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Abstract
Pseudospheres are simplicial complexes defined in the late 1990s to model some
aspects of distributed systems. Since then, combinatorial properties of pseudospheres
combined with topological properties have been very useful to derive distributed com-
putability results. The goal of this paper is to study pseudospheres in more depth as
mathematical objects and to give an overview of the properties that have been used in
distributed computing. In this work we focus in combinatorial and topological aspects
of pseudospheres. While doing so, the paper shows that these structures can be viewed
from different perspectives, in addition to models of distributed computing. We show
that the properties of pseudospheres that have been proved in distributed computing,
as well as new ones, can be derived using combinatorial topology techniques and
other combinatorial techniques taken from matroids and partial orders. A subclass of
pseudospheres is related to universal bundles, and the Borsuk–Ulam theorem can be
extended to apply to them.

Keywords Matroids · Posets · Borsuk–Ulam · Distributed computing

Mathematics Subject Classification 68M14 · 55U10 · 05B35 · 06A06

1 Introduction

InHerlihy et al. (1998), it appears for the very first time the combinatorial structure that
is the main object of this work; it was called by the authors pseudosphere because, in

1 The term “pseudosphere” has been used to denote other structures, notably it also refers to the revolution
surface obtained by rotating a tractrix about its asymptote; even more, in Hasanov (2004), the two-sheet
hyperboloid is called a pseudosphere.
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some sense, they generalize spheres. A pseudosphere1 is an n-dimensional simplicial
complex, that, as an n-sphere, is also n−1-connected. Since then, pseudospheres have
been very useful to derive distributed computing results for two main reasons. First,
the very nature of several distributed systems allows computer scientists to model
them using pseudospheres. The second reason is that the topological properties of a
pseudosphere determine solvability conditions of distributed tasks. For an overview
of this approach see Herlihy et al. (2014).

This could be enough reason to say that it is worth studying pseudospheres, but there
is another aspect about their role in distributed computing. Their properties of interest
have been derived by researchers of distributed computing using non-trivial results
as a black box without expanding the knowledge of pseudospheres. Examples of this
include Castañeda et al. (2021), Castañeda and Shimi (2020), Fraigniaud et al. (2020),
Goubault et al. (2019), Guerraoui et al. (2003, 2009), Herlihy et al. (1998), Herlihy
et al. (2000), Herlihy and Rajsbaum (2000, 2013), and Herlihy and Penso (2005).

In this paper we study pseudospheres as pure mathematical objects. We present
an overview of their use in distributed computing, and of their intrinsic structure that
plays such a fundamental role in the topological approach to distributed computing.
This could be enough to justify a survey about pseudospheres, however, we discovered
that pseudospheres can be viewed from various mathematical perspectives, and pro-
vide bridges between different mathematical areas. Indeed, the topological properties
derived by the distributed computing community are known within other areas; we
only need to look at pseudospheres from a different perspective.

More specifically, almost directly from the definition of pseudospheres, we found
that the family of finite joins of discrete finite sets is precisely the family of pseu-
dospheres. This implies that some pseudospheres are universal bundles. Informally,
bundles are G-spaces for some group G. Universal bundles have the property that
any other bundle satisfying an extra property could be mapped into the universal one.
We show that in the case of pseudospheres we can chose that map to be simplicial
whenever the other bundle is a simplicial complex and satisfies a reasonable condition.

Those pseudospheres that are universal bundles are intimately related with the
Borsuk–Ulam theorem (Matousek 2003, Theorem6.2.5), andwe showhow that impor-
tant result can be applied to pseudospheres. We present a formulation that is just the
Borsuk–Ulam theorem for pseudospheres instead of spheres. Recall that there is a
combinatorial statement equivalent to the Borsuk–Ulam theorem: Tucker’s lemma.
We prove a generalization of Tucker’s lemma for pseudospheres and, furthermore, we
show it is equivalent to Matousek (2003, Theorem 6.2.5).

Also, we characterize pseudospheres using matroids, partially ordered sets (posets)
and chromatic complexes (in Figs. 1 and 2 these results are summarized). This is
a partial answer to a question made in Stanley (1979) about chromatic (balanced)
complexes.

This paper is organized as follows. We begin with the definition of pseudospheres
and give a list of their properties that have been used in distributed computing. In
Sect. 4 we present an example of these properties. In Sect. 5, we present shellability of
pseudospheres using matroids. Section6 is devoted to the characterizations of pseudo-
spheres as matroids. In Sect. 7 we present the results about the Borsuk–Ulam theorem.
In the last section we find our condition of solvability of some distributed tasks.
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Fig. 1 A diagram explaining that
the family of pseudospheres is
the intersection of finite
matroids and posets

Matroids Posets

Pseudospheres

Fig. 2 Chromatic matroid
complexes are precisely
pseudospheres. Consequently,
inside matroid theory, posets are
exactly chromatic simplicial
complexes. See Fig. 1

Matroids Chromatic
complexes

Pseudospheres

2 Preliminaries

We recall almost all concepts concerning simplicial complexes and algebraic topology
we use in this work. Regarding simplicial complexes we essentially follow Kozlov
(2008). This is a modern book of combinatorial topology and many classical results
are assumed. With respect to algebraic topology we refer to tom Dieck (2008) and
Munkres (1984).

2.1 Simplicial complexes

Weuse the notationP(X) to refer the power set of the set X . A finite simplicial complex
over a set V is a finite set � ⊆ P(V ) closed under subsets. We only work with finite
simplicial complexes, hence any simplicial complex � will be assumed to be finite.
A simplex of � is a set σ ∈ �; a facet of a simplicial complex is a maximal simplex.
The dimension of a simplex σ is dim(σ ) = #σ − 1; if dim(σ ) = k we say that σ is a
k-simplex. A vertex of a simplicial complex is a 0-simplex; the set of vertices of�will
be denoted by V (�). The dimension of � is dim(�) = max{dim(σ ) | σ ∈ �}. We
say that a simplicial complex is pure whenever all its facets have the same dimension.

The geometric realization |σ | of a simplex σ is the convex hull of the standard basis
of the euclidean space RV (σ ). This means that x ∈ |σ | if and only if

x =
∑

v∈V (σ )

svv

with

∑

v∈V (σ )

sv = 1
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and each sv ≥ 0. Consider the set
⋃

σ∈� |σ | ⊆ R
V (�). This space with the subspace

topology is the standard geometric realization of�. We denote any space homeomor-
phic to the standard geometric realization of � as |�| and we call it the geometric
realization of �. Any topological statement about a simplicial complex refers to its
geometric realization.

We sometimes overload notation and use σ to denote both the simplicial complex
P(σ ) and the unique facet of that simplicial complex. In this sense, any simplex is a
simplicial complex.

If F is a subset of P(V ), we denote its generated simplicial complex by
⋃

F =⋃
σ∈F σ ; in other words

⋃
F is the union of the simplicial complexes σ ∈ F . Notice

that any simplicial complex is generated by its facets.
A boundary simplex of a k-simplex σ , is a (k − 1)-simplex τ ∈ σ . The boundary

of a simplex σ is

∂σ =
⋃

{τ | τ is a boundary simplex of σ }.

According to the previous paragraph, the boundary of a simplex is a simplicial com-
plex. Notice that the geometric realization of the boundary of a simplex is in fact the
topological boundary of its geometric realization.

Given two simplicial complexes� and�, a simplicial map f : � → � is a function
f : V (�) → V (�) such that if σ is a simplex of� then f (σ ) is a simplex of�. Notice
that any simplicial map f : � → � induces a continuous map | f | : |�| → |�|; in our
context, the simplest way to see this is noticing that f is a map between bases of finite
euclidean spaces. Sometimes we do not differentiate between those maps.

Complexes in distributed computing are naturally chromatic. These complexes
are commonly called (completely) balanced complexes and were defined in Stanley
(1979). We use the former because it is the terminology applied to pseudospheres in
distributed computing. As in Herlihy et al. (2014, Sect. 3.4.1) we say that χ : V (�) →
C where #C = m is an m-coloration of � if #χ(σ) = #σ for every simplex σ ∈ �.
Elements of C are ususally called colors and we say that � is colored by C . The
n-dimensional simplicial complex � is chromatic if it admits an (n + 1)-coloration.

2.2 Connectivity

Let X and Y be topological spaces, x ∈ X and y ∈ Y . Two continuous functions
f , g : X → Y are homotopic with respect to the base points x and y ( f � g) if
there is a homotopy H from f to g, in other words, there is a continuous function
H : X × I → Y such that H(t, x) = y, H |X×{0} = f and H |X×{1} = g. It easy
to verify � is an equivalence relation. We always assume all spaces have fixed base
points and simply say f and g are homotopic.

A homotopy inverse of a continuous map f : X → Y is a continuous function
g : Y → X such that f ◦ g and g ◦ f are homotopic to the identity. In such case f
is called a homotopy equivalence and X and Y are homotopy equivalent or have the
same homotopy type. When X is homotopy equivalent to a point is called contractible.
Also, it is clear that homeomorphic spaces are homotopy equivalent.
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Regarding homotopy groups, we omit all formal details, they can be found in tom
Dieck (2008, Chapter 6). Let n > 0. The n-th homotopy group, πn(X), of X is the set
of homotopy classes of functions from the n-sphere, Sn , into X . We are interested in
spaces with trivial homotopy groups. A topological space X is n-connected if it is path
connected and πi (X) is a trivial group for i ≤ n. We say that X is (−1)-connected if
it is non-empty. Loosely speaking, X is n-connected if any function f : Sn → X can
be extended continuously to the (n + 1)-ball. In particular

Fact 1 The n-sphere is (n − 1)-connected.

Let X be a family of pointed topological spaces. For each X ∈ X let pX ∈ X be
its base point. Let ∼ be the equivalence relation generated by all pairs (pX , pY ) with
X ,Y ∈ X . The wedge sum of X is the quotient

∨

X∈X
X =

(
⊔

X∈X
X

)
/ ∼ .

In words, the wedge is the quotient of the sum where all base points are identified to a
single point. We need to calculate the connectivity of the wedge sum of n-spheres, so,
we use the following corollary of theHurewicz’s theorem (tomDieck 2008, Sect. 20.1)
and the Mayer-Vietoris sequence (Munkres 1984, Sect. 25).

Fact 2 Let X, Y and Z be simplicial complexes such that X ∪ Y = Z. If X and Y are
k-connected and X ∩ Y is k − 1-connected for some k ≤ 0, then Z is k-connected.

We can use the previous fact with the wedge sum Z = X ∨ Y where X and y are
both n-spheres. Even more, we can determine the homology groups of Z . We don
not define homology because, in our case, the Hurewicz theorem ensure us they are
essentially the homotopy groups. If X is a topological space, H̃i (X) denote its i -th
reduced homology group with integer coefficients.

Fact 3 Let X and Y be homeomorphic to Sn. The wedge sum A = X ∨ Y is (n − 1)-
connected. Even more, the homology groups of A are H̃i (A) = 0 for i < n and
H̃n(A) = Z ⊕ Z.

3 Definition of a pseudosphere and basic properties

In this section we present the concept of pseudosphere defined in Herlihy et al. (1998)
and give some examples in dimension 1 and 2. Also, we present all known basic
properties of pseudospheres and use one of them to give a simple characterization of
pseudospheres based on simplicial joins.

Motivated by distributed computing, let P be a non-empty finite set representing
processes; at the end of this section we will explain the meaning of this. We use the
well established notation of pseudospheres used in distributed computing. We leave
examples of pseudospheres at the end of this section, we believe that our geometric
characterization of pseudospheres (Theorem 1) helps to visualize them.
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Definition 1 (Definition 13.3.1 (Herlihy et al. 2014)) Let Vp be a finite set for each
p ∈ P. The pseudosphere 	(P, Vp | p ∈ P) is the simplicial complex over

V = {(p, v) | p ∈ P, v ∈ Vp}

whose simplices are precisely the sets σ ⊆ V such that (p, w), (p, v) ∈ σ implies
w = v.

The notation 	(P, Vp | p ∈ P) is well established across the computer science
literature (Herlihy et al. 1998; Herlihy and Rajsbaum 2013; Goubault et al. 2019;
Castañeda and Shimi 2020; Fraigniaud et al. 2020); so we decided to follow the
conventions of computer scientists. In particular, if in the pseudosphere 	(P, Vp |
p ∈ P) all Vp are the same, we simply write that pseudosphere as 	(P, V ). Before
giving our geometric characterization of pseudospheres, we present some results that
follow directly from Definition 1. These properties appear in Herlihy et al. (1998,
2014) and are the most used in the literature. There is one more property widely used
but we will study it in Sect. 5 because, in order to make this paper self-content, we
need some material.

Proposition 1 1. If #Vp = 1 for each p, then 	(P, Vp | p ∈ P) is a simplex.
2. Pseudospheres are closed under intersections:

	(P, Vp | p ∈ P) ∩ 	(P′, V ′
p | p ∈ P

′) = 	(P ∩ P
′, Vp ∩ V ′

p | p ∈ P ∩ P
′).

3. Pseudospheres are pure.
4. The projection over the first coordinate of the vertices of a pseudosphere is a

coloration. In other words, pseudospheres are chromatic simplicial complexes.
5. If we delete from a pseudosphere all vertices of the form (q, v), we get a pseudo-

sphere. Formally: if Vq = ∅, and P
′ = P \ {q}, then

	(P, Vp | p ∈ P) = 	(P′, Vp | p ∈ P
′).

The last part of Proposition 1 is specially important; it is basically a recursive
construction of pseudospheres based on joins. We present this result below.

Definition 2 The (simplicial) join � ∗ � of two simplicial complexes � and � with
no common vertices is the complex generated by all sets σ ∪ σ ′ where σ and σ ′ are
facets of � and � respectively.

It is clear that the join operation is associative, so we can take the join of any
number of simplicial complexes. Notice that if two simplicial complexes have vertices
in common we can distinguish them with a label, hence we can take their join. In
particular, we can take the k-fold join of a simplicial complex �; this simplicial
complex is denoted by �∗k and will be relevant in Sect. 7.

There is a topological join operation X ∗T Y defined over arbitrary topological
spaces. A well known result is that |�| ∗T |�| ∼= |� ∗ �|, see Brown (2006, Sect. 5.7)
for a simple and complete proof. For this reason we will identify both operations.
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Fig. 3 On the left we have a 0-dimensional simplicial complex consisting of two vertices. On the center we
find a graph, it is a cycle of length 4. On the right we have the join of them. Each 2-simplex of the latter
complex is obtained by joining a vertex of the first complex with an edge of the second complex

In Fig. 3 we have depicted the join of a 0-dimensional simplicial complex with a
1-dimensional one; the result is a 2-dimensional simplicial complex.

In order to characterize pseudospheres using joins we need a lemma that is equiv-
alent to the last part of Proposition 1. We do not prove it is equivalent.

Lemma 1 If x /∈ P, then

	(P, Vp | p ∈ P) ∗ 	({x}, Vx ) = 	(P ∪ {x}, Vp | p ∈ P ∪ {x}).

Proof If x /∈ P, any facet of 	(P, Vp | p ∈ P) ∗ 	({x}, Vx ) has the form σ ∪ {(x, v)}
where σ is a facet of 	(P, Vp | p ∈ P) and v ∈ Vx . That is,

	(P, Vp | p ∈ P) ∗ 	({x}, Vx ) = 	(P ∪ {x}, Vp | p ∈ P ∪ {x}).

��
The following recursive characterization of pseudospheres was not mentioned

before in the literature. We remark that although joins are mentioned in Herlihy et al.
(2014) to describe spheres, no statement about pseudospheres in general is indicated
nor proven. We present a simple proof for completeness, but it clearly follows from
Lemma 1.

Theorem 1 A simplicial complex � is a pseudosphere if and only if it is the join of
simplicial complexes of dimension 0.

Proof First notice that any simplicial complex � of dimension 0 is isomorphic to
	({0}, V (�)). Thus, 	({p}, Vp) ∼= Vp.

From the previous lemma, a k-dimensional pseudosphere is the join of a (k − 1)-
dimensional and a 0-dimensional pseudosphere. Thus, an inductive argument implies
that

	(P, Vp | p ∈ P) ∼= ∗
p∈P	({p}, Vp).

This equation and our first observation imply that the join of k+1 simplicial complexes
of dimension 0 is a k-dimensional pseudosphere. ��

To end this section, we present some examples of pseudospheres. We always depict
them as chromatic complexes. The usual coloration of pseudospheres is the projection
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Fig. 4 A pseudosphere in
dimension two where each Vp
has two elements; it is a sphere
called octahedral sphere

00

1

0 1

1

1
a

x

0

b

y

z

Fig. 5 A pseudosphere in dimension two. There are three colors, each corresponding to one element in the
set P = {0, 1, 2}. We have V0 = {0, 1}, so there are 2 vertices of the first color corresponding to the first
element of P. The same applies to V1 = {a, b} and V2 = {x, y, z}. Any three vertices span a 2-simplex.
This pseudosphere consists of two spheres sharing a hemisphere

over the first coordinate of their vertices. Hence we draw pseudospheres in such a way
that the color of a vertex denote its first coordinate and the label its second coordinate.
This is related to distributed computing in the following way. In a distributed system
we have a set P of computational entities called processes that receive a private input.
In a pseudosphere 	 each facet represents a possible assignation of inputs. The vertex
(p, v) ∈ 	 represents the situation in which process p receives input v.

In dimension 1 a graph is a pseudosphere if and only if it is a bipartite complete
graph Ki, j . This is consequence of Theorem 1 because

Ki, j ∼= [i] ∗ [ j]

where [i] = {0, . . . , i −1} is considered as a discrete set. Recall the well known result
that says that any graph is homotopy equivalent to a wedge of circles, this implies that
1-dimensional pseudospheres are homotopy equivalent to wedges of circles. In higher
dimensions this holds for any pseudosphere (see Sect. 5 for details).

Observe that pseudospheres in Figs. 4 and 5 are homotopy equivalent to a wedge
of 2-spheres. The pseudosphere in Fig. 4 is the 3-fold join of the 0-sphere, (S0)∗3. It
is a well known result that the m-fold join of S0 is the m − 1-sphere (tom Dieck 2008,
Sect. 4.2). Such spheres are usually called octahedral spheres.

On the other hand, pseudosphere in Fig. 5 consists of two octahedral spheres sharing
an hemisphere, hence it is homotopy equivalent to a wedge of two spheres. When
pseudospheres were defined in Herlihy et al. (1998), their name was chosen for two
reasons. The first one is that octahedral spheres are pseudospheres. The second one is
that pseudospheres are homotopy equivalent to wedges of spheres.

With this we have a general idea of what is a pseudosphere, before continuing with
our results, we give an example of how pseudospheres have been used in distributed
computing.
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4 Pseudospheres in distributed computing

Pseudospheres were defined to model some kind of distributed systems. In order to
have a clear idea of how they have been used, in this section we present an important
result of distributed computing involving pseudospheres (Herlihy et al. 2000, Theorem
4.3). We begin with the basic concepts of distributed computing in the language of
combinatorial topology.

4.1 Tasks and protocols

The main objects of distributed computing in the combinatorial topology language
are tasks and protocols. Their ingredients are chromatic complexes, chromatic carri-
ers and chromatic simplicial maps. So, we present distributed systems via simplicial
complexes as it is done in Herlihy et al. (2014), the book we follow, particularly chap-
ters 8 and 11. Recall that if � is a simplicial complex, a subset �′ ⊆ � is a subcomplex
of � if �′ itself is a simplicial complex; in particular, the power set P(�) contains
each subcomplex of �.

Definition 3 (Sect. 3.4 (Herlihy et al. 2014)) A carrier map T from a simplicial com-
plex� into a simplicial complex� is a monotonic function (with respect to inclusions)
T : � → P(�) that assigns to each simplex σ ∈ � a subcomplex T (σ ) of �. It is
strict whenever T (σ ∩ τ) = T (σ ) ∩ T (σ ).

If we have two chromatic simplicial complexes colored with the same colors, then
we require that simplicial and carrier maps defined between them preserve colors.
To formalize this we require some notation. When we mention chromatic simplicial
complexes, we assume they have a fixed coloration. We always use the letter χ to refer
colorations. When � is a simplicial complex χ(�) is the direct image of V (�) under
χ .

Definition 4 A carrier map T between two chromatic complexes� and� is chromatic
if χ�(T (σ )) = χ�(σ) for each σ ∈ �. A chromatic simplicial map between two
chromatic complexes is a simplicial map f : � → � satisfying χ�( f (v)) = χ�(v)

for every vertex of �.

As we have said, tasks are one of the main objects in distributed computing via
combinatorial topology. Although they are computational objects, they have a pure
mathematical definition.

Definition 5 (Definition 8.2.1 (Herlihy et al. 2014)) Let I and O be pure simplicial
chromatic complexes colored by P. A task is a triple (I , O, T ) such that T is a
chromatic carrier map T : I → P(O). The complex I is called input complex and O
is called output complex.

We give some intuition of the meaning of this definition in distributed computing
because it could help to understand the following section. However, it is not necessary
to have this intuition in order to understand the relation of solvability between tasks
and protocols presented below.
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Informally, a task is a problem. Consider the task (I , O, T ). Intuitively each color
in P represents a finite deterministic automata commonly called process. Each facet of
the input complex represents a possible assignation of input values to processes. If we
use our notation for vertices in pseudospheres to any chromatic simplicial complex,
each vertex in I is a pair (p, v) where p is a process and v is its input value. An
analogous idea describes the output complex: the second component of any vertex
(p, w) ∈ O corresponds to the situation in which process p has decided w or has
output value w. The carrier map restricts output values in the following way. If σ ∈ I ,
then the output values that T accepts for (p, v) ∈ σ are those vertices of T (σ ) colored
by p. Observe that even when p is a deterministic automata, its valid output values
for T depend on the input values of other processes.

Solving a task is to make every process to decide a valid output value. Thus, we
need to bring a communication algorithm to all processes. Communication may be
defined independently from tasks. An algorithm that only determines communication
between processes without making them to decide a value is a protocol. Protocols are
computational objects and, as tasks, have a pure mathematical definition.

Definition 6 A protocol is a triple (I , P, E) such that I and P are chromatic simplicial
complexes colored by P, E is a chromatic strict carrier map E : I → P(P) and
P = ⋃

σ∈I E(σ ). The carrier map E is called execution map and P is called protocol
complex.

If we have a vertex (p, v) ∈ P , we can think of v as the view of p; informally V
consists of all the things p has seen or listen. This explains why the above definition
needs protocols to be strict: if a process p just sees processes p0, . . . , pk , then its
view just depends on them and their views. After communication has finished, we
can design an algorithm to solve a task. Each process must decide an output value
depending on its view. This is formally defined below.

Definition 7 The protocol (I , P, E) solves the task (I , O, T ) if there is a chromatic
simplicial map d : P → O such that d(E(σ )) ⊆ T (σ ) for each σ ∈ I .

From the above definition, the existence of a particular kind of protocol that solves
a task is equivalent to the existence of a chromatic simplicial map from the protocol
complex to the output complex. Many techniques of algebraic topology have been
applied to different instances of this problem; herewepresent one of those applications.

4.2 Pseudospheres and connectivity of protocols

We present a brief exposition of the techniques of combinatorics and topology used in
distributed computing. We focus on a result (Herlihy et al. 2000, Theorem 4.3) related
to k-set agreement.

Webeginwith a concrete example of the k-set agreement task. The binary consensus
task is the instance of the k-set agreement task corresponding to k = 1. The carrier T
is depicted in Fig. 6. Think of this task as a situation in which processes must agree
on one value and it should be the input value of one of them. Assume we have a
protocol (I , P, E) where I is the input complex of the binary consensus task. Since
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1 1

00

1 1

00

1 1

00

1 1

00

Fig. 6 The 1-set agreement task or binary consensus task. We depict the carrier map indicating the image of
each simplex by a dashed arrow. On the left we present the carrier map on vertices; on the right, the carrier
map on edges

it is impossible to have a disconnected image of the circle under a continuous map, if
P is a subdivision of I , then no simplicial map satisfies Definition 7.

In the general k-set agreement task, the number of decided values cannot exceed k
and just as connectedness of the input complex restricts the set of protocols that can
solve consensus, k−1-connectedness is related with k-set agreement. The exact state-
ments can be found in Herlihy et al. (2000, Theorem 5.3, Corollary 5.4). Their proof is
not enlightening about how properties of pseudospheres are important. However, they
need a result were pseudospheres are essential. Below we give a proof of the latter.

The theoremwewill prove needs Fact 2. Although this fact is widely used inHerlihy
et al. (2000) and Herlihy and Rajsbaum (2013), we must stress that the combinatorial
structure of the simplicial complexes appearing there is fundamental; they are defined
by pseudospheres. Below, we present the proof of one of the main theorems of Herlihy
et al. (2000) because it allows us to see how the combinatorics of pseudospheres
together with Fact 2 determine connectivity of some protocols.

Theorem 2 (Theorem 4.3 (Herlihy et al. 2000)) Let 	 = 	(P, Vp | p ∈ P) where
Vp ⊆ V , (	, P, E) be a protocol and c ∈ N. Assume that for each l-simplex σ ∈ 	

the simplicial complex E(σ ) is (l − c − 1)-connected. The protocol complex P is
(n − c − 1)-connected.

Proof Weuse the followingnotationE(�) = ⋃
σ∈� E(σ ) for any subcomplex� ⊆ 	.

We will prove that E(	 ′) is (m − c − 1)-connected for any pseudosphere 	 ′ ⊆ 	 of
dimension m ≥ c. Notice that any 	 ′ is a pseudosphere 	(P,Up | p ∈ P) for some
U ∈ P(V )P (from Theorem 1, pseudospheres of lower dimensions are obtained by
letting Up = ∅).

We proceed by induction on U ∈ P(V )P with the following order: U ≤ W if and
only if Up ⊆ Wp. We do not have the case Up = ∅ for every p because in this case
dim(	 ′) = −1 < c.

The inductive basis, when U ∈ P(V )P is minimal, corresponds to the case when
	 ′ is an m-simplex because U ∈ P(V )P is minimal if and only if #Up ≤ 1 for each
p. So, the inductive basis is our hypothesis.

Assume that the result holds for every W < U . Let q ∈ P. By the inductive basis
we may assume that #Uq > 1. Define Wp = Up for p �= q and Wq = Uq\{v}. Also
consider the sets W ′

p = Up for p �= q and W ′
q = {v}.

From Theorem 1 a facet of 	(P,Up | p ∈ P) is a facet of 	(P\{q},Up | p ∈
P\{q}) plus a vertex (q, x) with x ∈ Wq ∪ W ′

q ; in other words

	(P,Up | p ∈ P) = 	(P,Wp | p ∈ P) ∪ 	(P,W ′
p | p ∈ P)

123



L. Alberto

To follow the notation of Fact 2 set 	(P,Up | p ∈ P) = Z , 	(P,Wp | p ∈ P) = X
and 	(P,W ′

p | p ∈ P) = Y . Notice that since W ,W ′ < U , from the inductive
hypothesis E(X) and E(Y ) are (m − c − 1)-connected where

m = dim(X) = dim(Y ) = #{Up | Up �= ∅} − 1

.
From Proposition 1, X ∩ Y = 	(P,U ′

p | p ∈ P) where U ′
p = Up for p �= q and

U ′
q = ∅. It is clear that U ′ < U and X ∩ Y is a pseudosphere of dimension m − 1.

Notice that if m − 1 < c, then m = c and the result follows from the fact that E is a
chromatic carrier map and therefore E(	 ′) is non-empty. So, assume m − 1 ≥ c.

FromDefinition 6, themapE is strict, henceE(X∩Y ) = E(X)∩E(Y ). The inductive
hypothesis ensures us that E(X∩Y ) is (m−c−2)-connected. Consequently, by Fact 2,
the complex E(Z) is (m − c − 1)-connected. ��

Theorem 2 is needed to get the impossibility results (Herlihy et al. 2000, Theorem
5.3, Corollary 5.4) about solvability of k-set agreement. We do not write their state-
ments because our goal in this section was to explain how combinatorial properties of
pseudospheres are used in distributed computing and neither they nor their proofs help
us tho achieve that goal. However, we point out that Herlihy et al. (2000, Corollary 5.4)
is used in Herlihy and Rajsbaum (2013) together with shellability of pseudospheres
to determine more impossibility results about k-set agreement.

We coarsely have seen how the structure of pseudospheres determines solvability
of tasks. These are our main reasons to study pseudospheres by themselves.

5 Topology of pseudospheres: shellability andmatroids

One of the most important properties of pseudospheres is that they are shellable com-
plexes. In this section we present the basics of shellable complexes and give a proof of
shellability of pseudospheres using matroids. This is proven in Herlihy et al. (2014)
but here we will see that pseudosphere are shellable because they are matroids. As
a consequence we get that any pseudosphere is homotopy equivalent to a wedge of
spheres.

5.1 Basics of shellability

Weonly need pure shellable complexes; non-pure shellable complexes have a complete
description of their homology and homotopy type (Björner and Wachs 1996, 1997)
but we only need the pure case.

Definition 8 A shelling order of a pure simplicial complex � is a total order, say <,
of its facets such that, for every non-minimum facet F with respect to the shelling
order, the complex (

⋃
G<F G) ∩ F is a pure subcomplex of F whose dimension is

dim(F) − 1. In this situation � is said to be shellable.
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To present the homology and homotopy type of shellable complexes we require a
definition.

Definition 9 Let � be a shellable complex with shelling order <. A facet F of � is
called spanning facet if (

⋃
G<F G) ∩ F = ∂F , that is, (

⋃
G<F G) ∩ F is the whole

boundary of F .

Notice that the above definition depends on the shelling order but without loss of
generality we can assume spanning facets come last in the shelling order.

For the next result we need some notation. The wedge sum of the topological spaces
X j is denoted by

∨
j∈J X j . The proof of the following theorem can be found inBjörner

and Wachs (1996, Theorem 4.1) and Kozlov (2008, Theorem 12.3). We remark that
once they get the homotopy equivalence below, the connectivity of � and the formula
for homology follow from Fact 3.

Theorem 3 Take a shellable pure complex� of dimension d and assume
 is the set of
spanning facets of � according to a shelling order. There is a homotopy equivalence

|�| �
∨

F∈


|F |/|∂F |.

Consequently � is (d − 1)-connected and

H̃i (�) ∼=
{
Z
#
 if i = d

0 if i �= d.

5.2 Matroids and homology of pseudospheres

In Herlihy et al. (2014, Theorem 13.3.6) it is proven that any pseudosphere is shellable.
In fact that proof is a particular case of Björner (1992, Theorem 7.3.4) (reproduced
below). The reason is that pseudospheres are matroid complexes. Despite this, there
is no mention of matroid theory in Herlihy et al. (2014). We offer a simple proof of
the fact that pseudospheres are matroids directly from its definition.

There are several complexes associated to a matroid; we will use the complex of
independent sets but, as it is mentioned in Björner (1992), these complexes are usually
called matroid complexes.

Definition 10 A simplicial complex� is amatroid complex if for any pair of simplices
σ, τ ∈ � with dim(τ ) < dim(σ ), there is x ∈ σ \ τ such that τ ∪ {x} ∈ �.

It is immediate that any matroid complex is pure. The conditions for the converse
involve shelling orders. The following theorem can be found in Björner (1992). We
do not give a proof of it because it requires some matroid theory we do not need.

Theorem 4 (Theorem7.3.4 (Björner 1992))A simplicial complex is amatroid complex
if and only if it is pure and every total order of its vertices induces a lexicographic
shelling order.
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The following is stronger than Herlihy et al. (2014, Theorem 13.3.6), they show
that if P and Vp are totally ordered, the lexicographic total order so induced on V (	),
in turn, induces a lexicographic shelling order. We note that, so far, in applications it
is not needed to have a concrete shelling order, thus the following and Theorem 4 are
enough to use shellability in distributed computing.

Lemma 2 Any pseudosphere is a matroid complex.

Proof Let 	 = 	(P, Vp | p ∈ P) be a pseudosphere and τ and σ be simplices
in 	 such that dim(τ ) < dim(σ ). If P(σ ) and P(τ ) are the projections over P of
σ and τ respectively, then #P(τ ) < #P(σ ). Thus, there is (p, v) ∈ σ\τ satisfying
p ∈ P(σ ) \ P(τ ). Therefore τ ∪ {(p, v)} ∈ 	. ��
Theorem 5 (Theorem 13.3.6 (Herlihy et al. 2014)) Any pseudosphere is shellable.

Proof From Lemma 2, any pseudosphere is a matroid complex. Theorem 4 implies
that any order of the vertices of a pseudosphere induces a shelling order. ��

As we said, the above theorem is proven in Herlihy et al. (2014); we indicate how
it is done. In the order they give, facets are viewed as P-tuples and two facets are
compared according to the first coordinate in which they differ. Assume F < G and
they differ in its p-th coordinate. It is not difficult to see that we can change all other
differing coordinates and get a facet H < G that differs from G only in the p-th
coordinate. Thus F ∩G ⊆ H ∩G and dim(H ∩G) = dim(G)− 1. This implies 	 is
shellable; the detailed proof is found in Herlihy et al. (2014, Chapter 13). There, we
also find the next result.

Corollary 1 (Corollary 13.3.7 (Herlihy et al. 2014)) The pseudosphere	 = 	(P, Vp |
p ∈ P) with each Vp �= ∅ is homotopy equivalent to a wedge of spheres. When the
wedge is non-trivial all the spheres have dimension #P−1. In any case	 is (#P−2)-
connected.

Proof Notice that 	 is pure of dimension #P − 1 because each Vp �= 0 (it is con-
sequence of either Theorem 1 or Definition 1). The result follows from theorems 5
and 3. ��

We observe that using the Euler characteristic and Corollary 1, we can calculate the
non-vanishing Betti number of a pseudosphere (the rank of its non-trivial homology
group). Also we can give a shelling order and count its spanning facets in order to
calculate that number. However, we omit that calculation.

What we have done in this section is to use a well known fact about matroids
and a simple observation to prove indirectly one of the most important properties
of pseudospheres in distributed computing. In the following section we characterize
pseudospheres as matroid complexes.

6 Partially ordered sets and chromatic complexes

We have seen that any pseudosphere is a matroid complex; in this section we answer
the question about what matroid complexes are pseudospheres. We will prove that if a
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matroid complex is the order complex of some partially ordered set, then it is a pseu-
dosphere. Additionally we have a characterization of pseudospheres using chromatic
complexes. These characterizations are explained in the diagrams of Figs. 1 and 2.

First,wegive a counterexample for the converse ofLemma2.Consider the boundary
of the 2-simplex. It is clear that this is a matroid complex. However, recall that from
Proposition 1 we know that any pseudosphere is chromatic; since the boundary of the
2-simplex is not chromatic, it cannot be a pseudosphere. This could suggest that we
will start with chromatic complexes, but we think it is easier to start with orders.

6.1 Characterization of pseudospheres as order complexes

We need some definitions related to partially ordered sets, all of them are standard in
the literature.

Definition 11 A partially ordered set (usually abbreviated poset) is a pair (P,<)

where P is a set and < is a transitive, irreflexive and asymmetric relation on P . We
say simply that P is a poset and < is a partial order on P . A chain C in a poset P is
a subset of P such that the restriction of < to C satisfies tricotomy, that is (C,<) is a
total order.

Definition 12 A poset P is graded if the cardinal of any maximal chain (with respect
to contention) does not depend on the chain. The rank of x ∈ P is rank(x) = #C − 1
where C is any chain having x as a maximum. The length of P is the maximal rank
of elements in P .

Remark 1 The concept of rank in graded posets is well defined since any pair of
maximal chains share cardinal, say n: take a chain C with maximum x ; the number of
elements we have to add to C in order to have a maximal chain is n − #C .

Definition 13 Given a poset P , its order complex is the simplicial complex �(P)

generated by maximal chains of P . That is, σ ⊆ P is a simplex in �(P) if and only
if σ is a total order with the order induced by P .

Our next goal is another contribution: a simplicial complex is a pseudosphere if
and only if it is the order complex of a poset and a matroid complex. We begin with
the necessary condition.

Lemma 3 Any pseudosphere is the order complex of some graded poset.

Proof Let 	 = 	(P, Vp | p ∈ P) be a pseudosphere. Consider any total order <P on
P and define (p, v) < (q, w) if and only if p <P q, for vertices (p, v) and (q, w) of
	. It is a partial order on the set of vertices of ψ because <P is a total order. Even
more, a set of vertices of ψ is a maximal chain if and only if it is a facet. The order <

defines a graded poset because 	 is pure. ��
The above proof together with Theorem 1 give us a different proof of shellability.

Any pseudosphere is the ordinal sum of trivial posets (the order relation is the identity);
in Björner (1980, Theorem 4.4) it is proven that the ordinal sum of two posets is
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Fig. 7 The order complex of the
poset P defined by: a < b and
c < d

b c

da

Fig. 8 The order complex of the
poset mentioned in Fig. 7 with
extra relations: x < a and x < c

x

b c

da

Fig. 9 Adding one more relation
to the poset in Fig. 8 gives us an
order complex that is pure of
dimension 2 and shellable

x

b c

da

shellable if and only if both posets are shellable. Since trivial posets are shellable,
pseudospheres are shellable.

The next step is to understand which posets have a matroid complex as their order
complex. First, we note that the converse of the above lemma does not hold. Consider
the graded poset P of length 1 whose order complex is depicted in Fig. 7. Since it is not
connected, it cannot be a pseudosphere. Notice that connectedness is not enough. If
we add a minimum x to P , its order complex (Fig. 8) is not shellable and therefore it is
not a pseudosphere (the poset behind Fig. 8 has only two maximal chains: x < a < b
and x < c < d). Even more, shellability is not enough. If we add the chain x < c < b
to P ∪ {x}, the order complex thus obtained is a 2-dimensional simplicial complex
that is not a pseudosphere (Fig. 9).

Lemma 4 If � is a matroid complex and the order complex of a poset P, then P is
graded and any pair of vertices with different rank are comparable.

Proof Since � = �(P) is a matroid, it is pure; consequently P is graded because
simplices in � are precisely chains in P . To finish, it is enough to show that whenever
x, y ∈ P satisfy rank(y) = r + 1 = rank(x) + 1, then they are comparable. Let C be
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a chain with maximum y and C ′ be a chain with maximum x . Since #C ′ < #C , from
Definition 10, we conclude that there is z ∈ C \C ′ such that C ′ ∪ {z} is a simplex in�

(a chain in P). Notice that rank(z) �= rank(x); even more rank(z) < rank(x) implies
x = max(C ′ ∪ {z}). The consequent of the last implication is false by Remark 1.
Hence, it is impossible that z �= y inasmuch as rank(z) �= rank(x). Consequently
x < y. ��

Notice that in a graded poset P , elements of the same rank are incomparable. So,
if we take P satisfying the hypothesis of the above lemma, then a set of elements of
P is a simplex in the order complex �(P) if and only if it is formed by elements of
different ranks. This is exactly what Definition 1 says if we use P as the set of ranks.
Formally, we get:

Lemma 5 Let � be a simplicial complex. If � is a matroid complex and the order
complex of a poset, then � is a pseudosphere.

Proof Let � be a matroid complex and P be a poset. Assume � = �(P). From the
above lemma, P is a graded poset.

Let n be the length of P . Define Vr = {x ∈ P | rank(x) = r}. We claim that

� ∼= 	({0, . . . , n}, Vr | r ≤ n).

Let 	 = 	({0, . . . , n}, Vr | r ≤ n) and V = V (	). It is clear that f : P → V
defined by f (x) = (rank(x), x) is a bijection.

Take a simplex σ ∈ �; we know that the rank function is injective when it is
restricted to σ because σ is a chain. This implies that f (σ ) is a simplex of 	. Finally,
take a simplex σ ∈ 	. If (r , x) ∈ σ we know that it is the only vertex of σ such that
the second component has rank r in P . By Lemma 4, (r , x), (s, y) ∈ σ and r �= s
implies that x and y are comparable in P . Consequently f −1(σ ) is a chain of P . That
means that f is a simplicial isomorphism. ��

The following theorem is part of ourmain results and it is consequence of lemmas 2,
3 and 5.

Theorem 6 Let � be a simplicial complex. The following are equivalent:

1. � is a pseudosphere.
2. � is a matroid complex and the order complex of a poset.

Proof If � is a pseudosphere, then Lemma 2 implies it is a matroid. From Lemma 3
� is the order complex of a poset. The other implication is precisely Lemma 5. ��

6.2 Characterization of pseudospheres as chromatic complexes

We have characterized pseudospheres as matroid complexes and order complexes.
In Stanley (1979), the author explains that any order complex is chromatic and says
that there is no nice characterization of chromatic complexes. Our characterization
of pseudospheres shows that for matroid complexes the converse holds, even more,
those complexes are precisely pseudospheres. To the best of our knowledge there is
no work in this direction.
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Corollary 2 If � is a matroid complex and the order complex of a poset, then � is
chromatic.

Proof By Theorem 6 such a complex is a pseudosphere. ��
In order to accomplish the objective of this section, we will prove that a set of

vertices of a chromatic matroid complex is a simplex if and only if all colors in the set
are different. Observe the similarity of the proof below with the proof of Theorem 4.

Lemma 6 Let � be a chromatic matroid complex of dimension n. If χ is an n + 1-
coloration of �, then any set σ ⊆ V (�) such that #χ(σ) = #σ is a simplex of
�.

Proof The lemma is trivial if � is a simplex. Let F be a facet of �. Since � is
chromatic, we know that #χ(F) = #F . Select a color c and take any other facet G
such that there exists y ∈ G, satisfying that if χ(x) = c = χ(y) for x ∈ F , then
x �= y. (If we cannot find such G, then #χ−1(c) = 1 and we can, without loss of
generality, delete that vertex from �). Inasmuch as y ∈ G \ F , by Definition 10, there
is a vertex x ′ ∈ F\(G\{y}) such that (G\{y})∪{x ′} ∈ �. It is impossible that x ′ �= x ,
since this implies that χ(x) �= χ(x ′) and G had a vertex of color χ(x ′) (because � is
pure and chromatic).

Consequently, we can interchange a vertex colored with c in G by any other vertex
of the same color. This means that every set σ such that #χ(σ) = #σ = dim(�) + 1
is a facet. Since any simplicial complex is generated by its facets, the lemma follows.

��
Finally, another characterization of pseudospheres, this time as chromatic com-

plexes.

Theorem 7 Let � be a simplicial complex. The following are equivalent

1. � is a pseudosphere.
2. � is a chromatic matroid complex.

Proof From Theorem 6, if� is a pseudosphere, then it it is a matroid. In Proposition 1
we saw that pseudospheres are chromatic complexes.

We only have to show that a chromatic matroid complex is a pseudosphere. Assume
� is a chromatic matroid complex and χ : V (�) → P its coloration. Let Vp =
χ−1({p}), notice that Vp is the set of all those vertices of � colored with p. The set
{Vp | p ∈ P} is a partition of V (�).

We claim that � ∼= 	(P, Vp | p ∈ P). The isomorphism is the following. If vertex
v is colored with p, it is mapped to (p, v). Call this function f . It is clear that f is
bijective. From Lemma 6 and definition of pseudosphere (Definition 1) simplices of
both complexes are those sets with no repeated color. Thus f and f −1 are simplicial.

��

7 Pseudospheres and the Borsuk–Ulam theorem

This section is dedicated to group actions and the Borsuk–Ulam theorem. It is a
classical result that was first introduced for spheres; however, it has been generalized
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in different aspects. For example, Matousek (2003, Theorem 6.2.5) is a generalization
of the aforementioned theorem concerning G-spaces for a finite group G. Here, we
explain why that result is in fact a theorem of pseudospheres and present an equivalent
statement of it that is a direct generalization of the well known Tucker’s Lemma.

7.1 The Borsuk–Ulam theorem and pseudospheres

We begin explaining how the classical Borsuk–Ulam theorem is a theorem of pseu-
dospheres. We will simplify our notation; pseudospheres 	(P, V ) will be written as
	nV where n = #P − 1. We do so, because we need to differentiate clearly between
pseudospheres of different dimensions. Assume Z2 acts on X . The antipodal map of
X is the map induced by the action of the non-trivial element of Z2. We continue with
the usual notation for spheres: Sn is the n-sphere.

Recall one of themany equivalent statements of the classical Borsuk–Ulam theorem
(many others can be found in Matousek (2003, Chapter 2)).

Theorem 8 (Borsuk–Ulam) There is no continuous map from Sn+1 to Sn preserving
antipodals.

If we take V = {0, 1}, then 	nV is an n-sphere and the antipodal is determined by
the natural action of Z2 in V .

The statement of Matousek (2003, Theorem 6.2.5) considers a finite discrete group
G and simply substitutes, in the classical statement of the Borsuk–Ulam theorem,
spheres with EnG spaces (we do not need to define them) and the antipodals with an
action of G on the EnG space. In fact, the main example of an EnG space that appears
inMatousek (2003) is the pseudosphere	nG although theword “pseudosphere” is not
there. We will only show how G acts on 	nG and present (Matousek 2003, Theorem
6.2.5) written for pseudospheres.

For this sectionwe need some theory ofG-spaces; sincewe do not intend to develop
these topics completely we follow Matousek (2003, Chapter 6) and talk exclusively
of G-spaces where G is finite and has the discrete topology. General concepts of
G-spaces are contained in the paragraph below. The material concerning simplicial
complexes will be treated separately.

Throughout this section letG be a finite group with the discrete topology. We recall
a well known concept from group theory.

Definition 14 A G-action on a set X is a function ρ from G into the symmetric group
of X (Rotman 1995, Theorem 3.18).2 A G-set is a pair (X , ρ) where X is a set and ρ

is a G action on X .

Whenρ is clearwe usually say simply that X is aG-set and use gx as an abbreviation
of ρ(g)(x). As customary, the orbit of x ∈ X is the set Gx = {gx | g ∈ G}.

The generalization of the Borsuk–Ulam theorem (Matousek 2003, Theorem 6.2.5)
wewill present needs a special kind ofG-sets. Hencewewant that actions satisfy some
extra conditions. The following definitions are slightly different fromMatousek (2003,

2 Here, action always means left action.
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definitions 6.1.1 and 6.2.1). We present a pure combinatorial definition of simplicial
G-complexes and only focus on G-spaces where G is discrete.

Definition 15 Let � be a simplicial complex and X be a topological space. We say
that

1. � is a simplicial G-complex if V (�) is a G-set and the action of g is simplicial for
each g ∈ G, in other words ρ(g) : � → � is a simplicial map. A simplicial map
f : � → � between simplicial G-complexes is a simplicial G-map if f (gv) =
g f (v) for every v ∈ V (�) and g ∈ G.

2. X is a G-space if it is a G-set and the action of g is continuous for each g ∈ G,
that is ρ(g) : X → X is continuous. A continuous function f : X → Y between
two G-spaces is a G-map whenever f (gx) = g f (x) for every x ∈ X and g ∈ G.

It is clear that if � is a simplicial G-complex, then the family of functions |ρ(g)|
induces a G-space structure on |�|. Indeed, in Matousek (2003, Definition 6.2.1)
simplicial G-complexes are defined using geometric realizations. In the same manner,
free simplicial G-complexes (defined below) use geometric realizations and free G-
spaces. Instead, we provide a combinatorial definition of free simplicial G-complexes
that coincides with the concept used inMatousek (2003). To the best of our knowledge
there is no such a combinatorial definition of free simplicial G-complexes.

Definition 16 Let � be a simplicial G-complex and X be a G-space.

1. X is called free when gx = x for some x ∈ X implies g = e.
2. � is called free if whenever g fixes some simplex in �, then g = e.

Now, we prove that � is a free simplicial G-complex if and only if |�| is a free
G-space. This way our definition is in fact the combinatorial counterpart of free G-
spaces.

Lemma 7 If� is a simplicial G-complex, then� is a free simplicial G-complex if and
only if |�| is a free G-space with the structure induced by the action of �.

Proof We will prove the negatives are equivalent. First, assume � is not a free sim-
plicial G-complex. Therefore, there exist g ∈ G\{e} and σ ∈ � such that g(σ ) = σ .
Thus, |g| is a continuous map from a disk into itself. The Brouwer fixed point theorem
(Munkres 1984, Theorem 21.2) implies |g| has a fixed point.

Conversely, assume there exist g ∈ G \ {e} and x ∈ |�| such that |g|x = x . Recall
that the carrier of x is the minimum simplex car(x) ∈ � such that x ∈ | car(x)|. We
will prove g(car(x)) = car(x). We know that

x =
∑

v∈car(x)
tvv

where 0 < tv ≤ 1 (tv �= 0 because car(x) is minimum). Our assumption implies that

x =
∑

v∈car(x)
tvv =

∑

v∈car(x)
tvgv = |g|x .
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This implies x ∈ | car(x) ∩ g(car(x))|. Since car(x) is the minimum simplex
whose geometric realization contains x , we conclude car(x) ⊆ g(car(x)). Inas-
much as the action of g is simplicial, dim(g(car(x))) ≤ dim car(x). Consequently
car(x) = g(car(x)). ��

In Matousek (2003) we can find the following property of 	nG.

Lemma 8 Let G be a non-trivial finite discrete group. For any n ≥ 0 the pseudosphere
	nG admits the structure of a free simplicial G-complex.

Proof We define the action of g ∈ G on vertices of 	nG. Each vertex in 	nG is a
pair (p, h) with 0 ≤ p ≤ n and h ∈ G; so, let g(p, h) = (p, gh). We say that G acts
component-wise on 	nG = G∗(n+1).

According to Definition 16, we need to show that only the identity of G fixes
simplices. Let σ ∈ 	nG and g ∈ G. Assume σ = {(pi , hi ) | i ∈ J }, for some index
set J . From the previous paragraph it follows that g(σ ) = {(pi , ghi ) | i ∈ J }. If g
fixes σ , then by Definition 1, ghi = hi for each i ∈ J . This implies g = e. ��

From now on, 	n denotes the pseudosphere 	nG with the action defined above.
We will not need the fact that this action makes 	n a free simplicial G-complex until
the next section. However, the proof of the following theorem does. It corresponds
to Matousek (2003, Theorem 6.2.5) and it is a generalization of the Borsuk–Ulam
theorem. We do not prove it.

Theorem 9 (Theorem 6.2.5 (Matousek 2003)) There is no G-map from the (geometric
realization of the) pseudosphere 	n+1 to the pseudosphere 	n.

7.2 Tucker’s lemma

It is well known that there are many equivalent statements of the Borsuk–Ulam the-
orem. One of them is Tucker’s lemma. Here we prove that just as the former is
generalized by Theorem 9 there is a generalization of Tucker’s lemma that is a theorem
of pseudospheres. Even more, we will show both generalizations are equivalent.

In the following proposition we identify simplicial complexes with their geometric
realizations for simplicity.

Proposition 2 With the notation of Theorem 9 the following are equivalent

1. There is no G-map f : 	n+1 → 	n for each n ≥ 0.
2. There is no continuous map f : 	n ∗ x → 	n such that the restriction f |	n is a

G-map.

Before the proof, we remark how these statements only substitute spheres with
pseudospheres and antipodal maps with G-actions. To be clear about this claim we
recall the well known equivalent statement of the Borsuk–Ulam theorem (a proof can
be found in Matousek (2003, Chapter 2)).

Theorem 10 (Borsuk–Ulam 2) There is no continuous map f : Bn+1 → Sn such that
the restriction f |Sn preserves antipodals.
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Remark 2 Since G is non-trivial in Proposition 2, the pseudosphere 	n is not con-
tractible, whereas 	n ∗ x is; in fact it is a cone over 	n just as the (n + 1)-ball is a
cone over the n-sphere.

Proof of Proposition 2 Notice that for each g ∈ G, the complex 	n ∗ (n + 1, g) is a
subcomplex of 	n+1. Thus, we assume x = (n+ 1, e) where e is the identity element
of G.

Assume f : 	n+1 → 	n is a G-map. Define f : 	n ∗ (n + 1, e) → 	n as

f = f |	n∗(n+1,e).

Clearly, the map f is continuous and its restriction to 	n is a G-map.
For the converse let f : 	n ∗ (n + 1, e) → 	n be a continuous map such that f |	n

is a G-map. Define f : 	n+1 → 	n as follows. Notice that because G is finite and
each 	n ∗ (n + 1, g) is closed it is enough to define f on this closed cover in such a
way that f |	n is continuous. Let

f |	n∗(n+1,g) = g ◦ f ◦ g−1.

Clearly f |	n∗(n+1,g) is continuous and f |	n = f is continuous. By definition it is a
G-map. ��

Now, in order to get a generalization of Tucker’s lemma we need its classical
statement. Recall a triangulation of a topological space X is a simplicial complex �

such that |�| ∼= X .

Theorem 11 (Tucker’s lemma) Let � be a triangulation of Bn+1 that is antipodally
symmetric on Sn; that is if τ ∈ � is a simplex in Sn, then −τ ∈ �. There is no
simplicial map f from � into the octahedral sphere 	nZ2 such that its restriction to
Sn is a Z2-map.

As we noticed before (Remark 2), the ball Bn+1 is the cone over Sn . On the other
hand, 	nZ2 is the minimum antipodally symmetric triangulation of Sn . So, we gen-
eralize this kind of triangulations using subdivisions of the cone of 	nG. We recall
the formal definition of subdivisions (Munkres 1984, Sect. 2.15), however, we only
use it to gain intuition since we just need a few aspects of subdivisions that are clear
from the following definition. For a complete discussion about subdivisions we refer
to Munkres (1984, Sect. 2.15).

Definition 17 Let � and �′ be simplicial complexes. We say �′ is a subdivision of �

if there are geometric realizations |�| and |�′| such that
• the geometric realization of each simplex in �′ is contained in the geometric
realization of a simplex in � and

• for each σ ∈ �, there is a subcomplex σ ′ of �′ such that |σ | = |σ ′|.
The first aspect about subdivisions is that |�| = |�′|. Even more, each vertex of

� is also a vertex of �′; intuitively, this means that a subdivision is obtained from a
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Fig. 10 The first barycentric
subdivision of a 2-simplex

simplicial complex in a combinatorial fashion. We are substituting the simplex σ ∈ �

with the simplicial complex σ ′. We support this intuition with an example, so we recall
barycentric subdivisions.

Definition 18 The first barycentric subdivision Bar(�) of a simplicial complex � is
the order complex of � seen as a poset. The N-th barycentric subdivision of � is the
first barycentric subdivision of BarN−1(�).

In other words, simplices of Bar(�) are chains of simplices of �. In Fig. 10 we
find the usual picture of a barycentric subdivision. As we can see we substituted each
simplex with its barycentric subdivision. The central vertex, the barycenter of the
triangle, corresponds to the unique facet of the 2-simplex. In general, the barycenter
of a simplex corresponds to the unique facet of the simplex.

Remark 3 From Fig. 10 we extract the other important aspect of subdivisions we are
interested in. It is very intuitive and well known (Munkres 1984, Theorem 15.4) that
given a simplicial complex � and ε > 0 we can find a barycentric subdivision of �

such that the maximum diameter of a simplex in the subdivision is less that ε.

We can define G-symmetric subdivisions.

Definition 19 Let (�, λ) be a simplicialG-complex. A subdivision�′ isG-symmetric
if it is a simplicial G-complex (�′, ρ) and λ(g)v = ρ(g)v for each v ∈ V (�) and
g ∈ G.

We have two remarks about the above definition.

Remark 4 We maintain the notation used in Definition 17 for σ and σ ′. Notice that
the action ρ(g) of g ∈ G on �′ extends λ(g) to V (�′). Therefore, |ρ(g)| = |λ(g)|
(because |�| = |�′|). Thus, we will not differentiate between both actions when we
have a G-symmetric subdivision of a simplicial G-complex.

From the previous remark it is clear that a triangulation of Bn+1 is antipodally symmet-
ric on Sn if and only if the triangulation induced on Sn is a subdivision Z-symmetric
of 	nZ2 (just notice that in both cases if we add a vertex to a simplex in 	nZ2 we
must add its antipodal).

Remark 5 Observe that the barycentric subdivision of a simplicial G-complex � is
G-symmetric. We describe the action of G on Bar(�). Any vertex of Bar(�) is a
simplex σ ∈ �, the action of g in σ = {v0, . . . , vk} is simply gσ = {gv0, . . . , gvk}.
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Now we can generalize Tucker’s lemma.

Theorem 12 Let 	n = 	({0, . . . , n},G) and x /∈ V (	n). The following are equiva-
lent.

1. There is no simplicialmap f : � → 	n satisfying the following:� is a subdivision
of 	n ∗ x, the induced subdivision on 	n, say �, is G-symmetric and f |� is a G-
map.

2. There is no continuous map f : |	n ∗ x | → |	n| such that the restriction f ||	n |
is a G-map.

Proof By Remark 4 the continuous statement implies the discrete one because they
are negatives. We only need to show the other implication.

Assume there is a continuous map f : |	n ∗ x | → |	n| such that the restriction
f ||	n | is a G-map. Also, we assume both |	n ∗ x | and |	n| have a metric giving them
the adequate topology. Notice that 	n ∗ x is a simplicial G-complex when G acts
trivially on x . This action coincides with the left multiplication of G on the second
component of 	n .

We will construct f as a simplicial approximation of f . We use the following
notation. The open star of a vertex v will be denoted by St(v) = ⋃

v∈σ |σ |◦ (we do not
indicate the simplicial complex where the open star is considered because it will be
clear from the context). The stars St(w) with w ∈ V (	n) form an open cover of |	n|.
Let ε be the Lebesgue number of that cover (tom Dieck 2008, Proposition 2.6.4).

Using that G is finite and that f and each g are uniformly continuous, there exists
0 < δ < ε such that

f (Bδ(y)) ⊆ Bε( f (y))

for each y ∈ |	n ∗ x | and

g−1 f g(Bδ(z)) ⊆ Bε(g
−1 f g(z))

for each z ∈ |	n| and g ∈ G. Now, the last inclusion is

g−1 f g(Bδ(y)) ⊆ Bε( f (z))

because f ||	n | is a G-map.
Remark 3 ensures we can take a barycentric subdivision BarN (	n ∗ x) such that

diam(St(v)) < δ for each v ∈ V (BarN (	n ∗ x)). Observe that any barycentric
subdivision is G-symmetric. By our choice of ε and δ, we conclude that for each
v ∈ V (BarN (	n ∗ x)) there exists w ∈ V (	n) such that

f (St(v)) ⊆ Bε( f (v)) ⊆ St(w).

Now, take a complete representative system of the orbits of V (BarN (	n)), say R. For
each v ∈ R choose f (v) ∈ V (	n) such that

f (St(v)) ⊆ Bε( f (v)) ⊆ St( f (v)).
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Notice that
g−1 f (St(gv)) = g−1 f g(St(v)) ⊆ Bε( f (v)).

By our choice of f (v), we conclude that

g−1 f (St(gv)) ⊆ St( f (v)).

Consequently
f (St(gv)) ⊆ St(g f (v)).

This implies thatwe can define f (gv) = g f (v)onV (BarN (	n)). On all other vertices,
proceed as in the Simplicial Approximation Theorem (Munkres 1984, Sect. 2.16). ��

From Theorem 9:

Theorem 13 Let 	n = 	({0, . . . , n},G) and x /∈ V (	n). There is no simplicial
map f : � → 	n satisfying the following: � is a subdivision of 	n ∗ x, the induced
subdivision on 	n, say �, is G-symmetric and f |� is a G-map.

8 Solubility and pseudospheres

Inasmuch as pseudospheres are joins of finite sets, the pseudosphere 	nG = G∗(n+1)

is the total space of the n-universal bundle defined in (Milnor 1956). This implies that
for any free simplicialG-complex� of dimension n there is aG-map f : |�| → |	n|.
The details can be found in (Steenrod 1951, Chapter 19). Here we see that it is possible
to use this fact in distributed computing.

We will not need the complete background of bundles. We know the existence of f
and in order to use it in distributed computing, we need that f satisfy some properties.
Thus we will construct a suitable simplicial G-map f : � → 	n . Recall χ always
denotes a coloration.

Lemma 9 Let I be a free simplicial G-complex. Assume that I is pure of dimension
at most n, chromatic and that the action of each g ∈ G is chromatic. There exists a
chromatic simplicial G-map f : I → 	n.

Proof Let R be a complete system of representatives of the orbits of V (I ) under the
action of G. Define f : R → V (	n) in such a way that χ(v) = χ( f (v)). Extend f to
the whole set of vertices of I as follows f (gv) = g f (v) for each v ∈ R and g ∈ G.
This extension is possible because gv = hw with v,w ∈ R implies v = w (because
of the choice of R); inasmuch as G acts freely on I , we get g = h.

Let us see f is the desired function. We begin showing χ( f (w)) = χ(w) for each
w ∈ V (I ). Take gv ∈ Gv with v ∈ R. Since the action of G in I is simplicial and
chromatic,weknow thatχ(gv) = χ(v).Now, f (gv) = g f (v)bydefinition. Inasmuch
as the action of G in 	n(G) is chromatic, we know that χ( f (gv)) = χ(g f (v)) =
χ( f (v)). By definition, χ(v) = χ( f (v)).

It is clear that if f is simplicial, it must be a G-map, so we only need to show f
is simplicial. Take σ ∈ I . Since I is chromatic, then #χ(σ) = #σ . From the above
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a b

c

{a}

{b, c}{a, b, c}

Fig. 11 A 2-simplex and its standard chromatic subdivision. We indicate with arrows the second coordinate
of some vertices in the subdivision

paragraph #χ( f (σ )) = # f (σ ) ≤ n + 1. This condition implies f (σ ) is a simplex in
	n . ��

We will use wait-free layered snapshot protocols, these protocols are determined
by a subdivision operator.

Definition 20 (Herlihy and Shavit 1999) Let σ be a simplex. The standard chromatic
subdivision of σ is the simplicial complex Ch(σ ) whose vertices are V = {(v, τ ) |
τ ⊆ σ, v ∈ τ } and it is generated by all sets {(v, τv) | v ∈ σ } such that

1. τv ⊆ τw or τw ⊆ τv for each v,w ∈ σ .
2. If v ∈ τw, then τv ⊆ τw.

If we have a chromatic simplicial complex � its standard chromatic subdivision is
obtained by replacing all its simplices by their standard chromatic subdivisions; for-
mally speaking

Ch(�) =
⋃

σ∈�

Ch(σ ).

This subdivision is denoted by Ch(�). Clearly we can iterate this procedure; any
subdivision obtained in this way is an iterated standard chromatic subdivision of �

and it is denoted by Chn(I ) for some n ∈ N.

Although it is easy to see that the standard chromatic subdivision is a chromatic
simplicial complex (the color of a vertex is the color of its first coordinate), we will
not prove that the standard chromatic subdivision is in fact a subdivision, a complete
proof can be found in (Kozlov 2012).

Now, we can define the protocols we are interested in.

Definition 21 Let I be a pure chromatic simplicial complex. The wait-free single-
layer immediate snapshot protocol with input complex I is the triple (I ,Ch(I ),Ch).
A wait-free layered immediate snapshot protocol with input complex I is a triple
(I ,Chn(I ),Chn). Inasmuch as we only use wait-free layered immediate snapshot
protocols, we call them justWF-protocols.

Let us give some intuition about the meaning of Fig. 11. The subdivision is the
protocol complex of a single-layer WF-protocol with input complex just a 2-simplex.
The local state of each process is the label of the vertex representing it. Intuitively this
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protocol indicates to each process to communicate its input value, then receive some
other values without waiting for them; that is, the process has a receive operation that
blocks the reception of values when it is called. In the subdivision, the vertex labeled
{a} represents the local view of the white process when it does not see any other input
value. The gray vertex, labeled {b, c}, indicates that the gray process knows the input
of b an its own. Finally, the black vertex, labeled {a, b, c}, represents the situation in
which it knows all inputs. These labels are symmetric with respect to colors.

According to Definition 7, there is a WF-protocol that solves the task (	n, O, T ′)
if there are an N ∈ N and a chromatic simplicial map d : ChN (	n) → O such that
d(ChN (σ )) ⊆ T ′(σ ) for each σ ∈ 	n .

Lemma 10 Let I be a free simplicial G-complex such that the action of each g ∈ G
is chromatic. If there is a WF-protocol that solves the task (	n, O, T ′), then there is
a chromatic simplicial map d ′ : ChN (I ) → O for some N ∈ N.

Proof From Lemma 9 we know that there is a chromatic simplicial G-map f : I →
	n . Let Ch( f ) : V (Ch(I )) → V (Ch(	n)) be the function defined by

Ch( f )(p, σ ) = ( f (p), f (σ )).

It is clear, that Ch( f ) defines a chromatic simplicialmap. Iterating this constructionwe
get a chromatic simplicial map ChN ( f ) : ChN (I ) → ChN (	n). If d is the function
of discussed above this lemma, let d ′ = d ◦ ChN ( f ). ��

Now, we can give a condition on solvability of tasks using pseudospheres.

Theorem 14 Assume the task (	n, O, T ′) admits a WF-protocol. Let (I , O, T ) be a
task where I is a free simplicial G-complex such that each g ∈ G acts as a chromatic
map. If the function f of Lemma 9 satisfies that T ′( f (σ )) ⊆ T (σ ) for each σ ∈ I ,
then the task (I , O, T ) admits a WF-protocol.

Proof In the proof we use the notation we have used before. From the above lemma,
we know that d ◦ ChN ( f ) : ChN (I ) → O is a chromatic simplicial map. Now, take
σ ∈ I and τ ∈ ChN (σ ). By definition, ChN ( f )(τ ) ∈ ChN ( f (σ )). Since d is a
decision map, we have that d ◦ ChN ( f )(τ ) ∈ T ′( f (σ )). Our hypothesis implies the
theorem. ��

9 Conclusions

Wehave presented an overview of the role that pseudospheres have played in the theory
of distributed computing, identifying the combinatorial and topological properties that
have made them so useful. They were defined in this area as models of situations
were individual components of a distributed system can take independent values. We
showed that pseudospheres are interesting objects in themselves, as they can be studied
under different mathematical perspectives. Specifically, studying the combinatorial
structure of pseudospheres, we showed that, in a sense, the intersection of the theory
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of finite matroids and the theory of posets is the theory of pseudospheres. The fact that
pseudospheres are matroids gave us a new proof of shellability of pseudospheres, one
of themost important properties used in distributed computing (Herlihy and Rajsbaum
2013). This provided us an alternative proof to Herlihy et al. (2014, Theorem 13.3.6).
Using matroid theory we can see that pseudospheres are shellable because they are
matroids.

Using group actions we related pseudospheres with Tucker’s lemma and gave a
solvability condition for distributed tasks that uses symmetries of input complexes.

There are several possible avenues for future research. We have presented several
combinatorial properties that pseudospheres share with spheres: they are joins of
pseudospheres of lower dimension, the Borsuk–Ulam Theorem and Tucker’s lemma
are theorems of pseudospheres. Itwould be interesting to look for additional properties.
For example, since Ky Fan’s lemma implies Tucker’s lemma (Fan 1952), it may be a
good starting point. Another one may be a theorem of type Lusternik–Schnirelmann
(Matousek 2003, Theorem 2.1.1 (LS-c)) because it is equivalent to the Borsuk–Ulam
theorem.

It would be interesting to explore the implications of the fact that pseudospheres
are clique complexes of complete multipartite graphs. Also, recently we discovered
that Klee (Klee 2009) studies a family of balanced (chromatic) simplicial complexes
that contains the family of pseudospheres. In that paper, shellability is not mentioned
and we do not know whether the reverse inclusion is true.

It would also be interesting to look for new uses of pseudospheres in distributed
computing, particularly inspired by looking at pseudospheres from different mathe-
matical perspectives. For example, they could be useful to close the open problems left
in (Goubault et al. 2019). Also, we believe that a better understanding of how protocols
act on pseudospheres could be useful. For instance, Theorem 2 is a result that says how
a class of protocols act on a pseudosphere. Can we ease the hypothesis? Can we get
warranties other than connectivity when a protocol acts on a pseudosphere? Finally,
notice the following. We found that pseudospheres are posets. By definition carrier
maps are order preserving and decision maps are also order preserving when they are
considered acting on simplices. The condition of solvability is an order relation. It is
known that finite topological spaces (spaces with a finite number of points) correspond
to posets (Barmak 2011). So it could be possible to model some distributed tasks using
finite topological spaces.
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