by induction
assumption, the homology of CS,q−1 is also concentrated in dimension n − q + 1. It
follows that the only nontrivial part of the long exact sequence (4.3) is

0 → Hn−q+1(CP,q−1) → Hn−q+1(CP,q−1/CP,q) → Hn−q(CP,q) → 0,

so it follows that Hi (CP,q) = 0, for i 	= n − q. ��

4.4 The case P = Zk

We are now ready to deal with the main case.

Theorem 4.4 The homology of the chain complex CZk ,q is given by the following
formula:

Hi (CZk ,q) ∼=
{
Z(ni), if 0 ≤ i ≤ n − q − 1,

0, if i < 0 or i > n − q.
(4.4)

Proof Once again, we proceed by induction on q. When q = 0, we simply have the
homology of the n-torus, see Proposition 4.1(1).

Assume now q ≥ 1. Consider again the long exact sequence:

. . . → H∗(CZk ,q) → H∗(CZk ,q−1) → H∗(CZk ,q−1/CZk ,q)
∂→ H∗−1(CZk ,q) → . . .

(4.5)
Lemma 4.2 together with Theorem 4.3 imply that Hi (CZk ,q−1/CZk ,q) = 0, for all

i 	= n − q + 1. Furthermore, for dimensional reasons, we have CZk ,q
i = 0, whenever

i < 0, or i > n − q, see Remark 3.3, so we know that we must have Hi (CZk ,q) = 0,
unless 0 ≤ i ≤ n − q.
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It follows that the long exact sequence (4.5) falls into several short pieces
Hi (CZk ,q) ≈ Hi (CZk ,q−1), for 0 ≤ i ≤ n − q − 1, and one longer piece

0 → Hn−q+1(CZk ,q−1) → Hn−q+1(CZk ,q−1/CZk ,q) →
Hn−q(CZk ,q) → Hn−q(CZk ,q−1) → 0. (4.6)

This implies the statement of the theorem. ��
Note, that for dimensional reasons, see Remark 3.3, the top-dimensional homology

group Hn−q(CZk ,q)must be free. The Betti number βn−q(CZk ,q) can then be computed
using the Euler-Poincaré formula.

When G is a cycle, we have |V | = |E |. This means that ε = 0, so in (2.3) all the
terms except for the first one vanish, and we have the following formula.

Corollary 4.5 We have χ(�(n, k)) = (−1)n−kk!{nk
}
.

Together with Theorem 4.4 this finishes the calculation of the Betti numbers of
�(n, k).

For the generalized anchored configuration spaces, we need to substitute ε = 0 in
(2.1), and obtain the following corollary.

Corollary 4.6 Assume 1 ≤ q ≤ k, we have

χ(�(n, k, q)) = (−1)n−qq!
k−q∑

λ=0

n−q∑

t=0

(
λ + q − 1

q − 1

)(
n

t

){
n − t

q

}
λt .

Again, together with Theorem 4.4 this gives us the Betti numbers of �(n, k, q).
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Appendix

An alternative duality argument by Florian Frick4 and Martin Raussen5

The purpose of this appendix is to give an alternative proof of Theorem 4.4. using
duality arguments. For P = Zk , as noted in the paper, the complex CZk ,q is the
chain complex of a cubical subcomplex �(k, q, n) of the n-torus T n , i.e., the (closed)
configuration space of all n-tuples in the circle graph S1 = Ck containing at least q
elements of the k anchor points. Remark that �(k, q, n) is contained in the (n − q)-
skeleton of the n-torus T n = (Ck)

n and that dim�(k, q, n) = n − q.
The complement T n \ �(k, q, n) within T n will be denoted by A(k, q, n).

Theorem 4.7 (1) A(k, q, n) is homotopy equivalent to a simplicial complex of dimen-
sion q − 1.

(2) Inclusion �(k, q, n) ↪→ T n induces isomorphisms in homology up to dimension
n − q − 1.

(3) Hn−q(�(k, q, n)) ∼= Z
(nq)+d(k,q,n) with d(k, q, n) denoting the dimension of the

kernel of the map i∗ : Hq−1(A(k, q, n)) → Hq−1(T n) induced by inclusion.

It follows immediately from thedefinitions that A(k, q, n) = ⋃
J⊂Zk ,|J |=k−q+1(Ck\J )n .

Each part (Ck\J )n is a union of |J |n disjoint contractible open n-boxes since Ck \ J
is a union of |J | disjoint open intervals.

We can understand A(k, q, n) as a colimit of contractible spaces over a poset cat-
egory enumerating the connected components of intersections of a number of spaces
(Ck \ J )n for various subsets J . More precisely,

• Associate to two vertices i, j ∈ Zk the symbol (i, j) ∈ Sk := Zk × Zk and the
open interval I (i, j) from i to j ; in particular, I ( j, j) = Ck \ { j}.

• Consider admissible maps i : [1 : n] → Sk with the property that corresponding
intervals I (i(l)), 1 ≤ l ≤ n, are either disjoint or equal.

• For an admissible map i , let Vi := {v ∈ Zk | v ∈ ⋃n
l=1 I (i(l))}. Call s(i) := |Vi |

the size of i . Remark that 0 ≤ s(i) ≤ k; s(i) = 0 iff all intervals I (i(l)) have
length one and thus do not contain a vertex; s(i) = k iff there exists j ∈ Zk such
that i(l) = ( j, j) for all 1 ≤ l ≤ n.

• The realization of an admissible map i is the open (and contractible) box B(i) :=∏n
l=1 I (i(l)) ⊂ T n .

The spaces B(i) are the connected components of spaces (Ck \ K )n with K ⊆ Zk .
The poset category P(k, q, n) has as

Objects all admissible maps i : [1 : n] → Sk of size s(i) ≤ q − 1;
(Unique) morphisms γ : i → i ′ if and only if i(l) ⊆ i ′(l) for all 1 ≤ l ≤ n.

Remark 4.8 If there exists a morphism γ : i → i ′, then either i = i ′ or s(i) < s(i ′).
The smallest objects in P(k, q, n) have size 0, the largest have size q − 1. Hence,
the longest chain of (non-identity) morphisms increases size by one at every step and
consists therefore of q − 1 morphisms.

4 Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
5 Department of Mathematical Sciences, Aalborg University, Denmark.
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The boxes B(i) and inclusions B(i) ↪→ B(i ′) define a functor on P(k, q, n) into a
convenient category of topological spaces.

Proof of Theorem 4.7 (1) Note that A(k, q, n) = colimP(k,q,n)B. Since all spaces B(i)
are contractible, the nerve lemma (Borsuk 1948) asserts that A(k, q, n) is homo-
topy equivalent to the nerve NP(k, q, n) of the poset category P(k, q, n). In
particular, it is homotopy equivalent to a simplicial complex of dimension q − 1,
and all its homology and cohomology groups of dimensions greater or equal than
q vanish. Moreover, top homology Hq−1(A(k, q, n)) is free.

(2) ByPoincaré-Lefschetz duality, see e.g. (Bredon1993,Cor.VI.8.4), the (co)homology
groups H̃ s(T n,�(k, q, n)) ∼= Hn−s(A(k, q, n)) = 0 for s ≤ n − q,
and Hn−q+1(T n,�(k, q, n)) ∼= Hq−1(A(k, q, n)) is free. As a consequence
of the universal coefficient theorem, see e.g. (Bredon 1993, Thm. V.7.1),
Hs(T n,�(k, q, n)) = 0 for s ≤ n − q. Hence the inclusion of �(k, q, n) into T n

induces an isomorphism in homology in dimensions s ≤ n − q − 1.
(3) Since dim�(k, q, n) = n − q, the homology group Hn−q(�(k, q, n)) is free.

The universal coefficient theorem allows to conclude that Hn−q(�(k, q, n)) ∼=
Hn−q(�(k, q, n)). Combining Poincaré-Lefschetz duality and exact sequences
of the pairs (T n,�(k, q, n)), resp. (T n, A(k, q, n)) yields the diagram

0 = Hn−q(T n,�(k, q, n)) Hn−q(T n) Hn−q(�(k, q, n)) Hn−q+1(T n,�(k, q, n)) Hn−q+1(T n) 0

0 = Hq(A(k, q, n)) = 0

∼=

Hq(T n)

∼=

Hq(T n, A(k, q, n))

∼=

Hq−1(A(k, q, n))
i∗

∼=

Hq−1(T n)

∼=

0

Let d(k, q, n) denote the dimension of the kernel of themap i∗ induced by inclusion
in Hq−1. Then βn−q(�(k, q, n)) = βq(T n) + d(k, q, n) = (n

q

) + d(k, q, n) and

hence Hn−q(�(k, q, n)) ∼= Z
(nq)+d(k,q,n).

��

References

Borsuk, K.: On the imbedding of systems of compacta in simplicial complexes. Fund. Math. 35, 217–234
(1948)

Bredon, G.: Topology and Geometry, Graduate Texts in Mathematics, vol. 139. Springer-Verlag, Berlin
(1993)

Carlsson, G., 2009: Topology and data. Bull. Amer. Math. Soc. (N.S.) 46(2), 255–308 (2009)
Edelsbrunner,H.,Harer, J.L.: Computational topology.An introduction, p. xii+241.AmericanMathematical

Society, Providence, RI (2010)
Fulton, W.: Algebraic topology, Graduate Texts in Mathematics, vol. 153, p. xviii+430. Springer-Verlag,

New York (1995)
Greenberg, M.J., Harper, J.R.: Algebraic Topology, Mathematics Lecture Note Series, vol. 58, p. xi+311.

Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass (1981)
Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
Hoekstra-Mendoza, T.I.: Cup products and the higher topological complexity of configuration spaces of the

circle with two anchored points, arXiv:2212.00220
Kozlov, D.N.: Combinatorial Algebraic Topology, Algorithms and Computation in Mathematics, vol. 21,

p. xx+389. Springer, Berlin (2008)

123

http://arxiv.org/abs/2212.00220


Homology and Euler characteristic...

Kozlov, D.N.: Organized Collapse: An Introduction to Discrete Morse Theory, Graduate Studies in Math-
ematics, vol. 207, p. xxiii+312. American Mathematical Society, Providence, RI (2020)

Kozlov, D.N.: Stirling complexes, preprint 13 pp., to appear in Journal of Applied and Computational
Topology (2021)

Kozlov, D.N.: Configuration spaces of labeled points on a circle with two anchors. Topology Appl. 315,
108147, 18 (2022)

Munkres, J.R.: Elements of Algebraic Topology, p. ix+454. Addison-Wesley Publishing Company, Menlo
Park, CA (1984)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Homology and Euler characteristic of generalized anchored configuration spaces of graphs
	Abstract
	1 Introduction
	2 The Euler characteristic of the generalized anchored configuration spaces
	3 The chain complexes for the generalized anchored configuration spaces on circle graphs
	4 Calculation of the homology groups of mathcalCP,q
	4.1 The case q=0
	4.2 Structure of the relative chain complexes
	4.3 The case PneqmathbbZk
	4.4 The case P=mathbbZk

	Appendix
	References


